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NAPOLEON’S 
THEOREM

…… Made Simple

SHAILESH SHIRALI Napoleon’s Theorem states the following. Let
ABC be an arbitrary triangle. With the three sides
of the triangle as bases, construct three equilateral

triangles, each one outside△ABC. Next, mark the centres
P,Q, R of these three equilateral triangles. Napoleon’s
theorem asserts that△PQR is equilateral, irrespective of the
shape of△ABC. (See Figure 1.)
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In an earlier issue of At 
Right Angles, we had 
studied a gem of Euclidean 
geometry called Napoleon's 
Theorem, a result discovered 
in post-revolution France. 
We had offered proofs of 
the theorem that were 
computational in nature, 
based on trigonometry and 
complex numbers. We 
continue our study of the 
theorem in this article, and 
offer proofs that are more 
geometric in nature; they 
make extremely effective use 
of the geometry of rotations.

Part 2
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In Part 1 of this article, we had considered
computational proofs of Napoleon’s theorem. In
the trigonometric proof, we derived an expression
for the length of one side of△PQR in terms of
the sides and the angles of the△ABC (i.e., in
terms of a, b, c,A, B,C). After going through the
computations, we discovered that the resulting
expression is symmetric in the parameters of the
parent triangle. This fact suffices to prove that
triangle PQR is equilateral.

Now we study an extremely elegant pure geometry
proof of Napoleon’s theorem; it makes very
effective use of rotational geometry. In the
literature, it is ascribed to an Irish mathematician,
MacCool [1].

Before proceeding, we make a comment about
rotations. Figure 2 shows a segment AB being
subjected to two different rotations, both centred
at a point O. The first one is through an angle of
+30◦ (the positive sign tells us that the rotation is
in a counterclockwise direction); it takes segment
AB to segment A1B1. The second one is through
an angle of −30◦ (the negative sign tells us that
the rotation is in a clockwise direction); it takes
segment AB to segment A2B2. Note that segments
AB, A1B1 and A2B2 have equal length.

Now we get back to the proof of Napoleon’s
theorem. Consider a rotation through an angle of
−30◦, centred at B (see Figure 3; the rotation is in
a clockwise direction). Our interest is in what this
rotation ‘does’ to points R and P, i.e., where it
takes these two points. Since �ABR = 30◦ and
�DBP = 30◦, it follows that the image R1 of R lies
on side AB, and the image P1 of P lies on side BD.

We argue as follows. The steps of the reasoning are
laid out in itemised form at the right side of the
diagram.

To see why BR1/BA = 1/
√
3 = BP1/BD, you

will first need to understand why
BR/BA = 1/

√
3 = BP/BD. But this follows

from the basic geometry of an equilateral triangle.
We leave the details for you to fill in.

From the fact that BR1/BA = BP1/BD, we
deduce (using the basic proportionality theorem)
that

R1P1 ∥ AD,
R1P1
AD

=
1√
3
. (1)

Since RP = R1P1, it follows that:
RP
AD

=
1√
3
. (2)

In just the same way, we consider a rotation
through an angle of +30◦, centred at C. Then, if
the rotation takes Q and P to Q2 and P2,
respectively, it follows that Q2 lies on side AC, and
P2 lies on side CD; and arguing as earlier, we
conclude that

Q2P2 ∥ AD,
Q2P2
AD

=
1√
3
, (3)

and
QP
AD

=
1√
3
. (4)

From (2) and (4), we conclude that RP = QP.

At this stage, we can proceed in two different
ways. One way is to say that the same argument
can be repeated for another pair of sides of△PQR
and to conclude that equality therefore holds for
the lengths of that pair of sides of△PQR, and to
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• �AOA1 = +30◦ = �BOB1

• �AOA2 = −30◦ = �BOB2

• Segments AB, A1B1 and A2B2 have equal
length

Figure 2
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(a) R1P1 = RP

(b) BR1 = BR

(c) BR1/BA = 1/
√
3

(d) BP1 = BP

(e) BP1/BD = 1/
√
3

(f ) BR1/BA = BP1/BD

(g) R1P1 ∥ AD

(h) R1P1/AD = 1/
√
3

Figure 3

conclude from this that all three sides of the
triangle have the same length. From this it follows
that△PQR is equilateral. (We do not actually
have to repeat all the steps of the argument. All we
need to say is that since the argument worked for
this particular pair of sides, it will also work for
another pair of sides. Note that this is an appeal to
symmetry.)

