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Abstract

Coin-tossing is generally viewed as the quintessential example of a random
process. We focus on some counterintuitive aspects of sequences that coin-
tossing produces. Equally-likely sequences of heads and tails of a specified
length are not all equally likely to occurfirst. This realization leads naturally to
other surprising facts about coin-tossing. However, aspects of the outcomes
of coin-tossing that may be counterintuitive when first encountered can be
made acceptable to intuition after reflection and analysis.

Introduction
Reasoning about probabilities can be tricky. Some probability problems

are notoriously opaque, even occasionally for people well-versed in prob-
ability theory. Examples include

• the three-doors or car-or-goat problem (“the Monty Hall problem”) [Vos
Savant 1990a; 1990b],

• the sibling-gender problem [Bar-Hillel and Falk 1982],
• the condemned-prisoner problem [Gardner 1961, 226–232],
• Bertrand’s paradox [Nickerson 2005], and
• the exchange paradox (two-envelope problem) [Nickerson and Falk 2006].

Even mathematical sophistication does not ensure against difficulty with
such problems; the celebrated polymath Paul Erdős refused to accept the
correct solution to the three-doors problem when he first encountered it
[Hoffman 1998, 253–256; Schechter 1998, 107–109]. These problems and
others are discussed in Bar-Hillel and Falk [1982], Falk [1993], and Nicker-
son [1996; 2004].
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The reflections recorded here were triggered by reading Konold [1995], a
delightful article in which the author describes his experience of attempting
to convince a student of the correctness of an intuition about probability
that turned out to be wrong.

The Problem
The question on which Konold’s article focuses is:

Suppose you were to keepflipping a coin until it landed either HTHHT
or HHHHH on five consecutive flips. Which of these two sequences
would you predict would occur first?

The student picked HTHHT. Konold tried to convince her, with a series of
computer-simulated coin-tossing sessions on which they placed wagers at
agreed-upon odds, that the two sequences were equally likely to occur first.
The student stuck to her belief that HTHHT is more likely than HHHHH to
do so. Eventually, Konold became convinced that she was right—she was
winning money even when betting at less than 1:1 odds—and was able to
construct a compelling argument to that effect. He tipped his hat to his
undergraduate student for effectively becoming the tutor to the “would-be
instructor.”

An Illuminating Case
I find it very easy to identify with Konold’s surprise that a strongly-

held—and not easily disabused—belief about probability turned out to be
wrong, since I have had a similar experience more than once. His change
of mind as a consequence of the tutoring experience demonstrates also
how easy it is to become confused about a probabilistic relationship even
when one thinks that one sees it clearly. In his explanation, he refers to
a problem that he remembers being stumped by some years prior to the
teaching-learning episode:

Which would be the most likely result, HH or HT, if you keptflipping a
coin until you got one or the other? I remember atfirst being surprised
on discovering that HT was more likely, but it was not hard to see why.
With HH, every time you get a T, you are back to square one: You need
to flip 2 H’s. But with HT, as soon as you get one H, you are “locked
in”: A T on the next flip will bring success. If instead you get an H,
you are still only one T away from success. (p. 206)
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That this claim and the explanation of it are wrong was pointed out in
several letters to the editor [Abramson 1996; Gottfried 1996; Ilderton 1996;
Stone 1996] and good-naturedly acknowledged by Konold [1996]. In fact,
HH and HT are equally likely to occur first if one keeps flipping a coin
until one of them occurs. Consider the four possible outcomes of the first
two tosses: HH, HT, TH, TT. If either HH or HT (which are equally likely)
occurs, the game is over. If TH occurs, either an H or a T (again equally
likely events) will end the game. If TT occurs, either H or T (equally likely)
will occur. If H occurs on the third toss, then either H or T (equally likely)
will end it on the fourth. If T occurs on the third toss, then we are essentially
in the same position as following the initial tosses of TT. The general point
is that a winning combination cannot occur until an H has occurred, and as
soon as an H has occurred (independently of how many Ts have preceded
it), the next item will end the game, and that item is equally likely to be an
H or a T.

As the letter writers noted, the comparison that would have illustrated
the desired point is between HH and TH, because TH is more likely than not
to be thefirst of these two sequences to occur if the coin-tossing is continued
until one or the other occurs. Consider again the four possible outcomes
of the first two tosses: HH, HT, TH, TT. If either HH or TH (which are
equally likely) occurs, the game is over. But if either HT or TT (also equally
likely) occurs on the first two tosses, the next toss will either complete the
game (if H), or cause it to continue (if T), and in the latter case tossing will
continue until an H occurs. The general rule is that once a T has occurred,
the combination TH is bound to occur before HH does. HH wins this game
only if that is the combination on thefirst two tosses, which has a probability
of 1/4, so this game is three times as likely to end with TH than with HH.
(A similar analysis will show that HT is more likely to occur first in a string
than is TT.)

With longer target sequences the differences in probabilities can become
large. Consider, for example, the sequences HHHHH and THHHH. If either
of the two target sequences occurs with thefirstfive tosses, the game is over,
but if the first five tosses produce any other sequence, it will be impossible
for HHHHH to occur before THHHH. It follows that the probability that
HHHHH will occur before THHHH is 1/32, or that the odds favoring
THHHH are 31 to 1.

