
Chapter 2

Random Walks

A problem, which is closely related to Brownian motion and which we will examine in this
chapter, is that of a random walker. This concept was introduced into science by Karl
pearson in a letter to Nature in 1905:

A man starts from a point 0 and walks ` yards in a straight line; he then
turns through any angle whatever and walks another ` yards in a straight line.
He repeats this process n times. I require the probability that after these n
stretches he is at a distance between r and r + δr from his starting point 0.

The solution to this problem was provided in the same volume of Nature by Lord
Rayleigh (1842-1919), who told him that he had solved this problem 25 years earlier when
studying the superposition of sound waves of equal frequency and amplitude but with
random phases.

The random walker, however, is still with us today.

2.1 The Random Walk on a Line

Let us assume that a walker can sit at regularly spaced positions along a line that are a
distance ∆x apart (see fig. 2.1) so we can label the positions by the set of whole numbers
m. Furthermore we require the walker to be at position 0 at time 0. After fixed time
intervals ∆t the walker either jumps to the right with probability p or to the left with
probability q = 1− p, so we work with discrete time points N ≥ 0.

Figure 2.1: A random walker on a 1-dimensional lattice of sites that are a fixed distance
∆x apart. The walker jumps to the right with probability p and to the left with probability
q = 1− p.
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Our aim is to answer the following question: what is the probability p(m,N) that the
walker will be at position m after N steps?

For m < N there are many ways to start at 0 and go through N jumps to nearest-
neighbor sites and end up at m. But since all these possibilities are independent we have
to add up their probabilities. For all these ways we know that the walker must have made
n1 = m + n2 jumps to the right and n2 jumps to the left, and since n1 + n2 = N , the
walker must have made

n1 =
1
2

(N +m) jumps to the right and

n2 =
1
2

(N −m) jumps to the left

The probability for a sequence of left and right jumps is the product of the probabilities
of the individual jumps. Since the individual jumps are independent, all paths starting at
0 and ending at m have the same overall probability. This follows since the probability
for making n1 jumps to the right and n2 jumps to the left must contain n1 factors p and
n2 factors q and becomes

pn1qn2 = p
1
2
(N+m)q

1
2
(N−m)

This probability must be multiplied by the total number of paths with n1 steps to the
right and n2 steps to the left. This is given by the number of ways to put n1 objects out
of N in one box and n2 = N −n1 objects in another box. The first object can be choosen
in N ways, the second in N − 1 ways and so on. The total number of choosing n1 object
is therefore N(N − 1)(N − 2) · · · (N − n1 − 1). But the n1 objects are identical and can
be arranged in any order. The total number of distinguishable ways to have n1 steps to
the right and n2 to the left therefore becomes

N !
n1!n2!

=
N !

n1!(N − n1)!

The probability of being at position m after N jumps is therefore given as

p(m,N) =
N !(

N+m
2

)
!
(
N−m

2

)
!
p

1
2
(N+m)q

1
2
(N−m) (2.1)

which is the so called binomial distribution.
If we know the probability distribution p(m,N) we can calculate all the moments of m

at any fixed time N . From the number of steps to the right n = (N +m)/2 we can write

p(m,N) = pN (n) =
N !

n!(N − n)!
pnqN−n =

(
N
n

)
pnqN−n (2.2)

and calculate the various moments of pN (n). Noting that

(pu+ q)N =
N∑
n=0

(
N
n

)
unpnqN−n

we see that pN (n) is the coefficient of un in this binomial expansion. Then

N∑
n=0

pN (n) =
[
(pu+ q)N

]
u=1

= 1 (2.3)
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Figure 2.2: Plot of the binomial distribution for a number of steps N = 100 and the
probability of a jump to the right p = 0.6 and p = 0.8. We see that the maximum is located
close to Np.

which shows that pN (n) is properly normalized to one.
The first moment or expectation value of n is:

E [n] = 〈n〉 =
N∑
n=0

npN (n) =
N∑
n=0

n

[(
N
n

)
unpnqN−n

]
u=1

=
N∑
n=0

[(
N
n

)
u

d
du
(
unpnqN−n

)]
u=1

=

[
u

d
du

N∑
n=0

(
N
n

)
unpnqN−n

]
u=1

=
[
u

d
du

(pu+ q)N
]
u=1

This leads to
E [n] = 〈n〉 = Np (2.4)

In the same manner we can derive the second moment:

E
[
n2
]

= 〈n2〉 =

[(
u

d
du

)2

(pu+ q)N
]
u=1

= Np+N(N − 1)p2 (2.5)

The variance of the variable n is defined by

Var [n] = σ2 = 〈(n− 〈n〉)2〉 = 〈n2〉 − 〈n〉2 (2.6)

σ2 is a measure of the width of the distribution and from (2.4) and (2.5) we find

σ2 = Npq (2.7)
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The relative width of the distribution

σ

〈n〉
=
√
q

p

1√
N

(2.8)

goes to zero with incrreasing number of steps N . Distributions with this property are
called self-averaging. Figure 2.2 shows a plot of the binomial distribution for N = 100 and
p = 0.6 and 0.8. As one can see the distribution has a bell-shaped form with a maximum
occuring around the average value 〈n〉 = Np.

The position of the walker after N steps is now given by

〈m〉 = 2〈n〉 −N = N(p− q) (2.9)

and for the second moment

〈m2〉 = 4〈n2〉 − 4〈n〉N +N2 = 4σ2 + 〈m〉2 (2.10)

The variance of the displacement m is therefore

σ2
m = 4σ2 = 4Npq (2.11)

For the special case of a symmetric walker with p = q = 1/2 this reduces to

〈m〉 = 0, and 〈m2〉 = N

This behaviour, in which the square of the distance traveled is proportional to time is
called free diffusion.

Introducing the real displacement x = m∆x and the time t = N∆t, we see that (2.11)
implies

〈(x− 〈x〉)2〉 = 4pq(∆x)2N = 4pq
(∆x)2

∆t
N∆t = 2Dt (2.12)

where the diffusion coefficient is defined as D = 2pq(∆x)2/∆t. The averaged distance
traveled by the walker is 〈x〉 = 〈m〉∆x = (p − q)∆xN = vt, which defines the drift
velocity v = (p− q)∆x/∆t. For a symmetric walk the average position is zero and this is
also the case for v.

2.2 Gaussian distribution

We are interested in the behaviour of the binomial distribution for Np→∞ i.e. for long
times. Assuming N � 1 we can use Stirling’s formula to approximate the factorials in the
binomial distribution

lnN ! =
(
N +

1
2

)
lnN −N +

1
2

ln 2π +O

(
1
N

)
(2.13)

From this formula we get

ln p(m,N) =
(
N +

1
2

)
lnN −

(
N +m

2
+

1
2

)
ln
N +m

2
−
(
N −m

2
+

1
2

)
ln
N −m

2

+
N +m

2
ln p+

N −m
2

ln q − 1
2

ln 2π
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For large values of N we expect p(m,N) to be sharply peaked around the maximun value,
which is close to the average value 〈m〉 = N(p− q) as seen in fig 2.2. We write

m = 〈m〉+ δm = N(p− q) + δm

which leads to
N +m

2
= Np+

δm

2
,

N −m
2

= Nq − δm

2
With these relations we find

ln p(m,N) =
(
N +

1
2

)
lnN − 1

2
ln 2π −

(
Np+

1 + δm

2

)
ln
[
Np

(
1 +

δm

2Np

)]
−

(
Nq +

1− δm
2

)
ln
[
Np

(
1− δm

2Np

)]
+
(
Np+

δm

2

)
ln p+

(
Nq − δm

2

)
ln q

= −1
2

ln 2πNpq −
(
Np+

1 + δm

2

)
ln
(

1 +
δm

2Np

)
−
(
Nq +

1− δm
2

)
ln
(

1− δm

2Np

)
We can expand the logarithm

ln(1± x) = ±x− 1
2
x2 +O(x3)

