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A Fresh Look at the “Hot Hand” Paradox

S. Redner
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501

We discuss the “hot hand” paradox within the framework of the backward Kolmogorov equation.
We use this approach to understand the apparently paradoxical features of the statistics of fixed-
length sequences of heads and tails upon repeated fair coin flips. In particular, we compute the
average waiting time for the appearance of specific sequences. For sequences of length 2, the average
time until the appearance of the sequence HH (heads-heads) equals 6, while the waiting time for
the sequence HT (heads-tails) equals 4. These results require a few simple calculational steps by
the Kolmogorov approach. We also give complete results for sequences of lengths 3, 4, and 5; the
extension to longer sequences is straightforward (albeit more tedious). Finally, we compute the
waiting times TnH for an arbitrary length sequences of all heads and T

n(HT) for the sequence of
alternating heads and tails. For large n, T2nH ∼ 3T

n(HT).

I. INTRODUCTION

In a repeated flips of a fair coin, the outcomes H (heads) or T (tails) occur with 50% probability. Thus in a long
string of N coin flips, the number of heads and tails, NH and NT , will be nearly equal, with |NH −NT | of the order of√
N . Given that H and T appear equiprobably, a naive expectation might be that the average frequencies of specific

fixed-length sequences of H’s and T’s should be the same; that is, the sequence HHTH should occur with the same
frequency as HTTH. As a corollary of this expectation, the waiting time before encountering either of these sequences
should be the same. Surprisingly, this expectation is false.
The paradoxical nature of this so-called “hot hand” paradox has spawned considerable discussion and literature

that has ultimately resolved this intriguing issue, see, e.g., Refs. [1–10]. However, the approaches given in these
references are complicated and the simplicity of the mechanism that underlies the apparent paradox can be lost in
calculational details. Here we give an alternative route to understand the hot hand paradox that is based on the
backward Kolmogorov equations [11, 12]. This formulation has proved to be extremely useful in a variety of first-
passage processes. We will use this approach to compute the waiting time for specific sequences of H’s and T’s of
length up to 5, and it may be straightforwardly extended to longer sequences. We give an intuitive reason why
different sequences of the same length do not occur with the same frequency. We also derive the waiting time for
particularly simple sequences of arbitrary length, namely, the sequence of n consecutive H’s and the sequence of n
consecutive (HT)’s. We find that T2nH ∼ 3Tn(HT), so that 2n heads in a row is three times less frequent than n (HT)’s
in a row.
The idea underlying the backward Kolmogorov equation is quite simple. Consider a Markov process that is currently

in a particular state S. We want to compute the average time TS→F until the process reaches a specified final state
F . Suppose that there are two possible outcomes at each stage of the process that occur with equal probability. That
is, from state S, the process transitions either to state S′ or to S′′, each with probability 1

2 . Suppose further that the
time required for each transition equals 1. Since the Markov process has no memory, when either of the states S′ or
S′′ are reached, the the process starts anew. Consequently, the hitting time from S is just the average of the hitting
times starting from either S′ or S′′ plus the time spent in the transition itself. That is

TS→F = 1
2 (TS′→F + 1) + 1

2 (TS′′→F + 1) . (1)

We will use this basic equation to compute the waiting time for specific sequences of H’s and T’s of a given length as
a result of repeated flips of a fair coin.

II. DOUBLET SEQUENCES

We start with the simplest example of length-2 sequences. The possible sequences are HH, HT, TH, and HH.
Because the coin is fair, we obtain the same statistics by the substitution H ↔ T , so that the waiting time for the
sequences TT and TH is the same as that for HH and HT. Consequently, we only need to consider the first two
sequences. How long does one have to wait before encountering each of these sequences in a long string of fair coin
flips?
Using Eq. (1) as our starting point, we first compute the waiting time THH to encounter an HH sequence. For this

purpose, we introduce the auxiliary restricted times:
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• A, the average waiting time for the sequence HH starting with an H.