Another way is to say that RP = QP and
�RPQ = 60◦; this is so because R1P1 is parallel to
Q2P2, and we had obtained these two segments by
rotations of segments RP and QP through 30◦ and
30◦ respectively, the first one through a rotation of
−30◦ (i.e., 30◦ in a clockwise direction), and the
second one through a rotation of +30◦ (i.e., 30◦

in an anticlockwise direction). So the two
rotations are in opposite directions. After the two
rotations, the resulting segments are parallel to
each other, which means that prior to the
rotations they must have been inclined at an angle
of (+30)◦ − (−30)◦ = 60◦ to each other. This
suffices to prove that△PQR is equilateral. �

This proof is to be admired for its elegance and its
compactness! It shows just how much can be
accomplished using arguments belonging only to
elementary geometry.

In Part 3 of this series, we will consider
generalisations and further aspects of Napoleon’s
theorem.
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MacCool’s Proof of Morley’s Miracle

M. R. F. SMYTH

One of the most beautiful results in plane geometry is known as
Morley’s Miracle (1899). In essence it states that the triangle XY Z
in the figure below is always equilateral. It features prominently on
the front cover of the popular work [2] but is “still not as well-known
as it deserves to be” [3]. The excellent web article [1] continues to
track its development and also hosts a wide variety of proofs. None
of the early proofs was easy but since 1990 elementary ones have
emerged which are backward in the sense that they start from the
equilateral triangle and eventually reconstruct the original. Finding
a direct proof that matches them in brevity and simplicity has always
been an elusive goal [3].
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So I was amazed to find just such a proof in MacCool’s notebooks
and indeed it was so short that I nearly missed it. At first glance
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he seemed to be merely doodling, but moments later he had finished
the proof and was working on something completely different.

Those readers who haven’t heard of MacCool’s notebooks may
be surprised to learn that I am still less than halfway through the
first one. Translation from the Ogham script is proving a long slow
process and I am deeply indebted to one correspondent who reviewed
and improved upon my original efforts, often spotting intricacies
that I had overlooked. Although the gist of his arguments is always
clear MacCool delights in recording only a minimum of information,
and this particular proof was little more than a sketch decorated
with jottings of line segments and angles. Like all the rest so far it
is based solely on straight line geometry and similar triangles, but
anyone interested in more advanced concepts may be pleased to know
that diagrams containing circles begin to appear early in book two.

In his doodle the unit of measure is the perpendicular DX, and
the lengths of BX and CX are s and s′. E and F are points on BC
where ∠BXE = ∠FXC = 60o. P and P ′ are where BP = s and
CP ′ = s′ and S is constructed so that BS = s and ∠SBX = 120o.
This makes the four marked angles 60o (even if ∆ABC is obtuse).
The rest of his construction is self-explanatory.
Now by (vi) and (vii) 2ST = 2SU + 2UT = s + 2

(
s− 2s−1

)
=

3s − 4s−1 and ∆BQV ∼ ∆BDX yields V Q = 1 − 4s−2 so PQ =
PV + V Q = 3− 4s−2 thus

2ST = sPQ.

Then by (iv) and (v)

AY =
(

AC

s′

)(
PS

ST

)
=

2AC.PS

ss′PQ
.

If W is the midpoint of PS then since ∆BSP is isosceles ∆BWP
and ∆EDX will have identical angles, hence ∆BWP ∼ ∆EDX
giving XE = 2s/PS. Therefore

XE.AY =
4AC

s′PQ

and, by symmetry,

XE.AY

XF.AZ
=

(
4AC

s′PQ

)(
sP ′Q′

4AB

)
=

sAC.P ′Q′

s′AB.PQ
= 1

because PQ(AB/s) = P ′Q′(AC/s′) is the height of ∆ABC. How-
ever this means AZ : AY = XE : XF and as ∠ZAY = α = ∠EXF
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(i) α + β + γ = 60o (so 6 EXF = α)