to find

ln p(m,N) = −1
2

ln 2πNpq +
(p− q)
4Npq

δm− 1
2

1
4Npq

(δm)2

= −1
2

ln 2πNpq +
(p− q)
σ2
m

δm− 1
2σ2

m

(δm)2 (2.14)

where we used that σ2
m = 4Npq is the variance of m. We notice that for (δm)2 ∝ σ2

m ∝ N
the second term in (2.14) is of order O((Np)−1/2) which therefore can be neglected for
Np→∞. We therefore find

p(m,N)→ 2√
2πσ2

m

exp
(
−1

2
(δm)2

σ2
m

)
(2.15)

which is a Gaussian distribution.
We can perform a continous limit and introduce

x = m∆x, t = N∆t, D = 2pq
(∆x)2

∆t
, 〈x〉 = (p− q)N = vt

We then find

p(m∆x,N∆t) =
2√

2πσ2
m

exp
(
−1

2
(x− 〈x〉)2

2Dt

)
for the probability to find the random walk in an interval of width 2∆x around the position
x at time t. In the limit

∆x→ 0, ∆t→ 0, D = 2pq
(∆x)2

∆t
= const., v = (p− q)∆x

∆t
= const. (2.16)
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we find the probability density to find the walker in an interval (x, x+ dx) as

p(x, t) =
1√

4πDt
exp

(
−x− vt)

2

4Dt

)
(2.17)

with the starting condition
p(x, t) = δ(x)

Any asymmetry in the transition rates (p 6= q) produces a net drift velocity of the walker.

2.3 Rate Equation

The combinatorial method used above to derive the expression for the probability distri-
bution p(m,N) or the corresponding probability density p(x, t) is not easily generelized
to higher dimensions or to more complex walks. Therefore we now want to derive an
evolution equation for the probability density starting from the discrete walker. This rate
equation can straightforwardly be generalized to other situations.

Let’s assume that the walker arrives at position m at time N + 1. The walker has to
jump to position m either from the position to the left or to the right of m with respective
probabilities q and p. This gives

p(m,N + 1) = pp(m− 1, N) + qp(m+ 1, N) (2.18)

This is an example of a master equation fo a stochastic process. We can subtract p(m,N)
from both sides and divide by ∆t to obtain

p(m,N + 1)− p(m,N)
∆t

= −p∆x
∆t

p(m,N)− p(m− 1, N)
∆x

+ q
∆x
∆t

p(m+ 1, N)− p(m,N)
∆x

From (2.16) we can solve for ∆x/∆t as

∆x
∆t

= v + 2q
∆x
∆t

= 2p
∆x
∆t
− v

Inserting these in the first two terms on the right hand side respectively gives

p(m,N + 1)− p(m,N)
∆t

= −vpp(m,N)− p(m− 1, N)
∆x

− vq p(m+ 1, N)− p(m,N)
∆x

+ 2pq
(∆x)2

∆t
p(m+ 1, N)− 2p(m,N) + p(m− 1, N)

(∆x)2

We now perform the continuum limit of this equation keeping v and D = 2pq(∆x)2/∆t
constant and arrive at

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) +D

∂2

∂x2
p(x, t) (2.19)

This is the diffusion equation with a drift term. It is straightforward to show that the
expression in (2.17) satisfies this equation.

The probability p(x, t)dx gives the probability to find the walker or particle in the
interval dx around the possition x at time t, given that it starts at x = 0 at t = 0.
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Assuming now that we have a collection of particles like macromolecules swimming in
a solution of small molecules. It is clear that the density of molecules at x is given
by n(x, t) = N0p(x, t), with N0 the total number of particles. The density fluctuations
therefore also satisfies the equation (2.19)

∂

∂t
n(x, t) = −v ∂

∂x
n(x, t) +D

∂2

∂x2
n(x, t)

This equation is easily generalized to higher dimensions and is just the continuity
equation

∂

∂t
n(r, t) +∇ · j(r, t) = 0 (2.20)