• B, the average waiting time for the sequence HH starting with a T.

These two times obey the backward equations

A = 1
2 × 2 + 1

2 (1 +B)

B = 1
2 (1 +B) + 1

2 (1 +A) .
(2a)

These two equations express the waiting times A and B as the average time to reach the desired final state after
one coin flip, plus the time for a single coin flip itself. Thus in the equation for A, the first term accounts for the
next coin flip being H (which occurs with probability 1

2 ) after which the sequence HH has been generated. The factor
2 arises because it takes two coin flips to generate the sequence HH; the fact that the starting state is H does not
count as time step. The second term accounts for the next coin flip being T. Again, the probability for this event
is 1

2 . Once a T appears, the waiting time to generate an HH sequence is B by definition. Consequently, the factor
(1 +B) accounts for the time spent in making a single coin flip plus the waiting time when the sequence string starts
with T. Solving these two equations gives A = 5, B = 7. Since H and T appear equiprobably, on average, in a long
series of fair coin flips, we have THH = 1

2 (A+B) = 6.
For THT , we introduce

• A, the average waiting time for the sequence HT starting with H.

• B, the average waiting time for the sequence HT starting with T.

Using the same reasoning as given above, these two times obey the backward equations

A = 1
2 × 2 + 1

2 (1 +A)

B = 1
2 (1 +A) + 1

2 (1 +B) .
(2b)

The solution to (2b) are (A,B) = (3, 5). Again, because H and T appear equiprobably in a long series of coin flips,
THT = 1

2 (A+B) = 4.
Why are these two times different? The key lies in the second term of first lines of Eqs. (2a) and (2b). These terms

account for a “mistake”. For example, in Eq. (2a), if the next coin flip is T, one has to “start over” to generate HH.
The soonest that the next HH can happen immediately after a T is after two more coin flips. In contrast, in Eq. (2b),
if the next coin flip is H (again a mistake), the process “starts over”. Now, however, the soonest that the next HT
sequence can appear is after only one more coin flip.

III. TRIPLET SEQUENCES

Let’s now generalize to triplet sequences. The 23 = 8 distinct triplet sequences are HHH, HHT, HTH, and THH
and their counterparts that are obtained by the substitution H↔T. By left/right symmetry, the triplets HHT and
THH have identical statistics, so the only distinct sequences are HHH, HHT, and HTH.
We define THHH as the waiting time to encounter the sequence with three consecutive H’s. To compute this time,

we define the auxiliary restricted times:

• A, the waiting time for HHH when the current state is H;

• B, the waiting time for HHH when the current state is HH;

• C, the waiting time for HHH when the current state is T.

Following the same reasoning that led to Eqs. (2a), the above times satisfy

A = 1
2 (1 +B) + 1

2 (1 + C)

B = 1
2 (2) +

1
2 (1 + C)

C = 1
2 (1 +A) + 1

2 (1 + C) .

(3)

The first term in the equation for B merits explanation. From the state HH, the desired sequence HHH is obtained
with probability 1

2 , while the time for this event is 2. Here the time is measured starting before the second H has been
added to the sequence. The solution to (3) is (A,B,C) = (13, 9, 15). Since the probability to find an H or a T are
equal, the waiting time to encounter the sequence HHH is just the average of the times to find HHH when starting
with an H or starting with a T. Thus THHH = 1

2 (A+ C) = 14.
Similarly, let THHT be the waiting time to encounter the sequence HHT. Here, we introduce the auxiliary times:
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• A, the waiting time for HHT when the current state is H;

• B, the waiting time for HHT when the current state is HH;

• C, the waiting time for HHT when the current state is T.