(ii) 6 CY A = 6 CLP ′ = 120o + β

(iii) 6 TSB = 6 SPX = 6 BXE = 6 FXC = 60o

(iv) AY = (AC/s′) LP ′ (as ∆CP ′L ∼ ∆CAY )

(v) LP ′ = PS/ST (as 6 P ′LY = 6 SPT = 60o
− β)

(vi) XR = RV = 2/s (as ∆BDX ∼ ∆PRX ∼ ∆PV R)

(vii) SU = s/2 (as ∆BSU is half of an equilateral triangle)

then ∆AZY ∼ ∆XEF . Hence ∠Y ZA = ∠FEX = 60o + β and
∠AY Z = ∠XFE = 60o + γ. Analogous arguments for ∆BXZ and
∆CY X show ∠ZXB = 60o + γ, ∠CXY = 60o + β and ∠BZX =
∠CY X = 60o +α. All the angles in the doodle may now be deduced
in terms of α, β, γ and it transpires that every angle of ∆XY Z is
60o.

Here are some comments on the proof leading to a slight variation
that may help to make it more intuitive. The underlying idea is to
treat it as a series of left/right linkages. The results that 2ST = sPQ
and XE = 2s/PS are clearly “internal” to the left hand side. On
the other hand LP ′ has a foot in each camp since it can be expressed
both in terms of objects from the left PS/ST and objects from the
right s′AY/AC. Equating these expressions gives a “cross-linkage”
XE.PQ = 4AC/(s′AY ) and its companion 4AB/(sAZ) = XF.P ′Q′

which may then be combined to form the complicated looking quo-
tient above. Even MacCool seems to have been shocked by the final
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devastating cross-linkage PQ.AB/s = P ′Q′.AC/s′ which reduces
this quotient to unity. After that the rest is plain sailing.
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MacCool’s Proof of Napoleon’s Theorem
A sequel to The MacCool/West Point 1

M. R. F. SMYTH

I came across this incredibly short proof in one of MacCool’s note-
books. Napoleon’s Theorem is one of the most often proved results
in mathematics, but having scoured the World Wide Web at some
length I have yet to find a proof that comes near to matching this
particular one for either brevity or simplicity.

MacCool refers to equilateral triangles as e-triangles and he uses
κ to denote the distance from a vertex of an e-triangle with unit
side to its centroid. Naturally κ is a universal constant. He also
treats anti-clockwise rotations as positive and clockwise rotations as
negative.

Theorem 1. If exterior e-triangles are erected on the sides of any
triangle then their centroids form a fourth e-triangle.
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1Irish Math. Soc. Bulletin 57 (2006), 93–97
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Proof. Let ABC be any triangle and construct the three exterior
e-triangles with centroids L,M,N as shown. Rotate LN by −30◦

about B to give L′N ′ and LM by +30◦ about C giving L′′M ′′. Since
all four marked angles are 30◦ it follows that L′, N ′, L′′,M ′′ will lie
on BP, BA,CP,CA respectively and κ = BL′ : BP = BN ′ : BA =
CL′′ : CP = CM ′′ : CA. Then by similarity L′N ′ = κAP = L′′M ′′

and L′N ′ ‖ AP ‖ L′′M ′′ so LN = LM and the angle between them
is 30◦ + 30◦ = 60◦. Hence ∆LMN is an e-triangle. ¤

Theorem 1 is the classical Napoleon theorem. MacCool refers to
the resultant e-triangle as the outer triangle to distinguish it from
the inner triangle whose vertices are the centroids of the internally
erected e-triangles.

The proof shows that each side of the outer triangle is equal to
κAP . Since it could equally well have used BQ or CR instead this
means AP = BQ = CR. The common length of these three lines is
central to the next result. Also required is the fact that the centroid
lies one third of the way along any median. This important prop-
erty is easily deduced by observing that the medians of any triangle
dissect it into six pieces of equal area.

