


T I M E  T R A V E L  

AND OTHER MATHEMATICAL BEWILDERMENTS 



TIME TRAVEL 

AND OTHER MATHEMATICAL BEWILDERMENTS 

MARTIN GARDNER 

me 
W. H. FREEMAN AND COMPANY N E W  Y O R K  



Library of' Congress Cataloguing-in-Publication Data 

Gardner, Martin, 1914- 
Time travel and other mathematical bewilderments. 

1nclud~:s index. 
1. Mathematical recreations. I. Title. 

QA95.G325 1987 793.7'4 87-11849 
ISBN 0-7167-1924-X 
ISBN 0-7167-1925-8 @bk.) 

Copyright la1988 by W. H. Freeman and Company 

No part of this book may be reproduced by any mechanical, 
photographic, or electronic process, or in the form of a photographic 
recording, nor may it be stored in a retrieval system, transmitted, or 
otherwise copied for public or private use, without written permission 
from the publisher. 

Printed in the United States of America 

3 4 5 6 7 8 9 0  VB 6 5 4 3 2 1 0 8 9  



To David A. Klarner 

for his many splendid contributions 
to recreational mathematics, 

for his friendship over the years, 
and in !gratitude for many other things. 



C O N T E N T S  

CHAPTER ONE 
Time Travel 1 

CHAPTER T W O  
Hexes and Stars 15 
. 
CHAPTER THREE 
Tangrams, Part 1 27 

CHAPTER FOUR 
Tangrams, Part 2 39 

CHAPTER FIVE 
Nontransitive Paradoxes 55 

CHAPTER SIX 
Combinatorial Card Problems 7 1 

CHAPTER SEVEN 
Melody-Making Machines 85 

CHAPTER EIGHT 
Anamorphic Art 97 . 
CHAPTER NINE 
The Rubber Rope and Other Problems 1 1 1 



viii CONTENTS 

CHAPTER TEN 
Six Sensational Discoveries 125 

CHAPTER ELEVEN 
The Csaszar Polyhedron 139 

CHAPTER TWELVE 
Dodgem and Other Simple Games 153 

CHAPTER THIRTEEN 
Tiling with Convex Polygons 163 

CHAPTER FOURTEEN 
Tiling with Polyominoes, Polyiamonds, and Polyhexes 177 

CHAPTER FIFTEEN 
Curious Maps 189 

CHAPTER SIXTEEN 
The Sixth Symbol and Other Problems 205 

CHAPTER SEVENTEEN 
Magic Squares and Cubes 213 

CHAPTER EIGHTEEN 
Block Packing 227 

CHAPTER NINETEEN 
Induction and ~ r o b a b i l i t ~  24 1 



CONTENTS ix 

CHAPTER TWENTY 
Catalan Numbers 253  

CHAPTER TWENTY-ONE 
Fun with a Pocket Calculator 267 

CHAPTER TWENTY-TWO 
Tree-Plant Problems 22 7 

INDEX OF NAMES 291 



Herewith the twelfth collection of my columns from Scientijic American. 
As usual, they have been corrected, updated, and expanded, mostly on the 
basis of letters from knowledgeable and alert readers. 
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2 •  CHAPTER ONE

Schools Journal under the horrendous title “The Chronic Argonauts.” Wells
himself was so ashamed of this clumsily written tale that he broke it off after
three installments and later destroyed all the copies he could find. A com-
pletely rewritten version, “The Time Traveller’s Story,” was serialized in The
New Review beginning in 1894. When it came out as a book in 1895, it brought
Wells instant recognition.

One of the many remarkable aspects of Wells’s novella is the introduction
in which the Time Traveller (his name is not revealed, but in Wells’s first ver-
sion he is called Dr. Nebo-gipfel) explains the theory behind his invention.
Time is a fourth dimension. An instantaneous cube cannot exist. The cube we
see is at each instant a cross section of a “fixed and unalterable” four-dimen-
sional cube having length, breadth, thickness, and duration. “There is no dif-
ference between Time and any of the three dimensions of Space,” says the
Time Traveller, “except that our consciousness moves along it.” If we could
view a person from outside our space-time (the way human history is viewed
by the Eternals in Isaac Asimov’s The End of Eternity or by the Tralfamadorians
in Kurt Vonnegut’s Slaughterhouse-Five), we would see that person’s past, pres-
ent, and future all at once, just as in 3-space we see all parts of a wavy line
that traces on a time chart the one-dimensional spatial movements of mercury
in a barometer.

Reading these remarks today, one might suppose that Wells had been famil-
iar with Hermann Minkowski’s great work of tidying up Einstein’s special the-
ory of relativity. The line along which our consciousness crawls is, of course,
our “world line”: the line that traces our movements in 3-space on a four-
dimensional Minkowski space-time graph. (My World Line is the title of
George Gamow’s autobiography.) But Wells’s story appeared in its final form
ten years before Einstein published his first paper on relativity!

When Wells wrote his story, he regarded the Time Traveller’s theories as lit-
tle more than metaphysical hanky-panky designed to make his fantasy more
plausible. A few decades later physicists were taking such hanky-panky with
the utmost seriousness. The notion of an absolute cosmic time, with absolute
simultaneity between distant events, was swept out of physics by Einstein’s
equations. Virtually all physicists now agree that if an astronaut were to trav-
el to a distant star and back, moving at a velocity close to that of light, he
could in theory travel thousands of years into the earth’s future. Kurt Gödel
constructed a rotating cosmological model in which one can, in principle,
travel to any point in the world’s past as well as future, although travel to the
past is ruled out as physically impossible. In 1965 Richard P. Feynman
received a Nobel prize for his space-time approach to quantum mechanics in
which antiparticles are viewed as particles momentarily moving into the past.
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Hundreds of science-fiction stories have been written about time travel, 
many of them raising questions about time and causality that are as profound as 
they are sometimes funny. T o  give the most hackneyed example, suppose you 
traveled back to last month and shot yourself through the head. Not only do 
you know before making the trip that nothing like this happened but, assum- 
ing that somehow you could murder your earlier self, how could you exist 
next month to make the trip? Fredric Brown's "First Time Machine" opens 
with Dr. Grainger exhibiting his machine to three friends. One of them uses 
the device to go back sixty years and kill his hated grandfather when the man 
was a youth. The story ends sixty years later with Dr. Grainger showing his 
time machine to two friends. 

It must not be thought that logical contradictions arise only when people 
travel in time. The transportation of anything can lead to paradox. There is a 
hint of this in Wells's story. When the Time Traveller sends a small model of 
his machine into the past or the future (he does not know which), his guests 
raise two objections. If the time machine went into the future, why do they 
not see it now, moving along its world line? If it went into the past, why did 
they not see it there before the Time Traveller brought it into the room? 

One of the guests suggests that perhaps the model moves so fast in time it 
becomes invisible, like the spokes of a rotating wheel. But what if a time-trav- 
eling object stops moving? If you have no memory of a cube on the table 
Monday, how could you send it back to Monday's table on Tuesday? And if on 
Tuesday you go into the future, put the cube on the table Wednesday, then 
return to Tuesday, what happens on Wednesday if on Tuesday you destroy the 
cube? 

Objects carried back and forth in time are sources of endless confusion in 
certain science-fiction tales. Sam Mines once summarized the plot of his own 
story, "Find the Sculptor," as follows: "A scientist builds a time machine, goes 
500 years into the future. He finds a statue of himself commemorating the first 
time traveler. He brings it back to his own time and it is subsequently set up in 
his honor. You see the catch here? It had to be set up in his own time so that it 
would be there waiting for him when he went into the future to find it. He had 
to go into the future to bring it back so it could be set up in his own time. 
Somewhere a piece of the cycle is missing. When was the statue made?" 

A splendid example of how paradox arises, even when nothing more than 
messages go back in time, is provided by the conjecture that tachyons, particles 
moving faster than light, might actually exist. Relativity theory leaves no 
escape from the fact that anything moving faster than light would move 
backward in time. This is what inspired A. H. Reginald Buller, a Canadian 
botanist, to write his often quoted limerick: 
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There was a young lady named Bright 
W h o  traveled much faster than light. 

She started one day 
In the relative way, 

And returned on the previous night. 

Tachyons, if they exist, clearly cannot be used for communication. G. A. 
Benford, D. L. Book, and W .  A. Newcomb (of "Newcomb's paradox," the 
topic of two chapters in my Knotted Doughnuts a d  Other Mathematical Enter- 
tainments, W .  H .  Freeman and Company, 1986), have chided physicists who 
are searching for tachyons for overlooking this. In "The Tachyonic Antitele- 
phone," they point out that certain methods of looking for tachyons are based 
on interactions that make possible, in theory, communication by tachyons. 
Suppose physicist Jones on the earth is in communication by tachyonic antite- 
lephones with physicist Alpha in another galaxy. They make the following 
agreement. When Alpha receives a message from Jones, he will reply immedi- 
ately. Jones promises to send a message to Alpha at three o'clock earth time, if 
and only if he has not received a message from Alpha by one o'clock. Do you 
see the difficulty? Both messages go back in time. IfJones sends his message at 
three, Alpha's reply could reach him before one. "Then," as the authors put it, 
"the exchange &.messages will take place if and only if it does no; take 
place . . . a genuine . . . causal contradiction." Large sums of money have 
already gone down the drain, the authors believe, in efforts to detect tachyons 
by methods that imply tachyonic communication and are therefore doomed to 
failure. 

Time dilation in relativity theory, time travel in Godel's cosmos, and re- 
versed time in Feynman's way of viewing antiparticles are so carefully hedged 
by other laws that contradictions cannot arise. In most time-travel stories the 
paradoxes are skirted by leaving out any incident that would generate a 
paradox. In some stories, however, logical contradictions explicitly arise. 
When they do, the author may leave them paradoxical to bend the reader's 
mind or may try to escape from paradox by making clever assumptions. 

Before discussing ways of avoiding the paradoxes, brief mention should be 
made of what might be called pseudo-time-travel stories in which there is no 
possibility of coitradiction. There can be no paradox, for example, if one 
simply observes the past but does not interact with it. The electronic machine 
in Eric Temple Bell's "Before the Dawn," which extracts motion pictures of 
the past from imprints left by light on ancient rocks, is as free of possible 
paradox as watching a video tape of an old television show. And paradox 



cannot arise if a person travels into the future by going into suspended anima-
tion, like Rip van Winkle, or Woody Allen in his motion picture Sleeper, or the
sleepers in such novels as Edward Bellamy’s Looking Backward or Wells’s When
the Sleeper Wakes. No paradox can arise if one dreams of the past (as in Mark
Twain’s A Connecticut Yankee at King Arthur’s Court, or in the 1986 motion pic-
ture Peggy Sue Got Married ), or goes forward in a reincarnation, or lives for a
while in a galaxy where change is so slow in relation to earth time that when
he returns, centuries on the earth have gone by. But when someone actually
travels to the past or the future, interacts with it and returns, enormous diffi-
culties arise.

In certain restricted situations paradox can be avoided by invoking Min-
kowski’s “block universe,” in which all history is frozen, as it were, by one
monstrous space-time graph on which all world lines are eternal and unalter-
able. From this deterministic point of view one can allow certain kinds of time
travel in either direction, although one must pay a heavy price for it. Hans
Reichenbach, in a muddled discussion in The Philosophy of Space and Time
(Dover, 1957, pp. 140–142), puts it this way: Is it possible for a person’s world
line to “loop” in the sense that it returns him to a spot in space-time, a spot
very close to where he once had been and where some kind of interaction,
such as speech, occurs between the two meeting selves? Reichenbach argues
that this cannot be ruled out on logical grounds; it can only be ruled out on
the ground that we would have to give up two axioms that are strongly con-
firmed by experience: (1) A person is a unique individual who maintains his
identity as he ages, and (2) a person’s world line is linearly ordered so that what
he considers “now” is always a unique spot along the line. (Reichenbach does
not mention it, but we would also have to abandon any notion of free will.) If
we are willing to give up these things, says Reichenbach, we can imagine with-
out paradox certain kinds of loops in a person’s world line.

Reichenbach’s example of a consistent loop is as follows. One day you meet
a man who looks exactly like you but who is older. He tells you he is your older
self who has traveled back in time. You think him insane and walk on. Years
later you discover how to go back in time. You visit your younger self. You are
compelled to tell him exactly what your older duplicate had told you when you
were younger. Of course, he thinks that you are insane. You separate. Each of
you leads a normal life until the day comes when your older self makes the trip
back in time.

Hilary Putnam, in “It Ain’t Necessarily So,” argues in similar fashion that
such world-line loops need not be contradictory. He draws a Feynman graph
(see Figure 1) on which particle pair-production and pair-annihilation are
replaced by person pair-production and pair-annihilation. The zigzag line is
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SPACE 

Figure 1 Feynman graph for a time traveler to the past 

the world line of time traveler Smith. At time t, he goes back to t,, converses 
with his younger self, then continues to lead a normal life. How would this be 
observed by someone whose world line is normal? Simply put a ruler at the 
bottom of the chart, its edge parallel to the space axis, and move it slowly 
upward. At to you see young Smith. At t ,  an older Smith suddenly materializes 
out of thin air in the same room along with an anti-Smith, who is seated in his 
time machine and living backward. (If he is smoking, you see his cigarette butt 
lengthen into a whole cigarette, and so on.) Perhaps the two forward Smiths 
converse. Finally, at t,, young Smith, backward Smith, and the backward- 
moving time machine vanish. The older Smith and his older time machine 
continue on their way. The fact that we can draw a space-time diagram of 
these events, Putnam insists, is proof that they are logically consistent. 

It is true that they are consistent, but note that Putnam's scenario, like 
Reichenbach's, involves such weak interaction between the Smiths that it 
evades the deeper contradictions that arise in time-travel fiction. What hap- 
pens if the older Smith kills the younger Smith? Will Putnam kindly supply a 
Feynman graph? 
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There is only one good way out, and science-fiction scribblers have been 
using it for more than half a century. According to Sam Moskowitz, the device 
was first explicitly employed to resolve time-travel paradoxes by David R. 
Daniels in "Branches of Time," a tale that appeared in Wonder Stories in 1934. 
The basic idea is as simple as it is fantastic. Persons can travel to any point in the 
future of their universe, with no complications, but the moment they enter the 
past, the universe splits into two parallel worlds, each with its own time track. 
Along one track rolls the world as if no looping had occurred. Along the other 
track spins the newly created universe, its history permanently altered. When 
I say "newly created," I speak, of course, from the standpoint of the time 
traveler's consciousness. For an observer in, say, a fifth dimension the trav- 
eler's world line simply switches from one space-time continuum to another 
on a graph that depicts all the universes branching like a tree in a metauniverse. 

Forking time paths appear in many plays, novels, and short stories by 
non-science-fiction writers. J. B. Priestley uses it in his popular play Dangerous 
Corner) as Lord Dunsany had done earlier in his play IJ: Mark Twain discusses 
it in The Mysterious Stranger. Jorge Luis Borges plays with it in his "Garden of 
Forking Paths." But it was the science-fiction writers who sharpened and 
elaborated the concept. 

Let us see how it works. Suppose you go back to the time of Napoleon in 
Universe 1 and assassinate him. The world forks. You are now in Universe 2. 
If you like, you can return to the present of Universe 2, a universe in which 
~ a ~ o l e o n  had been mysteriouslymurdered. How much would this world 
differ from the old one? Would you find a duplicate of yourself there? Maybe. 
Maybe not. Some stories assume that the slightest alteration of the past would 
introduce new causal chains that would have a multiplying effect and produce 
vast historical changes. Other tales assume that history is dominated by such 
powerful overall forces that even major alterations of the past would damp out 
and the future would soon be very much the same. 

In Ray Bradbury's "A Sound of Thunder," Eckels travels back to an ancient 
geological epoch under elaborate precautions to prevent any serious alteration 
of the past. For example, he wears an oxygen mask to prevent his microbes 
from contaminating animal life. But Eckels violates a prohibition and acci- - 
dentally steps on a living butterfly. When he returns to the present, he notices 
subtle changes in the office of the firm that arranged his trip. He is killed for 
having illegally altered the future. 

Hundreds of other stories by fantasy and science-fiction writers have played 
variations on this theme. One of the saddest is Lord Dunsany's "Lost" (in The 
Fourth Book ofJorkens) 1948). A man travels to his past, by way of an Oriental 
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charm, to right some old mistakes. Of course, this alters history. When he gets 
back to the present, he is missing his wife and home. "Lost! Lost!" he cries. 
"Don't go back down the years trying to alter anything. Don't even wish 
to . . . . And, mind you, the whole length of the Milky Way is more easily 
traveled than time, amongst whose terrible ages I am lost." 

It is easy to see that in such a metacosmos of branching time paths, it is not 
possible to generate paradox. The future is no problem. If you travel to next 
week, you merely vanish for a week and reappear in the future a week younger 
than you would have been. But if you go back and murder yourself in your 
crib, the universe obligingly splits. Universe 1 goes on as before, with you 
vanishing from it when you grow up and make the trip back. Perhaps this 
happens repeatedly, each cycle creating two new worlds. Perhaps it happens 
only once. W h o  knows? In any case, Universe 2 with you and the dead baby in 
it rolls on. You are not annihilated by your deed, because now you are an alien 
from Universe 1 living in Universe 2. 

In such a metacosmos it is easy (as many science-fiction writers have done) 
to fabricate duplicates of yourself. You can go back a year in Universe 1, live 
for a year with yourself in Universe 2, then again go back a year to visit two 
replicas of yourself in Universe 3. Clearly, by repeating such loops you can 
create as many replicas of yourself as you please. They are genuine replicas, not 
pseudo-replicas as in the scenarios by Reichenbach and Putnam. Each has his 
independent world line. History might become extremely chaotic, but there is 
one type of event that can never occur: a logically contradictory one. 

This vision of a metacosmos containing branching worlds may seem crazy, 
but respectable physicists have taken it quite seriously. In Hugh Everett 111's 
Ph.D. thesis "'Relative State' Formulation of Quantum Mechanics" (Reviews 
ofModern Physics 29, July 1957, pp. 454-462) he outlines a metatheory in 
which the universe at every micromicroinstant branches into countless paral- 
lel worlds, each a possible combination of microevents that could occur as a 
result of microlevel uncertainty. The paper is followed by John A. Wheeler's 
favorable assessment in which he points out that classical physicists were 
almost as uncomfortable at first with the radical notions of general relativity. 

"If there are infinite universes," wrote Fredric Brown in What Mad Uni- 
verse, "then all possible combinations must exist. Then, somewhere, everything 
must be true . . . . There is a universe in which Huckleberry Finn is a real 
person, doing the exact things Mark Twain described him as doing. There are, 
in fact, an infinite number of universes in which a Huckleberry Finn is doing 
every possible variation of what Mark Twain might have described him as 
doing . . . . And infinite universes in which the states of existence are such 
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that we would have no words or thoughts to describe them or to imagine 
them." 

What if the universe never forks? Suppose there is only one world, this one, 
in which all world lines are linearly ordered and objects preserve their identity, 
come what may. Brown considers this possibility in his story "Experiment." 
Professor Johnson holds a brass cube in his hand. It is six minutes to three 
o'clock. At exactly three, he tells his colleagues, he will place the cube on his 
time machine's platform and send it five minutes into the past. 

"Therefore," he remarks, "the cube should, at five minutes before three, 
vanish from my hand and appear on the platform, five minutes before I place it 
there." 

"How can you place it there, then?" asked one of his colleagues. 
"It will, as my hand approaches, vanish from the platform and appear in my 

hand to be placed there." 
At five minutes to three the cube vanishes from Professor Johnson's hand 

and appears on the platform, having been sent back five minutes in time by his 
future action of placing the cube on the platform at three. 

"See? Five minutes before I shall place it there, it is there!" 
"But," says a frowning colleague, "what if, now that it has already appeared 

five minutes before you place it there, you should change your mind about 
doing so and not place it there at three o'clock? Wouldn't there be aparadox of 
some sort involved?" 

Professor Johnson thinks this is an interesting idea. T o  see what happens, he 
does not put the cube on the platform at three. 

There is no paradox. The cube remains. But the entire universe, including 
Professor Johnson, his colleagues, and the time machine, disappears. 

ADDENDUM 

J. A. Lindon, a British writer of comic verse, sent me his sequel to the limerick 
about Miss Bright: 

When they questioned her, answered Miss Bright, 
"I was there when I got home that night; 

So I slept with myself, 
Like two shoes on a shelf, 

Put-up relatives shouldn't be tight!" 

Ned Block wrote to say he had heard the following blue version from a 
student at M.I.T.: 
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There was a young couple named Bright 
W h o  could make love much faster than light. 

They started one day 
In the relative way, 

And came on the previous night. 

Many readers called attention to two difficulties that could arise from time 
travel in either direction. If travelers stay at the same spot in space-time, 
relative to the universe, the earth would no longer be where it was. They 
might find themselves in empty space, or inside something solid. In the latter 
case, would the solid body prevent them from arriving? Would one or the 
other be shoved aside? Would there be an explosion? 

The second difficulty is thermodynamic. After the time traveler departs, the 
universe will have lost a bit of mass-energy. When he arrives, the universe 
gains back the same amount. During the interval between leaving and arriv- 
ing, the universe would seem to be violating the law of mass-energy 
conservation. 

I mentioned briefly what is now called the "many-worlds interpretation" 
of Q M  (quantum mechanics). The best reference is a 1973 collection of papers 
on the topic, edited by Bryce DeWitt and Neil1 Graham. Assuming that the 
universe constantly splits into billions of parallel worlds, the interpretation 
provides an escape from the indeterminism of the Copenhagen interpretation 
of QM, as well as from the many paradoxes that plague it. 

Some physicists who favor the many-worlds interpretation have argued 
that the countless duplicate selves and parallel worlds produced by the forking 
paths are not "real," but only artifacts of the theory. In this interpretation of 
the many-worlds interpretation, the theory collapses into no more than a 
bizarre way of saying the same things that are said in the Copenhagen inter- 
pretation. Everett himself, in his original 1957 thesis, added in proof this 
famous footnote: 

In reply to a preprint of this article some correspondents have raised 
the question of the "transition from possible to actual," arguing 
that in "realityH there is-as our experience testifies-no such 
splitting of observer states, so that only one branch can ever actu- 
ally exist. Since this point may occur to other readers the following 
is offered in explanation. 

The whole issue of the transition from "possible" to "actual" is 
taken care of in the theory in a very simple way- there is no such 
transition, nor is such a transition necessary for the theory to be in 
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accord with our experience. From the viewpoint of the theory all 
elements of a superposition (all "branches") are "actual," none any 
more "real" than the rest. It is unnecessary to suppose that all but 
one are somehow destroyed, since all the separate elements of a 
superposition individually obey the wave equation with complete 
indifference to the presence or absence ("actuality" or not) of any 
other elements. This total lack of effect of one branch on another 
also implies that no observer will ever be aware of any "splitting" 
process. 

Arguments that the world picture presented by this theory is 
contradicted by experience, because we are unaware of any 
branching process, are like the criticism of the Copernican theory 
that the mobility of the earth as a real physical fact is incompatible 
with the common sense interpretation of nature because we feel no 
such motion. In both cases the argument fails when it is shown that 
the theory itself predicts that our experience will be what it in fact 
is. (In the Copernican case the addition of Newtonian physics was 
required to be able to show that the earth's inhabitants would be 
unaware of any motion of the earth.) 

The many-worlds interpretation has been called a beautiful theory nobody 
can believe. Nevertheless, a number of top physicists have indeed accepted- 
some still do - its outrageous multiplicity of logically possible worlds. Here is 
DeWitt defending it in "Quantum Mechanics and Reality," a 1970 article 
reprinted in the collection he edited with Graham: 

The obstacle to taking such a lofty view of things, of course, is that 
it forces us to believe in the reality of all the simultaneous 
worlds . . . in each of which the measurement has yielded a dif- 
ferent outcome. Nevertheless, this is precisely what [the inventors 
of the theoryl would have us believe . . . . This universe is con- , . 
stantly splitting into a stupendous number of branches, all resulting 
from the measurementlike interactions between its myriads of 
components. Moreover, every quantum transition taking place on 
every star, in every galaxy, in every remote corner ofthe universe is 
splitting our local world on earth into myriads of copies of itself. 

I still recall vividly the shock I experienced on first encountering 
this multiworld concept. The idea of 1O1O0+ slightly imperfect 
copies of oneself all constantly splitting into further copies, which 
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ultimately become unrecognizable, is not easy to reconcile with 
commonsense. 

Although John Wheeler originally supported the many-worlds interpreta- 
tion, he has since abandoned it. I quote from the first chapter of his Frontiers of 
Time (Center for Theoretical Physics, 1978): 

Imaginative Everett's thesis is, and instructive, we agree. W e  once 
subscribed to it. In retrospect, however, it looks like the wrong 
track. First, this formulation of quantum mechanics denigrates the 
quantum. It denies from the start that the quantum character of 
nature is any clue to the plan of physics. Take this Hamiltonian for 
the world, that Hamiltonian, or any other Hamiltonian, this for- 
mulation says. I am a principle too lordly to care which, or why 
there should be any Hamiltonian at all. You give me whatever 
world you please, and in return I give you back many worlds. Don't 
look to me for help in understanding this universe. 

Second, its infinitely many unobservable worlds make a heavy 
load of metaphysical baggage. They would seem to defy Mende- 
leev's demand of any proper scientific theory, that it should "ex- 
pose itself to destruction." 

Wigner, Weizsacker, and Wheeler have made objections in 
more detail, but also in quite contrasting terms, to the relative-state 
or many-worlds interpretation of quantum mechanics. It is hard to 
name anyone who conceives of it as a way to uphold determinism. 

In the paper titled "Rotating Cylinders and the Possibility of Global Caus- 
ality Violation," physicist Frank Tipler raised the theoretical possibility of 
constructing a machine that would enable one to go forward or backward in 
time. (Tipler is one of the few remaining enthusiasts for the many-worlds 
interpretation, and the coauthor of a controversial book, The Anthropic Cosmo- 
logical Principle, Oxford University Press, 1986). Taking off from Godel's 
rotating cosmos and from recent work on the space-time pathologies sur- 
rounding black holes, Tipler imagines a massive cylinder, infinitely long, and 
rotating so rapidly that its surface moves faster than half the speed of light. 
Space-time near the cylinder would be so distorted that, according to Tipler's 
calculations, astronauts could orbit the cylinder, going with or against its spin, 
and travel into their past or future. 

Tipler speculated on the possibility that such a machine could be built with 
a cylinder of finite length and mass, but later concluded that such a device was 
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impossible to construct with any known forms of matter and force. Such 
doubts did not inhibit Poul Anderson from using Tipler's cylinder for time 
travel in his novel The Avatar, nor did it stop Robert Forward from writing 
"How to Build a Time Machine" (Omni, May 1980). "We already know the 
theory," O m n i  editors commented above Forward's backward article, "All 
that's needed is some advanced engineering." 

I close with two pearls of wisdom from the stand-up comic "Professor" 
Irwin Corey: "The past is behind us, and the future lies ahead." 
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T W O  

Hexes and Stars 

Ancient Greek mathematicians, particularly the Pythagoreans, were en- 
tranced by figurate numbers: numbers that could be represented by arranging 
points in regular patterns on a plane or in space. Among the plane figurate 
numbers, the most studied were the polygonal numbers. Figure 2 shows how 
the first four polygonal numbers-triangular, square, pentagonal, and 
hexagonal - are built up as the partial sums of simple arithmetic progressions. 
Triangular numbers are partial sums of the counting numbers 1 + 2 + 3 + 
4 + . . . . Square numbers are formed by successive addition of the consecu- 
tive odd numbers 1 + 3 + 5 + 7 + . . . . Pentagonal numbers derive from 
the progression 1 + 4 + 7 + 10 + . . . and hexagonal numbers from the 
progression 1 + 5 + 9 + 13 + . . . . The respective differences are 1, 2, 
3,. . . . 

The study of figurate numbers belongs to a branch of number theory called 
Diophantine analysis, which has to do with finding integral solutions of 
equations. An enormous effort was made by the great pioneers of number 
theory in studying the properties of polygonal numbers. Most of this work is 
crisply summarized in the second volume of Leonard E. Dickson's History of 
the Theory of Numbers (Carnegie Institute, 1919). 



Let us start with a classic problem that was solved by Leonhard Euler in 1730.
How can we find all the numbers that are both square and triangular? The for-
mula for the nth triangular number is (n2 + n). If this expression is also square,
we have the Diophantine equation (n2 + n) = m2. Learning the technique of
solving this equation is an excellent introduction to Diophantine analysis. The
initial step is to manipulate the equation to get a simpler equation that will be
a key to the solution. One way to do it is:

1. Express the equation as n2 + n  = 2m2.
2. Multiply each side by 4: 4n2 + 4n = 8m2.
3. Add 1 to each side: 4n2 + 4n + 1 = 8m2 + 1.
4. Factor (2n + 1) (2n + 1) = 2(4m2) + 1.
5. Let y = (2n + 1) and x = 2m.
6. Substituting these terms in the preceding equation produces

y2 = 2x2+ 1.

This is the simplest form of what is called the Pell equation, about which
more below. If we can find an integral solution for it, we can easily work
backward to find integral values for n and m in the original equation. A stan-
dard algorithm for cracking a Pell equation is to express the square root of
the coefficient of x (in this case 2) as a continued fraction, then explore its

1
2

1
2
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Figure 2 Construction of order-5 polygonal numbers
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convergents for values of x and y that satisfy the Pell. The technique is too 
involved to explain here, but interested readers will find a good introduction 
to it in Chapter 22 of Albert H. Beiler's Recreations in the Theory ofNumbers or 
in any good textbook on Diophantine analysis. 

It turns out that whenever the coefficient is not a square, the Pell has an 
infinity of solutions. Since 2 is not a square, there is an infinity of square 
triangles. The sequence begins 1, 36, 1225, 41616, 1413721, . . . . The 
recursive procedure for continuing this sequence is to multiply the last square 
triangle by 34, subtract the preceding square triangle, then add 2. A nonrecur- 
sive formula for the nth square triangle is 

The irrational numbers in the formula might lead one to suppose that 
rounding up or down is necessary, but this is not the case. The formula is exact. 
Substitute any positive integer for n, and the irrationals drop out to give an 
integral value for the expression. It is surprising how often the problem of 
finding this formula turns up in the problem departments of mathematical 
journals, even though it has been shown that the formula goes back to Euler. 

Square triangles have many unusual properties. One of the most surprising 
is that when a simple algorithm is applied, each square triangle gives the sides 
of an integral right triangle with one leg exactly one unit longer than the 
other. Let the sides of the right triangle be x and x + 1 and z the hypotenuse. 
Let v be the square root of a square triangle and u its side when represented as a 
triangle. The procedure is merely to solve these two simultaneous equations: 

For example, if we take the second square triangle, 36, then v = 6, u = 8. 
The above equations give x a value of 20 and x a value of 29. The Pythagorean 
triplet therefore is 20, 21, 29. Had we used the first square triangle, 1, the 
algorithm would have provided the familiar 3 , 4 , 5  right triangle. The third 
square triangle gives the triplet 119, 120, 169. In this way, all Pythagorean 
triangles with consecutive legs can be obtained from the square triangles, and 
of course we can go the other way and derive all the square triangles from 
consecutive-legged Pythagorean triangles. The simple procedure, or one 
equivalent to it, explains how Beiler was able to construct his table (pp. 328 
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and 329 in his book) of the first 100 Pythagorean triangles with consecutive 
legs. The 100th such triangle has legs that are each expressed by a seventy- 
seven-digit number. No Pythagorean triangle can have equal legs, but this 
monstrosity is so nearly isosceles that, as Beiler graphically points out, if its 
smaller leg is a light-year long, the other leg would be longer by an amount so 
infinitesimal that the difference between the two legs would be millions of 
times less than the diameter of a proton. 

W e  turn now to two ~ l a n a r  figurate numbers that are not polygonal in the 
classic sense. The first has received scant attention in the past. The second, so 
far as I know, has not previously been recognized as a figurate number. 

If we arrange points as shown in Figure 3, we have what are known as 
centered hexagonal numbers to contrast them with the traditional vertex- 
generated numbers. Let us call them "hexes" for short. As the illustration 
makes clear at a glance, the formula for the nth hex is 3n(n - 1) + 1. It is the 
sum of three rhombuses, each of sides n and (n - I) ,  plus the single spot in the 
center. Figure 4 shows that a hex is also the sum of six triangles plus the central 
spot. The sequence begins 1,7,19,37,61,91,127,169,. . . . The recursive 
procedure is to multiply by 2, subtract the preceding number, and add 6. 

Suppose we build a hex pyramid of coins, starting with a hex that has 100 
coins on the side. O n  top of this, we put a hex of 99 coins on the side, then one 
of 98, and so on, until finally we cap the pyramid with a single coin on the 

Figure 3 Formula for nth hex number is [3 X n(n - I)] + 1 
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Figure 4 Six triangles plus the center make a hex 

central stack. The pyramid is 100 layers high. How many coins are in it? T o  
answer this, we need to know the formula for the sum of the first n hexes. The 
answer is unexpectedly simple. It is n3. There are therefore 1003 = 1,000,000 
coins in the hex pyramid. 

It follows from this formula that every hex is the difference between two 
consecutive cubes. W e  can demonstrate this elegantly by building a cube, say a 
5 X 5 X 5, out of unit cubes. Remove one cube (the first hex) from a top 
corner. It leaves a 1 X 1 X 1 hole. Around that hole are seven cubes (the 
second hex). Removing these seven leaves a 2 X 2 X 2 cubical hole. Sur- 
rounding this hole are nineteen cubes (the third hex). Removing the nineteen 
cubes leaves a 3 X 3 X 3 cubical hole, and so on (see Figure 5). 

Apart from a hex of I, the first triangular hex is 91, and the first square hex is 
169. Readers who know the Pellian technique may enjoy searching for recur- 
sive procedures that will generate each of these infinite sequences of numbers 
and for their nonrecursive formulas. The Pellian for square hexes is 3x2 + 
1 = yZ, which is solved by finding the convergents of the continued fraction 
for the square root of 3. The next square hex after 169 is 32761, and the next is 
6355441. Are there hexes that are both square and triangular? Is there a cubical 
hex? 

Closely related to hexes are numbers that I have not seen recognized before 
as figurate, although one often sees them as patterns for drainage holes and for 
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Figure 5 Hexagonal numbers as the difference between consecutive cubes 

holes on salt and pepper shakers. Game enthusiasts know them as the patterns 
of boards for playing Chinese checkers. Let us call them "star" numbers. 
Figure 6 shows the first four stars, and Figure 7 is a "look-see" proof of the 
formula for the nth star. Clearly, a star consists of six rhombuses, each n by 
(n - 1) plus the central spot, or 6n(n - 1) + 1. A star is also the sum of twelve 
triangles plus the central spot, as is shown in Figure 8. 

