
MAE 545: Lecture 17 (4/10)
Random walks
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Random walks
Brownian motion Swimming of E. coli

Polymer random coils

J. Phys. A: Math. Theor. 42 (2009) 434013 L Mirny et al
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Figure 1. (A) Schematic representation of the protein–DNA search problem. The protein (yellow)
must find its target site (red) on a long DNA molecule confined within the cell nucleoid (in bacteria)
or cell nucleus (in eukaryotes). Compare with figure 9(A) which shows confined DNA. (B) The
target site must be recognized with 1 base-pair (0.34 nm) precision, as displacement by 1 bp results
in a different sequence and consequently a different site.
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Figure 2. (A) The mechanism of facilitated diffusion. The search process consists of alternating
rounds of 3D and 1D diffusion, each with average duration τ3D and τ1D, respectively. (B) The
antenna effect [9]. During 1D diffusion (sliding) along DNA, a protein visits on average n̄ sites.
This allows the protein to associate some distance ∼n̄ away from the target site and reach it by
sliding, effectively increasing the reaction cross-section from 1bp to ∼n̄. The antenna effect is
responsible for the speed-up by facilitated diffusion.

1.3. History of the problem: theory

To resolve this discrepancy, one possible mechanism of facilitated diffusion that includes both
3D diffusion and effectively 1D diffusion of protein along DNA (the 1D/3D mechanism) was
suggested. This mechanism was first proposed and dismissed by Riggs et al [1] but was soon
revived and rigorously studied by Richter and Eigen [3], then further expanded and corrected
by Berg and Blomberg [4] and finally developed by Berg et al [5]. The basic idea of the 1D/3D
mechanism is that while searching for its target site, the protein repeatedly binds and unbinds
DNA and, while bound non-specifically, slides along the DNA, undergoing one-dimensional
(1D) Brownian motion or a random walk. Upon dissociation from the DNA, the protein
diffuses three dimensionally in solution and binds to the DNA in a different place for the next
round of one-dimensional searching (figure 2(A)).

During 1D sliding the protein is kept on DNA by the binding energy to non-specific
DNA. This energy has been measured for several DNA-binding proteins and has a range
of 10–15 kBT (at physiological salt concentration), was shown to be driven primarily by
screened electrostatic interactions between charged DNA and protein molecules [6], and
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Protein search for a
binding site on DNA
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1827 Robert Brown: observed irregular motion of 
small pollen grains suspended in water

1905-06 Albert Einstein, Marian Smoluchowski: 
microscopic description of Brownian motion and 
relation to diffusion equation

Brownian motion of small particles

https://www.youtube.com/watch?v=R5t-oA796to

⇡ 10µm

https://www.youtube.com/watch?v=R5t-oA796to


x/ℓ
-50 -25 0 25 50

N

0

20

40

60

80

100

 4

Random walk on a 1D lattice

At each step particle jumps to the right with 
probability q and to the left with probability 1-q.
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sample trajectories for q=1/2
(unbiased random walk)

sample trajectories for q=2/3
(biased random walk)
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Random walk on a 1D lattice

At each step particle jumps to the right with 
probability q and to the left with probability 1-q.

x
�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

What is the probability p(x,N) that we find
particle at position x after N jumps? 

Probability that particle makes k 
jumps to the right and N-k jumps to 

the left obeys the binomial distribution
p(k,N) =

✓
N

k

◆
qk(1� q)N�k

Relation between k and 
particle position x:

x = k`� (N � k)` = (2k �N)`

k =
1

2

⇣
N +

x

`

⌘
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Random walk on a 1D lattice

x
�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

unbiased random walk biased random walk

after several steps the 
probability distribution 

spreads out and becomes 
approximately Gaussian

Note: exact discrete 
distribution has been made 

continuous by replacing 
discrete peaks with boxes 

whose area corresponds to 
the same probability.

p(k,N) =

✓
N

k

◆
qk(1� q)N�k

k =
1

2

⇣
N +

x

`

⌘
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Gaussian approximation for p(x,N)

x
�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

x =
NX

i=1

xi

Mean value averaged over 
all possible random walks

Variance averaged over all 
possible random walks

Position x after N jumps can be expressed 
as the sum of individual jumps                    .xi 2 {�`, `}

hxi =
NX

i=1

hxii = N hx1i = N (q`� (1� q)`)

hxi = N` (2q � 1)

�2 =
⌦
x2

↵
� hxi2 = N�2

1 = N
⇣⌦

x2
1

↵
� hx1i2

⌘

�2 = N
⇣
q`2 + (1� q)`2 � hx1i2

⌘

�2 = 4N`2q(1� q)

According to the central limit 
theorem p(x,N) approaches 

Gaussian distribution for large N:
p(x,N) ⇡ 1p

2⇡�2
e�(x�hxi)2/(2�2)
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Number of distinct sites visited
by unbiased random walks

Shizuo Kakutani: “A drunk man will find his way 
home, but a drunk bird may get lost forever.”

Total number of sites inside 
explored region after N steps

Ntot / N

Ntot / N
p
N

Ntot /
p
N1D

2D

3D

In 1D and 2D every 
site gets visited after 

a long time

In 3D some sites are 
never visited even 

after a very long time!