Theorem 2. The centroids of the outer triangle and the original
triangle are coincident.
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Proof. Let D be the mid point of BC, O be the centroid of ∆ABC,
and L be the centroid of ∆BPC. Then DA = 3DO and DP = 3DL
so ∆DLO and ∆DPA are similar, giving AP ‖ OL and AP = 3 OL.
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Likewise BQ = 3 OM and CR = 3ON . Since AP = BQ = CR the
distances from O to the vertices of ∆LMN are equal. As ∆LMN
is equilateral O must be its centroid. ¤

Next MacCool fixes ∆BPC and allows A to vary continuously
throughout the plane. He notes that the proofs of these two theo-
rems still apply whenever A drops below the level of BC, in effect
making the angle at A reflexive and the angles at B and C negative.
Essentially this is because the three e-triangles always retain their
original orientation. For the orientation of an e-triangle to change
under continuous deformation its area must first become zero which
means that it must shrink to a point, but for the e-triangles in ques-
tion this can only happen at B or C. So long as A avoids those two
points no orientational changes to the e-triangles can occur.

However one subtle change does take place as A drops below BC
in that the orientation of ∆ABC itself changes. When that happens
the e-triangles become internal rather than external. This has the
following consequence.

Theorem 3. The inner triangle is an e-triangle whose centroid co-
incides with the centroid of the original triangle.

The next result gives an alternative proof that AP = BQ = CR.
Only the “external” proof is given since the “internal” case is handled
by exactly the same proof with the assumption that A lies below
rather than above BC.

Theorem 4. Suppose external (internal) e-triangles are erected on
the sides of a given triangle. Then the three lines joining each vertex
of the given triangle to the remote vertex of the opposite e-triangle
are equal in length, concurrent, and cut one another at angles of 60◦.

R A

B C

P

Q
X'

X
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Proof. Let ∆ABC be given and CBP , ACQ, BAR be the external
e-triangles. Clearly ∆ABQ is a +60◦ rotation of ∆ARC about A,
∆BCR is a +60◦ rotation of ∆BPA about B and ∆CAP is a +60◦

rotation of ∆CQB about C. It follows that AP = BQ = CR and
all angles of intersection are 60◦. To prove concurrency assume BQ
and CR cut at X and construct BX ′ by rotating BX through +60◦

about B as shown. Since ∠BXR = 60◦ and BX = BX ′ it follows
that X ′ must lie on CR. However a rotation of the line CX ′R
through −60◦ about B will map C 7→ P , R 7→ A, and X ′ 7→ X.
Therefore A, X, and P are collinear which means that AP , BQ, CR
must be concurrent. ¤

MacCool next studies the areas of the various triangles. He uses
(UV W ) to denote the algebraic area of ∆UV W . In other words
(UV W ) is equal to the area of ∆UV W when the orientation of
∆UV W is positive, and minus that value whenever the orientation
is negative.

Lemma 5. In the diagram below BPC, ACQ, and ARB are e-
triangles whose mean area is Ω, and Z is constructed so that AZBQ
is a parallelogram. Then AZP is also an e-triangle and 2(AZP ) =
3Ω + 3(ABC).
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Proof. As AZBQ is a parallelogram ∠ZAP is alternate to an angle
of 60◦ so it too is 60◦. Also AP = BQ = AZ so AZP must be an
e-triangle. Clearly
(AZP ) = (ABP ) + (BZP ) + (AZB) by tesselation

= (ABP ) + (APC) + (ABQ)
as (APC) = (BZP ) and (ABQ) = (AZB).
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Now (BCR) = (ABP ) and (BCQ) = (APC) and (ARC) =
(ABQ) therefore

2(AZP ) = (ABP )+(APC)+(ABQ)+(BCR)+(BCQ)+(ARC)
= 3Ω + 3(ABC). ¤

The diagram below shows two e-triangles, one with unit side and
the other with side κ. Although I have found no evidence that Mac-
Cool was familiar with Pythagoras, he inferred from this diagram
that 3κ2 = 1 and he deduced that the areas of the inner and outer
triangles were one third the area of an e-triangle of side AP .

3κ2 = 1

1

1

κ

κ
κ

The area of the smaller 
equilateral triangle is 
clearly κ2 that of the 
larger, from which it 
follows that κ must 
satisfy the equation :

Theorem 6. The mean area of the three e-triangles plus (minus)
the area of the original triangle equals twice the area of the outer
(inner) triangle.