Reflection on how one of two equally-likely sequences of heads and tails
can be expected to occur before the other more than half the time in coin-
tossing exercises leads one quickly to several surprising facts. My purpose
in what follows is to consider some of those facts and to attempt to show
that they are not implausible, though they may appear to be so atfirst blush.
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A Graphical Representation
The examples HHHHH and THHHH do not prove that HTHHT is more

likely than HHHHH to occur first in a sequence of coin tosses (Konold’s
example), but they perhaps make is easy to believe that that is the case.
Konold [1995, Figure 3] presents a graphical representation of the coin-
tossing process that demonstrates in another way the plausibility of the
likelihood of HTHHT being first. It shows that no matter how many Hs
(fewer than 5) have already occurred in a sequence, the occurrence of a T
means the process of creating the HHHHH pattern must start from scratch,
whereas the occurrence of an H or a T that disrupts the development of the
HTHHT pattern does not necessarily mean starting that sequence again
from the beginning. If, for example, HTH is followed by T, yielding HTHT,
there still remains HT (the first two items of the target sequence) on which
to build.

Diagrams similar to that used by Konold and others (e.g., Andrews
[2004], Cargal [2003]) are generally referred to as directed graphs, finite-
state diagrams or Markov chains; I will call them state diagrams. They show
the possible paths that could be taken from a beginning state to an end
state of some process. The beginning state is the start of the coin-tossing
sequence and the end state is the realization of a target sequence. A state
diagram for the triplet HHH, for example, is shown in Figure 1.

Figure 1. Diagram for HHH.

No matter how many heads (fewer than three) have occurred in se-
quence, the occurrence of a tail sends the process back to the starting point.
The diagram for THH is shown in Figure 2.

Figure 2. Diagram for THH.

In this case, once a tail has occurred, there is never a return to the starting
point.
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Expected Waiting Time
The state diagrams for goal states HHH and THH suggest that, on av-

erage, it is likely to take longer for HHH to occur than for THH. Each of
these graphs has three states at which one of the outcomes will send the
process back to a preceding (or the current) state. However, the throwback
possibilities are more severe for HHH than for THH: For HHH, one of the
two possible outcomes of a toss at every state will move the state back to
Start, whereas for THH, at worst an outcome can move the process back to
the immediately preceding state.

It is clear from the figures that one can arrive at either goal state by
many different paths involving many different numbers of steps. To find
the expected number of tosses for any given triplet, one could multiply the
length of every unique path to that triplet with its probability of occurrence
and take the sum of products over all unique paths. This is impossible,
inasmuch as there are infinitely many unique paths to every goal. One can
get a sense of relative numbers for specific triplets, however, by considering
only paths of moderate length. There are four paths to HHH with five or
fewer steps, while there are seven such paths to THH; and the probability
that HHH will be reached in not more than five steps is .250 while the
probability that THH will be reached in not more than five steps is .375.
More generally, THH has more paths leading to it of any given length
(except 3) than does HHH, from which it follows that the probability that
THH will be reached in n steps, n > 3, is greater than the probability that
HHH will be reached in the same number of steps.

These considerations lend credence to the idea that expected waiting
times can differ across triplets (or acrossn-tuples, for general n). Techniques
for computing expected waiting times (in number of tosses) have been given
by Genovese [n.d.], Li [1980], Gerber and Li [1981], Guibas and Odlyzko
[1981], and Hombas [1997]. The technique described by Hombas, which
I reproduce here, makes use of equations relating expected waiting times
for particular sequences conditional on the outcomes of preceding tosses.
For example, consider the sequence HTH, the state diagram of which is
Figure 3.

Figure 3. Diagram for HTH.

Letting X represent the number of coin tosses for HTH to occur, Hom-
bas shows that E(X), the expected value of X (expected waiting time for
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HTH), can be inferred from a set of linear equations expressing conditional
probabilities.

E(X) = 1
2
E(X|H1) + 1

2
E(X|T1), (1)

which is to say that E(X) is the sum of the probabilities of X , conditional
on getting H on the first toss and conditional on getting T on the first toss,
each multiplied by its probability of occurrence. By reapplying the same
reasoning,

E(X|H1) = 1
2
E(X|H1T2) + 1

2
E(X|H1H2) (2)

and

E(X|H1T2) = 1
2
E(X|H1T2H3) + 1

2
E(X|H1T2T3). (3)

Inasmuch as the effect of getting T on the first toss is to stay at Start, thereby
increasing E(X) by one, (1) can be rewritten as

E(X) = 1
2
E(X|H1) + 1

2
[1 + E(X)]. (4)

Similarly, since getting two Hs in a row in effect stalls the process at state
H, (2) can be rewritten as

E(X|H1) = 1
2
E(X|H1T2) + 1

2
[1 + E(X|H1)]. (5)

And, since getting T on the third toss following HT on the first and second
tosses sends the process back to Start, (3) can be rewritten as1

E(X|H1T2) = 1
2
E(X|H1T2H3) + 1

2
[3 + E(X)]. (6)

Solving (4) for E(X|H1) yields

E(X|H1) = E(X) − 1. (7)

From (5) and (7), we have

E(X|H1T2) = E(X|H1) − 1 = E(X) − 2, (8)

and from (6),

E(X|H1T2H3) = 2E(X|H1T2) − 3 − E(X),
1Making the substitution for the second term on the right can be confusing, especially when

solving these equations for longer strings. For X equivalent to THTH, for example, at some point
one has the equation E(X|T1H2T3) = 1

