October 2023

 

10/01/2023

Point $D,E$ are on side $AD, BC$ of $\triangle{ABC}$ such that $\angle{BAC}=\angle{BDE}=90^{\circ}, \angle{DBE}=\angle{CDE}, [ABD]=1, [CDE]=1$, find $[BDE]$.

image-20231001064255294

Solve 1:

image-20231001064607005 \(\begin{multline}\nonumber \shoveleft \text{Let }BD=x, DE=y \implies [CBD]=1+\dfrac{xy}{2}\\ \shoveleft \triangle{CDE}\sim \triangle{CBD} \implies \dfrac{[CDE]}{[CBD]}=\dfrac{DE^2}{BD^2}=\dfrac{y^2}{x^2}=\dfrac{1}{1+\dfrac{xy}{2}}\\ \shoveleft \angle{ADB}=90^{\circ}-\angle{CDE}=\angle{ABD}\implies \angle{ABD}=\angle{DBE}\\ \shoveleft \implies \triangle{ABD} \sim \triangle{DBE}\implies \dfrac{[DBE]}{[ABD]}=\dfrac{BE^2}{BD^2}=\dfrac{\dfrac{xy}{2}}{1}=\dfrac{x^2+y^2}{x^2}\\ \shoveleft \implies \dfrac{xy}{2}=\dfrac{4+xy}{2+xy}\implies xy=2\sqrt{2}\implies [BDE]=\bbox[5px, border: 1px solid black]{\sqrt{2}} \end{multline}\)

Solve 2:

image-20231002010412546 \(\begin{multline}\nonumber \shoveleft \text{Let }F \text{ be the midpoint of } BE \implies BF=DF=EF\\ \shoveleft \angle{DBF}=\angle{BDF}=\angle{CDE}=\angle{ABD} \implies DF \parallel AB\\ \shoveleft \implies [BFD]=[DEF], \dfrac{[CDF]}{[CAB]}=\dfrac{1+\dfrac{[BDE]}{2}}{2+[BDE]}=\dfrac{1}{2}=\dfrac{CF^2}{BC^2} \\ \shoveleft \implies \dfrac{CF}{BC}=\dfrac{1}{\sqrt{2}} = \dfrac{[CDF]}{[BCD]}=\dfrac{1+\dfrac{[BDE]}{2}}{1+[BDE]}=\dfrac{1}{\sqrt{2}} \implies [BDE]=\bbox[5px, border: 1px solid black]{\sqrt{2}} \end{multline}\)

Solve 3:

image-20231003031114004 \(\begin{multline}\nonumber \shoveleft \text{Make }DF\perp BC \text{ at } F \implies \\ \shoveleft \angle{CDE}=90^{\circ}-\angle{ADB}=\angle{ABD}=\angle{DBE}=\angle{EDF}\\ \shoveleft \implies BD \text{ bisects } \angle{ABC}, DE \text{ bisects } \angle{CDF}\\ \shoveleft \implies AD=DF, [BDF]=[BAD]=1, \dfrac{BC}{AB}=\dfrac{CD}{DA}=\dfrac{CD}{DF}=\dfrac{CE}{EF}\\ \shoveleft \implies \dfrac{[BCD]}{[BAD]}=\dfrac{[CDE]}{[DEF]}\implies \dfrac{1+[BDE]}{1}=\dfrac{[1]}{[BDE]-1}\\ \shoveleft \implies [BDE]^2=2\implies [BDE]=\bbox[5px, border: 1px solid black]{\sqrt{2}} \end{multline}\)