Proof. Let ∆ be the area of the outer triangle. As explained on
the previous page (AZP ) = 3∆. Applying Lemma 5 now yields
2∆ = Ω+(ABC). Alternatively, if ∆ is the area of the inner triangle
this equation still holds, but there is a caveat. The orientations of
∆AZP and the inner triangle don’t change as long as A avoids the
point P where the latter shrinks to a point, but ∆ABC has changed
its orientation and so the value of (ABC) is now negative. Hence
rewriting the equation in positive terms, 2∆ = Ω− (ACB). ¤

Corollary 7. The area of the outer triangle is that of the inner
triangle plus that of the original one.

Finally MacCool presents a generalisation of Theorem 1.

Lemma 8. Let A, B,C be non-collinear and X any point between A
and C. Construct P and Q on BX such that ∠PAB = ∠XBC and
∠QCB = ∠XBA. Then the triangles PAB and QBC are directly
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similar, moreover P and Q coincide if and only if AX : XC = AB2 :
BC2.

X

C

BA

Q

P

Proof. Clearly ∆PAB and ∆QBC are directly similar. Suppose
BC = λAB and XC = µAX. Then (QBC) = λ2(PAB) whereas
(PBC) = µ(PAB). If P and Q coincide then clearly µ = λ2. Con-
versely if µ = λ2 then (PBC) = (QBC) so (PQC) = 0 which implies
P = Q. ¤

Note that if AB and BC have equal length then ∆PAB and
∆PBC are similar (but not directly similar) for all points P on the
bisector of ∠ABC. Also the lines AB and BC (extended) divide the
plane into four zones, and if a point O exists such that ∆OAB and
∆OBC are directly similar then O must lie in the zone that includes
the line segment AC. This leads to a key result.

Corollary 9. If the points A, B,C are non-collinear then there exists
a unique point O such that the triangles OAB and OBC are directly
similar.

Theorem 10 (Generalised Napoleon). Let ABC and A′B′C ′ be di-
rectly similar triangles with a common vertex C = B′. Suppose A′′,
B′′, C ′′ are chosen such that the triangles AA′A′′, BB′B′′, CC ′C ′′

are directly similar. Then so too are the triangles A′′B′′C ′′ and
ABC.

Proof. There are 3 separate cases. First if B′ is midway between
B and C ′ then ABB′A′ is a parallelogram and the result follows
easily. Otherwise if B, B′, C ′ are collinear take O to be the point
where AA′ cuts BB′. Then ∆A′B′C ′ is a dilation of ∆ABC and it
is clear that ∆A′′B′′C ′′ may be obtained from ∆ABC by a rotation
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A'' A'O

C'

C=B'B

A

B''

C''

of ∠AOA′′(= ∠BOB′′ = ∠COC ′′) about O followed by a dilation
of size OA′′/OA. So once again the result holds. Finally if B,B′, C ′

aren’t collinear apply Corollary 9 to ∆BB′C ′ (aka BCC ′) giving
the point O such that OBB′ and OCC ′ are directly similar. Let
θ = ∠BOB′ = ∠COC ′ and λ = OB′ :OB = OC ′ :OC. Let τ be
the transformation that first rotates through the angle θ about O
and then dilates by the scaling factor λ. Clearly τ preserves directly
similar figures and maps B 7→ B′, C 7→ C ′ so as ABC and A′B′C ′

are directly similar it must also map A 7→ A′. Thus ∠AOA′ = θ and
OA′ :OA = λ from which it follows that ∆OAA′ is directly similar to
both ∆OBB′ and ∆OCC ′. Then OAA′′A′, OBB′′B′, OCC ′′C ′ are
directly similar quadrilaterals so OAA′′, OBB′′, OCC ′′ are directly
similar triangles. Thus OA′′ : OA = OB′′ : OB = OC ′′ : OC = µ
and ∠AOA′′ = ∠BOB′′ = ∠COC ′′ = φ for some µ and φ. That
means the quadrilateral OA′′B′′C ′′ may be obtained from OABC by
rotating it through φ about O and dilating the result by the scaling
factor µ. Therefore ∆A′′B′′C ′′ and ∆ABC are directly similar. ¤

The wheel has come full circle. To derive Napoleon’s Theorem
from this result take ∆ABC to be equilateral and choose A′′ so that
∆AA′A′′ is isosceles with base AA′ and base angles of 30◦.
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MACCOOL’S SECOND PROOF OF MORLEY’S
MIRACLE

M.R.F. SMYTH

In memory of Kenneth Beales and Trevor West

Abstract. Here is a traditional proof of Morley’s miracle that is
unrivalled for brevity and simplicity. It stems from a sadly neglected
mathematical gem published in 1914.