2
E(X|T1H2T3H4) + 1

2
E(X|T1H2T3T4). The correct

substitution for 1
2
E(X|T1H2T3T4) is 1

2
[3 + E(X|T1)]. Think of the system as being at the state

T1 but having taken 4 steps (3 more than necessary) to get there. The 3 in the equation represents
the 3 wasted steps.
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from which, since E(X|H1T2H3) is 3 and, by (5), E(X|H1T2) = E(X) − 2,
we have

3 = 2[E(X) − 2] − 3 − E(X),

and

E(X) = 10. (9)

Application of Hombas’s technique to all possible triplets shows that
their waiting times range from 8 to 14 tosses [Hombas 1997, 131, Table 1c].
HHH and TTT have the longest waiting time, 14 tosses in both cases. HTH
and THT have a waiting time of 10, and all other triplets have a waiting
time of 8.

Races
Given that different triplets—more generally, different sequences of the

same length—can have different waiting times, it seems natural to suspect
that different waiting times might account for why one sequence is more
likely than another to occurfirst in a series of tosses. This suspicion might be
reinforced by the observation that the waiting time of THH, which is likely
to occur before HHH, is only 8, whereas that of HHH is 14. The “race”
between HHH and THH may be represented graphically by combining the
state diagrams for two sequences in a single diagram, as in Figure 4.

Figure 4. State diagram for the “race” between HHH and THH.

This diagram makes it clear why THH is likely to occur before HHH by
showing that once the sequence gets to state T, there is no path that leads to
the end state HHH. The state T on the path to THH is an instance of what
I call a clinch state, a state from which it is impossible to return to a state
that is on a path to the alternative end state. A clinch state differs from the
conventional absorbing state of a Markov chain, which is a state that once
entered is never left.
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Applying Hombas’s algorithm to HTHHT and HHHHH, the sequences
considered by Konold and his student, yields expected waiting times of
44 tosses for the first and 62 for the second. That the sequence that wins
the race has the shorter expected waiting time comes as no surprise. What
could be more natural than that

• a sequence with a shorter expected waiting time must be likely to occur
before a sequence with a longer expected waiting time, and

• two sequences with the same expected waiting time should be equally
likely to occur first?

Both of these surmises turn out to be false. I will consider the second one
first and return to the first one later.

For both HHT and HTT, the expected waiting time is 8; but HHT is
expected to occur before HTT 2 times out of 3 on average. The advantage
that HHT has over HTT resides in the fact that HH is a clinch state. Once
the process gets to that point, it can never get to HTT; it will either get to
HHT or recycle at HH. In contrast, even when at its penultimate state on
the path to HTT (i.e., at HT), the process can be sent back to a preceding
state (H) from which it can eventually get to the opposing end state (HHT).

Another way of representing the race situation is with a standard Markov
analysis [Doyle and Snell 1984; Grinstead and Snell 1997, 428–429]. The
following description is from Cargal [2003]. The state-to-state transition
probabilities shown in Figure 4 can be represented in matrix form as in
Table 1.

Table 1. State-to-state transition probabilities for the state diagram of Figure 4.

A cell entry is the probability of a transition from the state indicated by its
row heading to the state indicated by its column heading. So, for example,
.5 in the cell (row-column) Start-H indicates that when the process is at Start,
the probability of it advancing to H on the next toss is .5. HHT and HTT
are absorbing states; the game ends when either of these states is attained,
so the transition probabilities from either of them to all others is 0.



  HHT   HTT

Start

H

HH

HT

.67 .33

.67 .33

  1  0

.33 .67
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The matrix, like the corresponding diagram, shows the possibilities at
each step in the race to an end state and their probabilities. What one really
wants to know, though, is the probability of getting from Start to each of
the end states. Cargal [2003] gives a standard procedure for determining
these probabilities. Using his notation, we represent the lower left (4-by-2)
submatrix byM and the lower right (4-by-4) submatrix byT . The procedure
requires that we:

• produce a new matrix, I − T , by subtracting T from an identity matrix,
I ;

• find (I − T )−1, the inverse of I − T ; and
• multiply M by (I − T )−1.

The resulting matrix R contains the (multistep) transition probabilities from
Start and all intermediate states to each of the end states. For the example
being considered, the resulting R is shown in Table 2.

Table 2. Solution matrix for the state diagram of Figure 4.

This analysis shows that the process is twice as likely to end with HHT
as it is to end with HTT. The matrix representation, like the state-diagram,
reveals also the advantage that HHT has by virtue of the existence of a
clinch state, HH, from which one cannot get to HTT, and no corresponding
clinch state for HTT. A clinch state is represented in an R matrix by a row
that contains a 1 and a 0 (or when there are n > 2 end states, a single 1 and
(n − 1) 0s).

The state diagram in Figure 5 represents the race discussed by Konold.
A salient feature is the relatively large number of links to the state HT. Given
that HT is on the most direct path to HTHHT, one might take the relatively
high probability of getting to HT as suggestive of an advantage of HTHHT
over HHHHH in this race. The state-to-state transition matrix for this race
is in Table 3. Applying the procedure described by Cargal [2003] yields the
solution matrix of Table 4. We find that HTHHT is nearly twice as likely
to win as HHHHH, bearing out what Konold and his student observed in
their experiment. This example illustrates also that it is not necessary for a
sequence to have a clinch state in order to be a winner; in this case, neither
sequence has a clinch state.
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Figure 5. State diagram for the “race” described by Konold, HTHHT vs. HHHHH.