10/02/2023

$D$ is a point on lateral side $CD$ of trapezoid $ABCD$ such that $\dfrac{CE}{DE}=\dfrac{3}{1}, [ADE]=9, [BCE]=21$, find $[ABE]$

image-20231002101005388

Solve:

image-20231002101256367 \(\begin{multline}\nonumber \shoveleft \text{Let extended } AD, BE \text{ intersect at }F.\\ \shoveleft \triangle{DEF} \sim \triangle{CEB} \implies \dfrac{[DEF]}{[CEB]}=\dfrac{DE^2}{CD^2}=9\\ \shoveleft \implies [DEF]=21 \times 9=189\implies [AEF]=198\\ \shoveleft \dfrac{[ABF]}{[AEF]}=\dfrac{CD}{DE}=\dfrac{4}{3}\implies [ABF]=198 \times \dfrac{4}{3}=264\\ \shoveleft \implies [ABE]=[ABF]-[AEF]=264-198=\bbox[5px, border: 1px solid black]{66} \end{multline}\)


10/03/2023

Trapezoid $ABCD$ has $\angle{ABC}=\angle{BAD}=90^{\circ}, BC=12, AD=14$. Point $E, F$ are on side $AB, CD$ respectively. Point $C, E$ is tangent to circle. $D$ is on the circle. $EF \perp CD$ at $F$. Find $EF$

image-20231003000621525

Solve:

image-20231002224722411 \(\begin{multline}\nonumber \shoveleft \text{Easy to see that } BE=BC=12, EF=FD=x\\ \shoveleft \angle{BCE}=\angle{BEC}=\angle{FED}=\angle{FDE}=45^{\circ}\\ \shoveleft \implies \triangle{BEC}\sim\triangle{FED} \implies \dfrac{12}{x}=\dfrac{EC}{ED}\\ \shoveleft \angle{AED}=\angle{ECD}\implies \angle{EDA}=\angle{CEF}\\ \shoveleft \implies \triangle{CEF}\sim\triangle{EDA} \implies \dfrac{EC}{ED}=\dfrac{x}{14}\\ \shoveleft \implies \dfrac{12}{x}=\dfrac{x}{14} \implies x^2=12 \times 14 \implies x=\bbox[5px, border: 1px solid black]{2\sqrt{42}} \end{multline}\)


10/04/2023

$D$ is a point inside $\triangle{ABC}$ such that $\angle{BAD}=20^{\circ}, \angle{DAC}=40^{\circ}, \angle{DBC}=\angle{DCB}=10^{\circ}$, find $\angle{ABD}$

image-20231004041637794

Solve:

image-20231004041757284 \(\begin{multline}\nonumber \shoveleft \text{Let }E \text{ be a point on the circumcircle of } \triangle{ABD} \text{ such that } BD=DE=CD\\ \shoveleft \implies \angle{BAD}=\angle{BED}=\angle{DBE}=\angle{DAE}=20^{\circ}=\angle{CAE}\\ \shoveleft \implies \angle{CDE}=360^{\circ}-\angle{BDE}-\angle{BDC}=360^{\circ}-140^{\circ}-160^{\circ}=60^{\circ}\\ \shoveleft \implies \triangle{CDE} \text{ is equilateral} \implies CE=DE \implies \triangle{DAE}\cong\triangle{CAE}\\ \shoveleft \implies AC=AD\implies \angle{ACD}=\angle{ADC}=70^{\circ} \implies \angle{ABD}=\bbox[5px, border: 1px solid black]{30^{\circ}} \end{multline}\)


10/05/2023

$\triangle{ABC}, \triangle{BEF}$ are equilateral triangles. Extend $CF$ and intersect $AE$ at $D$ . Find $\angle{ADC}$.

image-20231007035554417

Solve:

image-20231007035813186 \(\begin{multline}\nonumber \shoveleft \angle{EBF}=\angle{ABC}=60^{\circ} \implies \angle{EBA}=\angle{FBC}, EB=FB,AB=CB\\ \shoveleft \implies \triangle{EBA}\cong\triangle{FBC}\implies \angle{EAB}=\angle{FCB}\implies ADBC \text{ is cyclic}\\ \shoveleft \implies \angle{ADC}=\angle{ABC}=\bbox[5px, border: 1px solid black]{60^{\circ}} \end{multline}\)