The star sequence begins 1,13,37,73,121,181,253,337,433,541,. . . . 
Adding 12n to the nth star produces the next star. A hex contains six triangles. 
Adding six more triangles to its six sides produces a star; consequently any hex 
number becomes a star number if we double it and subtract 1. The first n stars 
add up to 2n3 - n. Is this sum ever a square? Yes, but only when n = 1 or 169. 
This was established in 1973 by John Harris, on the basis ofresults reported by 
Louis J. Mordell on page 271 of his Diophantine Equations. 

The first triangular star after 1 is 253. The recursive procedure is to multiply 
a triangular star by 194, add 60, and subtract the preceding triangular star. The 
infinite sequence begins 1, 253, 49141, 9533161, 1849384153,. . . . The 
nonrecursive formula for the nth triangular star is 
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Figure 6 The first four stars 

Figure 7 Formula for nth star is [6 X n(n - I)] + 1 
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Figure 8 Twelve triangles plus the center make a star 

The first square star after 1 is 121. It is the number of holes on the standard 
Chinese checkers board. The recursive procedure is to multiply a square star 
by 98, subtract the preceding square star, and add 24. The infinite sequence 
begins 1, 121, 11881, 1164241, 114083761,. . . . For readers who care to 
work through the solution of the equation for square stars, 6n(n - 1) + 1 = 

m2, I shall say only that this reduces to a solution of 2x2  + 1 = 3y2,  where x is 
the square root of a square star. It can be solved by finding alternate conver- 
gents of the square root of 4. The extract nonrecursive formula for the nth 
square star is 

One of the most remarkable properties of square stars is that they provide a 
simple algorithm for producing every number that can be expressed as the sum 
of two consecutive squares and also as the sum of three consecutive squares. 
The smallest such number is 365 (the number of days in the year), which 
equals 132 + 142 and also equals l o 2  + 1 l 2  + 122. The procedure is simply to 
take any square star greater than 1, triple it, and add 2. The smallest square star 
greater than 1 is 121. Three times 121, plus 2,  is 365. The next square star, 
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11881, leads to the number 35645, which equals 1332 + 1342 and also equals 
10g2 + 1092 + 1102. The third case is 3(1164241) + 2 = 3492725 = 

13212 + 13222 = 10782 + 10792 + 10802. In each case, the middle term of 
the triplet of consecutive squares is the original square star. 

It is a pleasant exercise, demanding no special skills in number theory, to 
show that the algorithm always works. Can the reader find a simple proof? 

I have been told by Victor Meally that Matila Ghyka, a Romanian mathe- 
matician, published some studies of hexes, but I do not know the references. I 
was unable to find any discussion of stars as such, although their formula turns 
up in connection with many Diophantine problems. One can raise all kinds of 
questions about stars that may be easy or difficult to answer. I do not know, for 
example, if there are stars that are both square and triangular. Since a star's 
digital root is 1 or 4, and a triangle's digital root must be 1,3,6, or 9, we can say 
that a square triangular star must have a digital root of 1, but that is not of 
much help. 

The general Pell equation, a key to so much of this kind of number analysis, 
is ax2 + 1 = y2, where a is a positive integer. It has an infinity of positive 
integral solutions for x and y, unless a is a square, in which case there are no 
solutions. As we have seen, when a = 2, we have the key to finding square 
triangles, and when a = 3, the key to finding square hexes. The equation was 
mistakenly named for John Pell, a seventeenth century number theorist, 
because of a false impression on Euler's part. Pell had nothing to do with the 
equation. It was known to early Greeks and Hindus, but Pierre Fermat was the 
first to propose advanced work on it, and the general solution was obtained by 
John Wallis and others. The classic reference is The Pell Equation by E. E. 
whitford. The tables in this book can save vast amounts of tedious calcula- 
tions with continued fractions. As J. A. Lindon has put it elegantly in one of his 
unpublished mathematical Clerihews: 

T o  equations simultaneously Pellian 
My approach is Machiavellian. 

Anything goes, rather than resort to such actions 
As covering the walls with continued fractions. 

I wish to thank Meally for providing the nonrecursive formulas for square 
stars and triangular stars, as well as other things in this chapter, and also to 
thank John Harris and John McKay for additional assistance. I also found A 
Handbook ofInteger Sequences by N. J. A. Sloane to be an invaluable tool. I shall 
say no more about this marvelous reference, except that every recreational 
mathematician should buy a copy forthwith. 
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ANSWERS 

The problem was to prove that if a star number is multiplied by 3, and 2 is 
added, the result is a number that can be expressed as the sum of two consecu- 
tive squares and also as the sum of three consecutive squares. As explained, 
square stars are numbers of the form 6n(n - 1) + 1 = m2, where n and m are 
positive integers. If the left side, which defines a star, is multiplied by 3, and 2 
is added, the result is 18n(n - 1) + 3 + 2 = 18n2 - 18n + 5. The expression 
is equal to the sum of two consecutive squares: (3n - + (3n - 2)2. If the 
right side of the equation, which defines a square, is multiplied by 3, and 2 is 
added, the result is 3m2 + 2. This equals the sum of three consecutive squares 

(m - + m2 + (m + 
ADDENDUM 

I asked if a hex number could be both triangular and square. The answer is: 
only hex number 1. The proof was given by Charles M. Grinstead, a mathe- 
matician at Swarthmore College, in his paper "On a Method of Solving a 
Class of Diophantine Equations" (Mathematics of Computation 32, July 1978, 
pp. 936 - 940). 

I also asked if a hex could be a cube. David Chess, Sin Hitotumatu, and 
Wesley Johnson were the first to tell me how easily it can be shown that the 
answer is no. Every hex, as I explained, is the difference between two consecu- 
tive cubes. The question, therefore, is the same as asking if the formula 
(x + I)3 - x3 = y3 has an integral solution. When this is written x3 + y3 = 

(x + we see at once that it is a case of Fermat's last theorem when the 
exponents are 3. This was long ago proved to have no integral solution. 

Harvey J. Hindin, in the Journal $Recreational Mathematics, showed that the 
problem of determining all numbers that are both hexes and stars is equivalent 
to the task of determining when one triangular number is twice another, and 
also the same as finding Pythagorean triples x, y, z, such that y = x + 1. A 
table in his article provides the first ten star-hexes, an infinite sequence that 
begins 1, 37, 1261, 42841,. . . . Hindin has calculated the first 15,000 stars 
and hexes. The values are available from him at 5 Kinsella Street, Dix Hills, 
NY 1 1746. 

John Harris pointed out in a letter that every star has a digital root (its value 
modulo 9) of 1 or 4, and that the final pair of digits must be 01,21,41,61,81, 
13,33,53,73,93, or 37. This rules out any star number containing each of the 
digits 1 through 9 just once (such a number would have a digital root of 9), and 
also any "rep-digit" star consisting entirely of repetitions of the same digit. 
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Harris also showed that every pair of consecutive stars are relatively prime, and 
every prime divisor of a star is one more or one less than a multiple of 12. 

Several readers wrote to say that early unofficial flags of the United States 
had thirteen stars (for the original thirteen states) arranged in star formation. 
Note also that this pattern is on the green side of a dollar bill, just above the 
eagle. 
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Tangrams, Part 1 

"The seven Books of Tan . . . 
illustrate the creation of the world 
and the origin of species upon a plan 
which out-Danvins Darwin, the 
progress of the human race being 
traced through seven stages . . . up 
to a mysterious spiritual state which 
is too lunatic for serious 
consideration." 

-SAM LOYD, The Eighth Book of Tan 

One of the oldest branches of recreational mathematics has to do with dissec- 
tion puzzles. Plane or solid figures are cut into various pieces, and the problem 
is to fit the pieces together to make the original figure or some other figure. 
The outstanding recreation of this type since the Renaissance is the Chinese 
puzzle game known as tangrams. 
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Although tangrams and jigsaw puzzles have a superficial resemblance, they 
are poles apart in the kinds of challenge they offer. As Ronald C. Read points 
out in his book Tangrams: 330 Puzzles, a typical jigsaw puzzle consists of 
hundreds of irregularly shaped pieces that fit together injust one way to make 
a large pattern. Little skill is required, just time and patience. Tangrams have 
only seven pieces, called tans. They are of the simplest possible shapes and are 
used to make an infinite variety of tangrams. In creating these figures a heavy 
demand is made on one's geometrical intuition and artistic ability. 

The tans are obtained by slicing a square to produce two large triangles, a 
middle-size triangle, two small triangles, a square, and a rhomboid (see Figure 
9). Note that all the corners are multiples of 45 degrees. If a side of the square 
tan is taken as unity, a side of any tan has one of four lengths: 1,2, JZ, and 2JZ. 

"At first we are amazed at thk unfitness of the shapes. . . with which we 
are expected to accomplish so much," wrote ~ o i d ,  the American puzzle 
expert. "The number 7 is an obstinate prime which cannot be divided into 
symmetrical halves, and the geometrical forms . . . with harsh angles, pre- 

Figure 9 The seven tans 
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clude the possibility of variety, curves or graceful lines." After working for a 
while with the tans, however, one begins to appreciate the subtle elegance of 
the dissection and the richness of its combinatorial possibilities. All kinds of 
variant dissections, in imitation of tangrams, have been marketed from time to 
time, but not one has come even close to tangrams in popularity. As with 
origami, it is the very simplicity of the material and its apparent unfitness for 
artistic use that lie at the heart of its charm. 

Tangram play falls roughly into three major categories: 

I.  Searching for one or more ways to form a given tangram, or for an 
elegant proof of the impossibility of forming a tangram. 

2. Finding ways to depict, with maximum artistry or humor, or both, 
silhouettes of animals, human figures, and other recognizable objects. 

3. Solving a variety of problems in combinatorial geometry that are posed 
by the seven tans. 

Many books, and even a few encyclopedias, declare that tangram play is 
about 4000 years old. In my Scientijc American column for September 1959, I 
called tangrams the oldest of dissection games and said that the Chinese had 
been amusing themselves with it for several thousand years. This is totally 
wrong. The man responsible for the myth is none other than Sam Loyd. In 
1903, when Loyd was sixty-one and at the height of his fame, he published a 
little book (now extremely rare) called The Eighth Book ofTan. No Western 
book on tangrams has been more original or influential. In addition to con- 
taining hundreds of excellent new figures, Loyd invented a preposterous 
legend about the pastime's origin. It was the greatest hoax in the history of 
puzzledom, and the number of intelligent people taken in by it rivals the 
number of scholars who accepted H. L. Mencken's spurious history of the 
bathtub. 

"According to the late Professor Challenor," Loyd wrote, "whose post- 
humous papers have come into the possession of the writer, seven books of 
Tangrams, containing one thousand designs each, are known to have been 
compiled in China over 4000 years ago. These books are so rare that Professor 
Challenor says that during a forty years' residence in China he only succeeded 
in seeing perfect editions of the first and seventh volumes, with stray frag- 
ments of the second. 

"In this connection it may be mentioned that portions of one of the books, 
printed in gold leaf upon parchment, were found in Pekin by an English 
soldier who sold it for £300 to a collector of Chinese antiquities, who kindly 
furnished some of the choicest designs presented in this work." 
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According to Loyd, Tan was a legendary Chinese writer who was wor- 
shiped as a deity. He arranged the patterns in his seven books to display seven 
stages in the evolution of the earth. His tangrams begin with symbolic repre- 
sentations of chaos and the yin-yang principle. These are followed by primi- 
tive forms of life, then the figures proceed up the evolutionary tree through 
fish, birds, and animals to the human race. Scattered along the way are tan- 
grams of human artifacts such as tools, furniture, clothing, and architecture. 
Loyd inserts remarks by Confucius, a philosopher called Choofootze, a com- 
mentator named Li Hung Chang, and his mythical Professor Challenor. 
Chang is quoted as saying that he knew all the figures in the seven books of 
Tan before he could talk. And there are references to a "well-known" Chinese 
saying about "the fool who would write the eighth book of Tan." 

All of this, of course, was sheer fabrication. When Henry Ernest Dudeney, 
Loyd's British counterpart, wrote an article on tangrams for The Strand Maga- 
zine (November 1908), he soberly repeated Loyd's legendary history. This 
aroused the curiosity of Sir James Murray, the distinguished lexicographer 
and an editor of the Oxford English Dictionary, who made inquiries through 
one of his sons, then teaching at a Chinese university. Oriental scholars had 
never heard of Tan or even the word tangrams. The game, Murray informed 
Dudeney, is known in China as ch'i ch'iao t'u, meaning "seven-ingenious 
plan" or, less literally, "clever puzzle of seven pieces." 

Murray could find no record of the word tangram earlier than in an 1864 
Webster's dictionary. It had been coined about 1850, Murray guessed, by an 
American who probably combined tang, a Cantonese word for "Chinese," 
with the familiar suffix -gram, as in anagram or cryptogram. A different 
theory about the name has recently been advanced by Peter Van Note in his 
introduction to a Dover reprint of Loyd7s fanciful book. Chinese families who 
live on riverboats are called tanka, and tan is a Chinese word for prostitute. 
American sailors, taught the puzzle by tanka girls, may have called it 
tangrams- the puzzle of the prostitutes. 

When Dudeney reported Murray's opinions, in Amusements in Mathematics 
(pp. 43 - 46), he may have deliberately added a hoax of his own. An American 
correspondent, Dudeney writes, had told him that he owned a Chinese set of 
mother-of-pearl tans with an accompanying rice-paper booklet of more than 
300 figures. The correspondent was puzzled by a mysterious inscription on 
the front page that he said he had tried to have translated, but no Chinese to 
whom he had shown it had been willing or able to read it. Dudeney repro- 
duced the inscription and asked the reader for help. W e  do not know what the 
response was to this request, but Read, who owns a copy of the same booklet, 
had no difficulty clearing up the mystery. The, inscription is nothing more 
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than a caption under the tangrams of two men. The caption reads: "Two men 
facing each other and drinking. This shows the versatility of the seven-piece 
puzzle." 

No one knows when tangrams originated. The earliest reference known is a 
book published in China in 1803. Its title, The Collected Volume ofPatterns of the 
Seven-Piece Puzzle, suggests earlier books. Most scholars believe the game 
originated in China about 1800, became an Oriental craze, and then spread 
rapidly to the West. The earliest Western books, says Read, were little more 
than copies of Chinese rice-paper booklets. The Western books even copied 
errors in the Chinese illustrations. 

One of the earliest English books on tangrams, originally owned by Charles 
Lutwidge Dodgson (better known as Lewis Carroll), came into Dudeney's 
possession. It is called The Fashionable ChinesePuzzle and was first published in 
New York in 1817. Dudeney quotes from it a passage stating that the game 
was a favorite of "ex-Emperor Napoleon, who, being now in a debilitated 
state, and living very retired, passes many hours a day in thus exercising his 
patience and ingenuity." This too is an unsupported statement, undoubtedly 
false. The puzzle is said by Loyd to have been a favorite of John Quincy 
Adams's and Gustave Dort's, although I know of no basis for either assertion. 
W e  do know that Edgar Allan Poe enjoyed the game, because his imported set 
of carved ivory tans is owned by the New York Public Library. An anonymous 
French work, Recueil des Plus Jolie Jeux de Socie'tt ( 1  8 18), may be a translation of 
Dodgson's English book, or vice versa. I have not seen a copy of either. An 
1817 American book bears the title Chinese Philosophical and Mathematical 
Trangram. "Trangam" was an old English word for a trinket, toy, or puzzle. 
Samuel Johnson misspelled it as "trangram," and the spelling persisted in later 
dictionaries. Did the book's anonymous author revive an obsolete word that 
later evolved to "tangram," or did he misspell "tangram," a word already in 
use? One mystery novel, The Chinese Nail  Murders by the Dutch diplomat and 
Orientalist Robert Van Gulik, is woven around a set of tangram patterns. 

Poe's tans are shown in Figure 10. The delicate filigree carving is character- 
istic of the old Chinese ivory tans. Note that the pieces pack into a square box 
in two layers. The two layers are squares of equal size, so that putting away the 
tans is a puzzle in itself. In nineteenth-century China, where tangrams were 
popular among adults (it is considered a child's pastime in the Far East today), 
the pieces were made in many sizes and from many different materials. Dishes, 
lacquer boxes, and even small tables were given the shapes of the tans. 

So much for the historical background. Let us turn now to the first of the 
three categories of tangram play: solving given figures. Figure 11 shows a 
dozen interesting shapes on which the reader is invited to try his skill. Each 
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Figure 10 Edgar Allan Poe's carved ivory tangram set 

requires all seven pieces. The rhomboid, the only asymmetrical tan, may be 
placed either side up. One figure in the illustration is not possible. Can the 
reader identify it and prove its impossibility? 

The paired tangrams in Figure 12 are samples of delightful paradoxes 
introduced by Loyd. (The first three pairs were devised by Loyd, the fourth 
pair was devised by Dudeney.) Although the figure at the right in each case 
seems to be exactly the same as its mate, except for a missing portion, each is 
made with all seven tans! 

The tangrams in Figure 13 are not intended as patterns to be solved, but as 
illustrations of the second category of play: creating artistic and amusing 
pictures. (I confess responsibility for the Nixon caricature.) "One remarkable 
thing about . . . Tangram pictures," wrote Dudeney, "is that they suggest 
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Figure 11 Which tangram is impossible? 
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Figure 12 Tangram paradoxes 

to the imagination such a lot that is not really there. Who, for example, can 
look . . . at Lady Belinda . . . without soon feeling the haughty expres- 
sion . . . ? Then look again at the stork, and see how it is suggested to the 
mind that the leg is actually much more slender than any one of the pieces 
employed. It is really an optical illusion. Again, notice in the case of the yacht 
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how, by leaving that little angular point at the top, a complete mast is sug- 
gested. If you place your tangrams together on white paper so that they do not 
quite touch one another, in some cases the effect is improved by the white 
lines; in other cases it is almost destroyed." 

One can mix two or more sets of tans to produce more elaborate figures. 
Dudeney gives a number of these "double tangrams" in 536 Puzzles and 
Curious Problems (pp. 221 -222), and others will be found in Read's book. I 
agree with Read, however, when he writes: "With fourteen pieces to play 
around with, one cannot help but feel that it should be possible to arrive at a 
reasonable likeness of just about anything. Consequently, the sense of 
achievement that one gets on producing a recognizable cow, sailing boat, 
human figure, or what have you, from a mere seven pieces, is quite lacking." 

Combining two related tangrams, each made with seven tans, is a different 
matter. Four classic examples, all devised by Loyd, are a woman pushing a 
baby carriage, a runner being tagged out at home plate, two Indian braves, and 
a man with a wheelbarrow (see Figure 14). Note that the man and the wheel- 
barrow are identical tangrams except for orientation. 

The third category of tangram play, solving combinatorial problems, is the 
most interesting of all to mathematicians. There have been some remarkable 

LADY BELINDA ~ T O R K  YACHT POLAR BEAR 

RABBIT RUNNING BOY VULTURE PRESIDENT NIXON 

Figure 13 Tangram pictures 
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Figure 14 Double tangrams by Sam Loyd 

contributions made to this field by Read, a specialist in graph theory at the 
University of Waterloo, and by E. S. Deutsch, a computer scientist with P. S. 
Ross and Partners in Toronto. Some of their results will be presented in the 
next chapter. T o  whet the reader's appetite, here are two problems that will be 
answered in the next chapter. 

1. How many different convex polygons can be formed with the seven 
tans? There must not be any "windows" in the figures. Rotations and 
reflections are not, as is customary, considered to be different. Because 
all three-sided polygons are convex, and no nonconvex polygon of four 
sides can be made with all seven tans, answering this question also gives 
the number of three- and four-sided polygons. It is easy to see that only 
one triangle is possible (since corners must be multiples of 45 degrees, 
the triangle must be a right isosceles one), but finding all the higher 
convex polygons is a bit tricky. 

2. How many different five-sided polygons can be made? 
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ANSWERS 

The impossible tangram in Figure 11 is the square with the central square 
hole. The two large triangles can go only in opposite corners. The square tan 
must go in a third corner and the rhomboid must touch the fourth corner, but 
now there is no spot for the middle-size triangle. 

B I B L I O G R A P H Y  

The Bibliography following Chapter 4 (p. 54) is also for this chapter. 
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Tangrams, Part 2 

"The formation of designs by means 
of seven pieces of wood . . . known 
as tans . . . is one of the oldest 
amusements in the East. Many 
hundreds of figures representing 
men, women, birds, beasts, fish, 
houses, boats, domestic objects, 
designs, etc., can be made, but the 
recreation is not mathematical, and I 
reluctantly content myself with a 
bare mention of it." 

- W. W .  ROUSE BALL, Mathematical 
Recreations and Essays 

Not mathematical? Ball wrote without giving the matter much thought. In 
this chapter we consider some nontrivial combinatorial problems presented by 
the seven tans. 

A question that arises at once is: How many sides can a tangram formed with 
all seven tans have? Although the answer is obvious, it seems to have been first 
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Figure 15 Improper tangram (left) and proper tangram (right), each with twenty- 
three sides 

stated by Harry Lindgren in his 1968 article "Tangrams." This is how Ronald 
C. Read, a mathematician at the University of Waterloo, puts it in a lengthy 
communication to me from which I shall be quoting liberally: 

"Tangrams have 23 sides between them, so that a tangram like that (at the 
left in Figure 15) will clearly have this number of sides. O n  the other hand, 
tangrams with pieces joined only at a corner are mathematically uninterest- 
ing . . . . " Let us make a rule, Read proposes, that a tangram must have a 
perimeter topologically equivalent to a circle, that is, it must not self-intersect. 
Read calls these "proper tangrams." How many sides can a proper tangram 
have? Again the answer is twenty-three. The proof is supplied by the figure of 
a bowing man shown at the right in Figure 15 and by almost endless other 
examples. 

The proper tangrams contain an important subset that Read calls "snug 
tangrams." In order to understand the meaning of snug, draw lines on all tans 
(except the two small triangles) to create sixteen identical right-isosceles 
triangles with unit legs (see Figure 16). A snug tangram is a proper tangram 
formed so that, where two tans are in contact, the sides of the small right 
triangles match exactly, either leg to leg or hypotenuse to hypotenuse. All 
convex tangrams are snug, and so are many of the traditional figures (see 
Figure 17). 

Snugness, by the way, is characteristic of technology in the Orient, where 
the dimensions of houses, furniture, and so on tend to be exact multiples of a 
basic length. The Japanese building industry, I am told, is one of the most 
efficient in the world because Japanese lumber is standardized in lengths that 
are multiples of a basic "mat" length. 

In addition to snugness of fit, Read adds two more limitations: A snug 
tangram must be simply connected (all in one piece), and there must be no 
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Figure 16 The  seven tans 

interior holes, including holes that touch the perimeter at one or more single 
points. It is convenient to diagram snug tangrams on graph paper so that all 
integral edges are on the orthogonals of the matrix. All diagonal edges will 
then be multiples of and therefore irrational. This suggested to Read a very 
pretty problem: How many snug tangrams have all sides irrational? Such 
tangrams, if diagrammed on graph paper, would have every side running 
diagonally. 

The tans between them have a total of thirty side segments, Read continues, 
but "whenever we place two pieces together, the two sides that abut are lost to 
the perimeter, and it can happen that we lose more than two. Furthermore, in 
order that the resulting tangram shall be connected, there must be at least six 
lines along which two pieces come together. Hence we cannot avoid losing 12 
segments, therefore the total number of segments on the outside cannot be 

Figure 17 A snug tangram of a dog with eighteen sides 
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more than 18. Each side of a snug tangram consists of at least one segment, 
hcncc the total number of sides cannot cxcccd 18 either." 'l'hc dog in Figure 
17 provesthat a snug tangram can have this maximum total of sides. 

'l'he number of proper tangrams obviousljr is infinite. You have only to 
observe that two tans can abut in an infinite number of positions. If the ques- 
tion is confined to certain lrinds of tangram, however, interesting problems in 
combinatorial enumeration arise. For example, how many convex tangrams 
are there? d convex tangram is a polygon in which all corner angles are less 
than 180 degrees. That there are only thirteen was proved in 1942 by Fu 
Tsiang Wang and Chuan-Chih Hsiung in '54 Theorem on the Tangram" in The 
America~z hlathematicalhlontbdy.. The thirteen are shown in Figure 18. If mirror 
images count as different convex tangrams, then there are eighteen. The 
eighteen convex tangrams appear in Chinese tangram books with solutions 
showing that all can be made without turning over the asymmetric rhomboid 
tan. (Interior lines are omitted in the illustration, in case some readers might 
enjoy solving them.) 

The thirteen convex tangrams include all three- and four-sided polygons 
that can be made with the seven pieces. As stated in the previous chapter, 
nonconvex quadrilaterals are not possible. (Can you prove this? Hint: The 
four interior angles of such a four-sided figure would have to be three angles 
of 45 degrees and one of 225 degrees, and the figure would have to consist 
of sixteen isosceles right triangles congruent with the small triangular tan.) 
Five-sided polygons, made with the tans, can be nonconvex. How many pen- 
tagons, both convex and nonconvex, 1,indgren asked, can be made with the 
scvcn tans? 

' i t  this spot in my 1974 column, T gave a proof that there are sixteen snug 
pentagons and two "loose" pentagons, making eighteen in all. Unfortunately, 
there was a flaw in the proof, which readers quicliljr Qscovered. For months I 
was flooded with hundreds of letters from readers of all ages who had found 
pentagons not among the eighteen that I had given in an illustration. 

I kept tab of the number of Qfferent pentagons sent by readers until it 
reached a maximum of twenty-two snug and thirtyone loose ones, or fifty- 
three in all. Only two readers, each working independently and by hand, found 
all fiftythree. They are hllan L. Sluizer of Northbrook, Illinois, and Ake 
Lindgren of Uppsala, Sweden. In 1975 Dr. I. Takeuchi at the Institute for 
Electrical Engineers, Musashimo, near Tokyo, confirmed the fifty-three fig- 
ures by a computer program. Tn 1976, unaware of Takeuchi's program, Mi- 
chael Beeler of Cambridge, Massachusetts, wrote a program that gave the 
same results. Beeler's drawings of the fifty-three pentagons are shown in 
Figure 19. 
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Figure 18 The  thirteen convex tangrams 

One might now wonder how many tangram polygons have six sides, or 
seven or more, but (as Read points out) the question is easily answered. For 
n = 6 through 23 there is an infinity of n-sided polygons. You have only to 
glance at pentagon 28 in Figure 19 to see that by sliding the large triangle on 
the left along the hypotenuse of the other large triangle, you can create an 
infinity of hexagons. How many snug hexagons are there? Although it is a 
finite number, as far as I know the number has not yet been determined. 
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There are, of course, only a finite number of snug tangrams, but the exact 
number (Read calls it the snug number) also is far from known. Read has 
devised an ingenious procedure by which a computer could be programmed to 
count the number, but he estimates that it is well into the millions, and no such 
program has yet been written. Unfortunately, the details of Read's procedure 
are too complex to give here. A simpler problem, using exactly the same 
procedure, has been solved, however. Read defines a minitangram as one made 
with the five pieces that remain after leaving out the two large triangles. The 
problem of finding all snug minitangrams is so much simpler than finding all 
snug tangrams that Read was able to write a computer program to solve it and 
ran it on, appropriately enough, a minicomputer at the University of 
Waterloo. It took only half an hour, and the count was 951. The computer 
was hooked up to a display terminal, so that it drew pictures of all the 
minitangrams. 

Read's programs are designed only for enumeration, not for solving indi- 
vidual tangrams. Is it possible to write a program that will inspect any given 
tangram and search for at least one solution? Yes, such a program has been 
developed and published by E. S. Deutsch, a computer scientist. In theory it is 
possible to write a program that will systematically examine all possible ways 
the tans fit a given tangram and then print all the solutions, but the complexity 
of such a program is so great that no one has yet attempted it. Deutsch's 
program is not of this type. It is heuristic, which means that it goes about 
solving a tangram in much the same way a person does: by applying a series of 
tentative tests, examining the feedback, backtracking and trying again when 
no solution is found, and continuing until it either discovers a solution or gives 
up. The program seldom fails, taking an average time of about two seconds to 
solve a tangram. 

The program starts by examining the tangram's perimeter, noting the edge 
lengths, and the angles at each corner. It then attempts to separate the tangram 
into two or more subtangrams. For instance, if two portions of the tangram 
meet at a point, each portion clearly is a separate tangram. If, say, a rabbit has 
two ears formed by the two small triangles, each ear meeting the head at a 
point, the program instantly identifies the two pieces, removes them and goes 
to work on the subtangram that remains. Ifthe tangram does not have portions 
meeting at points, the program explores ways of dividing it into subtangrams 
by extending edges from a corner into the figure. In many cases the internal 
extension of an edge clearly divides the tangram into subtangrams; in other 
cases the extension is only a possible line of division. 

After the program's preliminary exploration, it applies a series of heuristic 
tests until it finds a way of fitting tans into a subtangram or a possible subtan- 
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gram. When a fit is found, the subtangram is extracted and the program turns 
to what remains. The tests are ranked in order of their efficacy, so that the 
strongest tests can be applied first, then the next strongest, and so on. If no 
solution is obtained, the program backtracks and begins with the second test. It 
is impossible to describe the program in more detail, but interested readers will 
find it fully explained, with flow charts and examples, in "A Heuristic Solu- 
tion to the Tangram Puzzle," by E. S. Deutsch and Kenneth C. Hayes, Jr., in 
Machine Intelligence 7. A somewhat similar program was developed in 1972 by 
Ejvind Lynning, a Danish student working with Jacques Cohen, a physicist at 
Brandeis University. 

Snug tangrams are, for obvious reasons, usually more difficult to solve (by a 
person or a computer) than nonsnug figures, and the difficulty tends to in- 
crease as the number of sides decreases. One might suppose a pattern with only 
one solution would be harder to solve than one with many, but that is not the 
case. A pattern in which the tans touch only at points has only one solution, 
but it is an immediately obvious one, and there are patterns with a large 
number of solutions that are among the most difficult. 

The construction of tangrams with "holes" raises many curious new prob- 
lems. It is not hard to form a square hole of area 4 or a triangular hole of area 2 
that does not touch the border, or two triangular holes of areas 1 and 3 that do 
not touch each other or the border (see Figure 20); ("touch" includes touch- 
ing at a single point). Can the reader find a way to make exactly two holes, 
each 1 X 1 square, that do not touch each other or the perimeter? O r  two 
holes, under the same provisos, one a triangle and one a square, each with an 
area of 17 They are not difficult tasks, but here are two more that I set for 
myself and found much harder: (1) Form just three holes, two triangular and 
one square, that do not touch one another or the border. (2) Form just three 
holes, two rectangular and one triangular, that do not touch one another or the 
border. Apparently it is not possible for three holes of this type to be 
all rectangular or all triangular, or for two triangular holes each to have an 
area of 1. 

The "farm problem" is another unsolved hole problem. What is the largest 
hole not touching the border that can be inside a tangram? The solution is a 
limit that cannot be reached, but one can come as close to it as one wishes. (The 
best I can obtain is the limit 10.985+ .) How many sides can a single hole that 
is simply connected and not touching the border have? The maximum surely 
is thirteen. What is the largest "farm" not touching the border that is square? 
Rectangular? Triangular? 

Another unexplored type of tangram problem is finding ways of transform- 
ing one tangram into another with the fewest number of moves. A move 
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Figure 20 Tangrams with holes 

consists in altering the position of a set of one or more tans without disturbing 
the pattern of the set. For example, the large square tangram can be changed to 
the large triangle or the large rhomboid in one move, or to the 2 X 4 rectangle 
in three moves. As Read notes in his book, the square can be changed to a 3 X 3 
square with a missing 1 X 1 corner in just two moves. 

Still another area of tangram play open to exploration is the devising of 
competitive games that use one or more sets of tans. The only tangram game I 
have seen in books inEnglish is the party game of giving each guest a set of tans 
and awarding prizes to those who are the first to make each of a series of 
displayed patterns. Read's concept of snugness suggests a variety of two-per- 
son games. Here are three that occurred to me. In playing them it is a good 
plan to mark the middle of the long edges to facilitate placing the tans snugly. 

1.  Snuggle up. Begin with the tans forming the large triangle, the square, 
or any four-sided ~ o l ~ g o n .  Players alternate moves. A move consists in 
changing the position of a single tan to form a new snug tangram that 
has more sides than the preceding one. The first player who is unable to 
make a move loses. 

2. Snuggle down. Same as above, except that the initial tangram is an 
eighteen-sided snug tangram and each move must decrease the number 
of sides. As in the preceding game, you cannot move a piece that leaves 
or forms a hole or that divides the figure into parts that touch only at 
points. Both games end quickly. Because a snug tangram must have at 
least three sides and no more than eighteen, a game cannot last beyond 
fifteen moves. Games that go a full fifteen moves are possible. 

3. Snuggle up and down. Start with a ten- or eleven-sided snug tangram. 
One player must increase the number of sides on each play, the other 
must decrease the number. The same piece may not be moved twice in 
succession. Each player keeps a record of his increases and decreases, 
and the first to score 30 wins. If a player cannot move, he loses. If the up 
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player makes an eighteen-sided tangram, he wins. If the down player 
makes a four- or three-sided tangram, he wins. This game lasts consid- 
erably longer than the other two, and it often takes unexpected turns. 
One player can get far ahead in scoring only to discover, just before he 
expects to make a winning move, that no move is available. 

In all three games it is good to keep a running record of the number of sides 
because it is easy to forget the number, and time is lost by repeated counting. A 
cribbage board is a convenient device not only for recording the number of 
sides but also for keeping score in the up-and-down game. 

ANSWERS 

Solutions to the four hole problems are shown in Figure 21. At the top left in 
the illustration is a way of making two unit square holes. At the top right are 
two holes, one a unit square and the other a triangle of area I. At the left on the 
bottom of the illustration is a way of making a square hole and two triangular 

Figure 21 Solutions to hole problems 
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holes. (The fit is extremely close. The top triangle's hypotenuse is longer than 
the length it must span by only .I21 + .) At the right on the bottom are two 
rectangular holes and one triangular hole. - - 

Read has proved that a tangram that is snug except for one or more holes 
cannot have more than one hole if the holes do not touch one another or the 
border. The smallest possible hole is equal to a small triangular tan. No matter 
how two such holes are placed so that they do not touch, at least seventeen 
triangles are required to isolate them from a tangram border. Since the seven 
tans are made of sixteen such triangles, completing the required tangram is 
impossible. For nonsnug tangrams it appears that no more than three holes not 
touching one another or the border are possible. 