Number of distinct visited 
sites after N steps 

Nvis ⇡
p
8N/⇡

Nvis ⇡ ⇡N/ ln(8N)

Nvis ⇡ 0.66N

1D
2D

3D

2r /
p
N
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Master equation

x
�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

p(x,N + 1) =
X

y

⇧(x, y)p(y,N)

Master equation provides recursive relation for the 
evolution of probability distribution, where             

describes probability for a jump from y to x.
⇧(x, y)

Initial condition:

For our example the master equation reads:

p(x,N + 1) = q p(x� `, N) + (1� q) p(x+ `, N)

p(x, 0) = �(x)

Probability distribution p(x,N) can be easily obtained 
numerically by iteratively advancing the master equation.
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Master equation and Fokker-Planck equation

x
�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

1� q q

Master equation:
Assume that jumps occur in regular small time intervals: �t

p(x, t+�t) = q p(x� `, t) + (1� q) p(x+ `, t)

In the limit of small jumps and small time intervals, we can Taylor expand 
the master equation to derive an approximate drift-diffusion equation: 

p+�t
@p

@t
= q

✓
p� `

@p

@x
+

1

2
`2

@2p

@x2

◆
+ (1� q)

✓
p+ `

@p

@x
+

1

2
`2

@2p

@x2

◆

@p

@t
= �v

@p

@x
+D

@2p

@x2

v = (2q � 1)
`

�t

D =
`2

2�t

Fokker-Planck equation:
drift velocity

diffusion 
coefficient
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Fokker-Planck equation

x
�`�2`�3`�4`�5` ` 2` 3` 4` 5`0

⇧(s|x)

Generalized master equation:
p(x, t+�t) =

X

s

⇧(s|x� s)p(x� s, t)

drift velocity diffusion coefficient

v(x) =
X

s

s

�t
⇧(s|x) = hs(x)i

�t

(external fluid flow, external potential) (e.g. position dependent temperature)

D(x) =
X

s

s2

2�t
⇧(s|x) =

⌦
s2(x)

↵

2�t

⇧In general the probability distribution     of jump 
lengths s can depend on the particle position x  

Again Taylor expand the master equation above
to derive the Fokker-Planck equation:

@p(x, t)

@t
= � @

@x


v(x)p(x, t)

�
+

@2

@x2


D(x)p(x, t)

�
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Lévy flights

2D random walk
trajectory

Probability of 
jump lengths in 
D dimensions

Normalization 
condition ↵ > D

Moments of 
distribution

Lévy flights are better strategy than 
random walk for finding prey that is scarce

D. W. Sims et al. 
Nature 451, 1098-1102 (2008)

↵ = 3.5, D = 2

Lévy flight
trajectory

⇧(~s ) =

⇢
C|~s |�↵, |~s | > s0

0, |~s | < s0

Z
dD~s ⇧(~s ) = 1

h~s i = 0
⌦
~s 2

↵
=

⇢
ADs20, ↵ > D + 2
1, ↵ < D + 2
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Probability current
Fokker-Planck equation

@p(x, t)

@t
= � @

@x


v(x)p(x, t)

�
+

@2

@x2


D(x)p(x, t)

�

Conservation law of probability
(no particles created/removed)

@p(x, t)

@t
= �@J(x, t)

@x

Note that for the steady state distribution, where @p⇤(x, t)/@t ⌘ 0

the steady state current is constant and independent of x

J⇤ ⌘ v(x)p⇤(x)� @

@x


D(x)p⇤(x)

�
= const

Probability current:

J(x, t) = v(x)p(x, t)� @

@x


D(x)p(x, t)

�

If we don’t create/remove 
particles at boundaries then J*=0 p⇤(x) / 1

D(x)
exp

Z x

�1
dy

v(y)

D(y)

�
Equilibrium probability distribution:
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Spherical particle suspended
in fluid in external potential

x

U(x)
Newton’s law:

m
@2x

@t2
= ��v(x)� @U(x)

@x
+ Fr

fluid
drag

external 
potential

force

random 
Brownian 

force

particle radius

fluid viscosity
Stokes drag coefficient

R

⌘

� = 6⇡⌘R

Equilibrium probability distribution
p⇤(x) = Ce�U(x)/�D = Ce�U(x)/kBT

(see previous slide) (equilibrium physics)
kB

T

D

Boltzmann constant
temperature
diffusion constant

For simplicity assume overdamped regime:

hv(x)i = � 1

�

@U(x)

@x
Drift velocity  

averaged over time

@2x

@t2
⇡ 0

D =
kBT

�
=

kBT

6⇡⌘R

Einstein - Stokes equation
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Translational and rotational diffusion
for particles suspended in liquid

x

hx2i = 2DT t

✓

⌦
✓2
↵
= 2DRt

Einstein - Stokes 
relation

Translational 
diffusion

Rotational 
diffusion

Stokes viscous drag: �T = 6⇡⌘R

DT =
kBT

6⇡⌘R
DR =

kBT

8⇡⌘R3
Einstein - Stokes 

relation

Stokes viscous drag: �R = 8⇡⌘R3

water viscosity ⌘ ⇡ 10�3kgm�1s�1

Boltzmann constant

room temperature T = 300K

kB = 1.38⇥ 10�23J/K

Time to move one body length 
in water at room temperature

⌦
x2

↵
⇠ R2 t ⇠ 3⇡⌘R3

kBT

R ⇠ 1µm t ⇠ 1s

R ⇠ 1mm t ⇠ 100 years

Time to rotate by 900

in water at room temperature
⌦
✓2
↵
⇠ 1 t ⇠ 4⇡⌘R3

kBT
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Fick’s laws
N noninteracting 

Brownian particles 
Local concentration 

of particles c(x, t) = Np(x, t)

Flux of particles

Fick’s laws are equivalent to Fokker-Plank equation

Diffusion of
particles

J = vc�D
@c

@x

@c

@t
= �@J

@x
= � @

@x


vc

�
+

@

@x


D

@c

@x

�

Adolf Fick 1855

First Fick’s law

Second Fick’s law

Generalization to higher dimensions

~J = c~v �D~rc
@c

@t
= �~rJ = �~r · (c~v ) + ~r · (D~rc)
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Further reading