10/06/2023

$D$ is a point on side $BC$ of $\triangle{ABC}$ and $\angle{ABC}=30^{\circ}, \angle{ACB}=100^{\circ}, AD=BC$. Find $\angle{ADC}$.

image-20231007051450127

Solve:

image-20231007051402769 \(\begin{multline}\nonumber \shoveleft \text{Let } F \text{ be the circumcenter of } \triangle{ABC} \implies AF=BF=CF, \\ \shoveleft \angle{AFC}=2\angle{ABC}=60^{\circ}, \angle{AFB}=360^{\circ}-2\times \angle{ACB}=160^{\circ}\\ \shoveleft \implies \angle{BFC}=100^{\circ}=\angle{ACB},\triangle{AFC} \text{ is equilateral} \\ \shoveleft \implies CF=AC\implies \triangle{BFC} \cong\triangle{ACD} \text{ (SSA on obtuse triangles)}\\ \shoveleft \implies \angle{ADC}=\angle{FBC}=\angle{FCB=}\dfrac{180^{\circ}-\angle{BFC}}{2}=\bbox[5px, border: 1px solid black]{40^{\circ}} \end{multline}\)


10/19/2023

$D$ is a point inside $\triangle{ABC}$ and $M, N$ are intersection points of extended $BD, CD$ on side $AC, AB$. $AM:MC=3:1, AN:NB=3:2, [ABC]=6$, find $[BCD]$.

image-20231019014641300

Solve: \(\begin{multline}\nonumber \shoveleft \text{Apply the Extended Crossed Ladders Theorem:} \\ \shoveleft \dfrac{1}{[BCM]}+\dfrac{1}{[BCN]}=\dfrac{1}{[BCD]} + \dfrac{1}{[ABC]}\\ \shoveleft \text{And we know } [BCM]=\dfrac{[ABC]}{4},[BCN]=\dfrac{2[ABC]}{5}\\ \shoveleft \implies \dfrac{1}{[BCD]}=\dfrac{4}{[ABC]}+\dfrac{5}{2[ABC]}-\dfrac{1}{[ABC]}\\ \shoveleft \implies \dfrac{1}{[BCD]}=\dfrac{11}{2[ABC]}=\dfrac{11}{12} \implies [BCD]=\bbox[5px, border: 1px solid black]{\dfrac{12}{11}} \end{multline}\) Note: Extended Cross Ladders Theorem


10/20/2023

$O$ is a point in $\triangle{ABC}$ and $\angle{A}=60^{\circ}, \angle{OBC}=\angle{OCB}=30^{\circ}$, $D, E$ are intersection points of extended $CO, BO$ and $AB, AC$. $G$ is on $BC$ such that $OG \perp BC$. Show that $2 OG=OD+OE$.

image-20231019201121187

Prove 1:

image-20231019201901682 \(\begin{multline}\nonumber \shoveleft \text{Extend }BE \text{ to } F \text{ such that } CF \perp BC, \text{ easy to see that}\\ \shoveleft \angle{COF}=60^{\circ}, BO=CO \implies \triangle{CFO} \text{ is equilateral}\\ \shoveleft \implies CF=CO=BO=FO=2OG,\angle{FCO}=\angle{CFO}=60^{\circ}\\ \shoveleft \text{Connect }AO, AF. \angle{BAC}=\angle{BFC}=60^{\circ}\implies ABCF \text{ is cyclic}\\ \shoveleft \implies \angle{BAF}=\angle{BCF}=90^{\circ}, \angle{CAF}=\angle{CBF}=30^{\circ}\\ \shoveleft \implies BO=FO=AO=CO \implies \angle{OAC}=\angle{OCA}\\ \shoveleft \text{Make }FH\parallel OD, DH \parallel FO \implies DHFO \text{ is parallelogram}\\ \shoveleft \implies DO=HF, DH=OF,\angle{HFO}=\angle{HDO}=\angle{DOB}=60^{\circ}\\ \shoveleft \implies \triangle{DOB}\cong\triangle{HFO}\implies \angle{HOF}=\angle{DBO} \implies HO \parallel AB \\ \shoveleft \implies \angle{HOF}=\angle{DBO}=\angle{ADH}=\angle{BAO}=\angle{DHO}\\ \shoveleft \implies ADOH \text{ is cyclic} \implies \angle{HAO}=\angle{HDO}=\angle{DOB}=60^{\circ}\\ \shoveleft \implies \angle{HAE}=60^{\circ}-\angle{OAE}=\angle{BAO}=\angle{ABO}=\angle{HOE} \\ \shoveleft \implies AOEH \text{ is cyclic}\implies \angle{HEF}=\angle{HAO}\implies \triangle{HEF} \text{ is equilateral}\\ \shoveleft \implies EF=HF=OD\implies 2OG=OF=OE+OD\blacksquare \end{multline}\)

