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1. Introduction 

Probability, in universities teaching economics, is usually discussed in 

the framework of the basic course of mathematics or statistics. Therefore 

relatively little time is devoted to this. Nevertheless it is still worth devoting 

some of the time to present problems that do not require too sophisticated 

theoretical apparatus, while their solutions are non-intuitive at the same 

time. It is also worth mentioning the paradox of Bertrand (Jakubowski, 

Sztencel 2000; Wilkowski 2007) when defining the probability space, or the 

concept of elementary events. While talking about the likelihood of the 

frequentist, one should mention specifically Chebyshev (Jagłom 1954; 

Nieznaj 2002), the problem of drawing a natural number (Adamaszek 

2005). We also discuss the birthday paradox, when talking about the classic 

definition of probability (Adamaszek 2010; Nikodem 2010; Wilkowski 

2010). The Bernoulli scheme, the concept of fair play, is naturally associat-

ed with the Penney game (Penney 1974; Gardner 1974; Nishiyama 2012), 

which this work is dedicated to. 
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2. Penney’s game between two players in fair coin case 

This point is based on the work (Dniestrzański, Wilkowski 2008). We 

will now give an example of failing intuition in a game based on symmetric 

coin throwing. The game‟s description requires a short introduction. 

Let X be a random variable accepting non-negative integers: 

   :Ω 0,1, .X    

Further we continue to assume that X has a finite second moment: 

  2  .E X    

When studying distributions of such type of random variables, it is con-

venient to use the probability-generating function of X, defined as a for-

mal power series: 

       
0

: .k X

X

k

G z P X k z E z 




    (1) 

The following series of variable z contains all the information about the 

random variable X. One can see that: 

 1.(1)XG   

Conversely, each power series G(z) of non-negative coefficients, satisfying 

the equation G(1) = 1 is the probability generating function of a particular 

random variable. An important feature of this function is that it simplifies 

the calculation of the mean and variance of the random variable X. To 

achieve this, it is suffice to set the first and second derivative of the series 

(1), for z = 1, and take a combination thereof. We get: 

    ' 1 ,XE X G  (2) 

      
222 '' ' '(1)( (1) ( .)) 1) ( X X XVar X E X E X G G G      (3) 

Example 1. Formulas (2) and (3) will be used in the case of a process 

that has only two results. When we toss a coin, the probability that we get 

heads (H), is p, and the probability of tails (T), is equal to q, where 

p + q = 1,   p and q > 0. 
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For a fair coin 
1

 .
2

p q   However, this is not always the case. As de-

scribed in the book (Graham et al. 1989) in the case of a newly minted 

American one cent coin (penny) we get 0,1p   (the weight distribution 

makes Lincoln fall to the bottom more often). Now let  XA be a random 

variable describing the number of independent coin tosses until the outcome 

of A = THHHH (string of heads and tails) is obtained for the first time. One 

should determine the mean and variance of this variable. We use the method 

given in the manual (Graham et al. 1989). Let S denote the sum of all possi-

ble outcomes which contain pattern A: 

S = THHHH + HTHHHH + TTHHHH + … 

The N is the sum of all possible outcomes in which the pattern A does not 

appear: 

N = 1 + H + T + HH + HT + TH + TT + …  

In view of the above, the  relationship between S and N are true: 

1 + N(H + T) = N + S, 

NTHHHH = S. 

When H is replaced by a pz and T by qz and then, from the above pre-

sented relationships, we determine S, we obtain a function forming GA(z), of 

a random variable XA: 
4 5

4 5
( )

1
A

p qz
G

p q q
z

z pz z


  
. 