Table 3. Transition matrix for the state diagram of Figure 5.

Table 4. Solution matrix for the state diagram of Figure 5.



Penney Ante 513

Other methods for determining the odds of one specified sequence beat-
ing another in a race have been developed, among them one by Conway,
described by Gardner [1974]. Li [1980], Grinstead and Snell [1997, 432], and
Felix [2006] discuss Conway’s algorithm and present some algorithms of
their own.

A Counterintuitive Nontransitivity
It should be clear at this point how two sequences of equal length can

have different probabilities of occurring first in a series of coin tosses. What
may come as a surprise is the fact,first noted by Penney [1969] and described
in print by Bostick [1967] (with application to cryptanalysis), that given a
specified triplet, one can always find another that has an advantage over it
in an extended series of tosses. There is no grand winner—one that will beat
all others—in such races. This is a surprising fact; Gardner [1974] claims
that most mathematicians cannot believe this when they first hear of it.
The situation, generally treated as a game, “Penney Ante,” has prompted
much discussion [Chrzastowski-Wachtel and Tyszkiewicz 2005; Felix 2006;
Graham et al. 1994; Noonan and Zeilberger 2005].

Table 5 shows for every possible pairing of three-item sequences the
probability that the one represented by the row (Triplet B) will occur before
the one represented by the column (Triplet A). In 20 of the cases, the proba-
bility is 1/2; but in all the others, one sequence is more likely than the other
to occur first. The table is from Gardner [1974, 123].

Table 5.
Probabilities that sequence B will occur before sequence A in a series of coin tosses

(after Gardner [1974, 123]).

A

HHH HHT HTH HTT THH THT TTH TTT

B

HHH * 1/2 2/5 2/5 1/8 5/12 3/10 1/2
HHT 1/2 * 2/3 2/3 1/4 5/8 1/2 7/10
HTH 3/5 1/3 * 1/2 1/2 1/2 3/8 7/12
HTT 3/5 1/3 1/2 * 1/2 1/2 3/4 7/8
THH 7/8 3/4 1/2 1/2 * 1/2 1/3 3/5
THT 7/12 3/8 1/2 1/2 1/2 * 1/3 3/5
TTH 7/10 1/2 5/8 1/4 2/3 2/3 * 1/2
TTT 1/2 3/10 5/12 1/8 2/5 2/5 1/2 *

According to the table, HHT beats HTT (2/3), which beats TTH (3/4),
which beats THH (2/3), which beats HHT (3/4). The state diagrams of
Figures 6–9 show the four relevant pairings.
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Figure 6. HHT beats HTT.

Figure 7. HTT beats TTH.

Figure 8. TTH beats THH.
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Figure 9. THH beats HHT.

The same cycle may be represented also in terms of R matrices as in
Figure 10.

Figure 10. The cycle of nontransitivity of HHT, HTT, TTH, THH, and HHT of Figures 6–9.

Each of the races contains one or more clinch states. In HHT beats HTT,
there is one clinch state, HH. In HTT beats TTH, there are two relevant
clinch states: H for HTT and TT for TTH (HT is also a clinch state, but it is
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superfluous, inasmuch as HTT is already clinched with the occurrence of
H). In all of the analyses shown above, either

• the winning path is the only one that has a clinch state, or
• if both paths have a clinch state, the first clinch state on the winning path

has a higher probability of occurring than (and is therefore likely to occur
before) the one on the losing path.

The existence of clinch states is specific to the pairs that are competing
and not to the items comprising a pair. For example, HTT has a clinch
state at H when racing against TTH, but it has no clinch state when racing
against HHT. This helps make intuitive sense of the possibility of the type
of nontransitivity illustrated by the four races just considered.

The nontransitive relationship that we have been considering is not lim-
ited to three-item sequences. Indeed, it holds for sequences of any length.
Gardner [1974] gives for quadruplets a table comparable to Table 4. The
nontransitivity among quadruplets is seen in the fact that HTHH beats
HHTT (4/7), which beats HTHT (5/9), which beats THTT (9/14), which
beats HTTH (7/12), which beats THTH (9/16), which beats HTHH (9/14).
In fact it is possible tofind intransitivity with as few as three quadruplets. A
case in point is the trio HTTH, which beats TTHT (7/12) which beats THTT
(3/5) which beats HTTH (7/12) [Chrzastowski-Wachtel and Tyszkiewicz
2005, 150].

A Further Challenge to Intuition
The waiting times of all the triplets in Figures 6–9 are the same, 8. There

is no instance in Table 5 of a triplet beating one with a shorter waiting time.
That one sequence may beat another with the same waiting time is perhaps
not much of a strain on credulity, and recognition of the locations of clinch
states may suffice to relieve whatever strain there is. But what about the
possibility that a sequence would beat another with a shorter waiting time?