Prove 2:

image-20231022161858330 \(\begin{multline}\nonumber \shoveleft BO=CO, \angle{BOC}=120^{\circ}=2\angle{BAC}\\ \shoveleft \implies O \text{ is circumcenter of }\triangle{ABC}\\ \shoveleft \implies AO=BO=CO\implies \angle{OAC}=\angle{OCA}\\ \shoveleft \angle{BAC}=\angle{COE}=60^{\circ}\implies ADOE \text{ is cyclic}\\ \shoveleft \implies \angle{OAC}=\angle{ODE} \implies \angle{ODE}=\angle{OCA}\\ \shoveleft \implies DE=CE\\ \shoveleft \text{Make }F \text{ on } OC \text{ such that }OE=OF\\ \shoveleft \implies OEF \text{ is equilateral}\implies OE=EF=OF\\ \shoveleft \angle{DOE}=\angle{EFC}=120^{\circ}\implies \triangle{DOE}\cong\triangle{CEF}\\ \shoveleft \implies OD=CF\implies 2OG=OC=OE+OD\blacksquare \end{multline}\)

Prove 3:

image-20231025044749636 \(\begin{multline}\nonumber \shoveleft BO=CO, \angle{BOC}=120^{\circ}=2\angle{BAC}\implies O \text{ is the circumcenter of }\triangle{ABC}\\ \shoveleft \text{Extend } OE \text{ to } F \text{ such that } F \text{ is on the circumcircle of } \triangle{ABC} \implies \angle{ABF}=\angle{ACF} \\ \shoveleft \angle{BFC}=\angle{BAC}=60^{\circ}=\angle{BOD} \implies \triangle{OCF}\text{ is equilateral} \implies CF=OC=BO\\ \shoveleft \implies \triangle{BDO}\cong\triangle{CEF}\implies OD=EF \implies 2OG=OF=OE+OD\blacksquare \end{multline}\)


10/21/2023

$E$ is midpoint of side $AD$ of square $ABCD$, $F$ is the intersection of $AC$ and $BE$. Find $\dfrac{[BCF]}{[ABCD]}$.

image-20231020172243419

Solve:

image-20231020172406127 \(\begin{multline}\nonumber \shoveleft \text{Extend }CB, CD \text{ such that } GB=BC=HD=CD, \text{ easy to see } GAH, BEH \text{ is collinear}.\\ \shoveleft \text{Apply Extended Crossed Ladder Theorem} \implies \dfrac{1}{[ACH]}+\dfrac{1}{[BCH]}=\dfrac{1}{[FCH]}+\dfrac{1}{[GCH]}\\ \shoveleft 2[ACH]=2[BCH]=[GCH] \implies [FCH]=\dfrac{[GCH]}{3}=\dfrac{2[ABCD]}{3}\\ \shoveleft \implies[BCF]=[BCH]-[FCH]=[ABCD]-[FCH]=\dfrac{[ABCD]}{3}\implies \dfrac{[BCF]}{[ABCD]}=\bbox[5px, border: 1px solid black]{\dfrac{1}{3}} \end{multline}\)