The square is the only snug tangram with all its sides irrational. This is how 
Read proves it. As I explained in the previous chapter, an irrational tangram 
drawn on graph paper with the unit square tan oriented orthogonally would 
have all its edges making 45-degree angles with the matrix lines. All corners 
clearly must be either 90 degrees or 270 degrees. Since each side is a multiple 
of & and the total area is 8, it follows that any irrational snug tangram will be a 
tetromino composed of four squares, each fi on the side. 

There are five tetrominoes. One of them, the square, we know can be 
formed. Each of the other four is easily proved impossible by placing the 
square tan in each of three possible positions (see Figure 22) and then exploring 
ways of completing the tetromino. The first tetromino is ruled out at once - 
because there is no way to place the two large triangles. In the other three 
cases, for each position of the square tan, there are at most only four ways to 
place the two large triangles. In every case, after the square and two large 
triangles are placed, there is no spot for the rhomboid. Thus the square is the 
only possible irrational snug tangram. 

My solution of the farm problem, with a limit of 10.985 + , is shown in 
Figure 23. 

Figure 22 Impossibility proof for the nonsquare tetrominoes 
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ADDENDUM

Scores, perhaps hundreds, of puzzles similar to tangrams, but with different
dissections of squares, rectangles, circles, and other shapes, have been described
in books and articles and manufactured around the world. Some of the market-
ed variants are pictured in Professor Hoffmann’s pioneer book on mechanical
puzzles, in Creative Puzzles of the World by Pieter Van Delft and Jack Botermans,
and in Puzzles Old and New by Jerry Slocum and Botermans.

Of special interest, because it predates any known Chinese publication, is a
32-page book published by Kyoto Chobo in Japan in 1742. It gives forty-two
patterns to be made with the seven pieces obtained by dissecting a square as
shown in Figure 24. The book’s title translates as The Ingenious Pieces of Sei
Shonagon. (Sei Shonagon was a court lady of the late tenth and early eleventh
centuries, who wrote the famous Pillow Book.) Nothing is known about the
author, who uses the pseudonym Ganrei-Ken. It is highly unlikely that Sei
Shonagon knew of the puzzle.

Shigeo Takagi, a Tokyo magician, was kind enough to send me a photocopy
of this rare book. Unlike the Chinese tans, the Shonagon pieces will form a
square in two different ways. Can you find the second pattern? The pieces also
will make a square with a central square hole in the same orientation. With the
Chinese tans it is not possible to put a square hole anywhere inside a large
square.

Richard Reiss, a professor of English at Southeastern Massachusetts Univer-
sity, sent a good proof that no four-sided nonconvex polygon can be made with all

Figure 23 A solution to the farm problem
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Figure 24 The  Sei Shonagon pieces 

seven Chinese tans. Peter Van Note proposed the following three tasks based 
on forming two congruent replicas of a tan: 

I. It is possible to make one large square. Use the seven pieces to make two 
congruent small squares. 

2. A large isosceles right triangle is possible. Use the seven pieces to make 
two congruent isosceles right triangles. 

3. A large rhombus is possible. Van Note could not prove it, but he is 
convinced that the seven pieces cannot make two congruent 
rhombuses. 

John H. Conway wrote from Cambridge University to pose an interesting 
unsolved problem. What would be the shapes of an "optimal" set of tans- 
that is, seven convex polygons that will form the largest number of distinct 
convex polygons? 

Figure 25 is taken from Joost Elffers's and Michael Schuyt's marvelous 
book. The pattern is made with the traditional Chinese tans. 

Karl Fulves, author of many books on magic, made the following sugges- 
tion for an amusing trick. It involves the tangram paradox at the bottom of 
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Figure 12. You secretly add to a set of tans a third small triangle. Make the man 
with the feet, using the pattern shown on the right, and the extra triangle for 
the feet. Now use sleight of hand to "vanish" one of the small triangles (orjust 
put it in your pocket), then form the man with the foot again, using the pattern 
on the left. If no one has bothered to count pieces, it seems as if the vanished 
piece has mysteriously returned. Similar tricks can, of course, be performed 
with other paradoxical pairs. 

Several proposals have been made for using two sets of tangrams to play a 
board game similar to Solomon W. Golomb's pentomino game. Game inven- 
tor Sidney Sackson recommends a 6 X 6 checkerboard, its squares the size of 
the square tan. Each of two players has a set of seven tans. Players take turns 
placing any tan on the board, wherever they wish, provided the tan's corners 
fall on the board's lattice points. The person unable to place a tan loses. Many 
variations in rules are ~ossible, and larger boards can be used for more than two 
players. 

Figure 25 A tangram to solve 
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Nontransitive Paradoxes 

"I have just so much logic, as to be 
able to see . . . that for me to be too 
good for you, and for you to be too 
good for me, cannot be true at once, 
both ways." 

-ELIZABETH BARRETT, in a letter to 
Robert Browning. 

Whenever a relation R that applies to xRy and yRz also applies to xRz, the 
relation is said to be transitive. For example, "less than" is transitive among all 
real numbers. If 2 is less than 71, and the square root of 3 is less than 2, we can be 
certain that the square root of 3 is less than n. Equality also is transitive: ifa = b 
and b = c, then a = c. In everyday life such relations as "earlier than," "heavier 
than," "taller than," "inside of," and hundreds of others are transitive. 

It is easy to think of relations that are not transitive. IfA is the father of B and 
B is the father of C, it is never true that A is the father of C. If A loves B and B 
loves C, it does not follow that A loves C. Familiar games abound in transitive 
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rules (if ~ o k e r  hand A beats B and B beats C, then A beats C), but some games 
have nontransitive (or intransitive) rules. Consider the children's game in 
which, on the count of three, one either makes a fist to symbolize "rock," 
extends two fingers for "scissors," or all fingers for "paper." ~ o c k  breaks 
scissors, scissors cut paper, and paper covers rock. In this game the winning 
relation is nontransitive. 

Occasionally in mathematics, particularly in probability theory and deci- 
sion theory, one comes on a relation that one expects to be transitive but that 
actually is not. If the nontransitivity is so counterintuitive as to boggle the 
mind, we have what is called a nontransitive paradox. 

The oldest and best-known paradox of this type is a voting paradox some- 
times called the Arrow paradox after Kenneth J. Arrow because of its crucial 
role in Arrow's "impossibility theorem," for which he shared a Nobel prize in 
economics in 1972. In Social Choice and ~ndividual Values, Arrow specified five 
conditions that almost everyone agrees are essential for any democracy in 
which social decisions are based on individual preferences expressed by vot- 
ing. Arrow proved that the five conditions are logically inconsistent. It is not 
possible to devise a voting system that will not, in certain instances, violate at 
least one of the five essential conditions. In short, a perfect democratic voting 
system is in principle impossible. 

As Paul A. Samuelson has put it: "The search of the great minds of recorded 
history for the ~e r fec t  democracy, it turns out, is the search for a chimera, for a 
logical self-contradiction . . . . Now scholars all over the world-in math- 
ematics, politics, philosophy, and economics - are trying to salvage what can 
be salvaged from Arrow's devastating discovery that is to mathematical poli- 
tics what Kurt Godel's 193 1 impossibility-of-proving-consistency theorem is 
to mathematical logic." 

Let us approach the voting paradox by first considering a fundamental 
defect of our present system for electing officials. It frequently puts in office a 
man who is cordially disliked by a majority of voters but who has an enthusias- 
tic minority following. Suppose 40 percent of the voters are enthusiastic 
supporters of candidate A. The opposition is split between 30 percent for B 
and 30 percent for C. A is elected even though 60 percent of the voters dislike 
him. 

One popular suggestion for avoiding such consequences of the split vote is 
to allow voters to rank all candidates in their order of preference. Unfortu- 
nately, this too can produce irrational decisions. The matrix in Figure 26 (left) 
displays the notorious voting paradox in its simplest form. The top row shows 
that a third of the voters prefer candidates A, B, and C in the order ABC. The 
middle row shows that another third rank them BCA, and the bottom row 
shows that the remaining third rank them CAB. Examine the matrix carefully 
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RANK ORDER 
1 2 3 

Figure 26 The  voting paradox (left) and the tournament paradox based on the magic 
square (right) 

and you will find that when candidates are ranked in pairs, nontransitivity 
rears its head. Two-thirds of the voters prefer A to B, two-thirds prefer B to C, 
and two-thirds prefer C to A. If A ran against B, A would win. If B ran against 
C, B would win. If C ran against A, C would win. Substitute proposals for men 
and you see how easily a party in power can rig a decision simply by its choice 
of which paired proposals to put up first for a vote. 

The paradox was recognized by the Marquis de Condorcet and others in the 
late eighteenth century, and is known in France as the Condorcet effect. Lewis 
Carroll, who wrote several pamphlets on voting, rediscovered it. Most of the 
early advocates of proportional representation were totally unaware of this 
Achilles' heel; indeed, the paradox was not fully recognized by political 
theorists until the mid-1940s, when Duncan Black, a Welsh economist, 
rediscovered it in connection with his monumental work on committee deci- 
sion making. Today the experts are nowhere near agreement on which of 
Arrow's five conditions should be abandoned in the search for the best voting 
system. One surprising way out, recommended by many decision theorists, is 
that when a deadlock arises, a "dictator" is chosen by lot to break it. Some- 
thing close to this solution actually obtains in certain democracies, England 
for instance, where a constitutional monarch (selected by chance in the sense 
that lineage guarantees no special biases) has a carefully limited power to break 
deadlocks under certain extreme conditions. 

The voting paradox can arise in any situation in which a decision must be 
made between two alternatives from a set of three or more. Suppose that A, B, 
and C are three men who have simultaneously proposed marriage to a girl. 
The rows of the matrix for the voting paradox can be used to show how she 
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ranks them with respect to whatever three traits she considers most important, 
say intelligence, physical attractiveness, and income. Taken by pairs, the poor 
girl finds that she prefers A to B, B to C, and C to A. It is easy to see how similar 
conflicts can arise with respect to one's choice of a job, where to spend a 
vacation, and so on. 

Paul R. Halmos once suggested a delightful interpretation of the matrix. 
Let A, B, and C stand for apple pie, blueberry pie, and cherry pie. A certain 
restaurant offers only two of them at any given meal. The rows show how a 
customer ranks the pies with respect to three properties, say taste, freshness, 
and size of slice. It is perfectly rational, says Halmos, for the customer to prefer 
apple pie to blueberry, blueberry to cherry, and cherry to apple. In his Adven- 
tures of a Mathematician (Scribner, 1976), Stanislaw Ulam speaks of having 
discovered the nontransitivity of such preferences when he was eight or nine, 
and of later realizing that it prevented one from ranking great mathematicians 
in a linear order of relative merit. 

Experts differ on how often nontransitive orderings such as this one arise in 
daily life, but some recent studies in psychology and economics indicate that 
they are commoner than one might suppose. There are even reports of experi- 
ments with rats showing that under certain conditions the painvise choices of 
individual rats are nontransitive. (See Warren S. McCulloch, "A Heterarchy 
of Values Determined by the Topology of Nervous Nets," Bulletin ofMathe- 
matical Biophysics 7, 1945, pp. 89- 93.) 

Similar paradoxes arise in round-robin tournaments between teams. As- 
sume that nine tennis players are ranked in ability by the numbers 1 through 9, 
with the best player given the number 9 and the worst the number 1. The 
matrix in Figure 26 (right) is the familiar order-3 magic square. Let rows A, B, 
and C indicate how the nine players are divided into three teams with each 
row comprising a team. In round-robin tournaments between teams, where 
each member of one team plays once against each member of the others, 
assume that the stronger player always wins. It turns out that team A defeats B, 
B defeats C, and C defeats A, in each case by five games to four. It is impossible 
to say which team is the strongest. The same nontransitivity holds if columns 
D, E, and F of the matrix are the teams. 

Many paradoxes of this type were jointly investigated by Leo Moser and 
J. W. Moon. Some of the Moser-Moon paradoxes underlie striking and little- 
known sucker bets. For example, let each row (or each column) of an order-3 
magic-square matrix be a set of playing cards, say the ace, 6, and 8 of hearts for 
set A, the 3 ,5 ,  and 7 of spades for set B, and the 2,4,  and 9 of clubs for C (see 
Figure 27). ~ a c h  set is randomized and placed face down on a table. The sucker 
is allowed to draw a card from any set, then you draw a card from a different 
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Figure 27 Nontransitive sucker bet based on magic square: A-B-+C+A 

set. The high card wins. It is easy to prove that no matter what set the sucker 
draws from, you can pick a set that gives you winning odds of five to four. Set 
A beats B, B beats C, and C beats A. The victim may even be allowed to decide 
each time whether the high or the low card wins. If you play low card wins, 
simply pick the winning pile with respect to a nontransitive circle that goes 
the other way. A good way to play the game is to use sets of cards from three 
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decks with backs of different colors. The packet of nine cards is shuffled each 
time, then separated by the backs into the three sets. The swindle is, of course, 
isomorphic with the tennis-tournament paradox. 

Nontransitivity prevails in many other simple gambling games. (See Chap- 
ter 5 of my Wheels, Life, and Other Mathematical Amusements, for a description 
of a set of nontransitive dice.) In some cases, such as the top designed by 
Andrew Lenard (see Figure 28), the nontransitivity is easy to understand. The 
lower part of the top is fixed but the upper disk rotates. Each of two players 
chooses a different arrow, the top is spun (in either direction), and the person 
whose arrow points to the section with the highest number wins. A beats B, B 
beats C and C beats A, in each case with odds of two to one. 

In a set of four bingo cards designed by Donald E. Knuth (see Figure 29), the 
nontransitivity is cleverly concealed. Two players each select a bingo card. 
Numbers from 1 through 6 are randomly drawn without replacement, as they 
are in standard bingo. If a called number is on a card, it is marked with a bean. 
The first player to complete a horizontal row wins. Here, of course, the 
numbers are just symbols; they can be replaced by any set of six different 
symbols. I leave it to the reader to work out the probabilities that show card A 
beats B, B beats C, Cbeats D, and D beats A. The game is transitive with three 
players, but the winning odds for the four possible triplets are surprising. 

One of the most incredible of all nontransitive betting situations, discov- 
ered (appropriately) by a mathematician named Walter Penney, was given as a 
problem in the Journal ofRecreational Mathematics (October 1969, p. 241). It is 
not well known, and most mathematicians simply cannot believe it when they 
first hear of it. It is certainly one of the finest of all sucker bets. It can be played 

A - B - - C - A  

Figure 28 Nontransitive top 
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A + B - + C + D + A  

Figure 29 Nontransitive bingo cards 

with a penny, or as a side bet on the reds and blacks of a roulette wheel, or in 
any situation in which two alternatives are randomized with equal odds. W e  
shall assume that a penny is used. If it is flipped three times, there are eight 
equally probable outcomes: HHH, HHT, HTH, HTT, THH, THT, TTH,  and 
T T T .  One player selects one of these triplets, and the other player selects a 
different one. The penny is then flipped repeatedly until one of the chosen 
triplets appears as a run and wins the game. For example, if the chosen triplets 
are HHT and T H T  and the flips are THHHT, the last three flips show that 
HHT has won. In brief, the first triplet to appear as a run wins. 

One is inclined to assume that one triplet is as likely to appear first as any 
other, but it takes only a moment to realize that this is not the case even with 
doublets. Consider the doublets HH, HT, TH, and T T .  HHand HTare equally 
likely to appear first because, after the first H appears, it is just as likely to be 
followed by an H as by a T. The same reasoning shows that T T  and TH are 
equal. Because of symmetry, HH = T T  and H T  = TH. TH beats HH with 
odds of three to one, however, and H T  beats T T  with the same probability. 
Consider H T  and TT.  T T  is always preceded by H T  except when T T  appears 
on the first two flips. This happens in the long run only once in four times, and 
so the probability that H T  beats T T  is 3/4. Figure 30 shows the probability 
that B, the second player, will win for all pairs of doublets. 
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Figure 30 Probabilities of B winning 

When we turn to triplets, the situation becomes much more surprising. 
Since it does not matter which side of a coin is designated heads, we know that 
HHH = T T T ,  T T H  = HHT, HTH = THT,  and so on. When we examine 
the probabilities for unequal pairs, however, we discover that the game is not 
transitive. No matter what triplet the first player takes, the second player can 
select a better one. Figure 31 gives the probability that B, the second player, 
defeats A for all possible pairings. T o  find B's best response to a triplet chosen 
by A, find A's triplet at the top, go down the column until you reach a 
probability (shown in gray), then move left along the row to B's triplet on the 
left. 

Note that B's probability of winning is, at the worst, 2/3 (or odds of two to 
one) and can go as high as 7/8 (or odds of seven to one). The seven-to-one odds 
are easy to comprehend. Consider THH and HHH. If HHH first appears 
anywhere except at the start, it must be preceded by a T ,  which means that 
THH has appeared earlier. HHH wins, therefore, only when it appears on the 
first three flips. Clearly this happens only once in eight flips. 

Barry Wolk of the University of Manitoba has discovered a curious rule for 
determining the best triplet. Let X be the first triplet chosen. Convert it to a 
binary number by changing each H to zero and each T to 1. Divide the number 
by 2, round down the quotient to the nearest integer, multiply by 5, and add 4. 
Express the result in binary, then convert the last three digits back to H and T. 

Nontransitivity holds for all higher n-tuplets. A chart supplied by Wolk 
gives the winning probabilities for B in all possible pairings of quadruplets (see 
Figure 32). Like the preceding two charts and charts for all higher n-tuplets, 
the matrix is symmetric about the center. The upper right quadrant is the 
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lower left quadrant upside down, and the same holds for the upper left and 
lower right quadrants. The probabilities for B's best responses to A are shown 
in gray. 

In studying these figures, Wolk discovered another kind of anomaly as 
surprising as nontransitivity. It has to do with what are called waiting times. 
The waiting time for an n-tuplet is the average number of tosses, in the long 
run, until the specified n-tuplet appears. The longer you wait for a bus, the 
shorter becomes the expected waiting time. Pennies, however, have no mem- 
ory, so that the waiting time for an n-tuplet is independent of all previous flips. 
The waiting time for H and T is 2. For doublets the waiting time is 4 for H T  
and TH, and 6 for HH and T T .  For triplets the waiting times are 8 for HHT, 

Figure 31  Probabilities of B winning in a triplet game 
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Figure 32 Probabilities of B winning in a quadruplet game 

HTT,  THH, and TTH; 10 for HTH and THT,  and 14 for HHH and T T T .  
None of this contradicts what we know about which triplet ofa pair is likely to 
show first. With quadruplets, however, contradictions arise with six pairs. For 
example, THTH has a waiting time of 20 and HTHH a waiting time of 18. 
Yet, THTH is more likely to turn up before HTHHwith  a probability of 9/14, 
or well over one-half. In other words, an event that is less frequent in the long 
run is likely to happen before a more frequent event. There is no logical 
contradiction involved here, but it does show that "average waiting time" has 
peculiar properties. 

There are many ways to calculate the probability that one n-tuplet will 
precede another. You can do it by summing infinite series, by drawing tree 
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diagrams, by recursive techniques that produce sets of linear equations, and so 
on. One of the strangest and most efficient techniques was devised by John 
Horton Conway of the University of Cambridge. I have no idea why it works. 
It just cranks out the answer as if by magic, like so many of Conway's other 
algorithms. 

The key to Conway's procedure is the calculation of four binary numbers 
that Conway calls leading numbers. Let A stand for the 7-tuplet HHTHHHT 
and B for THHTHHH. W e  want to determine the probability of B beating A. 
T o  do this, write A above A, B above B, A above B, and B above A (see Figure 
33). Above the top tuplet of each pair a binary number is constructed as 
follows. Consider the first pair, AA. Look at the first letter of the top tuplet 
and ask yourself if the seven letters, beginning with this first one, correspond 
exactly to the first seven letters of the tuplet below it. Obviously they do, and 
so we put a 1 above the first letter. Next, look at the second letter of the top 
tuplet and ask if the six letters, starting with this one, correspond to thejrstsix 
letters of the tuplet below. Clearly they do not, and so we put zero above the 
second letter. Do the five letters starting with the third letter of the top tuplet 
correspond to the first five letters of the lower tuplet? No, and so this letter 
also gets zero. The fourth letter gets another zero. When we check the fifth 
letter of the top A, we see that HHTdoes correspond to the first three letters of 
the lower A, and so the fifth letter gets a 1. Letters six and seven each get zero. 
The " A  leading A number," or AA, is 1000100, in which each 1 corresponds 
to ayes answer, each zero to a no. Translating 1000100 from binary to decimal 
gives us 68 as the leading number for AA. 

Figure 33 shows the results of this procedure in calculating leading numbers 
AA, BB, AB, and BA. Whenever an n-tuplet is compared with itself, the first 

1 0 0 0 1 0 0 = 6 8  0 0 0 0 0 0 1  = I  
A = HHTHHHT A = HH T H H H T  
A = H H T H H H T  B = THH THHH 

AA - AB:BB - BA 
68-1:64-35 
67 : 29 

1 0 0 0 0 0 0 = 6 4  0 1 0 0 0 1  1 =35 
B = THHTHHH B = THH THHH 
B = THHTHHH A = H H T H H H T  

Figure 33 John Horton Conway's algorithm for calculating odds of B's n-tuplet 
beating A's n-tuplet 
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digit of the leading number must, of course, be 1. When compared with a 
different tuplet, the first digit may or may not be 1. 

The odds in favor of B beating A are given by the ratio A A  - A B  : BB - 
BA. In this case 68 - 1 : 64 - 35 = 67 : 29. As an exercise, the reader can try 
calculating the odds in favor of THH beating HHH. The four leading numbers 
will be A A  = 7, BB = 4, AB = 0, and B A  = 3. Plugging these into the for- 
mula, A A  - AB : BB - B A  gives odds of 7 - 0 :  4 - 3, or seven to one, as 
expected. The algorithm works just as well on tuplets of unequal lengths, 
provided the smaller tuplet is not contained within the larger one. If, for 
example, A = HH and B = HHT, A obviously wins with a probability of 1. 

I conclude with a problem by David L. Silverman, who was the first to 
introduce the Penney paradox in the problems department that he then edited 
for theJourna1 ofRecreationa1 Mathematics (Vol. 2, October 1969, p. 241). The 
reader should have little difficulty solving it by Gonway's algorithm. TTHH 
has a waiting time of 16 and HHH has a waiting time of 14. Which of these 
tuplets is most likely to appear first and with what probability? 

ANSWERS 

Which pattern of heads and tails, TTHH or HHH, is more likely to appear first 
as a run when a penny is repeatedly flipped? Applying John Horton Conway's 
algorithm, we find that TTHH is more likely to precede HHH with a probabil- 
ity of 7/12, or odds of seven to five. Some quadruplets beat some triplets with 
even greater odds. For example, THHH precedes HHH with a probability of 
718, or odds of seven to one. This is easy to see. HHH must be preceded by a T 
unless it is the first triplet of the series. Ofcourse, the probability of that is 118. 

The waiting time for TTHH and for THHH is 16, compared with a waiting 
time of 14 for HHH. Both cases of the quadruplet versus the triplet, therefore, 
exhibit the paradox of a less likely event occurring before a more likely event 
with a probability exceeding 112. 

ADDENDUM 

Numerous readers discovered that Barry Wolk's rule for picking the best 
triplet B to beat triplet A is equivalent to putting in front of A the complement 
of its next-to-last symbol, then discarding the last symbol. More than half 
these correspondents found that the method also works for quadruplets except 
for the two in which Hand  T alternate throughout. In such cases the symbol 
put in front of A is the same as its next to last one. 
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Since October 1974, when this chapter first appeared in Scientific American, 
many papers have been published that prove Conway's algorithm and give 
procedures for picking the best n-tuplet for all values of n. Two important 
early articles are cited in the bibliography. The paper by Guibas and Odlyzko 
gives twenty-six references. 

Readers David Sachs and Bryce Hurst each noted that Conway's "leading 
number," when an n-tuplet is compared with itself, automatically gives that 
tuplet's waiting time. Simply double the leading number. 

Ancient Chinese philosophers (I am told) divided matter into five catego- 
ries that form a nontransitive cycle: wood gives birth to fire, fire to earth, earth 
to metal, metal to water, and water to wood. Rudy Rucker's science-fiction 
story "Spacetime Donuts" (Unearth, Summer 1978) is based on a much more 
bizarre nontransitive theory. If you move down the scale of size, to several 
steps below electrons, you get back to the galaxies of the same universe we 
now occupy. Go up the scale several stages beyond our galactic clusters, and 
you are back to the elementary particles - not larger ones, but the very same 
particles that make our stars. The word "matter" loses all meaning. 

The following letter was published in Scientific American (January 1975): 

Sirs: 
Martin Gardner's article on the paradoxical situations that arise 

from nontransitive relations may have helped me win a bet in 
Rome on the outcome of the Ali v. Foreman world heavyweight 
boxing title match in Zalre on October 30. 

Ali, though slower than in former years, and a 4- 1 betting 
underdog, may have had a psychological and motivational advan- 
tage for that particular fight. But in addition, Gardner's mathemat- 
ics might be relevant. Even though Foreman beat Frazier, who beat 
Ali, Ali could still beat Foreman because there may be a nontransi- 
tive relation between the three. 

I ranked the three fighters against the criteria of speed, power, 
and technique (including psychological technique) as reported in 
the press, and spotted a nontransitive relation worth betting on: 

Ali Frazier Foreman 
Speed 2 1 3 
Power 3 2 1 
Technique 1 3 2 
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Foreman's power and technique beat Frazier, but Ali's technique 
and speed beat Foreman. It was worth the bet. The future implica- 
tions are, however, that Frazier can still beat Ali! 

ANTHONY PIEL 
Vaud, Switzerland 

David Silverman (Journal $Recreational Mathematics 2, October 1969, p. 
241) proposed a two-person game that he called "blind Penney-ante." It is 
based on the nontransitive triplets in a run of fair coin tosses. Each player 
simultaneously chooses a triplet without knowing his opponent's choice. The 
triplet that shows up first wins. What is a player's best strategy? This is not an 
easy problem. A full solution, based on an 8 X 8 game matrix, is given in The 
College Mathematics Journal as the answer to Problem 299 (January 1987, p. 
74- 76). 
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S I X  

Combinatorial Card 
Problems 

There is no end to the making of mathematical tricks, puzzles, and other 
recreations that employ playing cards. In this chapter we look at some new 
card problems and games, with emphasis on how they lead into significant 
areas of combinatorial theory. 

Consider the following combinatorial way of dramatizing an important 
number theorem. Remove all the cards of one suit (say, spades) from a deck 
and arrange them in serial order from ace to king. (The jack, queen, and king, 
respectively, represent 11,12, and 13.) Place them face down in a row with the 
ace at the left. The following turning procedure is now applied, starting at the 
left at each step and proceeding to the right: 

1. Turn over every card. 
2. Turn over every second card. (Cards 2,4 ,6 ,8 ,10,  and Q are turned face 

down.) 
3. Turn over every third card. 
4. Continue in this manner, turning every fourth card, every fifth card, 

and so on until you turn over only the last card. 

Inspect the row. Note that all the cards except the ace, the 4, and the 9 are 
face down as shown in Figure 34. These values happen to be square numbers. 
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Is this an accident? O r  is it an authentic hint of a general rule? A good 
classroom exercise is to prepare 100 small cards bearing numbers 1 through 
100, stand them with their backs out in serial order on a blackboard ledge and 
apply the turning ~rocedure. Sure enough, at the finish the only visible 
numbers will be the squares: 1,4,9,16,25,36,49,64,81, and 100. That is too 
large a sampling to be coincidental. The next step is to prove that no matter 
how large the deck, only squares survive the turning procedure. 

A simple   roof introduces one of the oldest and most fundamental of 
number theorems: A positive integer has an odd number of divisors (the 
divisors include 1 and the number itself), if and only if the number is a square. 
This is easy to see. Most divisors of a number come in pairs. Consider 72. The 
smallest divisor, 1, goes into the number 72 times, giving the pair 1 and 72. 
The next-larger divisor, 2, goes into the number 36 times, giving the pair 2 
and 36. Similarly, 72 = 3 X 24 = 4 X 18 = 6 X 12 = 8 X 9. The only divi- 
sor of a number that is not paired with a different number is a divisor that is a 
square root. Consequently, all nonsquares have an even number of divisors, 
and all squares have an odd number of divisors, 

How does this apply to the row of cards? Consider the eight of spades in the 
first card-turning example. Since 8 is not a square, it has an even number of 
divisors: 1 ,2 ,4 ,8 .  It will be turned four times: when you turn each card, each 
second card, each fourth card, and each eighth card. An even number of turns 
applied to a face-down card will leave that card face down. Since every 
nonsquare card will be turned an even number of times, it will be face down at 
the finish. The only cards that are turned an odd number of times and left face 
up are those with an odd number of divisors, namely the squares. Is there a 
better way to etch this basic number theorem in the memory of a high-school 
student than to have him witness such a demonstration? 

Let us see how cards can be used for modeling a combinatorial problem that 
D. H. Lehmer once described as follows. Mr. Smith manages a motel. It 
consists of n rooms in a straight row. There is no vacancy. Smith is a psycholo- 
gist who plans to study the effects of rearranging his guests in all possible ways. 
Every morning he gives them a new permutation. The weather is miserable, 
raining almost daily. T o  minimize his guests' discomfort, each daily rear- 
rangement is made by exchanging the occupants of two adjoining rooms. Is 
there a simple algorithm that will run through all possible arrangements by 
switching adjacent occupants at each step? 

The problem is easily modeled with cards. A row of spades, ace to king, 
corresponds to a thirteen-room motel. The number of permutations of n 
elements is factorial n. Our problem is to exchange two adjacent cards at each 
step and run through every possible permutation in just (n! - 1) steps. (We 



Figure 34 Card algorithm for generating squares 
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subtract 1 from n! because we begin with one permutation on the table.) Such 
an algorithm has important applications in computer science. Many problems 
require a computer in order to run through all permutations of n elements, and 
if this can be done by exchanging adjacent pairs, there is a significant reduction 
in computer time. 

It turns out that there is a simple, beautiful algorithm for doing this; it leads 
to the fastest-known way for a computer to permute n elements. Hugo Stein- 
haus, a Polish mathematician, was the first to discover it. It provides a solution 
for the abacus ~ r o b l e m  on page 49 of his One Hundred Problems in Elementary 
Mathematics, first published in Poland in 1958. In the early 1960's the proce- 
dure was independently rediscovered at almost the same time by H. F. Trotter 
and Selmer M. Johnson, each of whom published it separately. 

Solving the problem for thirteen cards would require 13! - 1 = 

6,227,020,799 steps (you can see why a fast computer algorithm is desirable); 
hence let us start with smaller sets. It is easy to find a solution for three cards, 
but four cards present difficulties. Besides, we want not just a solution for a 
specified number of elements but a general method that will apply to any 
number. 

With two cards (n = 2) the solution is trivial (see Figure 35A). Simply move 
the deuce from right to left. For n = 3 we list each of the preceding permuta- 
tions three times: 12,12,12; 21,21,21. The numeral 3 is now added to the list 
by a twisting procedure (see Figure 35B). The 3 starts at the right of the first 
permutation, weaves left through the series, pauses once at the left, then 
weaves back to end at the right of the final permutation. This generates the 
series 123, 132, 312, 321, 231, and 213. If YOU start with an ace, deuce, and 
trey on the table and run through the series, you will see that each permutation 
is derived from the preceding one by switching two adjacent cards. For n = 4 
each permutation of the series for n = 3 is repeated four times. (You always 
use n repetitions of the series for n - 1 .) The numeral 4 is then added, weaving 
it left and right as before (see Figure 35C). 

The algorithm can be defined by a nonrecursive formula, but the recursive 
procedure just explained is easier to understand. The trouble with defining a 
procedure for any n is that when the weaving card pauses at each side, the 
position of the pair to be switched varies in a curious way. The procedure 
given here is recursive, of course, because for each n, we must make use of the 
results obtained for ( n  - 1). It works for all higher n. For n = 5 we obtain 
5! = 120 permutations, beginning with 12345,12354,12534,15234,51234, 
51243,15243, . . . , and ending with 21345. Note that a switch of the first 
two numerals of the final permutation will give the first permutation. This 
holds for all n. The procedure is cyclic, restoring the original sequence in one 
more step. Note that after n!/2 steps the cards are in reverse order. 



Figure 35 Recursive algorithm for solving motel problem 
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I am indebted to Donald E. Knuth for this means of displaying the recursive 
procedure, as well as for the algorithm's history. In the forthcoming fourth 
volume of his great series on The Art ofComputer Programming, he will discuss 
the algorithm and show how its "inversion table" is equivalent to what is 
called a reflected Gray code with mixed bases. The problem is a special case of a 
more general "motel problem," which in turn is a special case ofwhat Lehmer 
calls the "traveling-burglar problem." 

A few years ago John Horton Conway of the University of Cambridge 
invented a series of card problems and games based on the technique of 
permuting a set of elements by reversing the order of subsets according to 
various rules. Take, for example, the thirteen spades from a deck, shuffle the 
packet and hold it face up in your left hand. Note the value of the uppermost 
card (we shall call it the top card) of the packet. Let us say it is a 9. Call the 
number out or to yourself, then with your right thumb slide nine cards off the 
packet one at a time into your right hand. This automatically reverses the 
order of the nine cards. Now put the nine-card packet on top of the cards in 
your left hand. A new card is face up on top. Note its value, call it out and 
repeat the same procedure. In other words, if n is the value of the top card, you 
always count off n cards, which reverses their order, and replace them face up 
on top. The game ends if an ace appears on top, because the ace produces a 
"one-loop" that consists in repeatedly counting off the ace and replacing it. 

Must the game always end with the call of an ace? Yes, although it may take 
quite a while. It is impossible to get into a loop before the ace is called. If the 
game continues long enough without the call of an ace, a king might eventu- 
ally be called. If this happens, however, the next reversal of cards puts the king 
on the bottom. Once the king is on the bottom, there is no way it can leave. As 
the game continues, the queen might eventually be called. If this happens, the 
queen goes to the twelfth position from the top, just above the king, and stays 
there. By mathematical induction the same thing must happen to the jack, 
then the 10 and so on (each card going to a position that corresponds with its 
value) until eventually, if not sooner, the ace is called and the game terminates. 
Indeed, each card can be called only once after the latest appearance of all 
higher cards. 

