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Abstract. This paper introduces the basics of the simple random walk with

a flair for the statistical approach. Applications in biology and game theory
will be discussed. The Impossibility of Profitable Stopping will be explored
and proven.
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1. Introduction

Imagine you are on an integer number line, standing at zero. You flip a fair
coin and if it comes up heads you move one step right to +1 and if it comes up
tails you move one step left to -1. You continue this process, moving one step
right or left for each coin toss, until you have returned to your starting position or
have taken a predetermined number of steps. You have just executed a symmetric
simple random walk. This simple random walk spans many fields of study and was
first noticed by the Romans in 60BC. However, one of the subject’s most notable
beginnings occurred in biology when Scottish botanist Robert Brown rediscovered
the phenomena in 1827. While studying pollen suspended in water Brown noticed
the jittery motion of the pollen’s organelles. At the time Brown speculated that
the organelles were tiny organisms, alive and moving. Although his hypothesis was
later disproved, the movement was coined Brownian motion. Since its start the
subject has been fundamental in economics and physics with less significant uses
in various other courses of study. In this paper we will explore the basic attributes
of simple random walks in Section 2, how they relate to Brownian motion and the
various distributions they can be described with in Section 3, and we will touch on
their role in game theory in Section 4.
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2. What it looks like

Definition 2.1. The configuration space of dimension N is the collection of binary
sequences of length N for a fixed N ∈ N. We denote this as

ΩN = {ω = (ω1, . . . , ωN ) ∈ {+1,−1}N}.
Note that Ω can be thought of as the set of all possible outcomes of a simple

random walk.

Definition 2.2. The step of the random walk at time k is the direction the walk
is moving in at time k, denoted

Xk(w) = wk

for 1 ≤ k ≤ N and w ∈ ΩN .

Definition 2.3. The position of the random walk after n steps is the sum of all n
steps:

Sn(w) =

n∑
k=1

Xk(w)

for 1 ≤ n ≤ N and S0(w) = 0

For every w ∈ ΩN we obtain a path (i.e. a trajectory). That is to say, for each
w there is a valid collection of steps from the starting position to another chosen
point.

Example 2.1 If N = 2 then Ω = {(1, 1), (1,−1), (−1, 1), (−1,−1)} where the
position 0 can be achieved by two different paths. Thus X2(w) = −1 or 1 and
S2(w) = −2 or 0 or 2.

We can take the uniform distribution PN (A) = |A|2−N for A ⊆ ΩN as the proba-
bility distribution on ΩN . Hence all binary sequences w (all paths) have the same
probability.

Definition 2.4. The sequence of random variables (Sn)Nn=0 on the finite probability
space (ΩN , PN ) is called a simple random walk of length N , starting at 0.

Notice, also, that P (Xk = xk1 , . . . , Xkn = xkn) = 2N−n2−N = 2−n as

1 ≤ k1 < . . . < kN ≤ N and xki ∈ {+1,−1} for i = 1, . . . , n. For a fair coin the
probability of getting heads is the same as getting tails:2−1. The probability of
any given step is the product of the probability of all previous steps along with the
probability of the particular step. Thus landing on 3 after 3 steps has probability

P (X3) = 2−12−12−1 = 2−3.

We will now quickly introduce the idea and implementation of expected value.
Finding the expected value of a function or process means that you are calculating
the most likely outcome. Random walks have a binomial distribution (Section 3)
and the expected value of such a distribution is simply E(x) = np where n is the
total number of trials, steps in our case, and p is the probability of success, a right
step in our case. Thus, if we are going to take 10 steps and the probability of taking
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a right step is .3 then E(x) = 10 ∗ .3 = 3; we would expect to take 3 steps to the
right out of 10 total steps. In Theorem 2.5 we follow our previously established
notation and denote right steps as 1 and left steps as −1.

Let X denote the position of a simple random walk after k steps. L be the total
number of steps.

Theorem 2.5.

(1) E(Xk) = 0
(2) E(Xk

2) = 1
(3) E(SN ) = 0
(4) E(SN

2) = N

Proof.