Thus, on the basis of formulas (2), (3), we have: 

  4 1,AE X p q   

  8 2 4 19 .AVar X p q p q      

When 
1

 ,
2

p q   we get:    32 ,   736 .A AE X Var X   

The reasoning presented in this example can be generalized. The fol-

lowing theorem can be proved. 
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Theorem 1 (Graham et al. 1989). Let XA be a random variable describ-

ing the number of individual tosses of a coin, till the first appearance of  

pattern A (a string of heads and tails) with the length of m = 1, 2, ... Let us 

assume that the probability of occurrence of heads (H) is p, the probability 

of tails (T), will be equal to q, where p + q = 1, p > 0, q > 0. Then 

  ( )

( )( )

1

,
m

k

A kk

k

E X AA A


     

     2 ( )

( ))

1

(( ) 2 1 ,k

m
k

A A k

k

Var X E X k A AA


       

where 
( )kA  and ( )kA  denote, respectively, the last k and first k elements of  

A pattern.   A  is the result of the substitution of p
–1

 for H and  q
–1

 for T in  

pattern A, as for the square brackets [...] takes the value of 1, when the 

expression inside is true or 0 otherwise. 

We assume again that the coin is balanced (fair), that is 
1

 . 
2

p q  For 

a given pattern A of length l and pattern B consisting of m  heads and tails 

let: 

 1 ( )

( )

1

: 2 [ ],              
l

k k

k

k

A A A A



   (4) 

 
min( , )

1 ( )

( )

1

: 2 .
l m

k k

k

k

A B A B



     (5) 

We see that in general : :  .A B B A  

With  these values, based on Theorem 1, we have 

 E (XA) = 2(A:A). (6)   

The formula (6) was shown for the first time in the work of  (Soloviev 

1966). This result seems at first sight paradoxical: patterns that do not over-

lap occur more often than the overlapping patterns! 

Example 2. Let A = THHHH, B = HHHHH be two strings of heads and 

tails with independent coin tosses with a balanced (fair coin). Then, 

E(XA) = 32, E(XB) = 62 Waiting for the toss pattern B to occur takes almost 

twice as much time as waiting for the appearance of pattern A. 
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An interesting game associated with tossing a coin was proposed in 

1969 by Walter Penney (Penney 1974). In Penney‟s Game there are two 

players involved. The first one selects the pattern A = HHT, the second 

player chooses pattern B = HTT. The winner is the player whose pattern 

appears as the first one, with independent fair coin tosses (it is known that at 

some point it will happen, and there will never be a tie because none of 

these patterns can occur inside the other). This game seems to be fair be-

cause patterns A and B when treated separately look very similar, and the 

functions generating the probability of random variables XA  and  XB equal: 

    
3

3
 .

8( 1)
A B

z
G z G z

z z
 

 
 

It turns out, however, that when we analyze these two patterns simulta-

neously, one of them has the upper hand, the probability of the event that 

pattern A wins over B is different than the probability of the event that B 

wins over pattern A (Graham et al.1989). We have: P(A wins against B) = 2/3, 

P(B wins against A) = 1/3. The general formula for this type of problems 

was discovered by John Horton Conway (Gardner 1974). 

Theorem 2. Let A and B be arbitrary patterns, not necessarily of equal 

length, of heads and tails, with independent tosses with a fair coin in Pen-

ney‟s game. Let us assume that pattern A is not contained in B, neither B is 

contained in pattern A. Then 

 
(       ) : :

,           
(       ) : :

P Awinsagainst B B B B A

P Bwinsagainst A A A A B





 (7) 

where the symbols on the right side of the equation are defined by the for-

mulas (4) and (5). 

Conclusion 1. For any pattern A = a1a2 ... am and B = (–a2)a1a2 ... am–1 

we have: 

P(A wins against B) < P(B wins against A),  

where m > 2, and (–a2) is a heads-and-tails inversion of a2.  

Conclusion 2. For the given pattern a1a2 ... am,  the biggest chances of 

a winning result from selecting one of two patterns: Ha1a2 … am-1 or  

Ta1a2 … am-1,  m > 2 (Guibas, Odlyzko 1981). 
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Example 3. Let the patterns be: A = TTHH, B = TTT. From equation 

(7) it results that: 

 
(        ) 7

.
(        ) 5

P Awinsagainst B

P B winsagainst A
  

In Penney‟s game it happens that the longer pattern wins against the 

shorter one. 