The general form of the game involves one or more packets of n cards each. 
It is called k-swops if the kth card from the top is called. The called number 
gives the number of cards to be counted and replaced on top. It is called k-drops 
if the same procedure is followed, with the reversed set going to the bottom. 

When there is only one packet and k equals 1 (the top card) and the counted 
cards go on top, Conway calls the game topswops. That is the game we have 
analyzed. The same game with the counted cards going to the bottom is called 
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topdrops. In topdrops the top card is called, the cards are counted, and the 
reversed set is placed on the bottom. Topdrops is less interesting than top- 
swops. You begin at once with a loop that may be long or short and that may or 
may not contain an ace. 

When there is one packet and k equals n (the bottom card), the game is 
botswops or botdrops, depending on whether the counted set goes on top or 
on the bottom. Botswops is boring. If you play with thirteen spades and the 
king is not on the bottom, you are immediately in a two-card loop. Suppose 
the bottom card is a 4. It stays there while you repeatedly reverse the four cards 
on top. If the king is at the bottom, it goes to the top, and you find yourself in a 
similar two-loop based on the new bottom card. 

Botdrops (call the bottom card, count, and put the reversed set on the 
bottom) is more interesting. If you play it for a while, Conway writes, you 
might convince yourself that it always loops in a KQKQKQ . . . sequence, 
but that is not always the case. O n  rare occasions other loops are possible. (Can 
you find one?) In this game, as in all the others, you start, of course, with a 
shuffled packet. 

When the game is extended to two or more players, each with a packet, it 
becomes much harder to analyze. For instance, suppose two players have 
packets of thirteen cards each. One has spades, the other hearts. They play 
topswops as follows. Each shuffles his packet. Player A calls his top card, then 
B counts that number off his packet and replaces the reversed cards on top of 
his packet. B now calls his top card, A counts and replaces the reversed cards on 
top of his packet. This continues with players alternating calls. 

It is a curious fact, reports Conway, that as soon as an ace is called, the calls 
go into a loop that starts with an ace, then a sequence, then an ace again (either 
the same ace or the other one), then the same sequence is repeated in reverse. 
For example, the first called ace might generate the following loop: 1 - 3 - 2 - 
6 - 4 - 1 - 4 - 6 - 2 - 3 - 1. Note that the sequence between the first two ace calls 
is the reverse of the sequence between t i e  second and third ace calls. It is an 
unproved conjecture (or was when I last heard from Conway) that in two- 
player topswops an ace is always called. It is not known if the game can 
conclude in a loop without an ace, although it is known that if a loop includes 
an ace, it includes it just twice. 

Let it not be supposed that these Conway card games are trivial. They deal 
with the theory of set permutations and not only may provide deep theorems 
but also may have a bearing on practical problems that arise in seemingly 
unrelated fields. 

I conclude with three unusual combinatorial card problems. The first is 
extremely difficult, the second is easy but elegant, and the third is tricky. 
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1. A Langford problem. In Chapter 5 of my Mathematical Magic Show 
(Knopf, 1977), I discussed a combinatorial problem, first posed by C. Dudley 
Langford, that could be worked on with a set of cards containing doublets of 
values from 1 to n. When the ~ r o b l e m  is extended to triplets, the smallest 
value of n for which a solution is known is 9. 

Here is the task. Remove from a deck all the cards of three suits that bear 
values of ace through 9. Try to arrange these twenty-seven cards in a single 
row to meet the following proviso. Between the first two cards of every value 
k there are exactly k cards, and between the second and third cards of every 
value k there also are exactly k cards. For instance, between the first and second 
7's there must be just seven cards, not counting the two 7's. Similarly, seven 
cards separate the second and third 7's. The rule applies to each value from 1 
through 9. 

2. A Silverman problem. David L. Silverman is the inventor of this puz- 
zle. Remove the spades and hearts from a deck. Put the spades face up in a row 
in serial order with the ace at the left and the king at the right. Place a heart 
card under each spade so that the sum of the two cards is a square number. 
Prove that the solution is unique. 

3. A Ransom problem. This comes to me through the courtesy of Tom 
Ransom, a Canadian amateur magician and puzzle collector. Here is how 
Ransom has been showing his puzzle to magician friends. Five cards are placed 
in a row as shown in Figure 36. All card backs, Ransom states correctly, are 
either colored or black. Are all the cards with colored backs jokers? 

The problem is not to answer the question but to determine the minimum 
number of cards that must be turned over in order to answer it. In other words, 
assuming any possible variation of the hidden card sides (each joker may have a 
black or a colored back, the card with the visible colored back may or may not 
be a joker and so on), how many cards must you turn over before you can 
answer the question: "Are all the cards with colored backs jokers?" 

It is a confusing problem and one that calls for careful reasoning. There is a 
surprise in the solution that is closely related to an old joke about three 
professors on a train in Scotland. Through the window they see a black sheep. 

Figure 36 Are all the cards with colored backs jokers? 



“How interesting,” says the astronomer. “All sheep in Scotland are black.”
“A totally unwarranted inference,” the physicist replies. “We can conclude

only that some sheep in Scotland are black.”
“Correction,” says the logician. “At least one sheep in Scotland is black on

at least one side.”

ANSWERS

The three combinatorial problems are answered as follows:
1. Cards 1 through 9, of three suits, are to be arranged in a row so that for

every card value k, just k cards are between the first and second cards of value
k and between the second and third cards of value k. Not counting reversals,
there are three solutions:

1, 8, 1, 9, 1, 5, 2, 6, 7, 2, 8, 5, 2, 9,
6, 4, 7, 5, 3, 8, 4, 6, 3, 9, 7, 4, 3

1, 9, 1, 2, 1, 8, 2, 4, 6, 2, 7, 9, 4, 5,
8, 6, 3, 4, 7, 5, 3, 9, 6, 8, 3, 5, 7

1, 9, 1, 6, 1, 8, 2, 5, 7, 2, 6, 9, 2, 5,
8, 4, 7, 6, 3, 5, 4, 9, 3, 8, 7, 4, 3

The third solution was found without computer aid in 1966 by Eugene,
Levine, now a mathematician at Adelphi University. It was published in 1968.
Levine proves that a solution for triplets exists only when n, the highest value
of a card, has a digital root of 1, 8, or 9 (that is, when n equals –1, 0, or 1,
modulo 9), and that 9 is the smallest n that has a solution. Levine found solu-
tions for the next higher cases of n = 10, 17, 18, and 19, and conjectured that
there are solutions for all higher values meeting his proviso.

D. P. Roselle and T. C. Thomasson, Jr., writing on the problem in 1971,
reported computer results that confirm there is no solution for n = 8, and
came up with the same solution for n = 9 that Levine found. An exhaustive
computer search for n = 9 and n = 10 was made by G. Baron, who reported
his results at a conference on combinatorics held in Hungary in 1969. He
found the three solutions for n = 9 and five solutions for n = 10. No solution
has yet been found for this problem if there are more than three duplicates
of each value.
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2. The solution to David L. Silverman's problem of pairing each spade 
with a heart so that the pair-sum is square is: 1 - 8, 2 -2, 3 -K, 4- Q, 5 -J, 
6- 10,7-9'8-1,9-7,lO-6,J-5, Q-4,K-3.  AsSilvermanobserves,9,10, 
andJmust be paired with 7,6, and 5. This establishes six pairings. Since the 6's 
have been used, 3 pairs only with K. Since the 5's have been used, 4 pairs only 
with Q. The remaining three gaps are filled in only one way, proving the 
solution's uniqueness. 

3. Tom Ransom's problem asked for the minimum number of cards, in a 
set of five, that must be turned over to answer the question: Are all colored- 
back cardsjokers? Letter the cards in Figure 36 from A through E. Obviously, 
D must be turned to see if it is a joker, and E must be turned to see if it has a 
colored back. This gives four possibilities: 

1. D is a joker, E has a black back. 
2. D is a joker, E has a colored back. 
3. D is not a joker, E has a black back. 
4. D is not a joker, E has a colored back. 

For cases 2,3, and 4 the answer to the question is no. N o  more cards need be 
turned. For case 1 the answer is yes, but it takes more thinking to realize that 
turning the other three cards cannot contradict this answer. B is irrelevant 
because it has a black back. Seeing the back of eitherjoker is also irrelevant. If a 
joker's back is black, it is not involved in the question. If it is colored, the 
answer is still yes. Most people staring at an actual row of cards have such an 
overwhelming desire to see the backs of thejokers that they usually answer: A, 
C, D, E. 

One might conclude, therefore, that turning D and E is sufficient to answer 
the question. It is not! Recall the story about the cautious logician who 
observed a black sheep in Scotland and concluded that at least one sheep in 
Scotland is black on at least one side? When someone thinks he has solved the 
problem, Ransom turns over card B to reveal that its other side is a colored 
back! This, ofcourse, contradicts ayes answer. The correct solution, therefore, 
is that card B as well as cards D and E must be turned. 

Ransom has a second "kicker," suggested by his friend P. Howard Lyons. So 
that a person working on the problem will not forget the exact phrasing of the 
question ("Are all colored-back cards jokers?"), Ransom writes it on a file card 
which is placed above the row of cards. This card also must be turned to 
determine whether its back is colored or black! 
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ADDENDUM 

The combinatorial playing-card problems produced memorable letters from 
readers who analyzed and extended the problems. Alan Hadsell and Stoddard 
Vandersteel together used a minicomputer to generalize David L. Silverman's 
problem. When the highest card value does not exceed 13, solutions exist only 
for n = 3,5,8,9,lO, 12, and 13, and each solution is unique. From 14 through 
31 all values of n have multiple solutions. They report that the number of 
solutions, beginning with n = 14, are 2,4,3,2,5,15,21,66,37,51,144,263, 
601, 1333,2119,2154,2189,3280,. . . . 

Angeloo Papaikonomou, a bioengineer at the Free University of Amster- 
dam, after exploring the general problem for squares, turned to the general 
problem when cubes are substituted for squares. He was surprised to find that 
for every solvable n the solution is unique. The series of solvable n's begins 7, 
19,26,37,44,56,63,  . . . . Papaikonomou found a simple recursive proce- 
dure that both gives this series and constructs the solutions. 

Roland Silver of San Cristobal, N.M., exploring botdrops for cycles, discov- 
ered why the game usually terminates in a king -queen loop. There are no 
other 2-cycles and none of 3 and 4. Although 5-cycles exist, the probability of 
entering one is low. For example, if the face-up packet, reading up from the 
bottom, starts with 10, J, 2 , 3  and has an ace on top, the ~ a c k e t  is in a botdrop 
5-loop. 

Herbert S. Wilf of the University of Pennsylvania reported a delightful 
discovery about topswops that provides a proof of the game's finiteness. A card 
is in "natural position" if its value is the same as its position in the packet. For 
example, if the face-up packet, reading down from the top, is 

there are five cards (2,5,9,10, Q) in natural position. Ifwe take these values as 
powers of two, we can create what I shall call the Wilf number: 22 + 2' + 
Z9 + 21° + 212 = 5668. After any move in topdrops the Wilf number must 
increase. 

"The reason that the number increases," Wilf writes, "is that the cards 
which were in natural position and which were too far down in the deck to be 
reached by the reversal operation will still be in natural position afterward. 
The fate of the cards which are involved in the reversal is less clear, except for 
one thing: the card which was on top before the move will be in natural 
position after the move, and its power oftwo is large enough to drown out any 
changes from cards above it. (A power of two is larger than the sum of all 
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earlier powers of two by exactly one unit, a fact which is the basis of binary 
counting.) 

"Since the numbers increase steadily but cannot exceed 16,382, it follows 
that the game must halt after at most that many moves. A slightly more careful 
study shows, in fact, that for a game with n cards, no more than 2"-' moves can 
take place." 

This raises an interesting unsolved question: What arrangement of the 
thirteen cards provides the longest possible game of topswops? 

A simpler four-card version of Tom Ransom's puzzle, without Ransom's 
joke of using what magicians call a double-back card, has been the object of 
research by psychologists. It is considered, for example, in The Psychology of 
Reasoning, by Peter Wason and Philip Johnson-Laird. 

Reaction to the disclosure that a card could be double-backed varied enor- 
mously. Jay Snyder began a letter: "Wait a minute! Hold it! Point of order! 
Not so fast! One moment please! Pull over, buddy." Stover sent a set of five 
taped-down cards to Wason at University College London for analysis. When 
Wason was later informed of what he would have found if he had pulled off 
the cards to check their undersides, he opened his next letter, "Mea culpa!" 

Several readers found the problem's wording ambiguous as to the meaning 
of "minimum number of cards" to be turned. The problem is to specify a 
minimum set of cards that, when they are reversed, will in all possible cases 
guarantee a correct answer to the question: Are all red-backed cards jokers? 
(The problem is best presented with cards that may have either red or blue 
backs.) If we do not care whether or not our answer is correct, obviously we 
can "answer" the question by turning no cards. In some cases turning one card 
will guarantee a correct answer. What we want is the smallest set that will 
provide a correct answer for all cases. 

James Weinrich has given me permission to reproduce here a letter he sent 
in December 1974: 

Dear Mr. Gardner, 
Here are third and fourth "kickers" regarding Ransom's ques- 

tion, "Are all the colored-back cards jokers?" 

3) The paperback American Heritage Dictionary (page 385) defines a 
joker as "an element in a situation that acts in an unexpected way." 
Clearly, a black-fronted card (B) that turns out to be red-backed is a 
joker by this definition. Accordingly: if B is not red-backed, it is 
irrelevant to the question; if it is red-backed, it is certainly an 
element acting in an unexpected way, and is thus a joker, but then 
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does not affect the answer as you explained for the other jokers. 
Thus it is not necessary to turn over B to know if all the red-backed 
cards are jokers. 

4) The same dictionary (page 1 10) defines a card as "an amusing or 
eccentric person." If Ransom's card B is indeed red-backed, then he 
has played an amusing trick, and thus himself qualifies as a card. 
Accordingly, he could be turned over (or at least around) to see if he 
has acquired a sunburn on his back. One might reason that Ransom 
is ajoker in any case, and thus it is not necessary to see if he has a red 
back to answer the question. However, Ransom is not ajoker if the 
black-fronted card B is a standard one; in that case it is necessary to 
check Ransom's back. 

Thus, the correct number of cards to turn is three or four: cards D 
and E in any case, card B (to see if Ransom is a joker), and Ransom 
(if B is not a joke card). 

More or less sincerely yours, 
JAMES D. WEINRICH 

P.S.: Is Ransom Caucasian? If not, it can be assumed he has a 
colored back, and it would not be necessary to turn him over if B 
were a joke card. Note that in this case, his back might be both 
colored and black at the same time . . . . 
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S E V E N  

~ e l o d ~ - M a  king Machines 

"Mathematics and music! The most 
glaring possible opposites of human 
thought! Yet connected, mutually 
sustained!" 

- HERMANN VON HELMHOLTZ, 
Popular Scientific Lectures 

There is a trivial sense in which any work of art is a combination of a finite 
number of discrete elements. Not only that, the precise combination of the 
elements can be expressed by a sequence of digits or, if you will, by one 
enormous number. 

Consider a poem. Assign distinct numbers to each letter of the alphabet, to 
each punctuation symbol, and so on. A certain digit, say zero, can be used to 
separate the numbers. It is obvious that one long string of digits can express the 
poem. If the books of a vast library contain every possible combination of 
words and punctuation marks, as they do in Jorge Luis Borges's famous story 
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"The Library of Babel," then somewhere in the collection is every poem ever 
written or that can be written. Imagine those poems coded as digital sequences 
and indexed. If one had enough time, billions on billions of years, one could 
locate any specified great poem. Are there algorithms by which one could find 
a great poem not yet written? 

Consider a painting. Rule the canvas into a matrix of minute cells. The 
precise color of each cell is easily coded by a number. Scanning the cells yields a 
chain of numbers that expresses the painting. Since numbers do not decay, a 
painting can be re-created as long as the number sequence is preserved. Future 
computers will be able to reproduce a painting more like the original than the 
original itself, since after a few decades the original will have physically 

- .  

deteriorated to some extent. If a vast art museum contains every combination 
of colored cells for matrixes not exceeding a certain size, somewhere in that 
monstrous museum will hang every picture ever painted or that can be 
painted. Are there algorithms by which a computer could search a list of the 
museum's code numbers and identify a sequence for a great painting not yet 
painted? 

Consider a symphony. It is a fantastically complex blend of discreteness and 
continuity; a violin or a slide trombone can move up and down the scale 
continuously, but a piano cannot produce quarter-tones. W e  know, however, 
from Fourier analysis that the entire sound of a symphony, from beginning to 
end, can be represented by a single curve on an oscilloscope. "This curve," 
wrote Sir James Jeans in Science andMusic (Dover, 1968), "is the symphony- 
neither more nor less, and the symphony will sound noble or tawdry, musical 
or harsh, refined or vulgar, according to the quality of this curve." O n  a 
long-playing record a symphony is actually represented by one long space 
curve. 

Because curves can be coded to any desired precision by numbers, a sym- 
phony, like a painting or a poem, can be quantized and expressed by a number 
chain. A vast library of computer tapes, recording all combinations of sym- 
phonic sounds, would contain every symphony ever written or that could be 
written. Are there algorithms by which a computer could scan the number 
sequences of such a library and pick out a great symphony not yet written? 

Such procedures would, of course, be so stupendously complex that man 
may never come close to formulating them, but that is not the point. Do they 
exist in principle? Is it worthwhile to look for bits and pieces of them? 
Consider one of the humblest of such aesthetic tasks, the search for rules that 
govern the invention of a simple melody. Is there a procedure by which a 
person or a computer can compose a pleasing tune, using no more than a set of 
combinatorial rules? 
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If we restrict the tune to a finite length and a finite number of pure tones and 
rhythms, the number of possible melodies is finite. John Stuart Mill, in his 
autobiography, recalls that as a young man he was once "seriously tormented 
by the thought of the exhaustibility of musical compositions." Suppose our 
tune is made up ofjust ten notes chosen from the set of eight notes in a single 
octave. The number of melodies is the same as the number of ten-letter words 
that can be formed with eight distinct letters, allowing duplications. It is 
81° = 1,073,741,824, and this without even considering varying rhythms 
which create, in effect, varying melodies. Most of these tunes will be dull (mi, 
mi, mi, mi, mi, mi, mi, mi, mi, mi for instance), but many will be extremely 
pleasing. Are there rules by which a computer or a person could pick out the 
pleasing combinations? 

Attempts to formulate such rules and embody them in a mechanical device 
for composing tunes have a curious history that began in 1650 when Athana- 
sius Kircher, a German Jesuit, published in Rome his Musurgia universalis sive 
ars magna consoni et dissoni (see Figure 37). Kircher was an ardent disciple of 
Ramon Lull, the Spanish medieval mystic whose Ars magna derived from the 
crazy notion that significant new knowledge could be obtained in almost 
every field simply by exploring all combinations of a small number of basic 
elements. It was natural that Kircher, who later wrote a 500-page elaboration 
of Lull's "great art," would view musical composition as a combinatorial 
problem. In his music book, he describes a Lullian technique of creating 
polyphony by sliding columns alongside one another, as with Napier's bones, 
and reading off rows to obtain various permutations and combinations. Like 
all of Kircher's huge tomes, the book is a fantastic mix of valuable information 
and total nonsense, illustrated with elaborate engravings of vocal cords, bones - - 
in the ears of various animals, birds and their songs, musical instruments, 
mechanical details of music boxes, water-operated organ pipes with animated 
figures of animals and people, and hundreds of other curious things. 

The Lullian device described by Kircher was actually built, circa 1670, for 
the diarist Samuel Pepys, who owned a copy of ~i rdher ' s  music book and 
much admired it. The original machine, called "musarithmica mirifica," is in 
the Pepys Museum at Pepys's alma mater, Magdalene College, Cambridge. 

During the early eighteenth century many German music scholars became 
interested in mechanical methods of composition. Lorenz Christoph Mizler 
wrote a book in 1739 describing a system that produced figured bass for 
baroque ensemble music. In 1757 Bach's pupil, Johann Philipp Kirnberger, 
published in Berlin his Ever-ready Composer ofPolonaises and Minuets, using a die 
for randomizing certain choices. In 1783 another book by Kirnberger ex- 
tended his methods to symphonies and other forms of music. 



Figure 37 Frontispiece of Kircher's Musurgia universalis (1650). The artist was J. Paul 
Schor. Here is how the picture is described in Athanasius Kircher: A Renaissance Man and 
the Questfor Lost Knowledge, by Joscelyn Godwin (Thames and Hudson, Ltd., 1979): 
"The symbol of the Trinity sheds its rays on the nine choirs of angels, who sing a 
36-part canon (by Romano Micheli), and thence on the earth. The terrestrial sphere is 
shown encircled by the Zodiac and surmounted by Musica, who holds Apollo's lyre 
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Toward the close of the eighteenth century the practice of generating 
melodies with the aid of tables and randomizers such as dice or teetoturns 
became a popular pastime. Maximilian Stadler, an Austrian composer, pub- 
lished in 1779 a set of musical bars and tables for producing minuets and trios 
with the help of dice. At about the same time, a London music publisher, 
Welcker, issued a "tabular system whereby any person, without the least 
knowledge of music, may compose ten thousand minuets in the most pleasing 
and correct manner." Similar anonymous works were falsely attributed to 
well-known composers such as C. P. E. Bach (son of Johann Sebastian Bach) 
and Joseph Haydn. The "Haydn" work, "Gioco filarmonico" ("Philhar- 
monic Joke"), Naples, 1790, was discovered by the Glasgow mathematician 
Thomas H. O'Beirne to be a plagiarism. Its bars and tables are identical with 
Stadler's. 

The most popular work explaining how a pair of dice can be used "to 
compose without the least knowledge of music" as many German waltzes as 
one pleases was first published in Amsterdam and in Berlin in 1792, a year after 
Mozart's death. The work was attributed to Mozart. Most Mozart scholars say 
it is spurious, although Mozart was fond of mathematical puzzles and did leave 
handwritten notes showing his interest in musical permutations. (The same 
pamphlet was issued in Bonn a year later, with a similar work, also attributed 
to Mozart, for dice composition of country dances. The contredanses pamph- 
let was reprinted in 1957 by Heuwekemeijer in Amsterdam.) 

Mozart's Musikalisches Wiirfelspiel, as the waltz pamphlet is usually called, 
has been reprinted many times in many languages. In 1806 it appeared in 
London as Mozart's Musical Game, Fitted in an Elegant Box, Showing by Easy 
System How to Compose an Unlimited Number of Waltzes, Rondos, Hornpipes and 
Reels. In New York in 1941 the Hungarian composer and concert pianist 
Alexander Laszlo brought it out under the title The Dice Composer, orchestrat- 
ing the music so that it could be played by chamber groups and orchestras. The 
system popped up again in West Germany in 1956 in a score published by B. 
Schott. Photocopies of Schott's charts and musical bars appear in the instruc- 
tion booklet for The Melody Dicer, issued early in 1974 by Carousel Publishing 

and the pan-pipes of Marsyas. In the landscape are seen dancing mermaids and satyrs, a 
shepherd demonstrating an echo, and Pegasus, the winged horse of the Muses. O n  the 
left is Pythagoras, the legendary father of musical theory. He points with one hand to 
his famous theorem, and with the other to the blacksmiths whose hammers, ringing on 
the anvil, first led him to discover the relation of tone to weight. O n  the right is a 
muse (Polymnia?) with a bird-perched on her head-possibly one of the nine daughters 
of Pierus, who for their presumption in attempting to rival the Muses were turned into 
birds. These figures are surrounded respectively by antique and modern instruments." 
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Corporation, Brighton, Mass. This boxed set also includes a pair of dice and 
blank sheets of music paper. 

The "Mozart" system consists of a set of short measures numbered 1 
through 176. The two dice are thrown sixteen times. With the aid of a chart 
listing eleven numbers in each of eight columns, the first eight throws deter- 
mine the first eight bars of the waltz. A second chart is used for the second 
eight throws that complete the sixteen-bar piece. The charts are constructed 
so that the waltz opens with the tonic or keynote, modulates to the dominant, 
then finds its way back to the tonic on its final note. Because all bars listed in 
the eighth column of each chart are alike, the eleven choices (sums 2 through 
12 on the dice) are available for only fourteen bars. This allows the system to 
produce 11 l4 waltzes, all with a distinct Mozartean flavor. The number is so 
large that any waltz you generate with the dice and actually play is almost 
certainly a waltz never heard before. If you fail to preserve it, it will be a waltz 
that will probably never be heard again. 

The first commercial recording of "Mozart" dice pieces was made by 
O'Beirne. Both the randomizing of the bars and the actual playing of the 
melodies was done by Solidac, a small and slow experimental computer de- 
signed and built between 1959 and 1964 by the Glasgow firm of Barr and 
Stroud, where O'Beirne was then chief mathematician. It was the first com- 
puter built in Scotland. O'Beirne programmed Solidac to play the pieces in 
clarinetlike tones, and a long-playing recording of selected waltzes and con- 
tredanses was issued by Barr and Stroud in 1967. (This recording is no longer 
available.) O'Beirne is the author of an excellent book on mathematical 
recreations, Puzzles and Paradoxes (Oxford University Press, 1965). He has 
been of invaluable help in the preparation of this account. 

Other methods of producing tunes mechanically were invented in the early 
19th century. Antonio Calegari, an Italian composer, used two dice for com- 
posing pieces for the pianoforte and harp. His book on the system was pub- 
lished in Venice in 180 1, and later in a French translation. The Melographicon, 
an anonymous and undated book issued in London about 1805, is subtitled: "A 
new musical work, by which an interminable number of melodies may be 
produced, and young people who have a taste for poetry enabled to set their 
verses to music for the voice and pianoforte, without the necessity of a scien- 
tific knowledge of the art." The book has four parts, each providing music for 
poetry with a certain meter and rhyme scheme. Dice are not used. One simply 
selects any bar from group A, any from group B, and so on to the last letter of 
the alphabet for that section. 

A photograph of a boxed dice game appears in Plate 42 of The Oxford 
Companion to Music, but without mention of date, inventor, or place of publi- 
cation. Apparently, it uses thirty-two dice, their sides marked to indicate 
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tones, intervals, chords, modulations, and so on. There also are ivory men 
whose purpose, the caption reads, is "difficult to fathom." 

In 1822 a machine called the Kaleidacousticon was advertised in a Boston 
music magazine, The Euterpiad. By shuffling cards it could compose 214 
million waltzes. The Componium, a pipe organ that played its own composi- 
tions, was invented by M. Winkel of Amsterdam and created a sensation when 
it was exhibited in Paris in 1824. Listeners could not believe that the machine 
actually constructed the melodies it played. Scientists from the French Acad- 
emy investigated. 

"When this instrument has received a varied theme," their report stated, 
"which the inventor has had time to fix by a process of his own, it decomposes 
the variations of itself, and reproduces their different parts in all the orders of 
possible permutation . . . . None of the airs which it varies lasts above a 
minute; could it be supposed that but one of these airs was played without 
interruption, yet, the principle of variability which it possesses, it might, 
without ever resuming precisely the same combination, continue to 
play . . . during so immense a series of ages that, though figures might be 
brought to express them, common language could not." 

The report, endorsed by physicist Jean Baptiste Biot, appeared in a British 
musical journal (The Harmonicon 2, 1824, pp. 40 - 41). Winkel's machine 
inspired a Vienna inventor, Baron J. Giuliani, to build a similar device, the 
construction of which is given in detail on pages 198-200 of the same 
volume. 

In 1865, a composing system called the Quadrille Melodist, invented by 
J. Clinton, was advertised in The Euterpiad. By shuffling a set of composing 
cards, a pianist at a quadrille party could "keep the evening's pleasure going by 
means of a modest provision of 428,000,000 quadrilles." 

Joseph Schillinger, a Columbia University mathematician who died in 
1943, published his mathematical system of musical composition in a booklet, 
Kaleidophone, in 1940. George Gershwin is said to have used the system in 
writing Porgy and Bess. In 1940 Heitor Villa-Lobos, using the system, trans- 
lated a silhouette of New York City's skyline into a piano composition (see 
Figure 38). The Schillinger System ofMusical Composition is a two-volume work 
by L. Dowling and A. Shaw, published by Carl Fischer in 1941. A footnote on 
page 673 of Schillinger's eccentric opus The Mathematical Basis of the Arts 
(Philosophical Library, 1948) says that he left plans for music-composing 
machines, protected by patents, but nothing is said about their construction. 

In the 1950s, information theory was applied to musical composition by 
J. R. Pierce and others. In a pioneering article "Information Theory and 
Melody," chemist Richard C. Pinkerton included a graph which he called the 
"banal tune-maker." By flipping a coin to determine paths along the network, 
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THE s x n m  HAS m OWN MUSICAL PATIERN TRANSLATED 
FROM SILHOUElTE TO MUSIC NO= WITH THEHELP OF 

THE SCHllllNGER SYSTEM OF MUSICAL COMPOSITION 
Figure 38 New York skyline translated into music by Villa-Lobos, who used the 
Schillinger system 

one can compose simple nursery tunes. Most of them are monotonous, but 
hardly more so, Pinkerton reminds us, than "A Tisket, a Tasket." 

During the 1960s and early 1970s the proliferation of computers and the 
development of sophisticated electronic tone synthesizers opened a new era in 
machine composition of music. It is now possible to write computer programs 
that go far beyond the crude devices of earlier days. Suppose one wishes to 
compose a melody in imitation of one by Chopin. A computer analysis is made 
of all Chopin melodies so that the computer has in its memory a set of 
"transition probabilities." These give the probability that any set of one, two, 
three, or more notes in a Chopin melody is followed by any other note. Of 
course, one must also take into account the type of melody one wishes to 
compose, the rhythms, the position of each note within the melody, the 
overall pattern, and other things. In brief, the computer makes random 
choices within a specified general structure, but these choices are subject to 
rules and weighted by Chopin's transition preferences. The result is a "Mar- 
koff chain" melody, undistinguished but nevertheless sounding curiously like 
Chopin. The computer can quickly dash off several hundred such pieces, from 
which the most pleasing may be selected. 
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There is now a rapidly growing literature on computer composition, not 
only of music in traditional styles but also music that takes full advantage of 
the computer's ability to synthesize weird sounds that resemble none of the 
sounds made by familiar instruments. Microtones, strange timbres, unbeliev- 
ably complex rhythms, and harmonics are no problem. The computer is a 
universal musical instrument. In principle, it can produce any kind of sound 
the human ear is capable of hearing. Moreover, a computer can be pro- 
grammed to play one of its own compositions at the same time it is com- 
posing it. 

How can we sum up? Computers certainly can compose mediocre music, 
frigid and forgettable, even though the music has the flavor of a great com- 
poser. No one, however, has yet found an algorithm for producing even a 
simple melody that will be as pleasing to most people of a culture as one of 
their traditional popular songs. W e  simply do not know what magic takes 
dace inside the brain of a comDoser when he creates a su~erior  tune. W e  do 

I 

not even know to what extent a tune's merit is bound up with cultural 
conditioning or even with hereditary traits. About all that can be said is that a 
good melody is a mixture of predictable patterns and elements of surprise. 
What the proportions are and how the mixture is achieved, however, still 
eludes everybody, including composers. 

O'Beirne has called my attention to how closely some systems of musical 
composition resemble the buzz-phrase generator.(ree ~ i ~ u r e  39). This is a 
give-away of Honeywell Incorporated. Pick at random any four-digit num- 
ber, such as 8751, then read off phrase 8 of module A, phrase 7 of module B, 
and so on. The result is a SIMP (Simplified Integrated Modular Prose) sentence. 
"Add a few more four-digit numbers," the instructions say, "to make a SIMP 

paragraph. After you have mastered the basic technique, you can realize the 
full potential of SIMP by arranging the modules in DACB order, BACD order, 
or ADCB order. In these advanced configurations, some additional commas 
may be required." 

SIMP sounds very much like authentic technical prose, but on closer inspec- 
tion one discovers that something is lacking. Computer-made melodies are 
perhaps less inane, closer to the random abstract art of a kaleidoscope, but still 
something essential (nobody knows what) is missing. Indeed, a !good simple 
tune is much harder to compose than an orchestral piece in the extreme 
avant-garde manner, so loaded with randomness and dissonance that one 
hesitates to say, as Mark Twain (or was it Bill Nye?) said of Wagner's music: It 
is better than it sounds. 

When a computer generates a melody that becomes as popular as (think of 
the title of your favorite song), you will know that a colossal breakthrough has 
been made. Will it ever occur? If so, when? Experts disagree on the answers as 
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In particular, 
On the other hand, 
However, 
Similarly, 
As a resultant implication, 
In this regard, 
Based on integral subsystem 
considerations, 
For example, 
Thus, 
In respect to specific goals, 

SIMP table A 

1. a large portion of the interface 
coordination communication. 

2. a constant flow of effective information 
3. the characterization of specific criteria 
4. initiation of critical subsystem 

development 
5. the fully integrated test program 
6. the product configuration baseline 
7. any associated supporting element 
8. the incorporation of additional mission 

constraints 
9. the independent functional principle 
0. a primary interrelationship between 

subsystem and/or subsystem technologies 

SIMP table B 

Figure 39 Honeywell's buzz-phrase generator for writing Simplified Integrated 
Modular Prose (SIMP) 

much as they do on if and when a computer will write a great poem, paint a 
great picture, or play grand-master chess. 

ADDENDUM 

Carousel, the company that brought out Mozart's The Melody Dicer, later 
issued a similar set called The Scottloplin Melody Dicer. Using the same system 
of dice and cards, one can compose endless rags of the Scott Joplin variety. 