These times satisfy

A = 1
2 (1 +B) + 1

2 (1 + C)

B = 1
2 (2) +

1
2 (1 +B)

C = 1
2 (1 +A) + 1

2 (1 + C) ,

(4)

There is a subtlety in the second equation that needs explanation. If the initial state is HH, then after adding an H,
the current state is still HH, so that that the second term involves B. This feature that the initial state consists of a
subsequence of length greater than one plays an increasing role for longer sequences (see Appendices A and B). The
solution to (4) is (A,B,C) = (7, 3, 9). The waiting time to encounter the sequence HHT is the average of the times
to find HHT after an H or after a T, which gives again THHT = 1

2 (A+ C) = 8.
Finally, let THTH be the waiting time to encounter the sequence HTH. We introduce the auxiliary times:

• A, the waiting time for HTH when the current state is H;

• B, the waiting time for HTH when the current state is HT;

• C, the waiting time for HHT when the current state is T.

These times satisfy

A = 1
2 (1 +A) + 1

2 (1 +B)

B = 1
2 (2) +

1
2 (1 + C)

C = 1
2 (1 +A) + 1

2 (1 + C) ,

(5)

with solutions (A,B,C) = (9, 7, 11). Thus the waiting time to encounter the sequence HTH is the average of the
times to find HTH after an H or after a T, which gives THTH = 1

2 (A+ C) = 10.
To summarize, THHH = 14, THHT = 8, and THTH = 10, in agreement with the times quoted in, for example, Ref. [6].

IV. QUARTET AND QUINTET SEQUENCES

The six distinct quartets are HHHH, HHHT, HHTH, HHTT, HTHT, and HTTH. To not inflict even more tedious
algebra upon the casual reader, all the calculational details are given in Appendix A. Here we merely quote the waiting
times in reverse time order:

T4H = 30 THTHT = 20 THHTH = THTTH = 18 THHHT = THHTT = 16 . (6)

There are nine distinct quintets: HHHHH, HHHHT, HHHTH, HHTHH, HHHTT, HHTHT, HTHHT, HTHTH,
and HTTHH. There are additional non-independent sequences that are obtained by either the interchange H ↔ T or
by reading the above sequences in reverse order. The waiting times are (see Appendix B for details):

T5H = 62 THTHTH = 42 THHTHH = 38 THTHHT = 36 THHHTH = THTTHH = 34 THHHTH = THHTHT = 32 . (7)

All these results agree with those given in [6].

V. SIMPLE ARBITRARY LENGTH SEQUENCES

A. n Consecutive H’s

While the calculational details for longer sequences are straightforward, they become progressively more tedious
as the sequence length is increased. However, for the sequence of n consecutive H’s, the equations for the restricted
times are sufficiently systematic in character that they can be solved. To this end, we first define the following set of
restricted times:

• Ak, the waiting time for nH when the current state consists of k consecutive H’s;
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• B, the waiting time for nH when the current state is T.

These times satisfy

A1 = 1
2 (1 +A2) +

1
2 (1 +B)

A2 = 1
2 (1 +A3) +

1
2 (1 +B)

...

An−2 = 1
2 (1 +AN−1) +

1
2 (1 +B)

An−1 = 1
2 (2) +

1
2 (1 + B)

B = 1
2 (1 +A1) +

1
2 (1 +B) .

(8a)

From the last equation, we have B = 2+A1, while from the penultimate equation we can replace the factor 1
2 (1+B)

everywhere with An−1 − 1. Thus Eqs. (8a) become

A1 = 1
2 (1 +A2) +An−1 − 1

A2 = 1
2 (1 +A3) +An−1 − 1

...

An−3 = 1
2 (1 +An−2) +An−1 − 1

An−2 = 1
2 (1 +An−1) +An−1 − 1

(8b)

Now the equation for An−2 can be written in terms of An−1 only. Similarly, the equation for An−3 can be written
in terms of An−1 only. Continuing this procedure, we find

An−k = −2k−1 − 1

2k−1
+

2k − 1

2k−1
An−1 . (9a)

In particular

A1 = −2n−2 − 1

2n−2
+

2n−1 − 1

2n−2
An−1 . (9b)

From the original equation for An−1, we eliminate B in favor of A1 and obtain An−1 = 5
2 + 1