The described game is another example of the unreliability of intuition 

in probabilistic issues. One can even talk here about unreliability on two 

levels: professional and amateur. We suspect that if a number of people, not 

professionally involved in the mathematics, was asked to determine which 

of the patterns, A=THHHH and B = HHHHH (Example 2), has a better 

chance of winning, the vast majority would state that it was pattern A, pat-

tern B might not seem realistic and rare. So the answer would be correct. 

However, the “professionals” would most likely give the two patterns equal 

chances of occurrence. Their intuition (at this point unreliable) would be 

based on the knowledge that the likelihood of a four-coin-toss results of the 

two strings is the same. In turn, the ones not having this knowledge – math-

ematical laymen – would be misled by the  intuition already at the four 

times coin toss. As in the case with  Penney‟s game, they would tend to 

favor string  A rather than B. 

3. Penney’s game in a general case 

This section generalizes the considerations set out earlier. These con-

siderations are based on the work of  (Zajkowski 2012). Suppose that m 

players choose m patterns Ai (1 i m  ) of length li, respectively. Let us also 

assume that the coin is not a „fair` one. Let 
iAp  indicate the probability that  

pattern Ai  will appear before other patterns with independent coin tosses      

( (
iA ip P A  wins against the others)). The random variable X  is the number 

of tosses till the end of the game i.e. until any pattern will appear for the 

first time (which is a certain occurrence). Let us note that 

 
1

 ,i

m
A

n n

i

P X n p p


    where iA

np is the probability that the i-th player 

wins exactly in n-th toss. The generating  functions of the strings (pn) and 

 iA

np  will be marked GX  i  iA

XG , respectively. Please note that: 
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1

.( ) ( )j

m
A

X X

j

G zG z


  

We shall define a polynomial j

i

A

Aw , as” 

    
    

min{  ,   }

1

 .
i j

j i i

i

l l
A l kk l k

A j ii k

k

w z A A P A z
 



  
   (8) 

Let us recall that square brackets [...] take the value of 1 when the 

statement inside is true or  0 in the other case. Let us define the matrix now 

  

 
 

1 ,
( )( ) ,j

i

A

A
i j m

z zw
 

A  (9) 

where the polynomial is defined with the formula (8). The symbol A
j
(z) 

denotes the matrix obtained from the matrix A(z)  from the formula (9), 

 after replacing its  j-th column with a vector    1( )il

i i mP A z   . 

Theorem 3 (Zajkowski 2012). If m players chose m strings of heads 

and tails Ai  (1 )i m   such that any  Ai  is not a substring of other  Aj  then 

the probability-generating function  iA

XG   of winning of the i-th player is 

given by the formula 

  
   

1

det ( )
,

det 1 det ( )

i

i
A

X m j

j

z
G z

z z z



 

A

A A
 

where  A(z) is the matrix defined by (9). 

Conclusion 3. The probability that string  Ai  occurs first is equal to 

  
 

1

det (1)
1  .

det 1

i

i

i
A

A X m j

j

p G



 



A

A
 

Define a number  Aj: Ai  (generalization (5) in the “unfair” coin case) as 

 
 

 

 

min{  ,  }

1

[ ]
: .

( )

i j
kl l

ji k

j i

k i k

A A
A A

P A


   

Define now a matrix  1  , ( : ) , j i i j mA A  B B
j
  is the matrix formed by replac-

ing the  j-th column of  B  by the column vector  1 .(1) i m   
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Corollary 1 (Zajkowski 2012). The probability that the i-th player wins 

is equal to 

 

1

det
.

det
i

i

A m j

j

p







B

B
 

Example 4. Take three strings of heads (H) and tails (T): A1 = HTT, 

A2 = THT, A3 =  TTH . In this case 

    

2 2

2 2

1  , 3

2 2

1

( ) 1  .       

