MAE 545: Lecture 17 (4/10)
Random walks




Random walks

Brownian motion
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Polymer random coils

Swimming of E. coli

Protein search for a
binding site on DNA




Brownian motion of small particles

1827 Robert Brown: observed irregular motion of
small pollen grains suspended in water
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https://www.youtube.com/watch?v=R5t-0A796t0

1905-06 Albert Einstein, Marian Smoluchowski:
microscopic description of Brownian motion and
relation to diffusion equation
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https://www.youtube.com/watch?v=R5t-oA796to

Random walk on a 1D lattice
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At each step particle jJumps to the right with

probability g and to the left with probability 1-q.

sample trajectories for q=1/2 sample trajectories for q=2/3
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Random walk on a 1D lattice
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At each step particle jJumps to the right with
probability g and to the left with probability 1-q.

What is the probability p(x,N) that we find
particle at position x after N jumps?

Probability that particle makes k
jumps to the right and N-k jumpsto | p(k,N) = (k ) ¢"(1— )" "
the left obeys the binomial distribution

| x =kl — (N —k)l=(2k— N
Relation between k and .

particle position x: Lo - ( N+ f)
2 14



Random wlalk on a 1D lattice
AN
T ®T—TT T 1

—ol —40 =30 —-2¢ —¢ 0 ¢ 20 3¢ 4¢ 5S¢

unbiased random walk biased random walk
q=1/2, N=1 N\ & N—k 2B
0.5} o I-Iexlactl — | p(k’ N) — (k)q (1 o Q) 0.5} !‘é"a"t. imation| ]
—@Gaussian approximation 1 aussian approximation
04 ]{::—(N—I——) Ao.4
Zﬁ 0.3} ] 2 ¢ < 03}
S 05 Note: exact discrete 2
ISP . . . 0.2
distribution has been made
01 continuous by replacing 0.1}
0 ———— — discrete peaks with boxes L
1210-8 6-4-2 0 2 4 6 8 1012 6 4
z/l whose area corresponds to °42 02 Z/z 1012141618 20
=1/2, N=20 the same probability. q=2/3, N=20
i  [Elexc tl — ] 0.5} - '-'exalCt.' | N
0-5 !éx:ucssian approximation =als anippicanelon
0.4} o
Z 03l after several steps the =
goz probability distribution & ,
LT 4 0.2} ; 1
< - spreads out and becomes \Y;
| ___‘__ approximately Gaussian °'| ‘
0 ‘
-1210-8 -6 -4 -2 0 2 4 6 8 1012 %6 420246 8101214 16 18 20

ZE/K 6 x /L



Gaussian approximation for p(x,N)
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Position x after N jumps can be expressed N
as the sum of individual jumps z; € {4, /}. L = Z X

N
Mean value averaged over

all possible random walks () = ; (x;) = N (z1) = N (¢f — (1 — q)¢)

(x) = Nl (2q — 1)

Variance averaged over all ;2 = (32} — ()? = No? = (
possible random walks , , , >
o = N (g + (1 - ) = (21 )

‘02 = 4N/Pq(1 — q)‘

According to the central limit 7 —
theorem p(x,N) approaches p(z,N) = 2@—(fc—<x>> /(207)
Gaussian distribution for large N: - 2mo




Number of distinct sites visited
by unbiased random walks

’---

o ;

Total number of sites inside
explored region after N steps

1D Not x VN In 1D and 2D every
site gets visited after
2D Ntot X N d Iong time

In 3D some sites are

3D Nyt x NVN never visited even
after a very long time!

Shizuo Kakutani: “A drunk man will find his way
home, but a drunk bird may get lost forever.”

1D NViS%\/SN/TF

Number of distinct visited
2D Nyis =~ TN/ 1In(8N)

sites after N steps
3D Nvis ~ (.66 V



Master equation
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Master equation provides recursive relation for the
evolution of probability distribution, where I1(x, y)
describes probability for a jump from y to x.

p(a, N +1) =3 (2, y)p(y, N)

For our example the master equation reads:
p(z, N +1)=qp(x —{,N)+ (1 —q)p(z + £, N)
Initial condition: p(x,0) = d(x)

Probability distribution p(x,N) can be easily obtained
numerically by iteratively advancing the master equation.
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Master equation and Fokker-Planck equation

l1—q ¢
Y N/ "\

IR S . Ry

—50—40 —30 =20 —¢ O £ 2¢ 30 40 S
Assume that jJumps occur in regular small time intervals: At
Master equation:
plx,t+ At) =gp(x —0,t) + (1 — q) p(z + £, t)