10/25/2023

$ABCD$ is a parallelogram and $O$ is the intersection of its diagonals. Point $E$ is on side $CD$ such that $\dfrac{CE}{DE}=\dfrac{1}{3}$. $F$ is on side $AB$. CF intersects with $AE, AD$ at $H, J$ such that $CH=HJ=JF$. $[ABCD]=240$, find $[GHJO]$.

image-20231025175349813

Solve:

image-20231025175552802 \(\begin{multline}\nonumber \shoveleft \text{Let } [AHC]=[AHJ]=[AJF]=a, [CGH]=b, [AGE]=c, [DEGO]=d, [GHJO]=x\\ \shoveleft [CJD]=8[CHE]\implies 8(b+c)=x+d+b+c\implies d+x=7(b+c)\\ \shoveleft [ADE]=3[ACE]\implies a+d+x=3(a+b+c)\implies a+7(b+c)=3(a+b+c)\implies a=2(b+c)\\ \shoveleft [ACO]=[CDO]\implies c+d=2a+b+x \implies d-x=4(b+c)+b-c=5b+3c\\ \shoveleft \implies x=b+2c, d=6b+5c, [ACO]=\dfrac{[ABCD]}{4}=60=6(b+c)\implies b+c=10 \implies a=20\\ \shoveleft \text{Apply Extended Cross Ladde Theorem on }\triangle{ACO}: \dfrac{1}{[ACG]}+\dfrac{1}{[ACJ]}=\dfrac{1}{[ACH]}+\dfrac{1}{[ACO]}\\ \shoveleft \implies \dfrac{1}{b+20}+\dfrac{1}{40}=\dfrac{1}{20}+\dfrac{1}{60}\implies b=4\implies c=6\implies [GHJO]=x=b+2c=\bbox[5px, border: 1px solid black]{16} \end{multline}\)


10/26/2023

$M$ is the midpoint of side $CD$ of square $ABCD$. $E$ is also on $CD$ such that $\angle{BAE}=2\angle{MAD}$. Show that $AE=BC+CE$

image-20231026094339169

Prove:

image-20231026094556988 \(\begin{multline}\nonumber \shoveleft \text{Let }F \text{ be the midpoint of side }BC, H \text{ on } AE \text{ such that } FG\perp AE\\ \shoveleft \implies \triangle{MAD} \cong \triangle{FAB} \implies \angle{BAF}=\angle{MAD}\implies \angle{FAG}=\angle{FAB}\\ \shoveleft \implies \triangle{FAB} \cong \triangle{FAG}\implies AG=AB=BC, BF=FG=FC\\ \shoveleft \implies \triangle{EFG} \cong \triangle{EFC}\implies CE=GE \implies AE=AG+GE=BC+CE\blacksquare \end{multline}\)


10/27/2023

$A,B,C,D,E,F$ are points on a circle such that $AD \cap BE \cap CF = O$. Let $AB=a, BC=b, CD=c, DE=d. EF=e, FA=f$, show that $ace=bdf$

image-20231028032353189

Prove:

image-20231028032823591 \(\begin{multline}\nonumber \shoveleft \text{Connect } AC, BF, CE, DF. \text{Apply Ptolemy's theorem: }\\ \shoveleft a \cdot CF+bf=AC \cdot BF \implies ad\cdot CF+bdf=d \cdot AC \cdot BF\\ \shoveleft d \cdot CF + ce = CE \cdot DF \implies ad \cdot CF + ace = a \cdot CE \cdot DF\\ \shoveleft \implies bdf-ace = d \cdot AC \cdot BF - a \cdot CE \cdot DF\\ \shoveleft \text{Easy to see that }\dfrac{CE}{BF}=\dfrac{CO}{BO}, \dfrac{DF}{AC}=\dfrac{DO}{CO}, \dfrac{a}{d}=\dfrac{BO}{DO}\\ \shoveleft \implies \dfrac{a \cdot CE \cdot DF}{d \cdot AC \cdot BF}=1\implies bdf=ace\blacksquare \end{multline}\)