There are n-tuples, say A and B, for which the expected waiting time for
A is shorter than the expected waiting time for B, but B is more likely than
A to occur first in a sequence of coin tosses. Gardner [1974] credits Barry
Wolk with discovery of this fact and with the identification of the 4-tuples
HTHH and THTH as such a pair. Application of Hombas’s technique to
HTHH and THTH shows them to have expected waiting times of 18 and
20 respectively, but THTH will beat HTHH in a race about 9 times out of
14. Comparison of the state diagrams for those sequences (Figures 11–12)
makes it easy to see why the expected wait is shorter for HTHH than for
THTH.

The salient difference between the possible paths to the end states is that
from the penultimate state of HTHH (HTH), the process will either move
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Figure 11. HTHH.

Figure 12. THTH.

to the end state or to the immediately preceding state (HT), whereas from
the penultimate state of THTH (THT) the process will either move to the
end state or to the state antecedent to the immediately preceding state (T).

The challenge is to make intuitive sense of the fact that the sequence
with the longer expected waiting time is more likely to win in a two-way
race. The state diagram for this race (Figure 13) may help. It shows that
the advantage for THTH lies in the fact that from the state penultimate
to HTHH, one can get to THTH in only two steps, whereas when in the
state penultimate to THTH, one is at least six states away from HTHH. The
race between HTHH and THTH is represented in matrix form in Table 6.
Applying Cargal’s algorithm yields the matrix of Table 7.

Figure 13. State diagram for the “‘race” between HTHH and THTH.

THTH will beat HTHH about 64 times in 100, or about 9 times out of
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Table 6. Transition matrix for the state diagram of Figure 13.

Table 7. Solution matrix for the state diagram of Figure 13.

14, as already noted. The diagram, and the matrix, illustrate also that it
is possible to reach either goal from any non-terminal state—there are no
clinch states. It is not necessary for a sequence to have a clinch state to be
a winner.

Comparison of the diagrams for the possible paths to the two end states,
considered individually, with that representing a race between the two
sequences, illustrates why the relationship between expected waiting times
does not allow us to predict which sequence is likely to occur first. Another
illustration may help make the point.

Imagine a biased coin, say a coin with probability .9 of coming up heads.
Toss it until it produces the sequence HT, and then tossing it again until it
produces TH. Inspection of the state diagrams for end states HT (Figure 14)
and TH (Figure 15) will convince one that the first case is likely to get
quickly to H and to spend considerable time in that state before going to
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HT, whereas the second is likely to spin a while on Start before going to T,
from where it is likely to proceed quickly to TH, but the expected waiting
times for the two sequences are the same.

Figure 14. HT.

Figure 15. TH.

Neither has an advantage over the other in terms of how long it is likely
to take to occur. When HT and TH compete in a race, however, HT will win
about 9 times in 10, because both H and T are clinch states, so whether HT
or TH wins the race is determined by the outcome of the first toss, which
will be H with probability .9 (Figure 16).

Figure 16. HT vs. TH.

Despite the fact that HT beats TH so decisively, HT will not occur more
frequently in a long sequence of coin tosses. Any sequence of tosses can
be partitioned into a sequence of runs. In the example, most long runs will
be runs of heads, and most runs of tails will be runs only one item long.
However, whenever there is a change from a run of heads to a run of tails,
the sequence HT occurs; whenever there is a change from a run of tails
to a run of heads, the sequence TH occurs; and in any sequence of tosses,
the number of transitions from heads to tails must be the same (plus or
minus 1) as the number of transitions from tails to heads. So the number of
occurrences of HT equals the number of occurrences of TH, plus or minus
1.
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This illustration does not demonstrate the possibility of a sequence beat-
ing another with a shorter expected waiting time, because the expected
waiting times of HT and TH are equal; but it should help to sharpen the
distinction between expected waiting time and competitive standing in a
race. The following thought experiment should not only sharpen further
the distinction, but also show clearly the possibility of a process with a
longer expected waiting time beating one with a shorter one. Imagine two
processes—A, which requires 1 step two-thirds of the time and 7 steps one-
third of the time, and B, which always requires 2 steps. A has an expected
waiting time, in steps, of (2/3)(1) + (1/3)(7) = 3, whereas B’s expected
waiting time is 2. So despite the fact that A has a longer expected waiting
time than B, it will require less time to finish two times out of three.

To this point, we have considered only races between sequences of the
same length. Another jolt to intuition may come from the realization that
it is possible to identify sequences of different lengths for which the longer
sequence will be more likely to occur before the shorter one [Gardner 1974].
Consider, for example, the sequences HH and THH: HH will win if and only
if the first two tosses are both H, which will be the case one-fourth of the
time. Similarly, HHH will win a race against THHH if and only if the first
three tosses are Hs, which will be the case one-eighth of the time. It should
be clear that by racing two sequences that differ in length by one item, the
shorter of which is all heads (or all tails) and the longer of which is one
tail followed by all heads (or one head followed by all tails), one can make
the odds in favor of the longer sequence as large as one wants. It is not
necessary that the sequences be as homogeneous as these examples for the
longer to have an advantage over the shorter, but these examples make the
case.

It is time to emphasize a point. A race has connoted the question of which
of two specified sequences would occur first when a single coin is tossed
until one or the other occurs. If we were to define a race as a situation in
which two players toss different coins, the winner being the one whose coin
produces his or her specified sequence in the lesser number of tosses, then
the counter-intuitive relationships that have been described do not occur. In
this case, the winner in the long run is the player whose specified sequence
has the shorter expected waiting time; and if the expected waiting times
are the same, the most likely outcome is a tie. Had Konold and his student
each tossed his/her own coin, the student still would have won more often
than not, because her sequence had the shorter expected waiting time.