This equation holds if the number of particles in the system is constant in time. This is
true if no chemical reactions can take place. Here j(r, t) is the flux or current of particles,
which is the number of particles passing through a unit area perpendicular to j per unit
time. Particles will tend to move from regions of high concentration to regions of low
concentration, and Fick’s law gives the flux

j(r, t) = −D∇n(r, t)

with D the diffusion coefficient. If the particles also have a constant streaming velocity v

there will be an additional flux of particles vn(r, t), which would exist even in the absence
of particle diffusion, so that

j(r, t) = vn(r, t)−D∇n(r, t) (2.21)

Substitutiing the flux j from (2.21) into (2.20) yields the equation

∂

∂t
n(r, t) = −v · ∇n(r, t) +D∇2n(r, t) (2.22)

which generalizes ((2.19) to higher dimensions.
If we subtract the uniform density n from n(r, t) to get the fluctuations δn(r, t), and

multiply with δn(0,0 we find after averaging the equation for the density-density correla-
tion function C(r, t) = 〈δn(r, t)δn(0,0)〉

∂

∂t
C(r, t) + v · ∇C(r, t)−D∇2C(r, t) = 0 (2.23)

with the initial condition C(r, 0) = δ(r).

2.4 Poisson distribution

The Gaussian distribution is not the only limiting distribution which can be derived from
the binomial distribution. The Gaussian distribution follow in the limit N →∞, Np→∞.
There is another possibility:

N →∞, p→ 0, Np = λ = const.
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The probability p for a step is therefore assumed to be very small. Now

pN (n) =
N !

n!(N − n)!
pnqN−n =

N(N − 1) . . . (N − n+ 1)
n!

pn(1− p)(N−n)

=
(

1− 1
N

)
. . .

(
1− n− 1

N

)
(Np)n

n!

(
1− Np

N

)N−n
Now pN (n) is sharply peaked around the mean value i.e n ≈ Np and so n � N . Also
limN→∞(1− λ/N)N = exp(−λ). Therefore the limit gives the Poisson distribution in the
limit N →∞, Np = λ

p(n) =
λn

n!
e−λ (2.24)

This distribution is completely characterized by the parameter λ. For the first moment
we get

〈n〉 =
∞∑
n=0

np(n) = e−λλ
d

dλ

∞∑
n=0

λn

n!
= λ

In general one can derive the recursion relation

〈nk〉 =
∞∑
n=0

nk
λn

n!
e−λ =

∞∑
n=0

nk−1

[
λ

d
dλ

λn

n!

]
e−λ = λ

(
d

dλ
+ 1
)
〈nk−1〉

The second moment is then

〈n2〉 = λ+ λ2, → σ2 = λ

In fig 2.3a and 2.3b we compare the binomial distribution with the Gaussian and
Poisson distributions for N = 1000. In fig. 2.3a we use p = 0.8 giving Np = 800.
The binomial and the Gaussian distributions are practically indentical, while the Poisson
distribution is much broader and cannot describe the binomial distribution. In fig 2.3b
p = 0.01 and Np = λ = 10. The situation is reversed, the Poisson distribution is now the
better approximation to the binomial distribution.

2.5 Examples

In Light or neutron scattering experiments one measure C(r, t) or rather the spatial and
temporal Fourier transform

F (q, t) =
∫

dr eiq·rC(r, t) (2.25)

and
S(q, ω) =

1
2π

∫ ∞
−∞

dt e−iωtF (q, t) =
1
π

Re
∫ ∞

0
dt e−iωtF (q, t) (2.26)

The spatial Fourier transform of (2.23) is

∂

∂t
F (q, t) = iq · vF (q, t)− q2DF (q, t) (2.27)

which with the initial condition F (q, t = 0) = 1 have the solution

F (q, t) = eiq·vt−q2Dt (2.28)
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Figure 2.3: (a) Plot of the binomial distribution for N = 1000 and p = 0.8 (open circles).
This is compared with the Gaussian approximation with the same mean and width (solid
curve) and the Poisson distribution with the same mean (dashed curve). (b) Same as in
(a) but with p = 0.01.