2A1. Using this in (9b),

we solve for A1 and find, after some straightforward steps, A1 = 2n+1 − 3. Finally, TnH is the average of the waiting
times starting from H and starting from T. That is,

TnH =
1

2
(A1 +B) = 2n+1 − 2 . (10)

B. n Consecutive (HT)’s

A similar calculation can be carried out for the sequence of n consecutive (HT)’s. Here, we first define the following
set of restricted times:

• A2k−1, the waiting time for n(HT) when the current state is (k − 1)(HT)H;

• A2k, the waiting time for n(HT) when the current state is k(HT);

• B, the waiting time for n(HT) when the current state is T.
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These times satisfy

A1 = 1
2 (1 +A2) +

1
2 (1 +A1)

A2 = 1
2 (1 +A3) +

1
2 (1 +B)

A3 = 1
2 (1 +A4) +

1
2 (1 +A1)

A4 = 1
2 (1 +A5) +

1
2 (1 +B)

...

A2n−3 = 1
2 (1 +A2n−2) +

1
2 (1 +A1)

A2n−2 = 1
2 (1 +A2n−1) +

1
2 (1 +B)

A2n−1 = 1
2 (2) +

1
2 (1 +A1)

B = 1
2 (1 +A1) +

1
2 (1 +B) .

(11)

From the last two equations, we obtain

1
2 (1 +A1) = A2n−1

1
2 (1 +B) = A2n−1 . (12)

We now eliminate A1 and B from Eqs. (11). With this substitution, we can then recursively solve for A2n−2, A2n−3, . . .

in terms of A2n−1 and obtain

A2n−k = − Sk

2k−1
+

2k − 1

2k−1
A2n−1 . (13)

where

Sk =

(k−3)/2∑

j=0

4j .

We now use k = 2n− 1 in (13) to obtain A1 in terms of A2n−1, and then use the first of (12) to eliminate A2n−1 in
favor of A1 and ultimately solve for A1. After straightforward algebra, the final result is

A1 = −2S2n−1 + 3(2 · 4n−1 − 1) = − 2
3 (4

n−1 − 1) + 3(2 · 4n−1 − 1) . (14)

The waiting time Tn(HT) is given by 1
2 (A1 +B) = A1 + 1, and after some algebra, we obtain

Tn(HT) =
4
3 (4

n − 1) . (15)

It is intriguing to compare the times TnH and Tn(HT). The fair comparison is between T2nH and Tn(HT); i.e, between

strings of the same length. Asymptotically, Eq. (10) gives T2nH ∼ 4n+1, while (15) gives Tn(HT) ∼ 1
3 · 4n+1. One

has to wait three times as long, on average, to encounter a sequence of 2n H’s in a row compared to a sequence of n
(HT)’s in a row.

VI. CONCLUDING COMMENTS

While most of the results given here are already known, the backward Kolmogorov approach provides a fresh and
powerful perspective on how to calculate waiting times for specific sequences of H’s and T’s in a long string of repeated
flips of a fair coin. Once one understands the idea that underlies the Kolmogorov approach, the computation of the
waiting times for specific sequences is straightforward and direct. Another important aspect of this approach is that
it is not limited to mean waiting times. This same method can be applied to compute any functional of the waiting
time, such as higher moments or even the characteristic function, 〈exp(−sT )〉.
A surprising conclusion of repeated fair coin flips is that the waiting times, or equivalently, the occurrence frequen-

cies, for specific sequences of H’s and T’s of the same length are different. The effect is quite pronounced for a long
string of 2n H’s in a row compared to the string of n (HT)’s in row. For large n, one has to wait three times longer
to encounter the former sequence compared to the latter.
Although our approach unambiguously illustrates the different waiting times/frequencies of fixed-length sequences,

this seemingly paradoxical phenomenon simple requires careful thought to appreciate intuitively.
I thank David Atkinson and Porter Johnson for helpful suggestions while this manuscript was written, and Michael