In 1977 a curious 284-page book titled The Directory of Tunes and Musical 
Themes, by Denys Parsons, was published in England by the mathematician G. 
Spencer Brown. Parsons discovered that almost every melody can be identi- 
fied by a ridiculously simple method. Put down an asterisk for the first note. If 
the second note is higher, write down U for "up." If lower, write D for 
"down." If the same, use R for "repeat." Continue with succeeding notes 
until you have a sequence of up to sixteen letters. This is almost always 
sufficient to identify the melody. For example *UDDUUUU is enough to key 
"White Christmas." The book lists alphabetically in two sections, popular 
and classical, some 15,000 different sequences followed by the title of the 
work, its composer, and the date. 
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SIMP table C 

1. must utilize and be functionally 
interwoven with 

2. maximizes the probability of project 
success and minimizes the cost and 
time required for 

3. adds explicit performance limits to 
4. necessitates that urgent consideration 

be applied to 
5. requires considerable systems analysis 

and trade off studies to amve at 
6. is further compounded, when taking 

into account 
7. presents extremely interesting 

lenges to 
8. recognizes the importance of other 

systems and the necessity for 
9. effects a significant implementation of 
0. adds ovemding performance 

constraints to 

SIMP table D 

1. the sophisticated hardware 
2. the anticipated fourth generation 

equipment 
3. the subsystem compatibility testing 
4. the structural design, based on 

system engineering concepts 
5. the preliminary qualification limit 
6. the evolution of specifications over 

a given time period 
7. the philosophy ofcommonality and 

standardization 
8. the greater fight-worthiness concept 
9. any discrete configuration mode 

The idea behind the buzz-phrase generator-random selection of words 
and phrases to create prose or poetry- is an old idea. Rational Recreations, a 
four-volume work by W. Hooper (the fourth edition was published in Lon- 
don in 1794), has a section in Volume 2 on how to use dice for composing 
Latin verse. The technique surely is much older. Similar randomizing is used 
in modern computer programs that generate "poems" and various kinds of 
imitation prose. 

First-grade teachers, who call it "stringing," use the technique for teaching 
reading. Children are given a simple pattern sentence with blanks into which 
they insert words. The New York Times Book Review (June 4,  1978), printed 
Randolph Hogan's list of buzzwords that enable anyone to write impressive 
literary criticism. (Someone should do a similar list, perhaps already has, for art 
critics.) Mad Magazine (October 1974) featured Frank Jacobs's twelve columns 
of buzzwords and phrases for writing impeachment newspaper stories. Tom 
Koch (Mad Magazine, March 1982) gave a similar technique for stand-up 
comics. Jacobs returned in Mad (September 1982) with another twelve col- 
umns of words and phrases for writing the lyrics of country-western songs. 

For Richard Voss's application of Benoit Mandelbrot's concept of fractals to 
the computer composition of music, see my Scientijc American column for 
April 1978, and the references cited. 
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E I G H T  

Anarnorphic Art 

Anamorphic art is a term unfamiliar to most people; indeed, it is unfamiliar to 
most artists. From the Greek ana (again) and m o r p h ~  (form), it refers to realistic 
art so monstrously distorted by a projective transformation that it is difficult to 
recognize. The distortion can be "formed again'' by viewing it on a slant or as a 
reflection in a suitable mirror. The mirror, called an anamorphoscope, is 
usually a polished cylinder or cone. The appearance of the undistorted reflec- 
tion is so magical and surprising that few people seeing it for the first time fail 
to exclaim in wonder. 

At this point the reader may want to pause to make the best cylindrical 
anamorphoscope he can in order to view some of the anamorphic art repro- 
duced here and on the cover. For the best results, the cylinder should have a 
base that fits the circle in the picture. Acceptable results, however, can be 
obtained with a cylinder that has a larger or a smaller base. A small juice or 
soup can with the label removed and the residual glue on the can washed off 
may do the trick. A transparent cylindrical bottle with a cylinder of black 
paper inserted into it works fairly well. Chromium-plated tubing, available in 
some hardware stores for plumbing fixtures, is even better. Aluminum foil is 
not smooth and stiff enough, but silvered Mylar paper, taped around a cylinder 
of the right size, makes an excellent anamorphoscope. The reader is urged to 
get several square feet of this material (it is sold in art-supply and hobby stores), 



98 CHAPTER EIGHT 

not only for cylindrical viewing, but also because it can be used, as will be 
explained, to make a conical anamorphoscope. 

It was in the early Renaissance that European painters, who were just 
beginning to master perspective, became fascinated by the simplest kind of 
anamorphic art: stretched pictures that are seen correctly when viewed on a 
slant. ~ i l e  first known examples are in Leonardo da Vinci's notebooks; this is 
not surprising, because Leonardo was one of the earliest contributors to the 
geometry of perspective. Surfaces viewed on a slant are, of course, anamorphi- 
cally distorted even though we are usually not aware of it. A door seen from a 
certain angle is a trapezoid, but our brain, conditioned by experience, per- 
ceives it as a tilted rectangle. When people who are not used to television see a 
television screen from the side, the images appear to be too skinny. The rest of 
us have learned to correct for this bias so well that squeezed images on 
television seem normal. When the Renaissance painters discovered how to 
transform flat shapes to give a depth illusion to the canvas, they discovered 
simultaneously how to do it in reverse. A picture stretched according to the 
same rules of perspective becomes a grotesque form. 

Hans Holbein's painting The Ambassadors (1533) contains a famous exam- 
ple of anamorphic art (see Figure 40). You can see the stretched shape at the 
bottom of the painting normally by closing one eye and slanting the page away 
from you, with the lower left corner of the page pointing toward your open 
eye and about six inches from it. Another way to see the skull is to place the 
edge of a flat mirror about three inches from the lower left corner and to look 
into the mirror with both eyes while tipping it until the skull appears normal. 
Holbein's painting was probably intended to hang near the top of a stairway so 
that people going up would be startled by the skull. 

Another slant picture is an old newspaper puzzle by Sam Loyd (see Figure 
41). It has a concealed portrait of the mature George Washington. Can you 
find it? (A second puzzle consists in dividing the square Washington pie into 
six square pieces, not necessarily the same size.) Slant pictures of this kind 
occasionally appear in children's books and on advertising premiums. Some- 
times, printing is stretched out so it can be read only by slanting the page. This 
technique is often used for the word STOP on streets so that the letters appear 
normal to a driver approaching the intersection. 

The geometric technique for drawing slant pictures was explained in detail 
in the first major treatise on anamorphic art: La Perspective Curieuse, by Jean 
Franqois Niceron (Paris, 1638). The picture is first ruled into square cells. The 
matrix is stretched to a trapezoid, then the artist copies the picture by filling in 
the trapezoidal cells, stretching the contents of each cell as accurately as he can 
to match its corresponding cell on the original picture. The finer the matrix, 
the more accurate the copy. 
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Figure 40 The Ambassadors, a slant anamorphic painting by Hans Holbein 

The exact shape of the trapezoidal matrix depends on the position of the eye 
when it sees the shape as a normal square. The full three-dimensional structure 
is complex, but it turns out that there is a simple way to construct the trape- 
zoid, given the desired position of the eye. Consider a square of side 8 ruled 
into 64 square-inch cells. We want to distort it so that it will appear normal 
when the eye is 25 units from the midpoint of the picture's top edge and seven 
units above the plane (see Figure 42). The construction is as follows. XY is the 
square's width. FB, on the perpendicular bisector of XY, is 25 units. BE, 
perpendicular to FB, is 7 units. Draw XB, YB, and YE. This determines CD, 
the trapezoid's bottom edge. Other lines from B andE to the unit marks onXY 
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Figure 4 1  A Sam Loyd puzzle with a hidden anamorphic picture 

determine the lines to XY that complete the 64 trapezoidal cells. Neither E 
nor B indicates the eye's position. The eye is 7 units above the horizontal plane 
of the paper. A perpendicular dropped from the eye to the plane intersects FB 
at point G. The construction assumes that G is at least 8 units from F. 

Another way to draw the picture is to close one eye, view the paper on a bias, 
and then draw the picture so that it looks normal. This is better than trying to 
do it with a mirror, because in the mirror your hand moves along one coordi- 
nate in a direction opposite to the way it moves on the actual sheet, and your 
reflexes find that hard to manage. A simple photographic method of making 
slant pictures is to project the picture (with an enlarger or a slide projector) 
onto enlarger paper so that the light strikes the paper at the angle intended for 
viewing. 

Although there is no evidence that the ancient Greeks played with anamor- 
phic pictures, they sometimes deformed the columns of temples to correct the 
distortion perceived by someone near the front of the building. For similar 
reasons, Renaissance painters occasionally deformed murals so that viewers 
looking up at them would see them with less distortion. Slant pictures were 
sometimes concealed in paintings or stretched along the side of a long corridor 
to be viewed from an entrance or an exit. Another popular practice was to put 
slant pictures inside boxes with a peephole at one end for viewing the picture 
at the proper angle. 
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Anamorphic paintings for cylindrical and conical mirrors were fashionable 
toys in both Europe and the Orient during the seventeenth and eighteenth 
centuries. They were usually done by anonymous artists and were sold with 
handsomely made anamorphoscopes. Occasionally the pictures carried mes- 
sages of political protest; at times, they were pornographic or scatological. 
Several examples of erotic anamorphic pictures appear in ChineseErotic Art, by 
Michel Beurdeley et al. (Charles E. Tuttle Co., 1969). This early anamorphic 
art is now a collector's item. In December 1973 a set of ten oil paintines, for 
both cylinders and cones, from eighteenth-century France was sold at a Soth- 
eby Parke-Bernet auction in New York for $10,800, which is a bargain in 
view of today's prices. Herbert Tannenbaum, a New York art dealer, had 
found the paintings in 1939 in a curiosity shop in Amsterdam and had bought 
them without even knowing what they were. One of these paintings is shown 
in Figure 43. 

Figure 44 produces the ten of hearts when viewed in a cylinder. 
T o  make a conical anamorphoscope, cut a circular disk of the proper size 

from silvered Mylar, cut a radius, overlap the cut edges, and then glue or tape 
the overlapping edges in place. For the illustration in Figure 45, designed for 
conical viewing, the radius of the disk that makes a cone of the right propor- 

I 
2 5 * 

Figure 42 Geometric method of making slant anamorphic pictures 
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1 Figure 43 With a Tender Little Song, a cylindrical anamorphic painting from the 
Tannenbaum Collection 
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Figure 44 Cylindrical anamorphic picture 

tions is about 1 inch. Adjust the overlap until the base of the cone fits the inner 
circle on the picture. Place the cone on this circle and view directly from above 
with one eye. The restored picture is small and circular, completely within the 
circumference of the cone. If you press on the apex of the cone with a fingertip 
or a paper clip, it will make the cone more rigid and produce a better picture. 
For ideal results, you need a solid conical mirror made with great accuracy. 

As with slant pictures, there are three ways to deform a picture for cylindri- 
cal or conical viewing. The geometric procedures, reproduced from the Ni- 
ceron treatise cited above, are shown in Figures 46 and 47. The methods for an 
exact construction of the distorted matrix are complicated; interested readers 
can do no better than to consult the Niceron book for details. 

Note how the conical reflection literally turns a picture inside out. Point A, 
at the center of the picture in Figure 47, becomes the circumference of the 
distorted drawing, and the original circumference becomes the inner circle of 
the distortion. 

When Salvador Dali made a set of erotic anamorphic paintings (prints were 
sold in Switzerland with a cylindrical anamorphoscope), he simply looked 
into the cylinder while he painted on the surface under it. That is not easy, 
because in the mirror your hand motion is reversed. You see what you are 
doing right side up, but your hand must paint the picture upside down. 

One can make crude anamorphic photographic prints by wrapping a nega- 
tive halfway around a transparent cylinder and by sending slanting light 
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Figure 45 Venus and Adonis, a conical anamorphic painting. Photograph O Arnold 
Newman 

through the cylinder from a point source outside and behind the cylinder to 
project the picture onto enlarging paper under the cylinder. More accurate 
prints are made by projecting the picture onto the side of an accurately made 
cylindrical mirror so that it reflects to the enlarging paper (see Figure 48). One 
should use an enlarger or a 35-millimeter slide projector with a diaphragm at 
the lens, and stop down the lens until the image is sharp on the easel. All light 
from the enlarger that does not fall directly on the cylinder should be blocked 
off by black cardboard with a rectangular hole. Conical prints are made in 
similar fashion. The mirror cone should be large (about 6 inches in diameter). 
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The picture is projected straight down on top of the cone through a circular 
hole in black cardboard to block off extraneous light. 

The term anamorphic is used by photographers for any lens that stretches or 
compresses an image along one coordinate, as well as for the deformed images 
it produces. In 1953, Twentieth Century-Fox introduced the wide screen 
with its motion picture TheRobe. Anamorphic lenses squeezed the wide image 
onto standard 35-mm. film, then anamorphic lenses in the projector stretched 
the image back to fit the wide screen. Most motion pictu;es today are taken 
and projected with sophisticated anamorphic lens systems. Similar systems 
adapt wide-screen motion pictures to videotape. 

Psychologists who study perception have experimented with three-dimen- 
sional anamorphic models of chairs, tables, and other objects. The deformed 
models appear to be normal when seen from a certain angle. The Ames room is 
a radically distorted room that seems to be normal when viewed through a - 
hole in the wall. A person in the room appears to grow or shrink when he or 
she moves from one part of the room to another (see "Experiments in Percep- 
tion," by W. H. Ittelson and F. P. Kilpatrick; Scientific American, August 

Figure 46 Jean Franqois Niceron's method of drawing cylindrical anamorphic pictures 
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Figure 47 Niceron's method of drawing conical anamorphic pictures 

1951). Seventeenth-century architects did not discover the Ames room, but 
they did play games with false perspective. The most startling example, which 
can still be seen in the Palazzo Spada in Rome, is an anamorphic arcade 
designed by Francesco Borromini about 1638. You seem to be looking down a 
longcorridor at a large statue beyond the exit. Actually, the deformedcorridor 
is only 28 feet long, and the statue is 3 feet high. The illusion was created by 
making the entrance 19 feet high and 10 feet wide and the exit only 8 feet high 
and 31/3 feet wide (a trick, by the way, long familiar to designers of equipment 
for stage magicians). 

There are many other forms of flat anamorphic art: pictures to be reflected 
in spheres, in properly   laced n-sided and other polyhedrons, and 
pictures to be seen through various kinds of distorting lenses. The wavy 
mirrors in fun houses produce anamorphic images. What is a good caricature 
if not a complex set of anamorphic distortions that our mind sees as more like 
the person than the actual person? And there are extreme ways to transform a 
picture and to restore it again (a hologram, for instance, or the broadcasting of 
a television image), but the term anamorphic is best confined to coordinate 

- .  

transformations, particularly of the three types we have considered. Map 
makers do not use the term anamorphic, but the many ways in which the 
earth's surface is projected on the plane-cylindrically, conically, and 
othenvise- are coordinate transformations closely related to anamorphic art. 
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Botanists apply the word anamorphic to radical changes that certain plants 
undergo when they are grown in different environments. Zoologists have 
used the term for the evolutionary modifications of animal forms. D'Arcy 
Wentworth Thompson's classic work On Growth  and Form (Cambridge Uni- 
versity Press, 1961) has a chapter filled with diagrams showing animal species 
that differ from one another by anamorphic distortions so much like the types 
discussed here that if you view, say, one species of fish on a slant or in a 
cylindrical mirror, it becomes identical with another species. Similarly, a 
profile of the human skull, mildly anamorphosed, becomes the skull of a 
chimpanzee or a baboon. 

The ability of our visual system to correct anamorphic distortion suggests 
that vision is concerned more with topologically invariant properties than 

Figure 48 Cylindrical anamorphic photograph by Alan Fontaine 
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with Euclidean ones. The visual system not only utilizes the upside-down 
images on the two retinas in such a way as to provide a right-side-up impres- 
sion of a three-dimensional world but also corrects for anamorphic distortion 
by irregular lenses and corneas. A person with marked astigmatism, fitted for 
the first time with glasses, perceives the world as being deformed because his 
brain is still correcting for the old distortions. It may take weeks before he sees 
the world normally again. Experiments have been conducted in which the 
subject wears special glasses that produce extreme topological transforma- 
tions. After a few weeks and headaches, the world begins to look normal once 
again. When the glasses are removed, the world looks distorted, although 
fortunately only for a short time. 

Hamlet advised some actors to hold the mirror up to nature. Is the mirror of 
a great play, novel, painting, or motion picture a distorting mirror or is it a 
magic anamorphoscope that gives pleasing form to an ugly, shapeless world? 
Are philosophical systems and religions, even the views of crazy little cults, 
anamorphic distortions of truth or are they, too, anamorphoscopes designed to 
give meaning to a meaningless reality? "It was to correct their anamorphosis 
of the Deity," wrote Thomas ~efferson, "that Jesus preached." 

T o  the outsider, a system of beliefs appears to twist truth like a grotesque 
anamor~hic painting. T o  the insider, who sees the world in the specially 
shaped mirror of his perceptual system, everything appears to be normal. Is 
there a metaphysical system that reflects truth like a flat, untipped mirror? 
Alas, every true believer is convinced his own anamorphoscope is precisely 
that. 

ANSWERS 

Although it has nothing to do with anamorphic art, Figure 41 contains a 
dissection puzzle that I did not answer in my column, but will do so here. It is 
one of Loyd's jokes. One assumes the square is to be divided along the lattice 
lines. Here is how Loyd answered the problem in his famous Cyclopedia of 
5,000 Puzzles (Morningside Press, 19 14). "The simplest way to cut a square 
into six squares is to mark it off into nine squares, then the largest one will be 
made up of four squares, and there will be five more little ones." 

It is not only the simplest, it is the only solution. For a discussion of the 
general problem of dissecting squares into smaller squares, not necessarily 
alike, see the chapter on "Mrs. Perkins' Quilt" in my Mathematical Carnival 
(Knopf, 1975). 
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N I N E  

T h e  Rubber Rope and 
Other  Pro blerns 

1. THE RUBBER ROPE 

A worm is at one end of a rubber rope that can be stretched indefinitely (see 
Figure 49). Initially the rope is one kilometer long. The worm crawls along 
the rope toward the other end at a constant rate of one centimeter per second. 
At the end of each second the rope is instantly stretched another kilometer. 
Thus, after the first second, the worm has traveled one centimeter and the 
length of the rope has become two kilometers. After the second second, the 
worm has crawled another centimeter and the rope has become three kilome- 
ters long, and so on. 

The stretching is uniform, like the stretching of a rubber band. Only the 
rope stretches. Units of length and time remain constant. W e  assume an ideal 
worm, ofpoint size, that never dies, and an ideal rope that can stretch as long as 
needed. 

Does the worm ever reach the end of the rope? If it does, estimate how long 
the trip will take and how long the rope will be. This delightful problem, 
which has the flavor of a Zeno paradox, was devised by Denys Wilquin of 
New Caledonia. It first appeared in December 1972 in Pierre Berloquin's 
lively puzzle column in the French monthly Science et V i e .  
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Figure 49 A worm crawling on a stretching rubber rope 

2. THE SIGIL OF SCOTEIA 

One of James Branch Cabell's finest novels, The Cream of the Jest, involves a 
series of hypnotic dreams that Felix Kennaston induces by staring at half of the 
Sigil of Scoteia. At the end of the novel, Kennaston discovers that the Sigil is 
nothing more than the broken top of a cold-cream jar designed by someone 
who "just made it up out of his head." It "is in no known alphabet. It blends 
meaningless curlicues and dots and circles with an irresponsible hand." The 
artist had sketched a crack across it "just to make it look ancient like." 

A picture of the complete Sigil, which appears in most editions of the book, 
is reproduced in Figure 50. I remember puzzling over it many years ago and 
vainly trying to decode it. Designed by Cabell himself, it is not a cipher at all. 
Can the reader read it? 

Cabell is still out of favor with most literary critics, but he has a loyal band of 
admirers who support the James Branch Cabell Society and its official organ, 
Kalki. It was in the sixth issue of Kalki (1968) that I learned the Sigil's secret. 

3. INTEGER-CHOICE GAME 

Two mathematicians are drinking beer. After each has been served a glass, 
they arrive at who pays for the round by simultaneously writing any positive 
integer on slips of paper. They compare the slips. Whoever wrote the larger 
integer has to pay for the round, unless the integer is larger by only 1. In that 
case the person who wrote the smaller integer pays for that round and the next 
as well. If both players have chosen the same integer, they play again. 

T o  describe the game positively: The person who writes the smaller num- 
ber scores a point, unless it is smaller by only 1. In that case the other player 
scores two points. For example, if the numbers were 12 and 20,12 would win 
a point. If the numbers were 12 and 13, 13 would win two points. 

The game is fair, but what strategy is best in the sense that no other strategy 
can beat it in the long run, and if any different strategy is followed, there is a 
counterstrategy to beat it? 

The answer is surprising. I shall not have space for a proof, but I shall give 
the strategy and references to where the proof can be found. The game was 
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devised by N. S. Mendelsohn and Irving Kaplansky, but it was Paul Halmos 
who called it to my attention. 

4. THREE CIRCLES 

Draw three nonoverlapping circles of three different sizes anywhere on a 
piece of paper. For each pair of circles draw their two common tangents. Ifyou 
have not encountered this beautiful theorem before, you may be surprised to 
find that the intersections of the three pairs of tangents lie on a straight line (see 
Figure 51). 

As one would expect, there are many ways the theorem can be proved by 
adding construction lines to the figure. Popular Computing reported in its issue 

Figure 50 T h e  Sigil of Scoteia 
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Figure 5 1 The three-circle problem 

of December 1974, however, that the theorem lends itself to an elegant 
solution if one leaves the two-dimensional plane for a three-dimensional 
extension. Quoting from an earlier book in which they found the problem, 
the editors of the magazine report that when the theorem was shown to John 
Edson Sweet, a professor of engineering at Cornell University who died in 
1916, he studied the picture for a moment and then said, "Yes, that's perfectly 
self-evident." 

What was Professor Sweet's sweet solution? 

5. THE MUTILATED SCORE SHEET 

Figure 52 reproduces the score sheet of a chess game played in a German chess 
club in 1897. As you can see, a cigar or a cigarette has burned a hole in the 



THE RUBBER ROPE AND OTHER PROBLEMS 115 

sheet, so that Black's moves, which ended in Black's win on his fourth move, 
have been obliterated. Can you reconstruct the game? 

I wish to thank Randolph W. Banner of Newport Beach, Calif., for passing 
along this amusing problem. He writes that he thinks he saw it in an English 
periodical published about 1920. 

6. SELF-NUMBERS 

D. R. Kaprekar is a mathematician, diminutive in body but large in brain and 
heart, who lives in India. For more than forty years he has been doing highly 
original work in recreational number theory, at times aided by grants from 
Indian universities. He contributes frequently to Indian mathematics journals, 
speaks at conferences, and has published some two dozen booklets written in 
broken English. 

Kaprekar is best known outside India for his discovery, more than twenty 
years ago, of "Kaprekar's constant." Start with any four-digit number in 
which not all the digits are alike. Arrange the digits in descending order, 

Figure 52 What were Black's moves? 
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reverse them to make a new number, and subtract the new number from the 
first number. If YOU keep repeating this process with the remainders, you will 
(in eight steps or fewer) arrive at Kaprekar's constant, 6174, which then 
generates itself. Zeros must be preserved. Thus, if you start with 21 11 and 
subtract 11 12, you get 0999. Rearranging the digits gives 9990 from which 
0999 is taken, and so on. 

Here we concern ourselves with a remarkable class of numbers called self- 
numbers, discovered by Kaprekar in 1949. He has written many pamphlets 
about them. They are virtually unknown outside India, although last year they 
turned up briefly (under another name) in an article in The American Mathemat- 
ical Monthly (April 1974, p. 407). The article contains a proof that there is an 
infinity of self-numbers. 

In explaining self-numbers, it is best to start with a basic procedure that 
Kaprekar calls digitadition. Select any positive integer and add to it the sum of 
its digits. Take 47, for example. The sum of 4 and 7 is 11, and 47 and 11 is 58. 
The new number, 58, is called a !generated number. The original number, 47, 
is the generator. The process can be repeated endlessly, forming a digitadition 
series: 47, 58, 71, 79, 95, . . . . 

No one has yet found a nonrecursive formula for the partial sum of a 
digitadition series, given its first and last terms, but there is a simple formula 
for the sum of all the digits in a digitadition series. Simply subtract the first 
number from the last and add the sum of the digits in the last number. "Is this 
not a wonderful new result?" Kaprekar asks in one of his booklets. "The Proof 
of all this rule is very easy and I have completely written it with me. But as 
soon as the proof is seen the charm of the whole process is lost, and so I do not 
wish to give it just now." 

Can a generated number have more than one generator? Yes, but not until 
the number exceeds 100. The smallest such number (Kaprekar calls it a 
junction number) is 101. It has two generators: 91 and 100. The smallest 
junction number with three generators is 10,000,000,000,001. It is generated 
by 10,000,000,000,000, 9,999,999,999,901 and 9,999,999,999,892. The 
smallest number with four generators, discovered by Kaprekar on June 7, 
1961, has twenty-five digits. It is 1 followed by twenty-one zeros and 102. 
Since then he has found what he conjectures to be the smallest numbers with 
five and six generators. 

A self-number is simply a number that has no generator. In Kaprekar's 
words, "It is self born." There is an infinity of such numbers, but they are 
much scarcer than generated numbers. Below 100 there are thirteen: 1,3,5,7,  
9, 20, 31, 42, 53, 64, 75, 86, and 97. Self-numbers that are prime are called 
self-primes. The familiar cyclic number 142,857 is a self-number (multiply it 
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by the digits 1 through 6 and you always get the same six digits in the same 
cyclic order). The numbers 11,111,111,111,111,111 and 3,333,333,333 are 
self-numbers. Previous years of this century that are self-numbers are 1906, 
1917,1919, 1930,1941, 1952,1963, and 1974. 

Consider the powers of ten. The number 10 is generated by 5, 100 by 86, 
1000 by 977, 10,000 by 9968, and 100,000 by 99,959. Why is a millionaire 
such an important man? Because, answers Kaprekar, 1,000,000 is a self-num- 
ber! The next power of ten that is a self-number is 1016. 

No  one has yet discovered a nonrecursive formula that generates all self- 
numbers, but Kaprekar has a simple algorithm by which any number can be 
tested to determine whether it is self-born or generated. Readers are asked to 
see if they can discover the procedure. If they can, it should be easy for them to 
answer this question: What is the next year after 1974 that is a self-number? 

7. THE COLORED POKER CHIPS 

What is the smallest number of poker chips that can be placed on a flat surface 
so that chips of three different colors are required to meet the condition that no 
two touching chips are the same color? As Figure 53 shows, the answer is 
obviously three. 

Our problem is to determine the smallest number of chips, all of the same 
size, that can be placed flat on the plane so that chips of not three but four 
colors are necessary for meeting the same proviso. 

Figure 53 Map-coloring problem with poker chips 
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8. ROLLING CUBES 

For this beautiful combinatorial puzzle, invented by John Harris of Santa 
Barbara, Calif., you must obtain eight unit cubes. On each cube, color one face 
and make the opposite face black. (Of course, you may distinguish the two 
faces in any other way you like.) Place the cubes in a shallow 3-by-3 box (or on 
a 3-by-3 matrix) with the middle cell vacant and all cubes black on top (see 
Figure 54). 

A move consists in rolling a cube to an empty cell by tipping it over one of its 
four bottom edges so that it makes a quarter turn. The problem is to invert all 
eight cubes so their colored sides are up and the center cell is vacant as before. 
This is to be done in a minimum number of moves. For recording solutions, 
you can use U, D, L, R for roll up, down, left, and right, and start all solutions 
with URD. (Any other way of starting is symmetrically the same.) 

ANSWERS 

1. Regardless of the parameters (the initial length of the rubber rope, the 
worm's speed, and how much the rope stretches after each unit of time), the 
worm will reach the end of the rope in a finite time. This is also true if the 
stretching is a continuous process, at a steady rate, but the problem is easier to 
analyze if the stretching is done in discrete steps. 

One is tempted to think one can see that the worm will make it. Since the 
rope expands uniformly, like a rubber band, the expansion is like looking at 
the rope through increasingly strong magnifying lenses. Because the worm is 

Figure 54 Rolling-cubes puzzle 
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always making progress, must it not eventually reach the end? Not necessar- 
ily. One can progress steadily toward a goal forever without ever reaching it. 
The worm's progress is measured by a series of decreasing fractions of the 
rope's length. The series could be infinite and yet converge at a point far short 
of the end of the rope. Indeed, such is the case if the rope stretches by doubling 
its length after each second. 

The worm, however, does make it. There are 100,000 centimeters in a 
kilometer, so that at the end of the first second, the worm has traveled 
1/100,00Oth of the rope's length. During the next second, the worm travels 
(from its previous spot after the stretching) a distance of 1/2OO,OOOth of the 
rope's length, after the rope has stretched to two kilometers. During the third 
second it covers 1/3OO,OOOth of the rope (now three kilometers), and so on. 
The worm's progress, expressed as fractional parts of the entire rope, is 

The series inside parentheses is the familiar harmonic one that diverges and 
therefore can have a sum as large as we please. The partial sum of the harmonic 
series is never an integer. As soon as it exceeds 100,000, however, the above 
expression will exceed 1, which means that the worm has reached the end of 
the rope. The number of terms, n, in this partial harmonic series will be the 
number of seconds that have elapsed. Since the worm moves one centimeter 
per second, n is also the final length of the rope in kilometers. 

This enormous number, correct to within one minute, is 

where y is Euler's constant. It gives a length of rope that vastly exceeds the 
diameter of the known universe, and a time that vastly exceeds present esti- 
mates of the age of the universe. (For a derivation of the formula see "Partial 
Sums of the Harmonic Series," by R. P. Boas, Jr., and J. W .  Wrench, Jr., 
American Mathematical Monthly 78, October 1971, pp. 864- 870.) 

Some notion of the enormous length of the rope when the worm finally 
reaches the end can be gained from an observation by reader H. E. Rorschach. 
If the rope starts with a cross-sectional area of one square kilometer, it ends up 
as a single line of atoms, the space between each adjacent pair of atoms being 
many times the size of the known universe. The time lapse is comparably 
greater than the age of the universe. 
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2. As David M. Keller disclosed in his article "The Sigil of Scoteia" 
(Kalki 2, 1968), one simply turns the Sigil upside down. "Additional difficul- 
ties are found in the division of words at the ends of lines," Keller writes, "and 
in the substitution of odd characters for some of the letters." The Sigil reads: 
"James Branch Cabell made this book so that he who will may read the story 
of mans eternally unsatisfied hunger in search of beauty. Ettarre stays inacces- 
sible always and her lovliness is his to look on only in his dreams. All men she 
must evade at the last and many are the ways of her elusion." 

3. It is hard to believe, but the best strategy in the integer-choosing game 
is to limit one's choices of numbers to 1,2,3,4,  and 5. The selection is made at 
random, with the relative frequencies of 1/16 for numbers 1 and 5,4/16 for 
number 3, and 5/16 for numbers 2 and 4. One could have in one's lap a spinner 
designed for picking numbers according to these frequencies. 

For a   roof of the strategy see "A Psychological Game," by N. S. Mendel- 
sohn (American Mathematical Monthly 53, February 1946, pp. 86-88) and 
pages 212-215 of I. N.  Herstein and I. Kaplansky's Matters Mathematical 
(Harper & Row, 1974). 

Walter Stromquist, in a letter, proposed using a pair of dice as follows: 
"After a few beers, you cannot be expected to distinguish the fives and sixes, so 
that if either of these numbers appear on either die, you will have to roll again. 
Also, since you are really using only 8 of each die, it is only natural to multiply 
the total by 2 (dropping all fractions) before writing it down. For example, the 
largest number you can roll with two dice (without rolling again) is 8, so that 
the largest number you would ever choose is 3 of that, or 5. Out of 16 plays, 
you should expect to choose with these frequencies: 1 once, 2 five times, 3 four 
times, 4 five times, 5 once." These are precisely the desired frequencies for 
playing the best strategy. 

4. John Edson Sweet's solution to the three-circle theorem is given in the 
answer to Problem 62 in L. A. Graham's Ingenious Mathematical Problems and 
Methods (Dover, 1959). Instead of circles, suppose you are looking down on 
three unequal spheres. The tangent lines for each pair of balls are the edges of 
three cones into which the two balls fit snugly. The cones rest on the plane 
that supports the balls, and the apexes of the cones therefore lie on the plane. 

Now imagine that a flat plate is placed on top of all three balls. Its underside 
is a second plane, tangent to all three balls, and tangent to all three cones. This 
second plane also will contain the three apexes of the cones. Because the 
apexes lie on both planes, they must lie on the intersection of the two planes, 
which of course is a straight line. 

C. Stanley Ogilvy wrote to say he had included the three-circle problem in 
his book Excursions in Geometry (Oxford University Press, 1969). He too 
assumed that the proof by way of the three cones took care of all cases; but one 
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day, after giving the problem to his class at Hamilton College, a student 
pointed out that the proof does not apply when a small sphere is between two 
larger ones. In such cases it is not possible for the two intersecting planes to be 
mutually tangent to all three spheres. 

Many readers sent in other ways of proving the theorem. Bernard F. Burke, 
Richard I. Felver, Clyde E. Holvenstot, David B. Shear, and Radu Vero each 
proposed turning the drawing so that the line (on which the intersections of 
the tangent pairs lie) is horizontal and above the circles. The circles can now be 
viewed as being equal spheres inside three mutually intersecting pipes of 
identical circular cross section, seen in perspective. The tangent lines become 
the parallel sides of the three pipes. Since the pipes all must rest on a plane, 
their parallel sides seen in perspective will all have vanishing points on the 
horizon line. 

It is not necessary that the circles be nonintersecting; indeed, the theorem 
can be stated in a more general way, in terms of "centers of similitude" instead 
of tangents, to hold for circles that lie entirely within one another. I am 
indebted to Donald Keeler for explaining this, as well as for pointing out that 
the theorem is known as "Monge's theorem" after the French mathematician 
and friend of Napoleon, Gaspard Monge, who gave it in a 1798 treatise. R. C. 
Archibald, in The American Mathematical Monthly (vol. 22, 1915, p. 65) traced 
the theorem back to the ancient Greeks (writes Keeler). 

Daniel Sleator found that the theorem has an analog with four spheres in 
space. Each of the four triplets will have the apexes of its three cones on a 
straight line. Because these four lines intersect each other at six points, the four 
lines must be coplanar. Therefore, the vertexes of the six cones all lie on a 
plane. The theorem generalizes to all higher Euclidian dimensions. (See 
"Monge's Theorem in Many Dimensions," by Richard Walker, in The Mathe- 
matical Gazette 60, October 1976, pp. 185- 188.) 

Monge's theorem, for three circles on the plane, is mentioned in Herbert 
Spencer's autobiography. It is, writes Spencer, "a truth which I never contem- 
plate without being struck by its beauty at the same time that it excites feelings 
of wonder and of awe: the fact that apparently unrelated circles should in every 
case be held together by this plexus of relations, seeming so utterly 
incomprehensible." 

5. The obliterated chess game is: 

1. P-KB3 1. P-K4or  K3 
2. K-B2 2. Q-B3  
3. K - K T . ~  3. QxP (check) 
4. K-R4 4. B-K2 (mate) 
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Several readers thought they had found a second solution. Black's first move 
is P- 4 4 .  His second move is either P- KN3, P-KR4, or N -KB3. (Black's 
first two moves may be interchanged.) O n  his third move Black checks with 
Q- 4 3 ,  then presumably mates with Q- KB5. Unfortunately, the mate can 
be thwarted by White's fourth move, P - KN4. 