Picking Sequences
Several rules have been described for picking an n-item sequence that

will beat (in the long run) another n-item sequence that has already been
picked [Andrews 2004; Felix 2006; Gardner 1974]. My paraphrase of the
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one proposed by Andrews [2004] is:

Make your first item the opposite of the second item in the other
sequence (i.e., if the second item in the other sequence is H, make
your first item T; if the second item of the other sequence is T, make
your first item H); add to your first item the entire other sequence
minus the last item in it.

For example, if your opponent in a game of this sort picks HTH, you pick
HHT. If you are playing with 5-item sequences and she picks HHTTH,
you pick THHTT. Table 8 shows what Player 2 should pick for each of
the possible picks of triplets by Player 1, according to Andrews’s rule. The
third row of the table gives the odds in favor of Player 2, given the indicated
picks, according to Table 4.

Table 8.

Player 2’s picks to beat Player 1’s picks, according to Andrews’s rule, and the odds favoring
Player 2.

Player 1 HHH HHT HTH HTT THH THT TTH TTT
Player 2 THH THH HHT HHT TTH TTH HTT HTT

Odds for Player 2 7-1 3-1 2-1 2-1 2-1 2-1 3-1 7-1

Why does this strategy work? One might guess that it works because
it ensures that the second sequence to be picked has a higher-probability
clinch state than does the first sequence to be picked—that is, a clinch state
that occurs earlier than any others in the paths. This is indeed the case for
all the pairs in Table 8. If one starts with any triplet, and applies Andrews’s
rule to find a triplet that beats it, applies the rule again to find a triplet that
beats that one, and continues in this fashion, one quickly gets into a cycle
with the four sequences illustrated in Figure 10. Once one gets to any of
the triplets, THH, TTH, HTT, or HHT, one is in a nontransitive cycle that
could go on indefinitely by successive application of Andrews’s rule.

Multisequence Races
To this point, we have considered only races between two specified

sequences. The state diagram of Figure 17 shows a four-way race among
the triplets involved in the nontransitive relationships between all pairs of
them. The diagram suggests that there is no clear winner when all four
triplets compete at once.

This conjecture is borne out by analysis. The transition probabilities in
the four-way race are shown in matrix of Table 9. Again applying Cargal’s
algorithm yields the submatrix of Table 10, which indicates that the race
is a four-way tie.
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Figure 17. State diagram for a four-way race.

Table 9. Transition probabilities for the state diagram of Figure 17.

Table 10. Solution probabilities for the state diagram of Figure 17.
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One might think that HHT and TTH should have an advantage over
HTT and THH because HHT and TTH both have a clinch state whereas
neither HTT nor THH does. Note, however, that HTT and THH in effect
share two states (we might call them semi-clinch states) that guarantee that
the process will end at one or the other of these end states—if it gets to
either HT or TH, it cannot end in either HHT or TTH. And because arriving
first at either HT or TH is equally as likely as arriving first at HH or TT, this
ensures that the process is as likely to terminate at either HTT or THH as at
either HHT or TTH.

Now the challenge to intuition is to reconcile the result of the four-way
race with the results of races between pairs of the four same triplets. If all
four triplets are equally likely to win a race in which all of them compete,
how can one be favored over another when the race is between pairs? The
critical thing to see is that a race between two sequences is qualitatively
different from a race among four sequences. When the race is among four,
it is won when any of the four sequences occurs. When it is between two,
it is not won until one of those specific two occurs; if one of the sequences
not involved in the race occurs before one of those that are involved does,
this does not terminate the race, which proceeds until one of the competing
sequences occurs.

Some Data
The foregoing deals with what we should expect, according to probabil-

ity theory, regarding the occurrences of specific sequences in random series
of binary elements, such as would be produced by the tossing of a fair coin.
As it happens, a colleague, Susan Butler, and I have the record of 30,000
actual coin (U.S. quarter) tosses (not computer-simulated) that were done
for another purpose. Here I report some analyses of the outcomes of this
set of tosses, as prompted by the theoretical predictions in the foregoing.

Waiting Times

The mean actual waiting time for each sequence was determined indi-
rectly by counting the number of (nonoverlapping) occurrences of the se-
quence in the toss outcomes and dividing the resulting number by 30,000.
This is tantamount to determining waiting times by starting the count for
the first sequence with the first toss in our set and continuing up to and in-
cluding the toss that completed the first occurrence of the target sequence,
and then treating the next toss as the beginning of a new set of tosses, and
so on. Suppose the search is for HHH and the first 25 tosses produced