Mauboussin for his encouragement. I also gratefully acknowledge financial support from NSF Grant DMR-1608211.
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Appendix A: Calculational Details for Quartet Sequences

The calculation THHHH was given in Sec. VA and we start with THHHT. To compute THHHT, we define A, B, C,
and D as the waiting time for HHHT when the current state is H, HH, HHH, and T, respectively. These times satisfy

A = 1
2 (1 +B) + 1

2 (1 +D)

B = 1
2 (1 + C) + 1

2 (1 +D)

C = 1
2 (2) +

1
2 (1 + C)

D = 1
2 (1 +A) + 1

2 (1 +D) ,

(A1)

whose solutions are (A,B,C,D) = (15, 11, 3, 17), from which THHHT = 1
2 (A+D) = 16.

To compute THHTH, we define A, B, C, and D as the waiting time for HHTH when the current state is H, HH,
HHT, and T, respectively. These times satisfy

A = 1
2 (1 +B) + 1

2 (1 +D)

B = 1
2 (1 +B) + 1

2 (1 + C)

C = 1
2 (2) +

1
2 (1 +D)

D = 1
2 (1 +A) + 1

2 (1 +D) ,

(A2)

whose solutions are (A,B,C,D) = (17, 13, 11, 19), from which THHTH = 1
2 (A+D) = 18.

To compute THHTT, we define A, B, C, D as the waiting time for HHTT when the current state is H, HH, HHT,
and T, respectively. These times satisfy

A = 1
2 (1 +B) + 1

2 (1 +D)

B = 1
2 (1 +B) + 1

2 (1 + C)

C = 1
2 (2) +

1
2 (1 +A)

D = 1
2 (1 +A) + 1

2 (1 +D) ,

(A3)

whose solutions are (A,B,C,D) = (15, 11, 9, 17), from which THHTT = 1
2 (A+D) = 16.

To compute THTHT, we define A, B, C, D as the waiting time for HTHT when the current state is H, HT, HTH,
and T, respectively. These times satisfy

A = 1
2 (1 +A) + 1

2 (1 +B)

B = 1
2 (1 + C) + 1

2 (1 +D)

C = 1
2 (2) +

1
2 (1 +A)

D = 1
2 (1 +A) + 1

2 (1 +D) ,

(A4)

whose solutions are (A,B,C,D) = (19, 17, 11, 21), from which THTHT = 1
2 (A +D) = 20.

Finally, to compute THTTH, we define A, B, C, D as the waiting time for HTTH when the current state is H, HT,
HTT, and T, respectively. These times satisfy

A = 1
2 (1 +A) + 1

2 (1 +B)

B = 1
2 (1 +A) + 1

2 (1 + C)

C = 1
2 (2) +

1
2 (1 +D)

D = 1
2 (1 +A) + 1

2 (1 +D) ,

(A5)

whose solutions are (A,B,C,D) = (17, 15, 11, 19), from which THTTH = 1
2 (A +D) = 18.

Appendix B: Calculational Details for Quintet Sequences

Again, the calculation THHHHH was given in Sec. VA and we start with THHHHT. To compute THHHHT, we define
A, B, C, D, E as the waiting time for HHHHT when the current state is H, HH, HHH, HHHH, and T, respectively.
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These times satisfy

A = 1
2 (1 +B) + 1

2 (1 + E)

B = 1
2 (1 + C) + 1

2 (1 + E)

C = 1
2 (1 +D) + 1

2 (1 + E)

D = 1
2 (2) +

1
2 (1 +D)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B1)

whose solutions are (A,B,C,D,E) = (31, 27, 19, 3, 33) and we obtain THHHHT = 1
2 (A+ E) = 32.