(1) E(Xk) = 1
2 (−1) 1

2 (1) = 0

(2) E(Xk
2) = 1

2 (−1)2 1
2 (1)2 = 1

(3) E(SN ) =
∑N
k=1E(Xk) =

∑N
k=1 0 = 0

(4) E(SN
2) =

∑N
k=1E(Xk

2) =
∑N
k=1 1 = N

�

Theorem 2.6. For x ∈ {−n,−n + 2, . . . , n − 2, n} the probability that a simple
random walk is in x after n steps is P (Sn = x) =

(
n
n+x

2

)
2−n.

Proof. Sn = x if and only if k = n+x
2 is the number of steps to the right. Therefore

Sn(w) = k(1) + (n− k)(−1) = 2k − n = x. Thus P (Sn = x) =
(
n
k

)
2−n (where 2−n

is derived from the fact that each step happens with probability 2−1). �

3. Brownian Motion

Brownian Motion was the real start to the study of random walks. However,
Brownian motion covers many more cases than just that of the simple symmetric
walk. Brownian motion is inspired by the movement of particles living in a three-
dimensional space as opposed to the two directions we limited the simple random
walk to. Thus the mathematical representation of the various scenarios quickly
becomes more complex. For now we will focus our efforts on the simplest form of
Brownian Motion.

By definition standard Brownian motion is a random process

X = {xt : t ∈ [0,∞)} that operates in R and has the following conditions:

(1) The starting position is always zero so X0 = 0 with probability 1.
(2) X has stationary increments thus Xt − Xs has the same distribution as

Xt−s. This means that the distribution is a function of ‘how long’, t, and
not of ‘when’, s. The underlying dynamics don’t change over time whether
they be jostling particles or coin flips.

(3) X has independent increments meaning that the random variablesXt1 , Xt2−
Xt1 , . . . , Xtn − Xtn−1 are independent for t1, t2, . . . , tn ∈ [0,∞) and t1 <
. . . < tn. In other words, each increment does not depend on the previous
or following increments.

(4) Xt is normally distributed with a mean of 0 and a variance of t for t ∈
(0,∞).

(5) t 7→ Xt is always continuous on [0,∞).
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Let’s use these requirements to consider the journey of a random walker. What
is the probability, P (m,N), that the walker will be at position m after N steps?
(We are using P (m,N) here as a general probability statement.) Let p be the
probability of a right step and 1− p = q be the probability of a left step. There are
many ways to obtain such a path when m < N but each path is independent thus
we can simply add up their probabilities. We know from (1) that the walker must
start from 0 and we also know that the walker must make n1 = m + n2 steps to
the right and n2 steps to the left as n1 + n2 = N . It follows that n1 = 1

2 (N + m)

and n2 = 1
2 (N −m). Now, since each path is independent (a conclusion that can

be attributed to (3)), we know that there must be n1 factors of p and n2 factors of
q. Using this we get

pn1qn2 = p
1
2 (N+m)q

1
2 (N−m)

which is simply the probability of any one path. We must multiply that by the
total number of ways a path of this sort can occur which is

N !

n1!n2!
=

N !

n1!(N − n1)!

Thus we ultimately obtain

P (m,N) =
N !

(N+m
2 )!(N−m2 )!

p
1
2 (N+m)q

1
2 (N−m)

This probability can be explored through multiple distributions.
First we’ll look at the binomial distribution. This distribution is of the form

b(n, p, k) =

(
n

k

)
pk(1− p)n−k

This is used to calculate the number of successes in n fixed trials where p =probability
of success and k =number of successes. Viewing our random walk within this dis-
tribution we use the fact that n = 1

2 (N +m) to get

P (m,N) =
N !

n!(N − n)!
pnqN−n =

(
N

n

)
pnqN−n

Thus our random walk can clearly be expressed by a binomial distribution where
we define success as a rightward step.