6. D. R. Ka~rekar's method of testing a number, N, to see if it is J 

self-number is as follows. Obtain N's digital root by adding its digits, then 
adding the digits of the result, and so on, until only one digit remains. If the 
digital root is odd, add 9 to it and divide by 2. If it is even, simply divide by 2. In 
either case call the result C. 

Subtract C from N. Check the remainder to see if it generates N. If it does 
not, subtract 9 from the last result and check again. Continue subtracting 9's, 
each time checking the result to see if it generates N. If this fails to produce a 
generator of N in k steps, where k is the number of digits in N, then N is a 
self-number. 

For example, we want to test the year 1975. Its digital root, 4, is even, so that 
we divide 4 by 2 to obtain C = 2.1975 minus 2 is 1973, which fails to generate 
1975. 1973 minus 9 is 1964. This also fails. But 1964 minus 9 is 1955, and 
1955 plus the sum of its digits, 20, is 1975; therefore 1975 is a generated 
number. Since 1975 has four digits, we would have had only one more step to 
go to settle the matter. With this simple procedure, it does not take long to 
determine that the next self-year after 1974 is 1985. There will be only one 
more self-year in this century; 1996. 

For progress on the problem of finding a nonrecursive formula for the sum 
of a digitadition series, see "The Sum of a Digitadition Series," by Kenneth B. 
Stolarsky (Proceedings of the American Mathematical Society 59, August 1976, pp. 
1-5). Among his references on digitadition, the earliest is a 1906 French 
article. 

7. It is easy to prove that the pattern of 11 circles (see Figure 55) requires at 
least four colors to ensure that no pair of touching circles are the same color. 
Assume that it can be done with three colors. Label circles 1, 2, and 3 with 
colors A, B, and C as shown. This determines the colors of 4, 5, and 6. W e  
have a choice of two ways to color 7, but either way forces 11 to have the same 
color as 1, which it touches. Three colors are therefore not enough. 

A number of readers sent proofs that 11 is the minimal number of circles. A 
proof by Allen J. Schwenk was published in The American Mathematical 
Monthly (vol. 83, June 1976, pp. 485 - 486) as a solution to part of question E 
2527. 

In three dimensions the least number of colors needed for any arrangement 
of identical spheres is not known, although it has been narrowed to 5 ,6 ,7 ,8 ,  
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Figure 55 Solution to the poker-chip problem 

or 9. For this and many other unsolved coloring problems, see "Coloring of 
Circles," by Brad Jackson and Gerhard Ringel (The American Mathematical 
Monthly 91, January 1984, pp. 42-49). 

8. In his article "Single Vacancy Rolling Cube Problems" Journalof 
Recreational Mathematics 7 ,  Summer 1974, pp. 220 - 224), John Harris gave a 
thirty-eight-move solution to his rolling cube puzzle. About a dozen readers 
who wrote computer programs for the problem found a unique minimal- 
move solution in thirty-six moves. (Reversals, rotations, and reflections are 
not considered different.) The solution is: 

URD LLD RRU LDL URD RUL DLU URD RUL DRD LUL DRU 

Harris ends his article with a difficult problem that also involves eight cubes 
on an order-3 matrix. Color the cubes so that when they are on the matrix, 
with the center cell vacant, every exposed face is red and all hidden faces are 
uncolored. There will be just 24 red sides and 24 uncolored sides. The problem 
is to roll the cubes until they are back on the same eight cells, with the center 
cell vacant but with all red-sides hidden and all visible sides uncolored. 



Harris reported a solution in eighty-four moves, then later lowered it to sev-
enty-four. In May 1981 I received a letter from Hikoe Enomoto, Kiyoshi
Ishihata, and Satoru Kawai, all in the Department of Information Science,
University of Tokyo. Their computer program produced the following mini-
mal-move solution in seventy steps:

DRUUL DDRUU
LDLDR ULURD
RULDR DLULD
RURDL ULURD
RDLUR DLURU
LDRUL DLURD
RULDL DRRUL

For two earlier rolling cube puzzles invented by Harris, and a description of
a board game based on rolling cubes, see Chapter 9 of my Mathematical Carni-
val (Knopf, 1975).

124 •  CHAPTER NINE



T E N  

Six Sensational Discoveries 

Has the steady rise of public interest in occultism and pseudoscience over the 
past ten years in the U.S. been something apart from public understanding of 
scientific knowledge? The two have interacted more strongly than most 
people realize. Important advances in science have been crowded out of news- 
papers, magazines, radio, and television to make room for reports on polter- 
geists, demon possession, psychic healing, prehistoric visits to the earth by 
astronauts from other worlds, the vanishing of ships and planes in the Ber- 
muda Triangle, the emotional life of plants, the primal scream, and so on ad 
nauseam. 

The effect is intensified by an increasing backlog of articles submitted to 
scientific journals. It is not unusual for several years to elapse between the 
acceptance of a scientific paper and its publication. In the meantime the author 
of an unpublished article about an important new discovery may keep his 
results secret for fear that a rival colleague might steal them and publish first. 

As a public service, I shall comment briefly on six major discoveries of 1974 
that for one reason or another were inadequately reported to both the scien- 
tific community and the public at large. The most sensational of last year's 
discoveries in pure mathematics was surely the finding of a counterexample to 
the notorious four-color-map conjecture. That theorem, as all readers of this 
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book must know, is that four colors are both necessary and sufficient for col- 
oring all planar maps so that no two regons with a common boundary are the 
same color. It is easy to construct maps that require at least four colors, and 
topologists long ago proved that five colors are enough to color any map. 
Closing the gap, however, had eluded the greatest minds in mathematics. Most 
mathematicians have believed that the four-color theorem is true and that 
eventually it would be established. A few suggested it might be Godel- 
undecidable. H. S. hf. Coxeter, a geometer at the University of Toronto, stood 
almost alone in believing that the conjecture is false. 

Coxeter's insight has now been vindcated. In November 1974 William 
McGrcgor, a graph theorist of Wappingcrs Falls, N.Y., constructed a map of 
110 regions that cannot be colored with fewer than five colors (see Figure 56). 
McGrcgor7s technical report will appear in 1978 in the Journal of Combinatorial 
Theor_, Series B. 

In number theory the most exciting Qscovery of the past year is that when 
the transcendental number e is raised to the power of z times J163, the 
result is an integer. The Indian mathematician Srinivasa Ramanujan had con- 
jectured that e to the power of ~ f i  is integral in a note in the Quartedj 
Journal of Pare and Applied &lathematics (vol. 45, 191 3-1 914, p. 350). Working 
by hand, he found the value to be 262,537,412,640,768,743.999,999,999,999,. . . . 
The calculations were teQous, and he was unable to verify the next decimal 
Qgit. Modern computers extended the 9's much farther; indeed, a French pro- 
gram of 1972 went as far as two million 9's. Unfortunately, no one was able 
to prove that the sequence of 9's continues forever (which, of course, would 
make the number integral) or whether the number is irrational or an integral 
fraction. 

In May 1974 John Brillo of the University of ,Irizona found an ingenious 
way of applying Euler's constant to the calculation and managed to prove that 
the number exactly equals 262,537,412,640,768,744. How the prime number 
163 manages to convert the expression to an integer is not yet fully under- 
stood. Brillo's proof is scheduled to appear in a few years in Mathematics of 
Computation. 

There were rumors late in 1974 that ~c would soon be calculated to six mil- 
lion decimal places. This may seen impressive to laymen, but it is a mere com- 
puter hiccup compared wit11 the achievement of a special-purpose chess- 
playing computer built in 1973 by the Artificial Intelligence Laboratory at the 
hfassachusetts Institute of Technology. Richard Pinlileaf, who designed the 
computer with the help of ex-world-chess-champion AIikhail Botvinnik of 
the U.S.S.K., calls his machine hIacHic because it so often plays as if it were 
intoxicated. 
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Figure 56 The four-color-map theorem is exploded 

Unlike most chess-playing programs, MacHic is a learning machine that 
profits from mistakes, keeping a record of all games in its memory and thus 
steadily improving. Early in 1974 Pinkleaf started MacHic playing against 
itself, taking both sides and completing a game on an average of every 1.5 
seconds. The machine ran steadily for about seven months. 

At the end of the run, MacHic announced an extraordinary result. It had 
established, with a high degree of probability, that pawn to king's rook 4 is a 
win for White. This was quite unexpected because such an opening move has 
traditionally been regarded as poor. MacHic could not, of course, make an 



exhaustive analysis of all possible replies. In constructing a “game tree” for the
opening, however, MacHic extended every branch of the tree to a position that
any chess master would unhesitatingly judge to be so hopeless for Black that
Black should at once resign.

Pinkleaf has been under enormous pressure from world chess leaders to
destroy MacHic and suppress all records of its analysis. The Russians are par-
ticularly concerned. I am told by one reliable source that a meeting between
Kissinger and Brezhnev will take place in June, at which the impact on world
chess of MacHic’s discovery will be discussed

Bobby Fischer reportedly said that he had developed an impregnable de-
fense against P-KR4 at the age of eleven. He has offered to play it against
MacHic, provided that arrangements can be made for the computer to play
silently and provided that he (Fischer) is guaranteed a win-or-lose payment of
$25 million.

The reaction of chess grand masters to MacHic’s discovery was mild com-
pared with the shock waves generated among leading physicists by last year’s
discovery that the special theory of relativity contains a logical flaw. The cru-
cial “thought experiment” is easily described. Imagine a meterstick traveling
through space like a rocket, on a straight line collinear with the stick. A plate
with a circular hole one meter in diameter is parallel to the stick’s path and
moving perpendicularly to it (see Figure 57). We idealize the experiment by
assuming that both the plate and the meterstick have zero thickness. The

128 •  CHAPTER TWO

Figure 57 A thought experiment that disproves special relativity
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two objects are on a precise collision course. At the same instant, the center of 
the meter stick and the center of the hole will coincide. 

Assume that the plate is the fixed inertial frame of reference and the meter- 
stick is moving so fast that it is Lorentz-contracted by a factor of 10. In this 
inertial frame the stick has a length of 10 centimeters. As a result it will pass 
easily through the hole in the rapidly rising plate. (The speed of the rising 
plate is immaterial.) 

Now consider the situation from the standpoint of the meterstick's inertial 
frame. The plate is moving in the opposite horizontal direction, and so now it 
is the hole that is Lorentz-contracted, along its diameter parallel to the stick, to 
10 centimeters. There is no way the 10 centimeter by 1 meter elliptical hole 
can move up past the meterstick without a collision. The two situations are not 
equivalent, and thus a fundamental assumption of special relativity is violated. 

Physicists have long realized that the general theory of relativity is weakly 
confirmed, but the special theory had been confirmed in so many ways that its 
sudden collapse came as a great surprise. Humbert Pringle, the British physi- 
cist who discovered the fatal Gedankenexperiment, reported it in a short note 
last summer in Reviews ofModern Physics, but the full impact of all of this has 
not yet reached the general public. 

When facsimiles of two lost notebooks of Leonardo da Vinci's were pub- 
lished in 1974 by McGraw-Hill, they were widely reviewed. The public 
learned of many hitherto unknown inventions made by Leonardo: a system of 
ball bearings surrounding a conical pivot (thought to have been first devised 
by Sperry Gyroscope in the 1920s), a worm screw credited to an eighteenth- 
century clockmaker, and dozens of other devices, including a bicycle with a 
chain drive. 

In view of the publicity given the McGraw-Hill volumes, it is hard to 
understand why the media failed to report in December, 1974 on thk discov- 
ery of a drawing that had been missing from the first notebook. This note- 
book, known as Codex Madrid I (it had been found ten years earlier in the 
National Library in Madrid), is a systematic treatise of 382 pages on theoretical 
and applied mechanics (see "Leonardo on Bearings and Gears," by Ladislao 
Reti; Scientific American, February 1971). There had been much speculation on 
the nature of the missing page. Augusto Macaroni of the Catholic University 
of Milan observed that the sketch was in a section on hydraulic devices, and he 
speculated that it dealt with some type of flushing mechanism. 

The missing page was found shortly before Christmas by Ramon Paz y 
Bicuspid, head of the manuscript division of the Madrid Library. It was 
Bicuspid who had originally found the two lost notebooks. The missing page 
had been torn from the manuscript and inserted in a fifteenth-century treatise 
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on the Renaissance art of perfume making. Figure 58 reproduces a photocopy 
of the original drawing. As the reader can see at once, Professor Macaroni was 
on target. The drawing establishes Leonardo as the first inventor of the valve 
flush toilet. 

It had long been known that Leonardo had invented a folding toilet seat and 
had proposed a water closet with continuously running water in channels 
inside walls, a ventilating shaft to the roof, and suspended weights to make 
sure the entrance door closed. Until now, however, the first valve flush toilet 
has always been credited to Sir John Harington, a godson of Queen Elizabeth. 
Harington described it amusingly in his book The Metamorphosis of Ajax 
(1596) a cloaca1 satire that got him banished from the court. Although his 
"Ajax" actually was built at Kelston near Bath, it was not until 200 years later 
that it came into general use. 

The first English patent for a valve flush toilet was granted in 1775 to 
Alexander Cummings, a watchmaker. Modern mechanisms, in which a ball 
float and automatic cutoff stopper limit the amount of water released with 

Figure 58 Lost Leonardo da Vinci drawing [courtesy N.Y. Public Lit 
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each flush, date from the early nineteenth-century patents of Thomas Crap- 
per, a British manufacturer of plumbing fixtures who died in 1910. (See Clean 
and Decent: T h e  Fascinating History of the Bathroom and Water Closet, by 
Lawrence Wright, Routledge and Kegan Paul, 1960, and Flushed wi th  Pride: 
T h e  Story of Thomas Crapper, by Wallace Reyburn, Prentice-Hall, 1971 .) 

Although hundreds of books on parapsychology spewed forth from reputa- 
ble publishing houses in 1974, not one reported the most sensational psi 
discovery of the century: a simple motor that runs on psi energy. It was 
constructed in 1973 by Robert Ripoff, the noted Prague parapsychologist and 
founder of the International Institute for the Investigation of Mammalian 
Auras. When Henrietta Birdbrain, an American expert on Kirlian photogra- 
phy, visited Prague early last year, Dr. Ripoff taught her how to make his 
psychic motor. Ms. Birdbrain demonstrated the device many times in her 
lectures, but as far as I am aware the only published report on it appeared in the 
Boston monthly newspaper East WestJournal (May 1974, p. 21). 

Readers are urged to construct and test a model of the motor. The first step is 
to cut a three-by-seven-inch rectangle from a good grade of bond paper. Make 
a tiny slot in the paper at the spot shown (see Figure 59). The slot must be3 inch 
long and exactly in the center of the strip, + inch from the top edge. Bend the 
paper into a cylinder, overlapping the ends & inch, and glue the ends together. 
Cut a second slot in the center of the overlap, directly opposite the preceding 
one. It must be the same size and the same distance from the top. 

From a file card or a piece of pasteboard of similar weight, cut a strip 2 inch 
by three inches. Insert a fine, sharp-pointed needle twice through the center of 
the strip, as shown in step 3. The point of the needle should be no more than f 
inch below the bottom edge ofthe strip. Push the ends ofthe strip through the 
cylinder's two slots, as shown in step 4, taking care not to bend the strip. The 
final step is to balance the needle on top of a narrow bottle at least four inches 
high (step 5). It is essential that the top of the bottle be either glass (preferable) 
or very hard smooth plastic. 

Adjust the strip in the slots until the cylinder hangs perfectly straight, its 
side the same distance from the bottle all around. With scissors snip the ends of 
the strip so that each end projects inch on each side. 

Place the little motor on a copy of the Bible or the I Ching,  with the book's 
spine running due north and south. Sit in front of the motor, facing north. 
Hold either hand, cupped as shown in Figure 60, as close to the cylinder as you 
can without actually touching it. You must be in a quiet room, where the air is 
still. Make your mind blanker than usual and focus your mental energy on the 
motor. Strongly will it to rotate either clockwise or counterclockwise. Be 
patient. It is normally at least one full minute before the psi energy from your 
aura takes effect. When it does, the cylinder will start to rotate slowly. 



STEP 1 

INCH ye318 INCH 

3 INCHES 
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STEP 2 STEP 3 
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5 /  16 INCH OVERLAP 

STEP 4 STEP 5 

Figure 59 A psychic motor is made 
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Figure 60 How to apply psi energy to the psychic motor 

Some people, of course, have a stronger psi field than others. A lot depends 
on your mental state. At times the motor refuses to turn. At other times it 
begins to turn almost as soon as you start concentrating. Experiments show 
that for most people it is easier to make the motor rotate counterclockwise 
with psi energy from your right hand and clockwise with the energy from 
your left hand. At times negative psi takes over, and the motor turns in the 
direction opposite to the direction being willed. As Dr. J. B. Rhine has taught 
us, psi effects are elusive, skittish, and unpredictable. 

The motor is currently under extensive investigation at numerous parapsy- 
chology laboratories around the world. Russian experts are convinced the 
energy that turns the motor is the same as the psychokinetic energy that 
enables the Israeli psychic Uri Geller to bend silverware, the Russian "sensi- 
tive" Nine1 Kulagina to levitate table-tennis balls, and the Brooklyn psychic 
Dean Kraft to make pieces of candy leap out of bowls, and pens crawl across 
rugs. When Kulagina holds both hands near the motor, the cylinder flies 
straight up in the air for several meters. A book on the Ripoff rotor (as it is 
called in Prague), with papers by twelve of the world's leading parapsycholo- 
gists, is being edited by Ms. Birdbrain. 
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James Randi, the magician, contends that by using trickery, he can make the 
motor spin rapidly in either direction. Of course, that does not explain why 
the motor operates so efficiently for thousands of people who know nothing 
about conjuring. 

ADDENDUM 

The foregoing chapter, when it ran in the April 1975 issue of Scientijic Ameri- 
can, was intended as an April Fools'joke. It was so crammed with preposterous 
ideas and outlandish names that I never dreamed anyone would take it seri- 
ously, yet it produced more than a thousand letters from readers who did not 
recognize the column as a hoax. 

The map was designed by correspondent William McGregor (his real 
name), who gave me permission to print it. Hundreds of readers sent me copies 
of the map, colored with four colors. Some said they had worked on it for days 
before they found a way to do it. The four-color map theorem is no longer a 
conjecture. It was proved in 1976 by Wolfgang Haken and Kenneth Appel, 
with the aid of a long-running computer program. (See "The Solution of the 
Four-Color-Map Problem," in Scientijic American, October 1977, pp. 108- 
121 .) Whether a simple, elegant proof not requiring a computer will ever be 
found, is still an open question. 

When Norman K. Roth published an article, "Map Coloring," in Mathe- 
matics Teacher (December 1975), many readers informed him that Scientijic 
American had published a map disproving the four-color theorem. A letter 
from Roth in the following May issue pointed out that my column was "an 
apparently successful April Fools' article." 

In 1977 the Vancouver Sun reported a British mathematician's claim (it 
turned out to be invalid) that he had proved the four-color map theorem. O n  
January 17,1977, the newspaper ran a letter from a lady in Port Moody, which 
said in part: 

T o  set the record straight, I would like to bring to your notice 
the fact that the theorem has already been disproved by William 
McGregor, a graph theorist . . . in November 1975. He con- 
structed a map of 110 regions that cannot be colored with less than 
five colors. . . . 

The following letter, signed by "Ivan Guffvanoff 111," who claimed to be a 
mathematician at the University of Wisconsin, was a bit frightening to the 
staff of Scientijic American, until they realized that it, too, was a joke: 
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This is to inform you that my lawyer will soon be contacting you 
for a damage case of $25 million. 

In the mathematics section of your April 1975 issue, Martin 
Gardner wrote that the four-color problem had been solved. I have 
been working on this problem for 25 years. I had prepared a paper 
to be submitted to the American Mathematical Monthly. The paper 
was over 300 pages in length. In it I had proved that the answer to 
the four-color problem was no and that it would take five colors 
instead of four. Upon reading Gardner's article that someone else 
would publish the solution before I could, I destroyed my paper. 
Last week I read in Time magazine that Gardner's article was a 
farce. I did not read Gardner's entire article, only the part on the 
four-color problem, so I was not aware of the farce. Now that I 
have destroyed my article, it will not be possible to reproduce all 
300 pages, since the work has extended over such a long time. I 
therefore believe that damages are due me. 

I believe that Gardner's article was the most unprofessional arti- 
cle I have ever seen in your's or any other journal. This kind of 
activity is below the dignity of what I thought your magazine 
stood for. I am not only suing you but I am cancelling my member- 
ship, and I will ask all my friends to cancel theirs. 

In Italy the noted mathematician Beniamino Segre published a serious 
research note (Rendiconti 59, 1975, pp. 411 -412) in which he reproduced 
McGregor's map, showing how it could be four-colored. "It is shown the 
falsehood," his summary reads, "of a presumed counterexample for the four- 
color conjecture." 

Manifold, a journal published by mathematics students at the University of 
Warwick, ran the following lines in its Autumn 1975 issue. They are to be 
sung to the tune of "Oh Mr. Porter, what shall I do?" 

"Oh Mr. Gardner, 
What have you done? 

You've started up a rumour 
You should never have begun! 

A four-colour hoax can't 
Be undone so quick . . . 

O h  Mr. Gardner, what 
A bloody silly trick!" 
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When e is raised to the power of the product of 71 and the square root 
of 163, the result is the eighteen-digit number I gave, minus 
.000,000,000,000,75. . . .John Brillo, to whom I attributed this hoax, is a 
play on the name of the distinguished number theorist John Brillhart. The 
reference to Ramanujan's paper is legitimate. In it the Indian mathematician 
discusses a family of remarkable near-integer numbers to which this one 
belongs, but of course he knew that none were integral. Indeed, as many 
readers pointed out, it is not hard to prove that they are transcendental. 

The value of the number to thirty-nine significant decimal digits was given 
by D. H. Lehmer in Mathematical Tables and Aids to Computation (vol. 1, 
January 1943, pp. 30-31). The digit following the run of 9's is 2. See also 
"What is the Most Amazing Approximate Integer in the Universe?" by I. J. 
Good, in the Pi M u  Epsilon Journal (vol. 5, Fall 1972, pp. 314-315). 

The description of Richard Pinkleaf's chess-playing program, MacHic, is a 
play on the chess program MacHack, written by Richard Greenblatt of the 
Massachusetts Institute of Technology. The relativity ~aradox that I hung on 
Humbert Pringle (a play on the name of Herbert Dingle, a British physicist 
who maintained that relativity theory is disproved by the famous twin para- 
dox) is well known. It appears as a problem on page 99 of the paperback 
edition of SpacetimePhysics, by Edwin F. Taylor and John A. Wheeler (W. H. 
Freeman and Company, 1966), and the solution is given on page 25 of the 
answer section. The paradox is discussed at greater length by George Gamow 
in Mr. Tompkins in Wonderland (Macmillan, 1947), W .  Rindler in American 

Journal ofPhysics, (vol. 29, 1961, p. 365 ff.), R. Shaw (ibid., vol. 3 0 , 1 9 6 2 , ~ .  72 
ff.), and P. T. Landsberg in The Mathematical Gazette, (vol. 47,1964, p. 197 4. 

A stationary outside observer will see the meterstick just make it through 
the hole. If the plate and the stick have thickness, the stick must, of course, be a 
trifle shorter than the hole to prevent an end from catching. T o  an observer on 
the plate the stick will appear Lorentz-contracted, but it will also appear 
rotated, so that it seems to approach the hole on a slant. The stick's back end 
actually seems to go through the hole before its front end, so that it gets 
through with the same clearance as before. T o  an observer on the stick the 
plate will appear Lorentz-contracted, its hole becoming elliptical, but the 
plate also appears to be rotated. In this case the hole first goes over the front end 
of the slanted stick, again with the same close fit. "Contractions" and "rota- 
tions" are ways of speaking in a Euclidean language. In a four-dimensional, 
non-Euclidean language of space-time the objects retain their shapes and 
orientations. Having at one time written a book on relativity, I was abashed to 
receive more than 100 letters from physicists pointing out the stupid 
"blunder" I had made. 
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Those who enjoyed explaining the paradox may wish to consider how to 
escape from the following variant. Assume that the meterstick is sliding at 
high speed along the surface of an enormous flat plate of metal toward a hole 
slightly larger than the stick. W e  idealize the thought experiment by assum- 
ing that there is no friction and that the stick and the plate are extremely thin. 
When the stick is over the hole, gravity (or some other force) pulls it down and 
through. For an observer on the stick the sheet slides under it, and the hole is 
Lorentz-contracted enough to prevent the stick from dropping through. In 
this case the stick and the plate cannot rotate relative to each other. How does 
the stick get through? (Please, no letters! I know the answer.) 

The Leonardo da Vinci drawing was done by Anthony Ravielli, a graphic 
artist well known for his superb illustrations in books on sports, science, and 
mathematics. It was an earlier version of the sketch that suggested to me the 
idea of a hoax column. Many years ago a friend of Ravielli's hadjokingly made 
a bet with a writer that Leonardo had invented the first valve flush toilet. The 
friend persuaded Ravielli to do a Leonardo drawing in brown ink on faded 
paper. It was smuggled into the New York Public Library, stamped with a 
catalogue file number and placed in an official library envelope. Confronted 
with this evidence, the writer paid off the bet. 

Augusto Macaroni is a play on Augusto Marinoni, a da Vinci specialist at the 
Catholic University of Milan, and Ramon Paz y Bicuspid is a play on Ramon 
Paz y Remolar, the man who actually found the two missing da Vinci note- 
books. My data on the history of the water closet are accurate, including the 
reference to Thomas Crapper. The book by Wallace Reyburn Flushed with 
Pride: The Story o f  Thomas Crupper does exist. 

For many years I assumed that Reyburn's book was the funniest plumbing 
hoax since H. L. Mencken wrote his fake history of the bathtub. I thought this 
for two reasons: (1) The book implies that the slang words "crap" and "trap- 
per" derived from Mr. Crapper's name, but "crap" and "crapping case" are 
both listed in The Slang Dictionary, published in London in 1873. (2) Reyburn 
wrote a later book titled Bust-up: The Uplifting Tale o f  Otto Titzling and the 
Development of the Bra. It turns out, though, that both Thomas Crapper and 
Otto Titzling were real people, and neither of Reyburn's books is entirely a 
hoax. 

The Ripoff Rotor is a modification of a psychic motor described in Hugo 
Gernsback's lurid magazine Science and Invention (November 1923, p. 651). 
Prizes were awarded in March 1924 to readers who gave the best explanations 
of why the cylinder turned. The motion can be caused by any of three forces: 
slight air currents in the room, convection currents produced by heat from the 
hand, and currents from breathing. The three forces combine in unpredictable 
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ways. If a person who believes he or she has psychokinetic powers is willing 
the motor to turn, it may turn in the direction willed, or it may go the other 
way. 

Nandor Fodor, in his Encyclopedia ofPsychic Science (Citadel, 1966), under 
the heading "Fluid Motor," credits the paper-cylinder device to one Count de 
Tromelin, but he doesn't say who the Count was or when he invented the 
motor. 

I had no individual in mind when I mentioned Ms. Henrietta Birdbrain, but 
there is an East West newspaper in Boston, and the reader who bothers to check 
the issue cited, will find a sober report by Stanley Krippner on a psychic motor 
that was demonstrated to him in Prague by Robert Pavalita. (On Pavalita, see 
Chapter 28 in Psychic Discoveries behind theIron Curtain (Prentice-Hall, 1970), 
by Sheila Ostrander and Lynn Schroeder.) 

Many readers, in the spirit of the hoax, sent hilarious explanations for the 
Ripoff Rotor. Mark J. Hagmann found that the rate of the relative rotation of 
the rotor and the room was a function of the contents of the liquor bottle he 
used to support the needle. The rotation increased as the level of the liquid 
went down. 

In concluding this addendum, let me pass along some sage advice supplied 
by my brother Jim. Every responsible science writer should constantly keep in 
mind the following four words: "Accuracy above all." 



E L E V E N  

The Csa'sxa'r Polyhedron 

Donald W .  Crowe, a mathematician at the University of Wisconsin, discov- 
ered a surprising correspondence between the skeletons of n-dimensional 
cubes and the solution of a classic puzzle called the Tower of Hanoi. I de- 
scribed his discovery in a column reprinted in The Scientific American Book of 
Mathematical Puzzles G Diversions (Simon & Schuster, 1959). Professor Crowe 
has now done it again. In studying the skeletal structure of a bizarre solid 
known as the Csaszar polyhedron, he has found some remarkable isomor- 
phisms that involve the seven-color map on a torus, the smallest "finite 
projective plane," the solution of an old puzzle about triplets of seven girls, the 
solution of a bridge-tournament problem about eight teams, and the construc- 
tion of a new kind of magic square known as a Room square. 

The polyhedron that leads into so many apparently unrelated recreations is 
enormously interesting in itself. It is the only known polyhedron, apart from 
the tetrahedron, that has no diagonals. (A diagonal is a line joining any two 
vertexes not connected by an edge.) Consider, for example, the tetrahedron. It 
has four vertexes, six edges, four faces, and no diagonals. An edge joins every 
pair of corners. 

Skeletons of polyhedrons are isomorphic with graphs, that is, with sets of 
points (vertexes) joined by lines (edges). If an edge connects every pair of 
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points in a set of n points, it is called a complete graph for n points. Any 
polyhedron without diagonals clearly must have a skeleton that is a complete 
graph. Since no polyhedron can have fewer than four corners, the complete 
graph for four points is the simplest such graph that corresponds to a polyhe- 
dral skeleton. 

We  must now be careful to make precise definitions. A simple polyhedron 
is one that is topologically equivalent to a sphere and whose faces are all simple 
polygons: polygons topologically equivalent to a disk. (If you think of a simple 
polyhedron as having elastic faces, the polyhedron can be inflated like a 
balloon to form a sphere.) This rules out such nonsimple structures as two 
polyhedrons joined by an edge or a corner, stellated polyhedrons with inter- 
secting faces, solids with tunnels or interior holes, and so on. Imagine a 
polyhedron with a surface like that of a cube with a smaller cube on the center 
of one face. The polyhedron can be inflated to a sphere, but is it simple? It is 
not, because one face is a ring. 

The tetrahedron is the only simple polyhedron with no diagonals. An 
interesting question now arises. Let us define a toroid as a polyhedron whose 
faces are all simple polygons, but the solid itself is topologically equivalent to a 
sphere with one tunnel or more going all the way through it. Is it possible to 
construct a toroid with no diagonals? 

The answer to the question was not known until the late 1940s, when a 
Hungarian topologist, ~ k o s  CsLszir, succeeded in constructing such a poly- 
hedron. Its skeleton is the complete graph for seven points, shown in symmet- 
rical form at the left of Figure 61. The graph is isomorphic with the skeleton 
of a six-dimensional simplex, the 6-space analogue of the tetrahedron. Since 
an edge joins every pair of points, the polyhedron has twenty-one edges and 
fourteen triangular faces. 

It is not difficult to make a paper model of the Csaszar polyhedron. Copy 
the two patterns in Figure 62 on paper of good quality (or thin cardboard) and 
cut the copies out. Color the seven shaded triangles on both sides. Crease the 
paper to make "mountain folds" along each broken line, and "valley folds" 
along each solid line. 

1. With the pattern for the base, fold the two largest triangles to the center 
and tape the A edges to each other. Turn the paper over. Fold the two 
smaller triangles to the center and tape the B edges together to obtain a 
completed base. 

2. The six-faced conical top is formed by taping the Cedges together. Place 
it on the base as shown in the drawing of the completed model. It will fit 
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Figure 61 Skeleton of the Csaszar polyhedron (left) and its dual, the seven-color 
torus map (right) 

in two ways. Choose the fit that joins white to shaded triangles, then 
tape each of its six edges to the corresponding six edges of the base. 

It is not yet known if there is another toroid without diagonals. By applying 
elementary Diophantine analysis (finding integral solutions of equations), 
however, Crowe has shown that if there is another, it will have at least twelve 
vertexes and six tunnels. His proof is as follows: 

For simple polyhedrons there is a famous formula, discovered by Leonhard 
Euler, that relates the vertexes (v), edges (e) and faces ( f ) .  It is 

The formula is easily proved, and it takes only a bit of extra work to modify 
it for toroids. Letting h stand for holes, the formula is 

If a toroid is without diagonals, its skeleton is a complete graph, and for any 
complete graph, edges and vertexes are related by the formula 
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PATTERN FOR TOP PATTERN FOR BASE 

Figure 62 Patterns for making a model of the Csaszir polyhedron 

The faces and edges of a toroid without diagonals (all its faces must be 
triangles, otherwise a face would have a diagonal on it) are related by the 
formula 
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Substituting the values for e and f in the formula v - e + f = 2 - 2h and 
simplifying, we get 

Factoring the right side gives h a value of 

The values of v and h must be integers, and we also know that v must be 
geater than 3. If v is 4, h has avalue of zero. These values fit the tetrahedron. If 
v is 5 or 6, h is not integral, proving that no toroid without diagonals can have 
five or six corners. When v is 7, h is 1. This corresponds to the Csaszar 
polyhedron. The next solution in integers is v = 12, h = 6. Whether a toroid 
can be constructed for these values remains unknown. Nor is it known if 
toroids exist for the next two solutions: v = 15, h = 11, and v = 16, h = 13. 
From here on, Crowe points out, the number of tunnels exceeds the number of 
vertexes, so that we can probably rule out all higher toroids. 

The Csaszar polyhedron has one tunnel, which means that if our model's 
surface consisted of rubber rather than paper, we could blow it up to the shape 
of an inner tube. Its twenty-one edges would then form a complete graph for 
seven points on the surface of the torus. None of these edges would intersect 
one another, proving that the complete graph of seven points has a toroidal 
crossing number of zero. (On crossing numbers, see Chapter 11 of my Knotted 
Doughnuts and Other Mathematical Amusements, W .  H .  Freeman and Company, 
1986). 

Suppose now that on this torus we change the complete graph to its dual. 
That is done by putting a point inside each of the fourteen triangular faces, 
then drawing an edge from each point to the points inside its three neighbor- 
ing faces. Since each new edge crosses one old edge, the number of new edges 
remains twenty-one. The number of faces and the number of vertexes, how- 
ever, are switched. The new graph is shown in a symmetrical planar form at 
the right in Figure 61. Crowe has made the fourteen vertexes alternately gray 
and black spots and has numbered them, as shown, for reasons that will shortly 
be clear. Its "faces" are hard to see, but you can trace out seven regions, each 
region surrounded by six edges. 