Diffusion

For the case that there is no drift velocity, v = 0, then (2.28) reduces to the diffusion
result

F (q, t) = e−q
2Dt (2.29)

The corresponding spectral density becomes

S(q, ω) =
1
π

Re
∫ ∞

0
dt e−iωt−q2Dt =

1
π

Re
1

iω + q2D
=

1
π

q2D

ω2 + (q2D)2
(2.30)

which is a so called Lorentzian lineshape with a maximun at ω = 0 and width q2D.
From these formulas and with light scattering experiments there have been many

measurements of the diffusion constant of macromolecules. From this one can also obtain
information about the radius of the diffusing particle. The Stokes-Einstein relation gives

D =
kBT

6πηR
(2.31)

where η is the viscosity of the solvent and R is the radius of the macromolecules.
An example of such measurements are shown in fig. 2.4, which show F (q, t) for highly

monodisperse sample of single-stranded circular DNA from the fd bacteriophage. These
data can be fitted to an exponential function.

Alternatively one can measure the spectrum S(q, ω) and determine the diffusion con-
stant from the half-width of the Lorentzian in (2.30).
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Figure 2.4: Correlation function obtained with light scattering at a scattering angle of
60◦ for a solution containing 0.17 mg/cm3 of fd DNA in SCC (0.15 m NaCl, 0.015 m
Nacitrate, pH=8) as a function of τ/τc where τc = (q2D)−1 is the correlation time. (From
Newman, J., Swinney, H. L., Berkowitz, S. A. and Day, L. A. Biochem. 13, 4832 (1974).)

Motile microorganisms

In the last decades there have been a lot of efforts to try to understand the motion of
motile microorganisms. Several studies have been made of the motion of E. coli which
swim by beating flagella.
Motile microorganisms are far more complex than molecules. They move in a very

complicated way. It seems to be true that once a microorganism starts moving in a given
direction it persistes with constant velocity in that direction for a distance long compared
with typical values of q−1. That is to say the “meah free path” of a microorganism is in
general long compared with q−1. In a dilute solution one can therefore ignore “collisions”,
i.e changes in swimming direction.

Neglecting the collision term proportional to D in (2.28) we find

F (q, t) = eiq·vt (2.32)

We expect the swimming velocity v to have some distribution P (v) and we should therefore
average (2.32) over all velocites. In general P (v) is not the equilibrium Maxwell-Boltzmann
distribution.

The measured correlation function is then

F (q, t) =
∫

dvP (v)eiq·vt (2.33)

We expect that it is equally likely for a bacterium to move off in one direction as another.
Therefore P (v) should not depend on the direction of v but only on its magnitude |v|.
The angular integrations in (2.33) can thus be carried through yielding

F (q, t) =
∫ ∞

0

∫ π

0

∫ 2π

0
P (v)eiqv cos θtv2 sin θdvdθdφ

= 2π
∫ ∞

0

∫ 1

−1
P (v)eiqvxtv2dvdx = 4π

∫ ∞
0

v2P (v)
sin qvt
qvt

dv (2.34)
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Figure 2.5: (a) The correlation function obtained from light scattering for motile E. coli
at T = 25 C taken at different scattering angles, and plotted versus x = qt. Concentration
of bacteria ≈ 10/cm3. Number of bacteria in the scattering volume ≈ 10 (From Nossal,
R., Chen, S. H., and Lai, C. C. Opt Comm. 4, 35 (1971).)

The quantity
W (v)dv = 4πv2P (v)dv

is simply the probability that an organism will be found with a speed between v and v+dv.
It should be noted that F (q, t) depends on q and t only through the combination x = qt,
i.e.

F (q, t) = F (x) =
∫ ∞

0
W (x)

sinxv
xv

dv (2.35)

By taking a Fourier sine transform of this function we get the swimming speed distribution

W (v) =
2v
π

∫ ∞
0

xF (x)dx (2.36)

Thus measuring F (q, t) we can determine the speed distribution function of motile mi-
croorganisms.

An application is illustrated in fig. 2.5a and 2.5b, which shows F (x) for three different
wavevectors q, and the extracted speed distribution respectively.