T T H H T H H H H T T H T T T H T H H T T H H H T
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The waiting time for the first occurrence of this sequence would be 8 (T
T H H T H H H) and the waiting time for the second occurrence would be
16 (H T T H T T T H T H H T T H H H). The resulting waiting times (WT)
for the eight triplets are shown in Table 11. Expected waiting times (EWT)
are included for comparison. The reader will note the correspondence
between the actual waiting times of HHT and THH, of HTT and TTH, and
of HTH and THT. When Ifirst noticed these correspondences, I immediately
suspected a bug in the counting program. However, on reflection, two of
them are not surprising; in the case of HHT and THH and that of HTT and
THH, the waiting times for the members of each pair are constrained to
be identical or nearly so. Consider, for example, HHT and THH. (Bear in
mind that searches for the two sequences occur independently—one goes
through the set looking for all instances of HHT and then one goes through
the same set looking for all instances of THH—so when the two overlap,
as in HHTHH, one would be counted in one search and the other in the
other.) The reader who may wish to try to construct a sequence in which
there are two occurrences of HHT without an intervening THH (or two of
THH without an intervening HHT) will easily discover that it cannot be
done. Consequently, the number of occurrences of one of these sequences
in a series of tosses cannot differ from the number of occurrences of the
other sequence by more than 1. The same holds true for the sequences HTT
and TTH. The same reasoning does not apply to HTH and THT nor to HHH
and TTT; so the exact correspondence between the mean waiting times for
HTH and THT is fortuitous.

Table 11.

Actual mean waiting time (WT) and expected waiting time (EWT) for each of the possible triplets.

Triple
HHH HHT HTH HTT THH THT TTH TTT

WT 14.12 8.04 10.17 8.05 8.04 10.17 8.05 13.52
EWT 14.00 8.00 10.00 8.00 8.00 10.00 8.00 14.00

Actual mean waiting times were also determined for other sequences
discussed in this paper and the results, along with corresponding expected
waiting times are shown in Table 12.

Two-way Races between Triplets

All eight triplets were raced against each other in 28 pairwise races,
which proceeded as follows. The set of 30,000 coin-toss outcomes was
scanned for either member of a specified pair of sequences. As soon as one
was found, the race was considered over and that sequence was designated
the winner. The next race between the same sequences was started with
the toss outcome that immediately followed the toss that terminated the
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Table 12.

Actual mean waiting time (WT) and expected waiting time (EWT) for the 5-item sequences of
Konold [1995] and the 4-item sequences of Gardner [1974] for which the sequence with the longer

expected waiting time beats the one with the shorter expected waiting time.

Konold’s sequences Gardner’s sequences
HTHHT HHHHH HTHH THTH

WT 36.35 61.71 18.06 19.99
EWT 38.00 62.00 18.00 20.00

preceding race. The number of races that occurred between any given pair
of sequences varied from a low of 4,209 for HTH vs. THT to 5,963 for HHT
vs TTH; the mean was 5,080. The mean absolute deviation between actual
and expected percentages of wins was approximately 0.2%. (See Tables A1
and A2 in the Appendix.) The nontransitivity with respect to winnings
noted in the theoretical part of this paper was observed with the actual race
data: HHT beat HTT (3,730 to 1,839; 67.0%), which beat TTH (3,435 to 1,197;
74.2%), which beat THH (3,726 to 1,840; 66.9%), which beat HHT (3,463 to
1,111; 75.7%).

Two-way Race between Konold’s Quintuples

The two five-element sequences considered by Konold, HTHHT and
HHHHH, were raced. According to theory, HTHHT should win about
63% of the time. The result was that HTHHT actually won 801 (62.3%) of
the 1286 races.

Two-way Race between HTHH and THTH

Recall that the expected waiting times for HTHH and THTH are 18
and 20 respectively, and the mean actual waiting times in our sample were
18.06 and 19.99, and that, according to theory, the sequence with the longer
expected waiting time should win about 64 percent of the time. In fact,
THTH won 1501 (65.3%) of 2296 races.

Four-way Race among Triplets

The four triplets making up the nontransitive cycle were run in a four-
way race. The percentages of wins were: HHT: 24.2%, HTT: 24.5%, THH:
25.1%, and TTH: 26.2%.
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Number of Occurrences

Konold [1995] ends his paper with an observation with which many
people will find it easy to identify. Commenting on the understanding of a
problem that one can develop—or that one may believe one has develope-
d—in the course of thinking about it, he notes that “understanding does not
typically arrive suddenly like a newborn and set up permanent residence.
More like a teenager, it pops in and out” (p. 209). By way of illustrating the
point, Konold recounts his further thinking about the problem described at
the beginning of his article.

After I thought I had come to terms with theflip-until problem, the fol-
lowing dilemma set me back momentarily. Suppose I flipped a coin
1,000 times and wrote down the results in one long string. I could
search for occurrences of HHHHH and HTHHT by sliding a “win-
dow” along the string that allowed me to see only five characters at
a time. If I started at the beginning of the string and advanced the
window one character at a time, I could view 996 events of length
5. I am convinced that in this sample the expected number of occur-
rences of HHHHH, HTHHT, or any other sequence of length 5 is 996
(1/2)5. How can this be reconciled with the fact that, sliding the win-
dow along, I expect to encounter the first instance of HTHHT before
encountering HHHHH? (p. 209)

The number of occurrences of each of the two 5-element sequences
considered by Konold was counted in our set of 30,000 tosses. The re-
sults were: HTHHT 926 and HHHHH 944, which is to say that (consistent
with Konold’s assumption) these sequences occurred with nearly equal fre-
quency, close to the expected frequency of approximately 937. (There are
29,996 overlapping 5-element sequences in a set of 30,000 tosses; with all 32
possible sequences occurring with equal frequency, the expected number
of occurrences of any specific sequence is approximately 937.)