In the limit of small jumps and small time intervals, we can Taylor expand
the master equation to derive an approximate drift-diffusion equation:

Op op , 0%p - ,0p 282
p+At§_q<p gé‘az ' §€ 8x2)+(1_Q) (p o §€ 02

- Fokker-Planck equation:
S| op (9]0 0%p

_— v n n
ot O o2 dlffu_S|_on n_ (2
coefficient INAL

drift velocity v = (2q — 1)Kt
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Fokker-Planck equation
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In general the probability distribution II of jump T (5|:1:)
lengths s can depend on the particle position x

Generalized master equation:
pla,t+At) =Y H(sle — s)p(x - 5,1)

Again Taylor expand the master equation above
to derive the Fokker-Planck equation:

op(x,1t) 0 O?
L = —— |v(z)p(x, t)]| D(x)p(z,t
drift velocity diffusion coefficient
(external fluid flow, external potential) (e.g. position dependent temperature)

vlr) = 3 il = S b= Y ek = )



Lévy flights Lévy flight

Probability of T trajectory
: : (7)) — sI=, |§| > so B B
jump lengths in | 11(5) = § “1 ST e 0~ 55 D=
D dimensions ’ )
NormaI!z_atlon /dpgﬂ(g) 1 o> D
condition

Moments of #) =0 (52)— Apsé, a>D+2
distribution - 0o, a<D+2

Lévy flights are better strategy than 2D random walk

random walk for finding prey that is scarce trajectory

D. W. Sims et al.
Nature 451, 1098-1102 (2008)




Probability current
Fokker-Planck equation

02?5{;, t) _ _(% {v(az)p(x,t)} | 8851;22 {D(Qj)p(x,t)}

Conservation law of probability
(no particles created/removed)
op(z,t)  0J(z,1)

ot Ox
Probability current:

5= | D@t )]

Note that for the steady state distribution, where 0p™(x,t)/0t =0

the steady state current is constant and independent of x

9,

T = v(@)p () — 5 [D(:c)p*(a:)] — const

J(x,t) =v(x)p(x,t) —

Equilibrium probability distribution:

If we don’t create/remove “ (2) 1 { z ; v(y)
articles at boundaries then J*=0 ™ ¢ |p (T) exp / Yy
' D(x) o D(y)




Spherical particle suspended

Ul(z) in fluid in external potential
4 Newton’s law:
| | 0%z oU (x) |
m@ = —\v(x) Py F.

fluid external random
potential Brownian

drag
force force
. _ 0% x
For simplicity assume overdamped regime: EYo) ~
o’ Drift velocity ~ 10U(z)
. (v(z)) =
averaged over time A Ox
R particle radius o . o
Equilibrium probability distribution
n fluid viscosity

p*(ﬂf) _ Ce—U(x)/)\D _ CB—U(x)/kBT

)\ = 6mn R Stokes drag coefficient (see previous slide)  (equilibrium physics)

kB Boltzmann constant Einstein - Stokes equation

T  temperature ksT  kgT

D="2" —
14 A 6mn R

D diffusion constant




Translational and rotational diffusion
for particles suspended in liquid

Translational Rotational
diffusion diffusion
(%) = 2Dt (6%) = 2Dpt
Stokes viscous drag: A\ = 6mn R Stokes viscous drag: A\p = 87 R”
Einstein - Stokes Dy = kT Einstein - Stokes Dp = kpl’
relation 6mnR relation 8rnR3
Time to move one body length Time to rotate by 900
in water at room temperature in water at room temperature
3T R3 A R3
(22) ~ R e ¢ o O (02) ~ 1 e o —
kgl kgl
R~ lpym et~ 1s Boltzmann constant k5 = 1.38 x 107*°J /K
: . ~ 10—3 —1_—1
15 room temperature 7' = 300K




Fick!s IaWS Adolf Fick 1855
N noninteracting Local concentration
Brownian particles of particles c(x,t) = Np(x,t)

Fick’s laws are equivalent to Fokker-Plank equation
First Fick’s law

0
Flux of particles | J = vc — D—C

ox

Second Fick’s law

Diffusionof | 9c _ _9J 9| | 0 |,0c
particles | 9¢ Oz Oz

Generalization to higher dimensions

o = VI ==V (ct) + V- (DVo)
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Further reading

SPRINGER SERIES Sprineer:
IN SYNERGETICS COMPLEXITY

Crispin Gardiner

Stochastic
Methods

Fourth Edition

A Handbook for the Natural
and Social Sciences

@ Springer
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STOCHASTIC
PROCESSES IN

PHYSICS AND
CHEMISTRY

Third edtion

B N.G. VAN KAMPEN ¢

PERSONAL UERARY