To compute THHHTH, we define A, B, C, D, E as the waiting time for HHHTH when the current state is H, HH,
HHH, HHHT, and T, respectively. These times satisfy

A = 1
2 (1 +B) + 1

2 (1 + E)

B = 1
2 (1 + C) + 1

2 (1 + E)

C = 1
2 (1 + C) + 1

2 (1 +D)

D = 1
2 (2) +

1
2 (1 + E)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B2)

whose solutions are (A,B,C,D,E) = (33, 29, 21, 19, 35) and we obtain THHHTH = 1
2 (A+ E) = 34.

To compute THHTHH, we define A, B, C, D, E as the waiting time for HHTHH when the current state is H, HH,
HHT, HHTH, and T, respectively. These times satisfy

A = 1
2 (1 +B) + 1

2 (1 + E)

B = 1
2 (1 +B) + 1

2 (1 + C)

C = 1
2 (1 +D) + 1

2 (1 + E)

D = 1
2 (2) +

1
2 (1 + E)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B3)

whose solutions are (A,B,C,D,E) = (37, 33, 31, 21, 39) and we obtain THHTHH = 1
2 (A+ E) = 38.

To compute THHHTT, we define A, B, C, D, E as the waiting time for HHHTT when the current state is H, HH,
HHH, HHHT, and T, respectively. These times satisfy

A = 1
2 (1 +A) + 1

2 (1 + E)

B = 1
2 (1 + C) + 1

2 (1 + E)

C = 1
2 (1 + C) + 1

2 (1 +D)

D = 1
2 (2) +

1
2 (1 +A)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B4)

whose solutions are (A,B,C,D,E) = (31, 27, 19, 17, 33) and we obtain THHHTT = 1
2 (A+ E) = 32.

To compute THHTHT, we define A, B, C, D, E as the waiting time for HHTHT when the current state is H, HH,
HHT, HHTH, and T, respectively. These times satisfy

A = 1
2 (1 +B) + 1

2 (1 + E)

B = 1
2 (1 +B) + 1

2 (1 + C)

C = 1
2 (1 +D) + 1

2 (1 + E)

D = 1
2 (2) +

1
2 (1 +B)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B5)

whose solutions are (A,B,C,D,E) = (31, 27, 25, 15, 33) and we obtain THHTHT = 1
2 (A+ E) = 32.
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To compute THTHHT, we define A, B, C, D, E as the waiting time for HTHHT when the current state is H, HT,
HTH, HTHH, and T, respectively. These times satisfy

A = 1
2 (1 +A) + 1

2 (1 +B)

B = 1
2 (1 + C) + 1

2 (1 + E)

C = 1
2 (1 +D) + 1

2 (1 +B)

D = 1
2 (2) +

1
2 (1 +A)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B6)

whose solutions are (A,B,C,D,E) = (35, 33, 27, 19, 37) and we obtain THTHHT = 1
2 (A+ E) = 36.

To compute THTHTH, we define A, B, C, D, E as the waiting time for HTHTH when the current state is H, HT,
HTH, HTHT, and T, respectively. These times satisfy

A = 1
2 (1 +A) + 1

2 (1 +B)

B = 1
2 (1 + C) + 1

2 (1 + E)

C = 1
2 (1 +A) + 1

2 (1 +D)

D = 1
2 (2) +

1
2 (1 + E)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B7)

whose solutions are (A,B,C,D,E) = (41, 39, 33, 23, 43) and we obtain THTHTH = 1
2 (A+ E) = 42.

To compute THTTHH, we define A, B, C, D, E as the waiting time for HTTHH when the current state is H, HT,
HTT, HTTH, and T, respectively. These times satisfy

A = 1
2 (1 +A) + 1

2 (1 +B)

B = 1
2 (1 +A) + 1

2 (1 + C)

C = 1
2 (1 +D) + 1

2 (1 + E)

D = 1
2 (2) +

1
2 (1 +B)

E = 1
2 (1 +A) + 1

2 (1 + E)

(B8)

whose solutions are (A,B,C,D,E) = (33, 31, 27, 17, 35) and we obtain THTTHH = 1
2 (A+ E) = 34.
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