Molecules in uniform motion

For particles which both flow and spread out via diffusion we have the full equation in
(2.28) with the solution

F (q, t) = eiq·vt−q2Dt

The corresponding spectrum is

S(q, ω) =
1

2π

[
q2D

(ω − q · v)2 + (q2D)2
+

q2D

(ω + q · v)2 + (q2D)2

]
(2.37)
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Figure 2.6: Power spectrum of laser light scattered from silver chloride colloids in wa-
ter. The circles are for the actual experimental data. The solid line is the sum of two
Lorentzians, one centered at zero frequency, the second one at 1.97 kHz. The half-width
of the first Lorentzian is 0.35 kHz and that of the second, 0.29 kHz. (From Ben-Yosef, N.,
Zeigenbaum, S., and Weitz, A., Appl. Phys. Lett. 21, 436 (1972))

There is now a shifted peak at
ω(q) = ±q · v (2.38)

Measurements of particles in a flow have been performed for various systems. In fig.
2.6 we show experimental data for colloidal AgCl solutions. We see a shift at a frequency
expected from (2.38).

The streaming motion of protoplasm in the alga Nitellar flexes are shown in fig. 2.7a.
The Doppler shift in (2.38) could be studied as a function of wavevector q, and in fig.
2.7b is demonstrated that the peak frequency follow (2.38). Other examples are studies of
blood flow. Here it is important to recognize that the blood-flow velocity is not uniform
across a vein but varies from zero near the vein wall to a maximum in the center. Thus
the spectrum observed should be an average over the distribution of velocities:

S(q, ω) =
1

2π

∫
dvP (v)

[
q2D

(ω − q · v)2 + (q2D)2
+

q2D

(ω + q · v)2 + (q2D)2

]
(2.39)

where Γ = q2D. This average can give a spectrum which does not exhibit shifted peaks.

2.6 General random walks

Step-length distribution

Let’s denote the probability to find a random walker at position m at step j with pj(m).
The rate equation in (2.18) can then be written

pj+1(m) =
∑
k

f(m− k)pj(k) (2.40)
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Figure 2.7: Spectra of light scattered from the protoplasm of Nitella. The horizontal axis
is frequency in Hz and the vertical is relative intensity. Spectra (a) and (b) was taken at
scattering angles of 19.5 deg and 36.1 deg respectively. Spoectra (c) was taken immediately
after addition of parachloromercuribenzoate, a streaming inhibitor. The right figure is a
plot of the magnitude of the Doppler shift as a function of the sine of the scattering angle.
(From Mustachich, R. V. and Ware, B. R., Phys. Rev. Lett. 33, 617 (1974))

where f(k) is the probability density for the displacement of the walker at each step and
for the simple walker in (2.18) is given by

f(k) = pδk,1 + qδk,−1

i.e. the walker can only go one step to the right or left. Clearly f(k) is normalized∑
k f(k) = 1.
We can now generalize this and let f(k) be an arbitrary probability distribution. More-

over in the continous limit x = m∆x but still discrete time steps, (2.40) becomes

pj+1(x) =
∫

dx′f(x− x′)pj(x′)

or in arbitrary dimension

pj+1(r) =
∫

dr′f(r − r′)pj(r′) (2.41)

For a walker initially at the origin p0(r) = δ(r). We can solve (2.41) by taking the Fourier
transform

pj(r) =
∫

dr eiq·rpj(r), f(r) =
∫

dr eiq·rf(r) (2.42)

Then
pj(q) = f(q)pj−1(q) = [f(q)]j (2.43)
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By Fourier inversion of (2.43) we find

pj(r) =
∫

dq

(2π)d
e−iq·r [f(q)]j (2.44)

Many important properties of random variables are derived from the generating func-
tion

G(r, z) =
∞∑
j=0

pj(r)zn =
∫

dq

(2π)d
e−iq·r 1

1− zf(q)
(2.45)

Then pj(r) is the coefficient of zn in (2.45). From (2.42) we have for small q-values q → 0

f(q) =
∫

dq

[
1 + iq · r − 1

2
(q · r)2 + . . .