10/30/2023

Napoleon’s Theorem: if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centers of those equilateral triangles themselves form an equilateral triangle. And, the centroid of this equilateral triangle overlaps with the centroid of the original triangle.

image-20231030010157946

Prove 1:

image-20231030010530341 \(\begin{multline}\nonumber \shoveleft \text{Easy to know that }AP=BP=\dfrac{c}{\sqrt{3}}, BQ=CQ=\dfrac{a}{\sqrt{3}}, CR=AR=\dfrac{b}{\sqrt{3}}\\ \shoveleft \angle{PBQ}=\angle{B+60^{\circ}}, \angle{QCR}=\angle{C+60^{\circ}}, \angle{RAP}=\angle{A+60^{\circ}}\\ \shoveleft \implies PQ^2=BP^2+BQ^2-2BP\cdot BQ\cdot cos(B+60^{\circ})\\ \shoveleft =\dfrac{c^2}{3}+\dfrac{a^2}{3}-\dfrac{2ac}{3}(cosB\cdot cos60^{\circ}-sinB\cdot sin60^{\circ})=\dfrac{a^2+c^2-ac(cosB-\sqrt{3}sinB)}{3}\\ \shoveleft =\dfrac{a^2+c^2-ac\dfrac{a^2+c^2-b^2}{2ac}+\sqrt{3}ac\cdot sinB}{3}=\dfrac{a^2+b^2+c^2}{6}+\dfrac{2[ABC]}{\sqrt{3}}\\ \shoveleft QR^2=CQ^2+CR^2-2CQ \cdot CR \cdot cos(C+60^{\circ})\\ \shoveleft =\dfrac{a^2}{3}+\dfrac{b^2}{3}-\dfrac{2ab}{3}(cosC\cdot cos60^{\circ}-sinC\cdot sin60^{\circ})=\dfrac{a^2+b^2-ab(cosC-\sqrt{3}sinC)}{3}\\ \shoveleft =\dfrac{a^2+b^2-ab\dfrac{a^2+b^2-c^2}{2ab}+\sqrt{3}ab\cdot sinC}{3}=\dfrac{a^2+b^2+c^2}{6}+\dfrac{2[ABC]}{\sqrt{3}}\\ \shoveleft RP^2=AR^2+AP^2-2AR \cdot AP \cdot cos(A+60^{\circ})\\ \shoveleft =\dfrac{b^2}{3}+\dfrac{c^2}{3}-\dfrac{2bc}{3}(cosA\cdot cos60^{\circ}-sinA\cdot sin60^{\circ})=\dfrac{b^2+c^2-bc(cosA-\sqrt{3}sinA)}{3}\\ \shoveleft =\dfrac{b^2+c^2-bc\dfrac{b^2+c^2-a^2}{2bc}+\sqrt{3}bc\cdot sinA}{3}=\dfrac{a^2+b^2+c^2}{6}+\dfrac{2[ABC]}{\sqrt{3}}\\ \shoveleft \implies PQ=QR=RP\implies \triangle{PQR} \text{ is equilateral}\\ \end{multline}\) Prove 2:

image-20231030015445857 \(\begin{multline}\nonumber \shoveleft \text{Let }O \text{ be the Fermat Point of } \triangle{ABC}\\ \shoveleft \implies \angle{AOB}=\angle{BOC}=\angle{COA}=60^{\circ}\\ \shoveleft \implies ADBO, BECO, CFAO \text{ is cyclic} \implies \\ \shoveleft \odot{ADBO} \cap \odot{BECO} = \{B, O\}\implies PQ \perp BO \text{ at } M\\ \shoveleft \odot{BECO} \cap \odot{CFAO} = \{C, O\}\implies QR \perp CO \text{ at } N\\ \shoveleft \odot{CFAO} \cap \odot{ADBO} = \{A, O\}\implies RP \perp AO \text{ at } K\\ \shoveleft \implies PMOK, QNOM, RKON \text{ is cyclic}\\ \shoveleft \implies \angle{KPM}=\angle{MQN}=\angle{NRK}=180^{\circ}-120^{\circ}=60^{\circ}\\ \shoveleft \implies \triangle{PQR} \text{ is equilateral}\blacksquare \end{multline}\)

Prove 3:

image-20231030192146108 \(\begin{multline}\nonumber \shoveleft \text{Easy to see that }\dfrac{BP}{BA}=\dfrac{BQ}{BE}=\dfrac{CR}{CA}=\dfrac{CQ}{CE}=\dfrac{1}{\sqrt{3}}\\ \shoveleft \angle{PBA}=\angle{QBE}=\angle{RCA}=\angle{QCE}=30^{\circ}\implies \\ \shoveleft \text{ Rotate }PQ \text{ around point }B \text{ and get }P'Q',\\ \shoveleft \text{ Rotate }CR \text{ around point }C \text{ and get }R''Q''\implies \\ \shoveleft \dfrac{BP'}{BA}=\dfrac{BP}{BA}=\dfrac{BQ'}{BE}=\dfrac{BQ}{BE}=\dfrac{1}{\sqrt{3}}\\ \shoveleft \dfrac{CR''}{CA}=\dfrac{CR}{CA}=\dfrac{CQ''}{CE}=\dfrac{CQ}{CE}=\dfrac{1}{\sqrt{3}} \implies\\ \shoveleft \dfrac{P'Q'}{AE}=\dfrac{R''Q''}{AE}=\dfrac{1}{\sqrt{3}}, PQ'\parallel AQ\parallel R''Q''\\ \shoveleft \implies \angle{PQR}=2\cdot 30^{\circ}=60^{\circ}, P'Q'=R''Q''\\ \shoveleft \implies PQ=RQ \implies \triangle{PQR} \text{ is equilateral} \blacksquare \end{multline}\)

Prove 1 for the centroid part:

image-20231030190816322 \(\begin{multline}\nonumber \shoveleft \text{From above proof we know that } AE=\sqrt{3}PQ=BF=CD\\ \shoveleft \text{Let }G \text{ be the centroid of }\triangle{ABC}, X,Y \text{ be midpoint of side }BC, AC \text{ respectively} \\ \shoveleft \implies EQ=2QX, FR=RY, AG=2GX, BG=2GY \implies GQ=\dfrac{AE}{3}, GR=\dfrac{BF}{3}\\ \shoveleft \implies GQ=GR \text{ and similarly } GQ=GR=PG \implies G \text{ is the centroid of }\triangle{PQR} \blacksquare\\ \end{multline}\)

Prove 2 for the centroid part: \(\begin{multline}\nonumber \shoveleft \text{Let }w=e^{i\tfrac{\pi}{3}}, \overrightarrow{D}=\overrightarrow{B}+w(\overrightarrow{A}-\overrightarrow{B}) \implies \overrightarrow{P}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{B}+w(\overrightarrow{A}-\overrightarrow{B})}{3}=\dfrac{\overrightarrow{A}(1+w)+\overrightarrow{B}(2-w)}{3}\\ \shoveleft \overrightarrow{Q}=\dfrac{\overrightarrow{B}(1+w)+\overrightarrow{C}(2-w)}{3}, \overrightarrow{R}=\dfrac{\overrightarrow{C}(1+w)+\overrightarrow{A}(2-w)}{3}\implies \overrightarrow{G}=\dfrac{\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}}{3}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}\blacksquare\\ \end{multline}\)

Note: Some papers about an Irish mathematician MacCool