This graph can also be drawn on a torus without any intersecting edges. 
When that is done, the result turns out to be the familiar seven-color toroidal 
map (see Figure 63). Note that every two of the seven hexagonal regions share 
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Figure 63 A seven-color map on the torus (regions 3, 4, and 7 wrap around) 

a common edge. This means that if the map is colored so that no two contigu- 
ous regions have the same color, seven colors are required. O n  a plane, no 
more than four regions can be mutually contiguous, but on a torus the maxi- 
mum is seven. 

As an exercise, the reader may like to put a dot inside each region on the 
torus and see if the map can be converted to its dual by the same procedure 
described above. Simply draw an edge to connect each pair of dots. Each edge 
must crossjust one boundary segment, and there must be no intersecting ofthe 
new edges with each other. Some lines must, of course, wrap around the torus. 
If you succeed, the new graph will be isomorphic with the complete graph of 
seven points and also with the skeleton of the Csaszar polyhedron. 

Here is how Crowe used the dual graph of the skeleton of the Cdszar 
polyhedron to solve the following puzzle. Seven girls live in a house. Each day 
a triplet of girls is allowed to leave the house for a visit to town. How can the 
triplets be chosen so that at the end of seven days every pair of girls will have 
been in exactly one of the seven triplets? 

The graph at the right in Figure 61 provides two solutions. For one solu- 
tion, note each black vertex and write down the (unordered) triplet of num- 
bers on the three gray vertexes that are adjacent (connected by an edge) to it. 
For the other solution write down the numbers on the black vertexes adjacent 
to each gray vertex. The two sets of triplets are 
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Black vertex 
124 
235 
346 
457 
561 
672 
713 

Gray vertex 
126 
237 
34 1 
452 
563 
674 
715 

Each set is called a "Steiner triple system" of order 7, or a "finite projective 
plane" of order 2. Steiner systems and projective planes are topics of great 
importance in modern combinatorial theory, but we can (regrettably) men- 
tion them only in passing. 

Because the seven-color graph is the dual of the Csbzar skeleton, with each 
of its fourteen vertexes corresponding to one of the fourteen faces of the model 
of the Csaszar polyhedron (black spots to white faces, gray spots to shaded 
faces), we can just as easily extract the two solutions from the model. O n  the 
model, no face shares a border with a face of the same color. If the faces are 
numbered to correspond to the numbers on the vertexes of the graph, the 
triplet of numbers on the three white faces adjacent to each shaded face gives 
one solution, and the triplet of numbers on the three shaded faces adjacent to 
each white face gives the second solution. 

Another way to find the same two sets of triplets on the model is to number 
the vertexes of the model, any way you like, from 1 through 7. The numbers at 
the three corners of each shaded face give one set of triplets, and those at the 
three corners of each white face give the other set. The two solutions will be 
equivalent to the two sets of triplets listed above, although the numbers may 
not match. The numbers are no more than arbitrary symbols on a symmetrical 
graph. T o  see the equivalence, it may be necessary to permute them in some 
way, such as changing all 1's to 5's, all 5's to 3's, and so on. 

The two solutions obtained by any of these methods are also identical in the 
sense that one can be changed to the other by permuting the elements; in other 
words, there is only one basic solution. The next higher Steiner triple system is 
of order 9. It too has a unique basic solution. Nine girls go out in daily triplets 
for twelve days, each pair appearing injust one triplet. Can the reader find the 
solution? 

The two variants we obtained for the order-7 solution are, as Crowe recog- 
nized, related in a curious way. No triplet appears in both sets, and if two pairs 
of girls in one set appear with the same third girl (for example, in the first set 
1,2 and 3,6 each appear with 4), the same pair appears with different girls (5,6) 
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in the second set. When both of these properties hold, the two solutions are 
called orthogonal. 

A Steiner triple system of order n is possible only when n is equal to 1 or 3 
(modulo 6). Every orthogonal pair of such systems of order n, Crowe goes on 
to explain, provides a solution to the following bridge problem for n + 1 
teams. Suppose there are eight teams of card players and seven tables. Each 
team must play exactly once with each of the other teams and also exactly once 
at each table. 

This is how Crowe tells us to construct the tournament. First draw a square 
matrix seven cells by seven cells. Consider the pair 1,2. In the first set of 
triplets, it is associated with 4 and in the second set with 6, so that we put 1,2 in 
the cell at the intersection of the fourth column and the sixth row (see Figure 
64). Consider another pair, 1,3. It is with 7 in the first set and with 4 in the 
other, so that 1,3 goes in the seventh column and the fourth row. Follow this 
procedure for all pairs of numbers. The final step is to combine 8 with 1 ,2 ,3 ,  
4 ,5 ,6 ,7  along a diagonal from the cell at the upper left to the cell at the lower 
right. Each column indicates a table, and each row indicates a round of 
simultaneous play at four of the seven tables. All conditions of the desired 
tournament are now met. 

The matrix is called a Room square of order 8. Such a square is an arrange- 
ment of an even number of objects, n + 1, in a square array of side n. Each cell 
is either empty or holds exactly two different objects. In addition, each object 
appears exactly once in every row and column, and each (unordered) pair of 
objects must occur in exactly one cell. 

The smallest Room square is trivial. It is of order 2 and consists of one cell 
that contains 1,2. No Room squares are possible for four or six objects, so that 
the order-8 square is the smallest nontrivial Room square. 

For years, I assumed that such squares were called Room squares because 
they concern objects placed in "rooms," but it turns out that they are named 
for Thomas G. Room, a mathematician who defined them in a brief note in 
1955. Combinatorialists have been investigating them ever since. Later it was 
discovered that Room squares had been in use before 1900 in bridge tourna- 
ments, but mathematicians seem not to have been interested until Room 
wrote his note. 

There is still more! H. S. M. Coxeter, in editing the twelfth revised edition 
of W .  W .  Rouse Ball's classic Mathematical Recreations and Essays (University 
of Toronto Press, 1974), explains how the Steiner triple system of order 7 can 
be used for constructing an "anallagmatic pavement" of order 8. Consider the 
order-8 chessboard. If we place any two rows alongside each other, either 
every cell in one row will match the color of its neighbor in the other, or every 
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TABLES 

1 2 3 4 5 6 7 

Figure 64 The smallest nontrivial Room square 

cell will not match its neighbor's color. W e  want to color the sixty-four cells 
with two colors so that the following property holds: If any two rows are 
brought together, half of the paired cells will match and halfwill not, and the 
same will be true of any two columns. 

Such squares are also known as Hadamard matrixes, after the French math- 
ematician Jacques Hadamard, who studied them in the 1890s. Apart from the 
trivial case of order 2, no Hadamard matrix is possible unless the order is a 
multiple of 4. It is not yet known if matrixes for all such orders exist. 

Figure 65 shows how our first Steiner triple system provides a Hadamard 
matrix for the chessboard. The problem involves eight girls and eight days. 
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GIRLS 

1 2 3 4 5 6 7 8  

Figure 65 A Hadamard chessboard 

Number the rows and columns as shown. The eighth girl is an older girl who 
chaperones the triplets daily, and on the eighth day all eight girls go into town. 
For each day (indicated by a row), color the cells that indicate the three girls 
(plus the chaperone) who walk to town. The result: a Hadamard matrix! 

There is a simple technique for generating Hadamard matrixes for all orders 
that are powers of two (see Figure 66). The order-2 pattern is placed in three 
corners of the order-4 square, and its negative (colors reversed) goes into the 
lower right corner. The same procedure with the order-4 pattern generates 
the order 8, and so on for the higher powers. 

More generally, given two Hadamard matrixes of orders m and n, a matrix 
of order mn can be created simply by replacing each colored cell of m by the 
entire pattern of n and each uncolored cell of m by the negative of n. The large 
matrix is called the tensor product of the two smaller ones. It does not matter 
whether m is larger, smaller, or equal to n. If, for example, you have a 
Hadamard matrix of order 12, the tensor product of two such matrixes is a 
Hadamard matrix of order 144. 

Hadamard matrixes are more than playthings. They are used for the con- 
struction of valuable error-correcting binary codes. For descriptions of such 
applications, the reader is referred to the new edition of Ball's book (so heavily 
revised as to be almost a new work) and to the references it cites. When the 
Mariner spacecraft of 1969 sent back pictures of Mars, Coxeter tells us, they 
were sent in an error-correcting code based on the order-8 Hadamard matrix. 

In closing, let us return to the Csaszar polyhedron and pose an intriguing 
problem. The Csaszar toroid cannot be constructed if all its faces are equilat- 
eral triangles. Suppose a one-hole toroid is made entirely of congruent trian- 
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gular faces, all equilateral. What is the minimum number of faces it can have? 
Bonnie M. Stewart, a mathematician at Michigan State University, considers 
this problem on page 48 of his book Adventures among the Toroids (1970). 

Stewart gives the construction of such a torus with fifty-four faces, twenty- 
seven vertexes, and eighty-one edges. One of his students, Kurt Schmucker, 
found a one-hole toroid with forty-eight equilateral triangular faces. 
Whether that is the minimum, however, is another tantalizing, unanswered 
toroidal question. 

ANSWERS 

The unique solution for the Steiner triple system of order 9 is obtained from 
the following matrix: 

a b c  

d e f  
g h i  

8 

Figure 66 Hadamard matrixes for powers of two 
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The rows (abc, def; g h i )  provide three triplets. The columns (adg, beh, cf;) 
provide three more. The main diagonals (aei, ceg) and the broken diagonals 
(bfg, cdh, afh,  bdi)  complete the list of twelve triplets. 

The orders of Steiner triple systems are numbers that have a remainder of 1 
or 3 when they are divided by 6. The next higher system, order 13, has two 
basic solutions. Order 15 is known to have eighty solutions. 

A model of Kurt Schmucker's one-hole toroid, with forty-eight congruent 
equilateral triangle faces, is easy to make. It consists of a ring of eight regular 
octahedrons joined by their faces (see Figure 67). Schmucker found that rings 
could be made by joining eight replicas of each of the Platonic solids except 
the tetrahedron. No matter how many tetrahedrons are joined by their faces, 
no ring is possible even when the solids are allowed to intersect one another. A 
proof is given by J. H. Mason in his paper "Can Regular Tetrahedra Be Glued 
Together Face to Face to Form a Ring?" ( T h e  Mathematical Gazet te  56, Oc- 
tober 1972, pp. 194- 197). 

Figure 67 Ring of eight octahedrolis 
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ADDENDUM 

When I wrote briefly about Hadamard matrixes, I had not realized that their 
application to telemetry codes was discovered by Golomb and that the use of 
such codes in several Mariner probes of Mars was the result of Golomb's 
affiliation with the Jet Propulsion Laboratory of the California Institute of 
Technology (see Bibliography for Golomb's co-authored 1963 paper). A Ha- 
damard matrix larger than 2 by 2 must have a side that is a multiple of 4, but it 
is not yet known if matrixes exist for all such orders. Golomb tells me that a 
268 Hadamard matrix was reported by Kanue Sawade in Graphs and Combina- 
torics (vol. 1, 1985, pp. 185- 187). The next unknown case, now the smallest, 
is order 428. 

Hadamard matrixes have also found extensive application in the processing 
of pictorial information. The "Hadamard transform" (analogous to the "fast 
Fourier transform") actually produces a mathematical hologram of the origi- 
nal image. Golomb has been a pioneer in recognizing that classic combinator- 
ial design problems often provide optimum solutions to data-processing prob- 
lems and that it pays to look for engineering problems to which these designs 
are the solution. 

B I B L I O G R A P H Y  

"A Polyhedron without Diagonals." ~ k o s  Csaszar, in Acta Scientiarum Mathematicarum 13, 
1949- 1950, pp. 140-142. 

Adventures Among the Toroids. B. M. Stewart. Published by the author, 1952. 2d rev. ed., 
1984. 

"The Search for Hadamard Matrices." Solomon W .  Golomb and Leonard D. Baumert, in 
American Mathematical Monthly 70, January 1963, pp. 12- 17. 

"Euler's Formula for Polyhedra and Related Topics." Donald W .  Crowe, in Excursions in 
Mathematics, Anatole Beck et al., eds. Worth, 1969. 

"Steiner Triple Systems, Heawood's Torus Coloring, Csaszar's Polyhedron, Room De- 
signs, and Bridge Tournaments." Donald W .  Crowe, in Delta 3, Spring 1972, pp. 
27 - 32. 

Room Squares 

"A New Type of Magic Square." Thomas G. Room, in The Mathematical Gazette 39,1955, 
p. 307. 



152 CHAPTER ELEVEN 

"On Furnishing Room Squares." R. C. Mullin and E. Nemeth, injournal ofCombinatorial 
Theory 7, November 1969, pp. 266 - 272. 

"On Room Squares of Order 6m + 2." C. D. O'shaughnessy, ibid, vol. 13, series A. 
November 1972, pp. 306-314. 

"Solution of the Room Square Existence Problem." W. D. Wallis, ibid, vol. 17, series A 
Novemer 1974, pp. 379-383. 

"The Existence of Room Squares." R. C. Mullin and W. D. Wallis, in Aequationes Mathe- 
maticae 13, 1975, pp. 1-7. 



T W E L V E  

Dodfem and Other - 
Simple Games 

Consider a two-person game with the following characteristics: (1) It is a 
game of perfect information; that is, both players have complete knowledge of 
the game's structure after every move. (2) The players move alternately. (3) 
Decisions are not made by chance. (4) The game ends after a finite number of 
moves with a win by one player. (No draw is possible.) 

It is not hard to see that there must be a winning strategy for either the first 
player or the second. If the first player (henceforth called A) does not have a 
winning strategy, he must lose. This means that the second player, B, has a 
winning strategy. Does the argument apply ifwe rescind the requirement that 
the game end in a finite number of moves? 

curiously, it all depends on whether or not one accepts the "axiom of 
choice." This notorious axiom says that from any collection (finite or infinite) 
of nonempty sets, with no elements in common, you can form a new set by 
taking one element from each set. In the 1930s, Stefan Banach, Stanislaw - 
Mazur, and Stanislaw Ulam discovered a type of infinite game in which 
neither A nor B has a winning strategy if the axiom of choice is accepted. 
Someone argued that this proves the Unitarian dogma that there is "at the 
most" one God, because if two gods could play such a game, neither could 
know a winning strategy and therefore neither could be called omniscient! 
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That, however, is by the way. Here we shall examine some new two-person 
nonchance games for which the rules are extremely simple and for which a 
winning strategy is either known or capable of being known. All but one of 
the games are played with counters on boards that are easily drawn on card- 
board. Two differently colored sets of counters, such as go stones or small 
poker chips, will be useful for any reader who wants to play or to analyze the 
games. 

An example of an almost trivial game of the nim type, but one with a 
strategy that is not immediately apparent, is played on the star pattern shown 
in Figure 68. Put a counter on each ofthe star's nine points. A and B take turns 
removing either one counter or any two counters joined by a straight line 
segment. The player who takes the last counter wins. 

B can always win at star nim by a strategy based on the board's symmetry. 
Imagine that the black lines are strings. The pattern can be opened up to a 
circle that is topologically equivalent to the star. If A takes one counter from 
this circle, B takes the two counters that are directly opposite. If A takes two 
counters, B takes one counter that is directly opposite. In each case two sets of 
three counters are left. Now, whatever A takes from one set, B takes the 
corresponding counter or counters from the other set. Obviously B will get 
the last counter. If the reader plays a few games on the circle, translating each 
move to its equivalent on the star, he or she will soon see how to use the star's 
symmetry for playing the strategy. 

In the late 1960s, G. W. Lewthwaite, of Thurso, Scotland, invented a 
delightful game with an artfully concealed "pairing strategy" that gives the 
second a sure win. O n  a 5-by-5 square matrix place thirteen black 

Figure 68 Star nim (left) and its winning strategy (right) 
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Figure 69 G. W. Lewthwaite's counter game (left) and a pairing strategy f o ~  
Lewthwaite's game (right) 

counters and twelve white counters in alternating checkerboard fashion. Any 
one of the black counters, say the one in the center, is removed (see Figure 69, 
left). 

Player A controls the white counters and B the black. They take turns 
moving one of their counters orthogonally to the vacant square until a player 
loses by being unable to move. If the board is colored like a checkerboard, it is - 
obvious that on each move, a counter goes to a square of different color and 
that no counter can be moved twice. The game, therefore, cannot go beyond 
twelve moves for each player. It may end before then, however, in a win for 
either player unless B plays rationally. 

B's strategy is to imagine that the matrix, except for the initially vacant cell, 
is covered with twelve nonoverlapping dominoes. It does not matter how they 
are placed. Figure 69 (right) shows a sample pattern. Whenever A moves, B 
simply moves his counter that is on the domino A has just vacated. Since this 
ensures that B always has a move to follow a move by A, B is sure to win in 
twelve or fewer moves. 

The game can be played not only with counters but also with square tiles or 
cubes that slide within a matrix surrounded by a rim. Suppose the rules are - -  
amended to allow either player at any time to move any number of adjacent 
counters (I through 4) in a row or column provided that the two end counters 
are of his or her color. This is a splendid example of how an apparently trivial 
alteration of a rule can enormously complicate a game's analysis. Lewthwaite 
was unable to find a winning strategy for either player in this variant of his 
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Games based on the sliding of unit squares within a square matrix offer a 
plethora of unexplored possibilities. ~ewthwai te  proposes an attractive game 
that he calls meander. It uses twenty-four identical tiles placed in a 5-by-5 tray 
to form the pattern shown in Figure 70 (left). The players take turns sliding a 
single counter or a straight row or column of two, three, or four counters. The 
play continues until a player wins by creating a pattern in which at least three 
tiles form a continuous line or path thatjoins two edges (opposite or adjacent) 
of the tray. Figure 70 (right) shows a winning pattern, with the winning line 
indicated by the two arrows. The game is probably too complex for solving 
without a computer program, and perhaps too complex for solving even with 
one. 

In 1972, when Colin Vout was a mathematics student at the University of 
Cambridge, he invented an intriguing counter game that he calls dodgem 
because it is so often necessary for a piece to dodge around enemy pieces. It is 
playable on a checkerboard of any size. Even the game on a 3-by-3 board is 
complicated enough to be interesting. 

Two black counters and two white ones are initially placed as shown in 
Figure 71 (top). Black sits on the south side of the board and White sits on the 
west. The players alternately move a counter one cell forward or to their left or 
right, unless it is blocked by another counter of either color or by an edge of 

Figure 70 Meander, with example of pattern on a tile at top (left) and a possible 
winning pattern in meander (right) 



BLACK LEAVES BOARD HERE 

WHITE'S 
DIRECTIONS t 

BLACK'S DIRECTIONS 

-C WHITE LEAVES 
BOARD HERE 

Figure 71 Colin Vout's dodgem (top) and a dodgem game won by Black (bottom) 
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the board. Each player's goal is to move all his pieces off the far side of the 
board. In other words, Black moves orthogonally north, west, or east and 
attempts to move both of his pieces off the north side of the board. White 
moves east, north or south and tries to move his pieces off the east side of the 
board. 

There are no captures. A player must always leave his opponent a legal move 
or else forfeit the game. The first to get all his pieces off the board wins. The 
bottom of Figure 71 shows a typical game won by Black. 

Vout assures me that the first player has the win on the order-3 board, but as 
far as I know, no games on higher-order boards have yet been solved. O n  a 
board of side n, each player has n - 1 pieces placed on the west and south 
edges, with the southwest corner cell vacant. Played with seven checkers or 
pawns of one color and seven of another color on the standard order-8 check- 
erboard or chessboard, it is a most enjoyable game. 

Piet Hein's now classic game of hex (see Chapter 8 of my Scientijic American 
Book ofMathematica1 Puzzles G Diversions, Simon & Schuster, 1959) remains 
unsolved, except for small boards. For readers unfamiliar with the game, it is 
played on an n-by-n rhombus of hexagons such as the order-4 board shown in 
Figure 72. White opens by placing a white counter on a cell. Black follows 
with a black counter. They take turns placing counters on vacant cells (there 
are no moves or captures) until a player wins by forming a chain of adjacent 
counters that joins his side of the board to the opposite side, White by joining 
the north and south edges, Black by joining the east and west edges. 

It is easy to see that no draw is possible. There is a famous proof by John F. 
Nash (who independently invented hex) that on a rhombus of any size, the 
first player has a winning strategy, although the proof gives no hint of what 
the strategy is. 

Suppose White allows Black to tell him where he must make his first move. 
Can White still always win if he plays rationally? This modified version of 
hex has been called Beck's hex after Anatole Beck, who both proposed and 
solved it. Writing on hex in Chapter 5 of Excursions into Mathematics, Beck 
shows that Black can always win if he tells White to open by taking an acute 
corner cell. In other words, such an opening is a sure loss for White, although 
Beck's proof does not provide Black's winning strategy. However, as a foot- 
note comments, it "wrecks Beck's hex." 

What about misire, or reverse, hex, known as rex, in which the first player to 
join his sides loses? As is so often the case in two-person games, the reverse 
game proves to be much harder to crack. No general strategy is known, 
although Robert 0. Winder, in unpublished arguments, has shown the exis- 
tence of a first-player winning strategy in rex of even order and a second- 
player winning strategy for all odd orders. More recently Ronald J. Evans has 
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WHITE 

WHITE 

Figure 72 Rex, a reverse hex game, with White to play and win 

carried Winder's arguments a step further by showing that on even-order 
boards there is a winning strategy if White opens in the acute corner. 

Rex on the order-2 rhombus is trivial, and it is not difficult to analyze 
exhaustively on the order-3 rhombus. Play on the order-4 rhombus is so 
complicated, however, that even though it is known that an acute-corner 
opening initiates a win, the strategy itself remains unformulated. The position 
shown in Figure 72 is an order-4 rex problem composed by Evans. Can the 
reader determine White's only correct move? 

Here is an even simpler game for which no general strategy is known. It is 
played on a 1-by-n board (a single row of n squares) with counters that are all 
alike. A and B take turns placing a counter until one player wins by getting 
three counters adjacent. Could anything be simpler? A can always win when n 
is odd by first taking the center cell, then playing symmetrically opposite the 
opponent thereafter. For even n, however, things are not so simple. O n  most 
even rows, A seems to have the win, but not necessarily, and the exceptions 
follow no known rule. Take n = 6, for example. The reader may enjoy 
working it out to see who has the win. 

John Horton Conway has pointed out that this game is equivalent to a game 
I called 1-by-n cram in a column reprinted as Chapter 19 of my Knotted 



Doughnuts and Other Mathematical Entertainments, (W. H. Freeman and Company,
1986) except that it is played with trominoes instead of dominoes. It is easy
to see the isomorphism. In playing the game as described above, it is obvious-
ly disastrous to place a counter either next to another counter or one cell from
it, since either move gives the opponent an instant win. Hence we might as
well prohibit both moves. An easy way to do it is to require that each play con-
sist of a triplet of adjacent counters, which is the same as placing a tromino
on the field. (The middle of the triplet corresponds to placing a single count-
er, and the ends of the triplet enforce the two new rules.) The winner is the
player who places a tromino last. (To complete the equivalence, we must allow
the placing of a tromino at either end of the field so that it extends one cell
beyond the end.) Of course, the game can also be played by forming a row of
n counters and by removing them by alternate moves of taking three adjacent
counters.

This triplet version of cram is considered in a classic paper by Richard K.
Guy and Cedric A. B. Smith, “The G-Values of Various Games.” Because it
is coded as game .007, it has been called the James Bond game. Elwyn Berle-
kamp has computer-analyzed the game to very high even n without finding
any periodicity in the Grundy numbers, which means that no one is even close
yet to a general rule. The misère version of 1-by-n tromino cram, regardless of
the parity of n, is also unsolved.

Ulam has proposed extending the counter form of tromino cram to a square
matrix. The players take turns placing single counters until one player wins by
getting three in a row orthogonally or diagonally. As before, odd-order fields
are trivial because the first player wins by taking the center, then playing sym-
metrically until the opponent offers a win. On even-order boards the order 4
is trivial, but no one yet knows who has the win on orders 6 or 8. Figure 73,
supplied by Ulam in a letter, shows a position on the order-6 board for which
the next player must lose.

Here again we can play an equivalent game by alternately placing polyomi-
noes, in this case squares of nine cells, but it is not very convenient because in
addition to allowing the pieces to extend into a unit border around the field,
we must also allow them to overlap one another by just two cells (corner and
side). No one has even begun to find a general strategy for the game in stan-
dard or reverse form.

ANSWERS

The answers to the chapter’s two problems are that the second player has the
win on 1-by-6 tromino cram, and White wins the 4-by-4 rex (reverse hex)

160 •  CHAPTER TWELVE
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Figure 73 Stanislaw Ulam's triplet game 

game by taking the cell at the intersection of row C and diagonal 1. Although 
no winning strategy for the first player of order-4 rex is known, a winning 
second-player pairing strategy for the order-5 game has been found by David 
L. Silverman. All higher orders remain unsolved. 

G. W. Lewthwaite's game generalizes in an obvious way to rectangular 
boards of any size and shape. If the rectangle has an odd number of cells, the 
second player wins; if it has an even number of cells, the first player wins. (In 
the latter case the domino covering strategy includes the initially vacant cell.) 

Karl Fulves has suggested that instead of visualizing a domino pattern, you 
play the game with counters secretly marked so that you can place them on the 
board in orientations that group them in pairs. For example, a small pinhole on 
the rim of a pawn or a checker would enable you to orient the pieces so that the 
pinholes of each pair are adjacent. You could then play the domino strategy 
without having to remember a domino pattern. If coins are used, designate a 
spot on the rim of each side of each coin, say the N in the ONE on a penny, as 
your mark and orient the coins accordingly. 

ADDENDUM 

David Fremlin and Dennis Rebertus independently wrote computer programs 
that verified the first player's win in order-3 dodgem. White wins only by first 
moving his piece at the corner. A full analysis of the order-3 game is in 
Winning Ways. Order-4 dodgem is still unsolved. 
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Figure 74 John Beidler's results for Stanislaw Ulam's triplet game 

John Beidler, who heads the computer science department at the Univer- 
sity of Scranton, found by computer that Stanislaw Ulam's triplet game in 
standard play on a 6-by-6 field is a win for the first player only if his first move 
is on one of the four central cells. Beidler generalized the game to rectangular 
boards and obtained the results shown in Figure 74. The numbers give win- 
ning moves by row and column for the first player. The asterisks indicate a win 
for the second player. If the game is played in reverse form, Beidler found that 
the second player has the win on 3-by-3, 3-by-4,3-by-5, and 4-by-4 boards. 
For tromino cram, played in reverse on a 1-by-n field, with n less than 19, 
Beidler proved first-player wins for n = 4,5 ,7 ,8 ,  11, 14,15, 17, and 18, and 
second-player wins for all other values. 
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T H I R T E E N  

Tiling with Convex 
Polygons 

"Many of the brightly coloured, 
tile-covered walls and floors of the 
Alhambra in Spain show us that the 
Moors were masters in the art of 
filling a plane with similar 
interlocking figures, bordering each 
other without gaps. What a pity that 
their religion forbade them to make 
images!" 

-M. C. ESCHER 

Imagine that you have an infinite supply ofjigsaw puzzle pieces, all identical. 
If it is possible to fit them together without gaps or overlaps to cover the entire 
plane, the piece is said to tile the plane, and the resulting pattern is called a 
tessellation. From the most ancient times such tessellations have been used 
throughout the world for floor and wall coverings and as patterns for furni- 
ture, rugs, tapestries, quilts, clothing, and other objects. The Dutch artist M. 
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C. Escher amused himself by tessellating the plane with intricate shapes that 
resemble birds, fish, animals, and other living creatures (see Figure 75). 

A tile that tessellates obviously can have an infinite variety of shapes, but by 
imposing severe restrictions on the shape, the task of classifying and enumer- 
ating tessellations is reduced to something manageable. Geometers have been 
particularly interested in polygonal tiles, of which even the simplest present 
formidable problems. In this chapter we are concerned only with the task of 
finding all convex polygons that tile the plane. It is a task that was not 
completed until 1967, when Richard Brandon Kershner, assistant director of 
the Applied Physics Laboratory of Johns Hopkins University, found three 
pentagonal tilers that had been missed by all predecessors who had worked on 
the problem. 

Let us begin by asking how many of the regular polygons tile the plane. As 
the ancient Greeks knew and proved, there are just three: the equilateral 
triangle, the square, and the regular hexagon. The hexagonal tiling, so famil- 
iar to bees and users of bathrooms, is a fixed pattern (see Figure 76). The 
patterns formed by equilateral triangles or by squares can be infinitely varied 
by sliding rows of triangles or squares along lattice lines. 

Figure 75 Tessellation by M. C. Esche~ 
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Figure 76 The  three regular polygons that tile the plane 

If we remove the restriction that a convex polygon must be regular, the 
tiling problem grows in interest. It has been proved that no convex polygon of 
more than six sides can tile the plane. Thus we need to investigate only 
polygons of three, four, five, and six sides. 

The triangle is easy. Any triangle tiles the plane. Simply fit two identical 
triangles together, with the corresponding edges coinciding as shown in 
Figure 77, and you create a parallelogram. Replicas of any parallelogram 
obviously will go side by side to make an endless strip with parallel sides, and 
the strips, in turn, go side by side to fill the plane. 

The quadrilateral is almost as easy, although much more surprising. Any 
quadrilateral tiles the plane! As before, take a pair of identical quadrilaterals, 
one inverted with respect to the other, join the corresponding edges and you 
create a hexagon (see Figure 78). Each edge of the hexagon is necessarily equal 
to and parallel to its opposite edge. Such a hexagon, by a simple translation 
operation (altering its position on the plane without changing its orientation), 
will form a tiling pattern. The quadrilateral need not be convex. Exactly the 
same technique creates a tiling pattern for any nonconvex quadrilateral. 

The case of the hexagon was settled in 1918 by K. Reinhardt in his doctoral 
thesis at the University of Frankfurt. He showed that any tessellating convex 
hexagon belongs to one of three classes. Kershner, in a 1969 article, "On 
Paving the Plane," explains the three types as follows. 

Label the sides and angles of a hexagon as shown in Figure 79. A convex 
hexagon will tile the plane if and only if it belongs to one or more of the 
following classes: 
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Figure 77 Any triangle tiles the plane 

1. A + B + C = 3 6 0 ° ,  
and a = d. 

2. A + B + D = 3 6 0 ° ,  
and a = d, c = e. 

3. A  = C  = E = 120°, 
and a = b, c = d, e =f: 

The illustration gives an example of each type of convex hexagon tiler and a 
portion of its tiling patterns. The gray lines outline a "fundamental region" 
that tiles the plane by translation. Note that Type 2  requires reflection if the 
hexagon is asymmetric. 

In similar fashion the tessellating convex pentagons can be classified in 
eight ways. Five were found by Reinhardt. Kershner describes them by label- 
ing the pentagon as shown in Figure 80. A convex pentagon paves the plane if 
it belongs to one or more of the following classes: 

1. A + B + C = 3 6 0 ° .  
2. A + B  + D=360° ,  

and a = d. 
3. A = C = D = 120°, 

and a = b, d = c + e. 



4. A = C = 90º,
and a = b, c = d.

5. A = 60º, C = 120º,
and a = b, c = d.

Examples of each type and its tiling pattern are reproduced in the illustra-
tion with gray lines outlining fundamental regions. Only Type 2 requires
reflection.

“At this point,” writes Kershner, “either [Reinhardt’s] technique or his for-
titude failed him, and he closed the thesis with the statement that in principle
it ought to be possible to complete the consideration of pentagons along the
lines of his considerations up to that point, but it would be very tedious and
there was always the possibility that no further types would emerge Indeed, it
is quite clear that Reinhardt and everyone else in the field thought that the
Reinhardt pentagon list was probably complete.
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Figure 78 Any quadrilateral tiles the plane
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TYPE 1 

TYPE 2 

TYPE 3 

Figure 79 The  three types of convex hexagon tiler 

"For reasons that I would have difficulty explaining I have been intrigued 
by this problem for some thirty-five years. Every five or ten years I have made 
some kind of attempt to solve the problem. Some two years ago I finally 
discovered a method of classifying the possibilities for pentagons in a more 
convenient way than Reinhardt's to yield an approach that was humanly 
possible to carry to completion (though just barely). The result of this investi- 
gation was the discovery that there were just three additional types of penta- 
gon . . . that can pave the plane. These pavings are totally surprising. The 
discovery of their existence is a source of considerable gratification." 



TYPE 1 

u 
/ 

TYPE 2 

TYPE 3 

d 

TYPE 4 

h 

TYPE 5 

b 

Figure 80 The  five types of tiling convex pentagon known in 1918 
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The three additional types (see Figure 81) are described by Kershner as 
follows (Type 7 and Type 8 require reflection): 

6. A + B + D = 3 6 0 ° , A = 2 C ,  
and a = b = e, c = d. 

7.  2 B + C = 2 D + A = 3 6 O 0 ,  
a n d a =  b = c = d .  

8. 2 A + B = 2 D + C = 3 6 0 ° ,  
anda=b=c=d.  

Kershner's paper does not include a proof that there are no other convex 
pentagons that tile the plane, "for the excellent reason," reads the editor's 
introductory note, "that a complete proof would require a rather large book." 

TYPE 6 

C 

TYPE 7 

TYPE 8 

Figure 81 Three new types of tiling convex pentagon discovered in 1967 
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Note that Kershner has deliberately drawn his tessellations with polygons that 
are as irregular as possible, within the limits of their type, in order to bring out 
the nature of the tessellation. The most regular hexagonal tessellation is, of 
course, the familiar beehive mosaic. One can readily see that it belongs to all 
three hexagon types. 

If the beehive hexagons are bisected, the result is a pentagonal pattern that 
belongs to Type 1 (see Figure 82A). The pattern formed by six pentagons in a 
flowerlike arrangement (see Figure 82B) uses a tile that belongs to Type 1, 
Type 5, and Type 6. The most remarkable of all the pentagonal patterns is a 
tessellation of equilateral pentagons (see Figure 82C). It belongs to Types 2 and 
4. Observe how quadruplets of these pentagons can be grouped into oblong 
hexagons in two different ways, each set tessellating the plane at right angles 
to the other. This beautiful tessellation is frequently seen as a street tiling in 
Cairo and occasionally in the mosaics of Moorish buildings. It underlies many 
of Escher's tessellations. 