]
f(r) = 1 + iq · 〈r〉 − 1

2

∑
α

∑
β

qαqβ〈rαrβ〉+ . . .

(2.46)
For an isotropic walker 〈rαrβ〉 = δαβ〈r2〉/2d we find

f(q) = 1 + iq · 〈r〉 − 1
2d
q2〈r2〉 ≈ eiq·〈r〉−q2σ2/2d

This gives for the probability density as a function of time t = j∆t

pj(q) = eiq·vt−q2Dt (2.47)

where v = 〈r〉/∆t is the mean drift velocity and D = σ2/(2d∆t) the diffusion coefficient.

Waiting time distribution

The discussion above was concerned with random walks generated by steps taken at regular
intervals ∆t, 2∆t, 3∆t, . . .. We can generalize the random walks further, by introducing a
probability density function ψ(t) for pausing times between successive steps in the walk.
The Laplace transform of ψ(t) is

ψ̂(z) =
∫ ∞

0
dt e−ztψ(t)

Let ψj(t) be the probability density function for the time execution of the j th step,
i.e. ψj(t)dt is the probability that step number j takes place in the interval (t, t + dt).
The probability density for the first step is ψ1(t) = ψ(t) and ψj(t) satisfies the recurrence
relation

ψj(t) =
∫ t

0
dτψ(t− τ)ψj−1(τ)

This follows since if step j − 1 occurs at time τ the probability that the next step occurs
at time (t − τ) is ψ(t − τ). Integrating over all intervening times τ gives the result. By
the convolution theorem of Laplace transforms we find

ψ̂j(z) = ψ̂(z)ψ̂j−1(z) =
[
ψ̂(z)

]j
We want to calculate p(r, t) which is the probability density that a walker originally at
the origin is at r at time t. To calculate p(r, t) we first consider the function Q(r, t) that
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is defined as the probability that a walker is at point r at time τ immediately after a step
has been taken. Having arrived at r at time τ the walker can stay at r for a random
interval t− τ , and the probability density that the walker remains fixed during an interval
(0, t) is

φ(t) = 1−
∫ t

0
dt′ψ(t′) =

∫ ∞
t

dt′ψ(t′)

The relation between p(r, t) and Q(r, t) is

p(r, t) =
∫ t

0
dτφ(t− τ)Q(r, τ) (2.48)

i.e. if a walker arrives at r at time τ and remains there for a time (t − τ), p(r, t) is the
average over all arrival times with 0 < τ < t.

The quantity Q(r, t)dt is the probability that a walker may arrive at r during the time
interval (t, t + dt). This may happen after the first step, after the second step etc. The
probability to arrive at r at step j is pj(r) in (2.44) and the probability that step j occurs
at time t is ψj(t). Therefore provided that displacements and timesteps are independent
variables, we find the probability that after step j the walker is at r at time t is ψj(t)pj(r).
Summing over all steps j gives

Q(r, t) =
∞∑
j=0

ψj(t)pj(r)

A Fourier and Laplace transform then gives

Q(q, z) =
∞∑
j=0

ψ̂j(z)pj(q) =
∞∑
j=0

[
ψ̂(z)f(q)

]j
=

1

1− ψ̂(z)f(q)

and then from (2.48)

p(q, z) = φ̂(z)Q(q, z) =
1− ψ̂(z)

z

1

1− ψ̂(z)f(q)
=

1
z + (1− f(q))m(z)

(2.49)

with m(z) = zψ̂(z)/(1− ψ̂(z)).
For the waiting time distribution we have

ψ̂(z) =
∫ ∞

0
dte−ztψ(t) = 1− z〈t〉+ . . .

provided 〈t〉 <∞. In the limit z → 0 and q → 0 we then find

p(q, z) =
〈t〉

1− (1− z〈t〉)(1 + iq · 〈r〉 − q2〈r2〉/2d)
=

1
z − iq · v + q2D

(2.50)

which is again the result (2.28), i.e. a simple diffusion with a drift term.
By taking more general distributions for ψ(t) and f(r) we can model more complex

situations.