1. Introduction

That the triangle XY Z in the figure below is always equilateral
is formally known as Morley’s trisector theorem and informally as
Morley’s miracle. Its modern discovery dates back to 1899 and
since then it has been proved many times by a wide variety of meth-
ods. The website [1] tracks developments and plays host to roughly
twenty proofs including MacCool’s original effort.

A

X

Y

However as [3] explained, the proof there was based entirely on
straight line geometry and similar triangles. It opined that Mac-
Cool’s second notebook which was marked “Advanced” and con-
tained diagrams of circles might hold an alternative proof. And so
indeed it has proved, although it has taken me a very long time to
decipher the Ogham. So whilst I have yet to find any evidence that
MacCool was familiar with Pythagoras, the result that we know to-
day as the inscribed angle theorem [Euclid: Book 3, Prop 22] does
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indeed appear in his “Advanced” notebook, and soon afterwards
comes the second proof of Morley’s theorem. This is even shorter
and easier than his “Basic” one, and completely debunks the urban
myth that all purely geometric proofs must necessarily be longer
and more complex than the “backward” ones.

2. Proof

His proof runs as follows. In any triangle ABC letX be the Morley
vertex adjacent to BC. First construct the points P and Q on AB
and AC respectively such that |BP | = |BX| and |CQ| = |CX|.
Then construct the right-angled triangle PRX with hypotenuse PX
and ∠XPR = 30◦ as shown below. The six marked segments will
all have equal length. Produce PR and the trisector CS to meet in
Y . Note that the three right-angled triangles, ∆RXY and ∆SXY
and ∆SQY , (which MacCool calls wedges) have equal hypotenuses
and an equal (marked) side therefore they are congruent. Evidently
α + β + γ = 60◦.

β
β

β

γ

γ

γ

Q

A

B C

Y

X

P

R
S

30o

60o

3α

Z
b

b

b

b

b

b

b

b

b

Now ∠QXP = 360◦− 2(90◦− β) − 2(90◦− γ) = 120◦− 2α. So
∠YXR = ∠SXY = ∠YQS = 1

2(∠QXP − 60◦) = 30◦− α. As
∆PQX is isosceles its base angles ∠XPQ and ∠PQX are both
30◦+ α so ∠YPQ = α and ∠PQY = (30◦+ α)− (30◦− α) = 2α.
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Therefore ∠QYP = 180◦− 3α. And now for the advanced bit.
Finn spots this is supplementary to ∠BAC making APYQ a cyclic
quadrilateral. Consequently ∠YAQ = ∠YPQ = α which fixes Y
as the Morley vertex adjacent to AC. Next he performs a similar
construction (shown in outline) starting from a right-angled triangle
on hypotenuse QX and angles 30◦ and 60◦ at Q and X respectively.
This generates three more wedges which are clearly congruent to the
first three, plus the Morley vertex Z adjacent to AB. In particular
|XY | = |XZ| and ∠YXZ = 60◦ from which he deduces that ∆XYZ
is equilateral.

3. Conclusion

After scanning numerous proofs the only “modern” one I’ve seen
that is remotely like this is given in [2] and attributed to W. E. Philip.
William Edward Philip was Third Wrangler at Cambridge in 1894,
but despite many references to [2] in the literature the beauty of
his proof seems to have been strangely overlooked. Indeed [2] also
contains a version of Leon Bankoff’s 1962 trigonometric proof, long
regarded as the easiest non-backward approach to the theorem. As
years passed without anyone finding a short, simple, non-backward
geometric proof a mistaken belief has proliferated that no such proof
exists. So, as the centenary of its publication approaches, the time
seems ripe to call attention to [2] and bring it back centre stage.
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The success of the International Mathematical Olympiad (IMO)
has helped to revive interest in Euclidean geometry and to halt
somewhat its decline during the second half of the twentieth century.
Consequently there is a constant trickle of new publications on the
subject of which the book under review is one. Both authors have
connections with the IMO. Sotirios E. Louridas has been a coach of
the Greek Mathematical Olympiad team while Michael Th. Rassias
is a winner of a silver medal at the IMO 2003 in Tokyo and holds a
Master of Advanced Study from the University of Cambridge.