1

j

i

A

A i j

qz q z

z w z pqz pqz qz

pqz pz pqz

 

 
 

   
  

A  

By Theorem 3 one can obtain the probability-generating functions for 

the winnings of  i-th player (the number of coin tosses until the i-th player 

wins). 

Matrix B is equal to 

 

2

2

1  , 3

2 2

1 1 1

1 1 1 1
 .

( )

1 1 1

j

i

A

A

i
i j

pq pq p

w pq

P A q pq pq

q

q q pq

 

 
 
 

   
     
   

 
 
 

B   

By corollary 4 we can calculate the probability that the  i-th player wins: 

 
1 2 3

2(1 ) (1 )
  ,      ,    .

1 1 1
A A A

p pq p q p
p p p

p p p

 
  

  
 

Example 5. Take three strings of heads (H) and tails (T): A1 = HHTH, 

A2 = HTHH, A3 = THHH. We assume that 
1

  
2

p q   (Graham at al. 1989). 

By corollary 4 we can calculate the probability that the i-th player wins: 

 
1 2 3

16 17 19
,    ,    .

52 52 52
A A Ap p p    

Example 6. Suppose that two players choose strings of heads (H) and 

tails (T): A1 = TTH, A2 = THT, a coin does not have to be symmetrical, 

p, q ∈ (0, 1), p + q = 1. On the basis of proposal 4, we have: 
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1

2

2
.

1   
A

q
p

p p q


 
 

Note that 
1

31
       ( 1) 0  iff   1. 

2
Ap p p      For every coin string A1 is 

more likely to occur than A2. 

The following table is based on the value of p (the probability of eject-

ing heads (H)), for which a two-person Penney`s game length of 3 becomes 

a fair game (the probability of one model against another is equal to 1/2). 

NP means not possible. 

Table 1. The probability of ejecting heads (H)) 

 TTT TTH THT HTT HHT HTH THH HHH 

TTT x 0.5 0.28 0.21 0.4 0.39 0.44 0.5 

TTH 0.5 x np. 0.29 0.5 0.6 0.62 0.6 

THT 0.28 NP X 0.5 0.4 0.5 0.5 0.6 

HTT 0.2 0.29 0.5 x 0.38 0.5 0.5 0.55 

HHT 0.4 0.5 0.4 0.38 x NP 0.7 0.5 

HTH 0.39 0.6 0.5 0.5 NP x 0.5 0.72 

THH 0.44 0.62 0.5 0.5 0.7 0.5 x 0.79 

HHH 0.5 0.6 0.61 0.55 0.5 0.72 0.79 x 

Source: own study. 

Example 7. Suppose we have 2n
 players and a fair coin

1
 ( ).

2
p q   

Each player chooses a different  string of heads and tails of length n. The 

Penney game becomes a fair game, and we have:  

 
1 2

1
.

2nA A n
p p   

4. Conclusions 

Notice that the above results are true not only for binary strings but also 

for strings that take many values. On the basis of considerations within this 

article, one will find that even the classic and simple discrete probabilistic 

issues such as independent coin tosses, may lead to a situation not entirely 

consistent with intuition. Therefore it is worth to take up these types of 

problems when teaching probability and statistics. Penney`s game is a handy 



Andrzej Wilkowski 

 
86 

tool when discussing the theory of teaching countable probability space.     

It does not require too sophisticated mathematical apparatus (to keep it 

short, one can skip the last point and limit it to situations when the coins are 

symmetrical). Introducing this game within the statistics or probability 

theory courses provides some motivation to the process of creating and 

testing countable probability space. It also allows to analyze the concept of 

justice games and gives motivation to form  both probabilistic and mathe-

matical problems and tasks.  
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