That all possible sequences of a specified length are expected to occur
with about equal frequency in a long series of tosses may itself pose a
challenge to intuition. As both Gottfried [1996] and Ilderton [1996] point
out in comments on Konold’s [1995] article, when counting sequences with
the “sliding window,” a sequence of all heads (or all tails) can follow itself
immediately, whereas a sequence that is a mix of heads and tails cannot.
More generally, the probability of occurrence of a specified sequence is
not independent of preceding sequences (as it would be if one counted
according to what Konold refers to as the “block method,” which considers
only successive nonoverlapping n-tuples).

Such constraints on successive recurrences accounts for why sequences
with different expected waiting times nevertheless occur approximately
the same number of times in a large set of tosses. Recall that the expected
waiting time for HHH and TTT is 14, that of HTH and THT is 10, and that of
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all other triplets is 8, as shown in Table 11. In the “sliding window” count
of number of occurrences, the somewhat long waiting time of HTH and
THT—relative to that of HHT, HTT, THH, and TTH—is compensated for
by the fact that successive occurrences of each of these triplets can overlap
by a single toss; and the even longer waiting time of HHH and TTT is
offset by the fact that successive occurrence of each of these can overlap by
two tosses. Genovese [n.d.] shows that the greater overlap a sequence has
with itself, the longer its expected waiting time. With longer sequences,
the difference between expected waiting times as a function of difference
in amount of overlap can be quite large. Genovese illustrates this with a
comparison between HHHHHHH, which takes on average 254 tosses to
occur, and HTHHTTT, which takes only 128, about half as many.

Noonan and Zeilberger [2005] discuss the relationship between the Pen-
ney Ante game and the general problem of finding specified words or word
segments in running text, and they describe software available from their
Website that can be used to determine the winners of specified sequences
in the Penney Ante game. They offer also programs that simulate Penney
Ante games and identify the best sequence to pick (countermove) given the
sequence selected by an opponent. Software for analyzing Penney Ante is
also described by Chrzastowski-Wachtel and Tyszkiewicz [2005].

Concluding Comments
I suspect that the occurrence of sequences of heads and tails in a series

of coin tosses is not a topic to which most people give a lot of thought.
For writers of textbooks on probability theory, however, coin-tossing is the
prototypical example of a random process. The phenomena discussed in
this article are illustrative of counterintuitive relationships that can hold
among probabilistic variables. In particular, they demonstrate that all the
following assumptions that one might be tempted to make are wrong:

• Random events that are equally likely to occur are necessarily equally
likely to occur first in a sequence of outputs of the random process that
produces them.

• Random events with the same expected waiting time are necessarily
equally likely to occurfirst in a sequence of outputs of the random process
that produces them.

• If two random events have different expected waiting times, the event
with the shorter expected waiting time is necessarily more likely than
the other to occur first in a sequence of outputs of the random process
that produces them.

• If n > 2 random events are equally likely to occur first in a sequence of
outputs of the random process that produces them, any two of them are
necessarily equally likely to occur first when raced against each other.
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• It is not possible for random events to have a relationship of the sort
A < B < C < D < A, where A < B means that A is likely to occur
before B.

Such surprises are compelling evidence of the wisdom of caution in
drawing conclusions about probabilistic relationships even if they appear,
at first blush, to be obvious.

Appendix
Table A1.

Observed number of races in which B beat A in dataset of 30,000 coin-toss outcomes.

A

HHH HHT HTH HTT THH THT TTH TTT

HHH * 2124 1783 2124 541 2124 1564 2124
HHT 2147 * 3334 3730 1111 3730 2989 3730
HTH 2599 1644 * 2949 2453 2103 2212 2949

B HTT 3194 1839 2991 * 2938 2519 3435 3726
THH 3730 3463 2531 2998 * 2985 1840 3186
THT 2952 2209 2106 2483 2952 * 1654 2598
TTH 3726 2974 3726 1197 3726 3344 * 2100
TTT 2216 1669 2216 590 2216 1857 2216 *
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Table A2.

Observed percentage of races in which B beat A in data set of 30,000 coin-toss outcomes (top line),
with expected percentage according to probability theory (bottom line).

A

HHH HHT HTH HTT THH THT TTH TTT

HHH * 49.7 40.7 39.9 12.7 41.8 29.6 48.9
50.0 40.0 40.0 12.5 41.7 30.0 50.0

HHT 50.3 * 67.0 67.0 24.3 62.8 50.1 69.1
50.0 66.7 66.7 25.0 62.5 50.0 70.0

HTH 59.3 33.0 * 49.6 49.2 50.0 37.3 57.1
60.0 33.3 50.0 50.0 50.0 37.5 58.3

B HTT 60.1 33.0 50.4 * 49.5 50.4 74.2 84.4
60.0 33.3 50.0 50.0 50.0 75.0 87.5

THH 87.3 75.7 50.8 50.5 * 50.3 33.1 59.0
87.5 75.0 50.0 50.0 50.0 33.3 60.0

THT 58.2 37.2 50.0 49.6 49.7 * 33.1 58.3
58.3 37.5 50.0 50.0 50.0 33.3 60.0

TTH 70.4 49.9 62.7 25.8 66.9 66.9 * 48.7
70.0 50.0 62.5 25.0 66.7 66.7 50.0

TTT 51.1 30.9 42.9 15.6 41.0 41.7 51.3 *
50.0 30.0 41.7 12.5 40.0 40.0 50.0
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