The book has six chapters with a foreword by Fields Medalist
Michael H. Freedman. Chapter 1, Introduction, is short with a little
history of geometry and containing Euclid’s axioms and postulates.
Chapter 2 deals with the basic concepts of logic and covers methods
of proof including proof by analysis, by synthesis, proof by contra-
diction and proof by induction with examples. The one induction
example is more a problem in number theory than geometry having
the theorem of Pythagoras as a starting point. There is no other
problem in the book that uses proof by induction. Chapter 3 covers
geometrical transformations, viz. translations, symmetry, rotations,
homothety and inversion. These are illustrated with examples and
some theorems with proofs. The section on inversion will be found
particularly useful to students and teachers as it gives several exam-
ples of its power in solving certain types of problems. Some of the
later IMO type problems in the book also use inversion, something
not common in many publications on Euclidean geometry.

Chapter 4 is a collection of thirty-eight theorems some of which
are proved. The selection of theorems is excellent. Knowledge of
these theorems together with the theorems of Euclid would go a
long way towards solving many a geometrical problem. The proof of
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Feuerbach’s theorem, Theorem 4.21 in the book, contains an error
and the proof of Morley’s theorem, Theorem 4.11, is not correct.
In the latter case if the word ‘isosceles’, used twice, is replaced by
‘equilateral’ the proof would be correct but incomplete. Interestingly
the construction at the beginning of this proof is similar to the
construction used in MacCool’s proof of Morley’s theorem [1].

Chapter 5 offers sixty-five problems divided into three categories,
problems with basic theory, problems with more advanced theory
and geometrical inequalities. There is little difference between the
first two categories and many of the problems are of IMO standard.
The solutions follow in chapter 6 forming the main body of the work.
Reading through the solutions is not easy. In some cases parts of the
solutions seem to have been omitted and a good deal has been left
to the reader usually without any comment from the authors. The
statement of problem 6.2.25 p.169 is false as the wrong angles are
designated as being equal. The solution uses the correct two angles
but if you were attempting to solve the problem without consulting
the solution, which you would expect a reader to do, your work
would be in vain. The problems are restated before each solution in
chapter 6 and the error is repeated. The solution of problem 6.2.22
p.164 is also incorrect since it would require the side of an inscribed
pentagon to also be a tangent to the circumscribing circle! Obviously
there are serveral misprints in this solution. On the other hand some
of the proofs are quite innovative and the solution of problem 6.2.15
p.151 is an excellent example of the use of inversion.

There is an appendix on the Golden Section which is a reprinting
of an article by Dirk Jan Struik in [2]. I fail to see the point of
this as it is a popular article containing all the usual material of
such articles which can be found in many publications and on the
internet. Besides the Golden Section is not mentioned anywhere in
the main text of the book. There is also a useful index of symbols
used in the text, a subject index and a list of references, ninety-
nine in all, including a reference to Wiles’ paper on the solution of
Fermat’s Last Theorem! Since there are no references in the text,
apart from acknowledging authors of problems, the references should
rightly be called a bibliography.

To summarise, this is not a book showing how to solve problems in
geometry except in the sense of learning from seeing problems solved.
This is not a criticism as much can be learned in this way particularly
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if a solution has been attempted beforehand. The book is beautifully
produced, the quotions at the head of each chapter adding to the
publication. However the work is unfortunately marred by poor edit-
ing and proofreading. I counted over sixty errors, omissions, typos
or misprints, mostly the latter, which does not make for easy read-
ing. In addition some solutions have no diagram. Woody Guthrie,
the American folk singer, once said that he liked books with errors
as it made them more human. I doubt he ever read a mathematics
text.
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