Next let’s look at the Poisson distribution. This distribution has the form

P (m,N) =
e−λλx

x!

and calculates the number of arrivals in a fixed period of time. The frequency or
success per unit of time is denoted by λ while x is the number of successes in a
given unit of time. In general, λ = np for large n and small p. Thus as N goes to
infinity, p goes to 0 and λ remains constant we can see that

PoisN (n) =
N !

n!(N − n)!
pnqN−n =

N(N − 1) . . . (N − n+ 1)

n!
pn(1− p)N−n

= (1− 1

N
) . . . (1− n− 1

N
)
(Np)n

n!
(1− Np

N
)N−n

This means that n ≈ Np and n << N . From this we can see that the limit as N
goes to infinity of ( 1−λ

N )N is e−λ. Therefore, the limit as N goes to infinity of Np
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is λ and Pois(n) = λne−λ

n! . Hence our random walk can be easily expressed by the
Poisson distribution.

4. Game Theory

Now we will look at what part random walks play in game theory. Let’s first
take note of a few things.
Observations:
1. The distribution of Sn is symmetric around 0.

(4.1) P (Sn = x) =
n!(

n− x
2

)
!

(
n+ x

2

)
!

= P (Sn = −x)

In other words the probability of a right step is equal to the probability of a left
step.
2. The maximal weight (mode) is achieved in the middle.

(4.2) P (S2n = 0) = P (S2n−1 = 1) =

(
2n

2

)
2−2n

3. Sterling’s formula, an approximation for factorials, states that n! ∼ nne−n
√

2πn
as n→∞. From this we can conclude

(4.3) P (Sn = 0) ∼ 1√
πn

, n→∞

This means that P (S2n = 0) ∗
√
πn = 0 so P (S2n = 0) must go to 0 and

√
πn must

go to infinity.
Furthermore for a finite interval [a,b],

(4.4) lim
n→∞

P (a ≤ Sn ≤ b) = 0.

This simply means that as n grows very large the probability of the path ending
within some finite range is 0.

We shall now view the simple random walk as a game. Suppose that in round k
a player wins an amount Xk and Sn is the player’s capital after n rounds. Before
each round the player chooses to either continue in the game or stop where they
are. We saw in Section 2 that E(Sn) = 0 so the expected gain after each round
is 0. Considering this, is it possible to stop the game in a favorable moment such
that it leads to positive expected gain? Let’s find out.

Definition 4.5. An event A ⊆ Ω is observable until time n when it can be written
as the union of basic events of the form {w ∈ Ω : w1 = o1, . . . , wn = on} with
o1, . . . , on ∈ {+1,−1}.

This really just means that a player cannot see into the future. After round n
the player does not know the outcome of round n + 1. An denotes this class of
events A that are observable until time n.
The indicator function is a random variable IA for an event A ⊆ Ω where IA(w) = 1
when w ∈ A and IA(w) = 0 when w /∈ A. This function is useful when determining
whether or not a round is within the time frame that the player can observe. Note
that {∅,Ω} = A0 ⊆ A1 ⊆ . . . ⊆ An = {set of all subsets of Ω}. This makes sense
because if the player knows what happened in round n then the player also knows
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what happened in round n− 1.

Lemma: For n = 0, 1, . . . , N − 1 and An ∈ An, P (An
⋂
{Xn+1 = +1}) = 1

2P (An)
and E(Xn+1IAn) = 0.

This expected value simply means that the player could have a positive capital and
the expected value of the next round would be 0, indicating that the player still
has a chance to end the game at a favorable moment.

Theorem 4.6. Impossibility of Profitable Stopping: For any stopping time
T : ΩN → {0, . . . , N}, E(ST ) = 0 where ST = ST (w)(w) is the outcome of the path
w at stopping time T (w).

Proof. {T ≥ k}C =
⋃k−1
l=0 {T = l} ⊆ Ak−1 for k = 0, . . . , N . This means that

{w ∈ ΩN |T (w) = l} ⊆ Al ⊆ Ak−1. Since ST =
∑N
k=1XkI{T≥k} it follows that

E(ST ) =
∑N
k=1E(XkI{T≥k}) = 0. �

Therefore, it is impossible to strategically choose a stopping time such that the
capital will be positive.
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