The equilateral pentagon is readily constructed with a compass and a 
straightedge (see Figure 83). First draw a side of the pentagon, AB. Construct 
its perpendicular bisector, CD, then draw lines CE and CF at 45 degrees to AB. 
With center at A and radius AB, draw a circular arc cutting CE at P. The same 
construction is repeated on the other side, with center at B and the arc cutting 
CF at R. Keeping the compass with radius AB, let R be the center and strike an 
arc that cuts the perpendicular bisector, CD, at Q. 

The pentagon's corner angles at P and R are right angles. The corner at Q is 
a little more than 13 1 degrees, and corners A and B are a trifle more than 114 
degrees. The length from Q to B is the product of a side of the pentagon and 
the square root of two. The pentagon's area (it is easy to prove) is   re cis el^ the 
square of line segment CR. 

Among the infinite tessellations of the plane that can be made with con- 
gruent nonconvex polygons, combinatorial geometers have given special 
attention in recent years to tiling with polyominoes and their cousins the 
polyiamonds and ~ o l ~ h e x e s .  (Polyominoes are formed by joining unit 
squares, polyiamonds by joining equilateral triangles, and polyhexes by join- 
ing regular hexagons.) Many fascinating problems have been formulated, 
some solved and some not. That will be the topic of the next chapter. 

ADDENDUM 

A remarkable letter on this chapter after it first appeared as a column in 1975, 
came from Richard E. James 111, a computer scientist with the Control Data 
Corporation. He sent a strange tessellation (see Figure 84) along with a note 
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Figure 82 Pentagonal tessellations of unusual symmetry 

describing the pentagon (in R. B. Kershner's notation) as A = 90 degrees, 
C + D = 270 degrees, 2 0  + E = 2C + B = 360 degrees, and a = b = c + e. 
"Do you agree that Kershner missed this one?" he asked. 

Kershner had indeed missed it. This means that the problem of classifying 
all convex pentagons that tile the plane is not solved, as Kershner had sup- 
posed. I must say that Kershner received the blow with grace and good humor. 
In a letter to him, I mentioned that James's discovery illustrates the pragmatic 
side of mathematical proof, namely that proofs are not known to be proofs 
until there is a consensus among experts. Kershner replied as follows: 

"In connection with your philosophical comments on the nature of a proof 
you might be interested in an observation by that eminent authority, me. In 
The Anatomy oj-Mathematics, Kershner and L. R. Wilcox (Ronald Press, 1950) I 
wrote: 
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Figure 83 How to construct equilateral-pentagon tiler 

Figure 84 A remarkable new tessellation with congruent convex pentagons by 
Richard E. James I11 
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Now it must be said that there is no simple test that can be 
applied to determine the validity of a proof, that is, to determine 
that an alleged proof really is a proof. Mathematical history con- 
tains rare instances of arguments that were generally accepted as 
proofs for hundreds of years, before being successfully challenged 
by a very ingenious mathematician, who pointed out a possibility 
that had been overlooked in the alleged proof. And more recently, 
every year there appear, in the mathematical journals of the world, 
a certain number of papers which point out that some statement, 
allegedly proved in a preceding paper, was not only erroneously 
proved (that is, not proved) but was, in fact, incorrect. These facts 
are mentioned for the benefit of those who feel that there is some 
magic formula for a proof which makes it immutable and unargu- 
able henceforth and forevermore. 

"I must say that when I wrote this paragraph I did not at the time propose 
eventually to illustrate its validity so g-aphically myself." 

James's tessellation can be varied in ways that have been analyzed in a 1978 
paper by Doris Schattschneider of Moravian College, Bethlehem, Pa. It is a 
basic pattern that could have been discovered by the medieval Moors or even 
by the ancient Greeks or Romans, but it is probable that the pattern had never 
before been seen by human eyes until James first put it on paper! 

The discovery of new types of tiling pentagons did not end with James's 
finding. Marjorie Rice, a San Diego housewife with no mathematical training 
beyond the minimum required in high school, began a systematic search for 
new patterns. In 1976 she discovered a tenth type (see Figure 85), two more 
types later that year, and still another one the following year, bringing the 
total number of types to thirteen. A fourteenth type was found in 1985 by Rolf 
Stein, a mathematics graduate student at the University of Dortmund in West 
Germany. Its tiling pattern is on the cover of Mathematics Magazine (No- 
vember 1985), with a note about it on page 308. As far as I know, no more new 
types have been discovered, although there is as yet no proof that the list is 
complete. Nor is there a full listing of all nonconvex pentagons that tile the 
plane. 

Doris Schattschneider gives a brief account of Mrs. Rice's fantastic achieve- 
ments in her 1978 paper, and a more detailed account in her contribution to 
The Mathematical Gardner. The latter paper includes three color plates of 
beautiful Escher-like tesselations (bees, fish, and flowers) that Mrs. Rice based 
on her new tiling patterns, and a color plate of a handwoven rug based on the 
James tesselation. The bee pattern provides the book's jacket. 
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Figure 85 Marjorie Rice's tenth pentagonal tiling 
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Tiling with Polyom inoes, 
Polyiarnonds, 

and Polyhexes 

"I often wondered at my own mania 
for making periodic drawings. . . . 
What can be the reason of my being 
alone in this field? Why does none 
of my fellow-artists seem to be 
fascinated as I am by these 
interlocking shapes?" 

The previous chapter was devoted to tessellating the infinite plane with 
congruent, nonoverlapping convex polygons. In this chapter we extend the 
topic into the vast domain of nonconvex polygons, with special attention to 
polyominoes, polyiamonds and polyhexes. 

Polyominoes are shapes formed by joining unit squares at their edges. They 
were first introduced to the mathematical world in 1953 by Solomon W. 
Golomb. His book Polyominoes (Scribner's, 1965) is the standard reference on 
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this popular recreation. Some of my previous reports on polyominoes are 
reprinted in several earlier book collections of my Scientijc American columns. 

The monomino (single square) and domino obviously tile the plane, and so 
do the two kinds of tromino. It takes only a few moments to discover that each 
of the five tetrominoes will tile in a simple ~er iodic  pattern in which all the 
tiles are identically oriented; that is, no tile needs to be rotated or reflected 
(flipped over). 

Each of the twelve five-celled figures will tile the plane. All but three- the 
T, U, and R pentominoes- tile by simple translation (sliding without rota- 
tions or reflections). Each of the three that require rotation can be fitted into 
pairs by turning one upside down to form an order- 10 polyomino that tiles by 
translation (see Figure 86). 

There are thirty-five distinct hexominoes, and all of them tile without 
being reflected. ~ b m e  tile by simple translation. Those that do not can be 
joined in pairs by turning one upside down to make an order-12 polyomino 
that tiles by translation. 

John H. Conway has long been interested in the tiling properties of poly- 
ominoes and other polygons. When he examined the 108 heptominoes, it was 
clear that the task of identifying the tilers would be tedious unless he could 
find a criterion that would, as he put it, "dispose of most of them rapidly 
without diagrams all over the graph paper." 

The criterion discovered by Conway is an efficient one that applies to any 
polygon. It is based on a hexagonal tiling pattern (see diagrams at left and 
middle in Figure 87). Note that edges a and d are equal and parallel and that 
throughout the pattern a joins d with the two hexagons in the same orienta- 
tion. Note also that each of the other four edges joins its corresponding edge 
on a tile that has been rotated 180 degrees. 

With these facts in mind it is easy to understand the basis of Conway's 
criterion. W e  examine a given polygon to see if its perimeter can be divided 
into six parts, a, b, c, d, e, andJ that meet the following requirements: 

u 

Figure 86 The  three pentoi .noes that require rotation t :o tile periodically 
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Figure 87 Criterion for periodic tiling without reflection 

1. Two opposite edges, a, and d, are "parallel" in the sense that they are 
congruent and in the same orientation. 

2. Each of the other four edges, b, c, e, a n d l  are centrosymmetric; that is, 
they are unaltered by a 180-degree rotation around a midpoint. 

If the polygon meets both requirements, it will tile the plane periodically. 
No flipping over of tiles is necessary. The tiles are paired simply by turning 
one upside down to form a figure that tiles by translation. 

Conway's example will make this procedure clear (see diagram at right in 
Figure 87). The two gray lines mark sides a and d, which are "parallel." The 
two X's distinguish the edges b, c, e, andf. Each of the four edges has central 
symmetry; therefore the figure will tile the plane by pairing. One figure of the 
pair is rotated 180 degrees with respect to the other, without reflection, and 
the double shape tiles by translation. It is important to realize, Conway adds, 
that any of the six edges may be empty (nonexistent). The criterion is quite 
general, applying to triangles, quadrilaterals, pentagons, and all higher 
polygons. 

Of the 108 heptominoes, 101 meet Conway's criterion. That means each 
can be paired with an upside-down mate to form a 14-cell shape that tiles by 
translation. The seven that fail to meet the criterion are shown in Figure 88. 
The first heptomino obviously cannot tile the plane because there is no way to 
fill the hole. The fourth one tiles by pairing with a 90-degree rotation as is 
shown in Figure 89, (lower left). 

The fifth, which Conway considers the most interesting heptomino, tiles in 
three ways. It tiles by pairing, with 90-degree rotation and reflection. With- 
out reflection it tiles in quadruplets of four orientations (see Figure 89, (top 
right, shows on of two ways). 

The second heptomino in this group will not tile without reflection. The 
smallest region, which tiles by translation, contains four replicas in four 
orientations; two of the replicas are reflected, as is shown in Figure 89, (lower 
right). This is the lowest-order polyomino, unique among the heptominoes, 
that requires reflection to tile the plane. 



Figure 88 The seven heptominoes that do not meet Conway’s criterion for tiling 
periodically
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1 2 3 4 5 6 7

Figure 89 Periodic tiling of heptomino five (top), heptomino four tiles with 90-degree
rotation (bottom left), and heptomino two tiles ony with reflection (bottom right)
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The third, sixth, and seventh heptominoes will not tile, making four non- 
tilers in all. Proving impossibility in each case is not difficult, although it is 
sometimes tedious. First you try all possible ways of fitting two replicas 
together, eliminating the ways that have a hole or a space that cannot be filled 
by a third replica. After all such pairs have been found, you test all ways of 
adding a third piece that allow the placing of a fourth. Eventually you reach a 
set of n heptominoes such that, no matter how they are combined, there is no 
way to add another replica. I leave these proofs to interested readers. 

Although the third heptomino will not tile the plane, it can be combined 
with 3-by-3 square tiles to form a striking tessellation. The reader is urged to 
make a set of cardboard replicas of this heptomino, together with replicas of 
the order-3 square, and see if he can combine the shapes to form a tessellation. 

As far as I know, only David Bird of North Shields, England, has isolated 
the nontilers among the 369 octominoes. The six with holes can of course be 
eliminated immediately. Bird reports twenty other nontilers, making twenty- 
six in all (see Figure 90). 

Figure 90 The twenty-six nontiling octominoes 
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Is there a general algorithm that can be applied to any polyomino to decide 
if it will tile? Conway's criterion identifies certain polyominoes as tilers, but if 
a polyomino does not meet his criterion, it may or may not tile in other ways. 
Conway conjectures that there is no general algorithm, but this conjecture has 
not yet been proved. A major step toward establishing the undecidability of 
the algorithm was reported by Golomb in his 1970 paper "Tiling with Sets of 
Polyominoes." In that paper Golomb considers whether there is a procedure 
for deciding if any given finite set of different polyominoes (assuming an 
unlimited supply of each kind) will tile the plane. He shows that the problem 
is equivalent to a problem of tiling the plane with a finite set of edge-colored 
squares by matching colors at the joined edges. Since Hao Wang and his 
colleagues had earlier proved the latter problem to be undecidable (see 
"Games, Logic and Computers," by Hao Wang; Scientif;~ American, No- 
vember 1965) the corresponding problem for polyominoes is also 
undecidable. 

Golomb's paper extended the results published in his 1966 article "Tiling 
with Polyominoes." In that paper he considered the tiling of such subsets of 
the plane as the half-plane, the quarter-plane, straight strips, bent strips, and 
rectangles. A chart summarizes results through the hexominoes. 

If there is no region in a tessellation that tiles by translation, the tessellation 
is said to be nonperiodic. One curious way of tiling nonperi~dicall~ with 
congruent polygons is to use a set of them to build a larger replica. Obviously 
sets of these larger replicas can then be combined in the same way to make a 
still larger replica, and in that way the entire plane can be covered. A tile with 
the property of self-replication was named by Golomb a "rep-tile" [See his 
paper "Replicating Figures in the Plane," and the chapter on rep-tiles in my 
Unexpected Hanging (Simon & Schuster, 1969).] 

Less work has been done on polyiamonds (figures formed by joining con- 
gruent equilateral triangles) than on polyominoes. (On the polyiamonds see 
Golomb's book and Chapters 18 and 24 in my Sixth Book ofMathematica1 
Games (University of Chicago Press, 1983). It is not hard to establish by 
Conway's criterion that all polyiamonds through order 6 will tile. Of the 
twenty-four heptiamonds only the V heptiamond is not a tiler. (A simple 
impossibility proof is given in Chapter 24 of my Sixth Book). Bird, Gregory J. 
Bishop, Andrew L. Clarke, John W .  Harris, Wade Philpott, and others have 
found that all octiamonds will tile. As far as I know, the 160 enneiamonds 
(order 9) have not yet been settled, although two correspondents, Bird and 
Clarke, agree that the nontilers are the twenty-one shown in Figure 91. 

The polyhexes, formed by joining congruent regular hexagons (see the 
chapter on them in my Mathematical Magic Show, Knopf, 1971), have received 
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Figure 91 The twenty-one enneiamonds believed to be nontilers 

even less attention than the polyiamonds. Bird and Bishop have established 
that all polyhexes through order 5 are plane-fillers. Of  the eighty-two hexa- 
hexes Bird believes only five are nontilers (see Figure 92). 

Once it is determined that a given polygon will tile, one can ask in how 
many distinct ways the tiling can be accomplished. It can be a very sticky 
question. A. W. Bell, in his paper "Tessellations of Polyominoes," has made a 
beginning by attempting to classify all patterns for the L tetromino. He 
obtained nineteen patterns but made no claim for completeness. 

Major P. A. MacMahon's little book New Mathematical Pastimes (Cambridge 
University Press, 1921; why has no publisher reprinted it?) explains with a 
wealth of illustrations how a simple polygon tessellation is easily transformed 
into a more complicated one. You merely take a pair of straight edges, which 

Figure 92 The  five hexahexes thought to be nontilers 
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always go together in the pattern, and change the straight boundary to a 
crooked one (curves are allowed), subject to certain symmetry restrictions. It 
was by just such techniques that Islamic craftsmen created the intricate ab- 
stract mosaics in the Alhambra and the Taj Mahal. 

Here is how Escher described the difficulty of adapting the technique to the 
creation of tiles that resemble living things: "The borderline between two 
adjacent shapes having a double function, the act of tracing such a line is a 
complicated business. O n  either side of it, simultaneously, a recognizability 
takes shape. But the human eye and mind cannot be busy with two things at 
the same moment, and so there must be a quick and continual jumping from 
one side to the other." 

Tessellation theory, quite apart from its usefulness to artists who design 
patterns for walls, floors, fabrics, and so on, has a practical application in 
industry. In cutting congruent shapes from thin sheets of metal, plastic, card- 
board, leather, and other materials, a tessellation pattern obviously provides 
the only way of doing it without waste. An unusual art book could be made by 
collecting pictures of the tessellations used in modern manufacturing, from 
the simple rectangular patterns of postage stamps, dollar bills, and playing 
cards to complicated machine parts. 

There is also a potential application to jigsaw puzzles. In 1958 the British 
mathematical physicist Roger Penrose amused himself by transforming a 
parallelogram tessellation into tilings of order-1 8 polyiamonds. Some of them 
make excellent puzzles. Consider a "loaded wheelbarrow" polyiamond (see 
Figure 93). If the reader will make twelve cardboard replicas of the figure, he 
will find it a challenging task to fit them together to make a region that tiles 
the plane by translation. 

Figure 93 Roger Penrose's polyiamond puzzle 
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Penrose is Rouse Ball Professor of Mathematics at the Mathematical Insti- 
tute of the University of Oxford. He is best known among physicists for his 
contributions to relativity theory and cosmology. He and his father, L. S. 
Penrose, were the first to discover "impossible objects" such as the famous 
Penrose staircase that Escher used so effectively in his lithograph Ascending and 
Descending. 

For about a decade it has been known that there are sets of polygons that 
together will not tile the plane periodically but will do so nonperi~dicall~. A 
few years ago Raphael M. Robinson constructed a set of six tiles that tile only 
nonperiodically. Penrose later found a set of four and finally a set ofjust two. Is 
there a single shape, duplicates of which will tile only nonperiodically? This is 
one of the deepest unsolved problems in tessellation theory. The subject of 
nonperiodic tiling is, however, another story. 

ANSWERS 

One way of tesselating the plane with replicas of a certain heptomino and a 
3-by-3 square is shown in Figure 94. There are other ways to do it. 

A tiling pattern for Roger Penrose's wheelbarrow is shown in Figure 95. 
Replicas of the hexagonal region (consisting of twelve polyiamonds in twelve 
different orientations) will tile the plane periodically in the manner of the 
familiar beehive pattern of regular hexagons. Although the tiling pattern is 
unique, there are many different ways a fundamental region of twelve pieces 
can be outlined on the infinite plane. 

Figure 94 A heptomino-and-square tessellation 
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Figure 95 How the Penrose polyiamond tiles the plane 
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F I F T E E N  

Curious Maps 

"I quite realized," said Columbus, 
"That the Earth was not a rhombus, 
But I am a little annoyed 
To  find it an oblate spheroid." 

If only the earth were flat, as Martin Luther, John Calvin, and the fathers of 
the Catholic Church believed, the labors of cartographers would be greatly 
simplified. Indeed, flat-earth maps of the first six centuries of the Christian 
Era presented no serious geometrical problems. A few learned churchmen 
agreed with Pythagoras, Plato, Aristotle, and Archimedes that the earth was 
round, but to most churchmen such a belief was heresy. 

Early medieval maps of the world were "Scripture-preserving." They were 
either rectangular to preserve the "four corners" in Isaiah 11:12 and in Reve- 
lation 7: l ,  or they were circular or oval to preserve the "circle of the earth" in 
Isaiah 40:22. There was, of course, no need for meridians and parallels. Jeru- 
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salem was exactly in the center, as Ezekiel 5:5 suggests. The top of the map 
pointed east and included the site of Eden. The land was surrounded by the 
"great waters" that had once flooded the earth and also by the sources of the 
"four winds" (Daniel 7:2, Revelation 7:l) that blew so erratically toward the 
Holy City. 

After the eighth century the rotundity of the earth gradually became ac- 
ceptable to the Church, with such eminent Catholics as Thomas Aquinas and 
Dante Alighieri defending it. It slipped out of favor among the Reformers, but 
during the Renaissance it quickly won the day. The rapid increase in travel and 
exploration, particularly the great seavoyages, made it necessary to have better 
maps, and that naturally revived a troublesome mathematical question: How 
can a portion of the earth's surface be drawn on a plane so that all distances are 
accurately represented? 

The answer is that it cannot. The side of a cylinder or cone will map 
perfectly onto a plane, but the surface of a sphere will not. You can flatten a 
cylinder or cone without distorting its surface, but even a small region of a 
sphere's surface will not press flat without cracking, folding, or stretching. 
Every flat map of all or part of the earth distorts something. The cartogra- 
pher's tricky task is to design maps that will show the least distortion or no 
distortion ofthose properties the map's user deems desirable. At the same time, 
the distortion of all other properties should be minimal. W e  shall take a quick 
look at some classical methods of mapmaking before turning to methods that 
result in more bizarre maps. 

One of the most desirable features of a map is that angles between any two 
lines on the map be the same as the angles between those same lines on the 
globe. This feature is enormously useful at sea because it means that observed 
angles between two landmarks correspond to angles measured on the map 
with a protractor, and also because small regions on such a map preserve their 
shape. Maps of that type are called conformal. The simplest way to produce a 
conformal map is by "stereographic projection." As Figure 96 shows, a sphere 
is projected by straight lines from point B on the sphere's surface to a plane 
tangent to the sphere at a point opposite. The projection is called equatorial, 
polar, or oblique, depending respectively on whether the antipodes are on the 
equator, the poles, or somewhere else. The price paid for conformality is a 
distortion of the scale factor that increases with distance from the center of the 
map. 

If the projection to the tangent plane is made from the globe's center, it is a 
gnomonic projection, so called because it is related to the construction of a 
sundial with a gnomon. Every great circle on the globe becomes a straight line 
on a gnomonic map. The map is not conformal, but for navigators it has one 
merit that all other planar projections lack. A straight line between any two 
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A ORTHOGRAPHIC I 
PLANE OF 
PROJECTION 

STEREOGRAPHIC 

Figure 96 Three azimuthal projections: orthographic (A), stereographic (B), and 
gnomonic (C) 

points on a gnomonic map corresponds to a great circle on the globe and 
therefore provides the geodesic: the shortest distance between the two points. 

Since the point of projection can be at any spot inside or outside the globe, 
there is an endless variety of perspective projections. If the point is at infinity 
(all projecting lines parallel), the projection is orthographic. Our view of the 
moon or a view of the earth from the moon is essentially orthographic. 
Distance distortions are great at the edges of an orthographic map. The map 
preserves neither area nor angles, but if it is skillfully drawn, it gives a strong 
illusion of the earth's roundness. Perspective maps with the "eye" above the 
earth inay be among the least accurate with respect to many properties, but 
they are the most accurate in matching our visual perceptions of a sphere. 

Projections need not be made onto a plane. They can be made onto sur- 
rounding cylinders or cones that can then be cut and unrolled. Imagine the 
earth snugly fitted inside a cylinder. The projecting lines are parallel to the 
plane that cuts the great circle where the globe and the cylinder touch (see 
Figure 97). The resulting map has the amazing property, highly desirable for 



many purposes, that areas are preserved: All closed curves have the same areas
as their corresponding curves on the globe, and they have them in scale. If the
cylinder touches the earth along the Equator, all meridians and parallels on the
map become straight lines meeting at right angles.

The equal-area cylindrical map is not conformal, and it severely distorts
shapes and distances. Indeed, it is not hard to prove that no map can simulta-
neously be conformal and area-preserving. A great variety of other area-pre-
serving maps have been devised. In modern atlases one of the most popular
of equal-area world maps is an elliptical projection worked out by Karl B.
Mollweide in 1805.

The cylindrical projection suggested to Gerhardus Mercator, a sixteenth-
century Flemish geographer, the famous conformal map that bears his name.
Imagine the earth’s surface punctured at the poles, the two holes enlarged
until the surface is a cylinder, the cylinder stretched along its length until the
map is conformal, then cut along a meridian and unrolled. There is an enor-
mous distortion of scale near the poles. As we learned in grade school, this
familiar world map shows Greenland larger than South America when actu-
ally it is much smaller. (In order to minimize such scale variations, modern
atlases use a modification of the Mercator map called the Miller projection.)
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Figure 97 Cylindrical projection method for making an equal-area map
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The Mercator projection has, however, one remarkable property that makes it 
invaluable to navigators. If you rule a straight line between any two points on 
the map, the line is a loxodrome, or rhumb line, connecting the two points. A 
loxodrome is a line that keeps a constant angle with parallels and meridians (see 
Figure 98). Imagine a point on the globe that starts at the Equator and moves 
northward in any constant compass direction. The path will be a loxodrome 
that spirals toward the North Pole, finally strangling the pole after an infinity 
of turns around it. O n  a stereographic map (with its plane tangent to the North 
Pole) a loxodrome projects as a logarithmic spiral. 

The loxodrome is not the shortest distance between two points, but for 
small distances it is reasonably close to a geodesic, and it has the practical value 
of being a path that does not require constant changes of bearing. For long 
distances, navigators usually determine the geodesic from a gnomonic projec- 
tion, then break it into shorter rhumb lines on a Mercator map to minimize 
changes in compass settings. 

So much for the classic projections. Let us turn now to more radical distor- 
tions. For a two-point equidistant projection, points A and B are selected. The 
map is then drawn so that all distances from A and B to any other point on the 
map are in true scale. Such a map is useful to a person traveling from A to B. No 
matter how circuitous one's route is, one can at any time measure with a ruler 

Figure 98 A Mercator conformal map with loxodromes, or rhumb lines, from New 
York 
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exactly how far one is from both points. Suppose the two points on a two- 
point equidistant map of the world are the two poles. What will the map look 
like? 

Another curious special-purpose map is the "Mecca map," designed to 
show at once to a Moslem the exact direction he must face when he prays at 
any spot on the globe. One way to draw such a map is to make a stereographic 
projection with Mecca at the plane's tangent point. Because the map is con- 
formal, Mecca's bearing angle can be determined by measuring the angle 
between a straight line to Mecca and a meridian. Unfortunately, the meridians 
on such a map are curved, making it difficult to measure the angle exactly. 
One can, however, construct a Mecca map on which all meridians are straight 
lines, making it possible to measure bearing angles with a protractor. Such a 
map, with Mecca replaced by another holy place, Wall Street, is given in an 
internal Bell Laboratories memorandum on map oddities written by Edgar N. 
Gilbert, a mathematician (see Figure 99). The map's upper boundary is the 
North Pole. 

Figure 99 Edgar N. Gilbert's "Mecca map" for Wall Street 
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SOUTH POLE 

Figure 100 Johann Werner's cordiform (heart-shaped) equal-area map 

Gilbert's memorandum contains even stranger maps. One is a cordiform 
(heart-shaped) equal-area map invented by Johann Werner (see Figure 100). It 
was popular in the sixteenth century but, writes Gilbert, has "now fallen into 
undeserved obscurity. The highly distorted parts of the map lie away from 
most major land masses. The curved latitude lines give the map a pleasing 
illusion of roundness. . . . The latitude lines are arcs of circles, evenly spaced 
and centered at the North Pole. The longitude lines are drawn to make 
distances along the latitude lines the same in the map as in the sphere." 

The bunching of land masses on Werner's map reflects an actual bunching 
of land on the earth. The Pacific Ocean is so immense that if you look at a 
globe from a point above the English Channel, you will see more than 80 



196 CHAPTER FIFTEEN 

percent of the world's land, and the hemisphere opposite will be almost 
entirely water. Is such lopsidedness surprising? Gilbert came up with an 
answer by replacing the continents with small nonoverlapping circular caps. 
Assuming thHt N caps are randomly distributed around the globe, whaF is 
the probability that the centers of all N circles lie in one hemisphere? In a paper 
titled "The Probability of Covering a Sphere with N Circular Caps," Gilbert 
shows that the probability is 2-N(W - N + 2). With N = 7 continents the 
probability is 11/32, proving that the earth's lopsided land distribution is not 
at all remarkable. The reader may enjoy testing the formula by determining 
the probability that the centers of one, two, or three continents all lie in one 
hemisphere. 

 he strangest of all Gilbert's maps was made by taking a conformal world 
map based on a conical projection and projecting it back onto a sphere to 
produce a conformal "two-world map." Figure 101 shows how the globe 
looks in perspective from a point about five radii from its center. When people 
visit Gilbert's office, he likes to ask them what is wrong with his globe. If the 
visitor cannot see what is wrong, Gilbert gives the globe one slow, complete 
turn. "Even this hint," he writes, "does not always succeed." Actually every 
spot on the globe has a duplicate on the other side! Unless you are an 
experienced !geographer, however, it is not easy to realize that you are seeing 
much more of the world than can normally be seen on one hemisphere. 

With the aid of computer-generated graphics it is now possible to write 
programs that distort a map so that the areas express some desired value such as 
annual rainfall, retail sales, and so on. Regions on the map still retain recogniz- 
able shapes in spite of the distortions. The joke map showing a New Yorker's 
idea of the United States, although it goes back (in many variants) to precom- 
puter days, is a familiar example of such maps. One of the top experts on such 
special-purpose map projections is Waldo R. Tobler, a geographer at the 
University of Michigan. In a paper titled "A Continuous Transformation 
Useful in Districting," he explains a computer program that distorts a map to 
show relative populations of regions by their relative sizes, and he shows how 
such a technique could be a valuable aid in planning voting districts. In 1973 a 
geographer with a fondness for floppy bow ties was given a presentation 
award that consisted of a framed world map distorted to the shape of his tie. 
Drafting the map was no problem for ~ob le r ' s  computer 

Dissection maps (as I call them) are world maps projected on a pattern of 
squares, triangles, or polygonal tiles of other shapes. The tiles can be fitted 
together to make an "interrupted map" (a map with discontinuities) of any 
portion of the globe. The philosopher and mathematician Charles Sanders 
Peirce designed such a conformal map. It is a projection on eight isoceles right 
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NORTH POLE 

Figure 101 Gilbert's "two-world" globe and an oblique view of the globe 

triangles that may be regarded as the faces of an octahedron that has been 
flattened until a space diagonal is zero. The vertexes of the zero diagonal are 
the North and South poles of Peirce's map. 

B. J. S. Cahill of Oakland, Calif. patented his butterfly map in 19 13, and it 
enjoyed a considerable vogue in the 1930s. The world is projected onto the 
eight equilateral-triangular faces of a regular octahedron. Cahill had several 
versions of his map, based on different projections, but they all consisted of 
eight triangular tiles that could be fitted together as one pleased (see Figure 
102). 

R. Buckminster Fuller's first Dymaxion map was a projection of the world 
onto the fourteen faces (six squares and eight equilateral triangles) of a cuboc- 
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SOUTH POLE SOUTH POLE 

Figure 102 Butterfly map by B. J. S. Cahill 

tahedron. Gerard Piel, who was then science editor of Life, was so intrigued by 
it that he asked the cartographer Richard Edes Harrison to draw an unfolded 
net of the solid. Staff artists completed a color map of the drawing, and it was 
published on cover-stock paper in the March 1, 1943, issue of Life. It was a 
great success. All over the country, in homes and laboratories, one would see 
the little cuboctahedron hanging on a cord and rotating with currents of air. 

At about the same time, Irving Fisher, a distinguished Yale economist, 
thought of a similar idea: a gnomonic projection of the world to the twenty 
triangular faces of an icosahedron. Figure 103 shows an unfolded net of this 
Platonic solid as it appears inside the jacket of World Maps and Globes, an 
entertaining introduction to cartography by Fisher and 0. M. Miller. Harri- 
son was the map's cartographer. 

The reader may enjoy pasting a copy of Fisher's gnomonic projection on 
heavy paper and folding it into the icosahedral globe or cutting out the 
triangles and fitting them together in different ways. If the poles are put at 
opposite vertexes, the Equator becomes a straight line. Fisher marketed several 
versions of his Likaglobe, as he called it, and wrote an article about its merits in 
Geographical Review (October 1943). The globe can, of course, be projected on 
other regular solids, but distortion is exaggerated on the cube and the tetrahe- 
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dron. Although the dodecahedron makes a handsome pseudoglobe, its faces 
cannot be used as tiles because regular pentagons will not tessellate the plane. 

The icosahedron seems to be the ideal polyhedron for a dissection map, and 
Fuller himself has now adopted it. In 1954 he copyrighted his Dymaxion 
Skyocean Projection World Map, drawn by Shoji Sadao. It differs from 
Fisher's Likaglobe in having the North and South poles on opposite faces at 
points slightly off center. For a small fee, readers can obtain a punch-out 
version printed in four colors on heavy stock. It folds into a beautiful icosahe- 
dron that rests on a cardboard stand that comes with the map. (Orders should 
go to Dymaxion Maps, 3500 Market Street, Philadelphia, PA, 19104). Also 
available are several wall-map versions of the unfolded icosahedron and an 
explanation sheet on which Fuller discusses the philosophy and mechanics of 
the projection. 

W e  have considered only a small portion of the many curious special-pur- 
pose maps designed by ingenious cartographers. Harrison once drew a world 
map consisting of nothing but ocean shipping lanes. From a distance, you 
could see the continents clearly, but from close up you discovered that the map 
contained not a single shoreline. At the Christian Science Publishing House in 
Boston, you can step inside a world globe 30 feet in diameter. If such a globe 
were transparent and viewed from the outside, everything would be mirror- 
reversed. From the inside the land masses and oceans appear normal. 

NORTH POLE NORTH POLE 

SOUTH POLE SOUTH POLE 

Figure 103 Irving Fisher's Likaglobe, which folds into an icosahedron 
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The major tenet of a bizarre little sect called Koreshanity -it flourished in 
America late in the nineteenth century-was that we actually live on the 
undersurface of such a hollow earth, with the entire cosmos inverted and 
compressed to fill the interior. The sect was founded by a baptist named Cyrus 
Reed Teed, of Utica, N.Y. You will find Teed's inside-out maps in his great 
scientific work The Cellular Cosmogony (1870) and in the pages of The Flaming 
Sword, a periodical that the cult kept going until 1949. How did Teed explain 
the fact that we cannot point a telescope straight up and see the earth's other 
side? Well, he took care of it with special optical laws describing how light 
travels in bent paths. Teed's cosmos has not been sufficiently appreciated by 
philosophers of science. By performing an inversion operation on the uni- 
verse, then inventing new laws of physics, one can obtain an inside-out 
cosmology that is not easy to refute except by slashing it with Occam's razor. 

A large class of eccentric maps that we have not considered are the maps of 
imaginary regions. "Might-have-been" maps show what the world might 
have looked like if major wars had ended differently. Fantasy maps depict Oz, 
Hell, Eden, Poictesme, Narnia, Barsoom, Middle-Earth, Atlantis, and other 
fanciful realms. J. B. Post has collected ninety-eight of them in his beautiful 
Atlas ofFantasy. And we must not forget the Bellman's ocean chart in Fit 2 of 
Lewis Carroll's Hunting ofthe Snark: 

He had bought a large map representing 
the sea, 

Without the least vestige of land: 
And the crew were much pleased when 

they found it to be 
A map they could all understand 

"What's the good of Mercator's North 
Poles and Equators, 

Tropics, Zones, and Meridian Lines?" 
So the Bellman would cry: and the crew 

would reply, 
"They are merely conventional signs! 

"Other maps are such shapes, with their 
islands and capes! 

But we've got our brave Captain 
to thank" 

(So the crew would protest) "that he's 
bought us the best- 

A perfect and absolute blank!" 
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Fisher's book on world maps closes with thirty-six excellent questions and 
answers about world geography. How well can the reader do (without con- 
sulting a map) on the following selection? 

You are on a ship five miles from an entrance to the Panama Canal and 
sailing due west toward it. In what body of water is your ship? 
Flying due south from Detroit, what foreign country do you reach 
first? 
Which is nearer Miami, California or Brazil? 
Which is farther north, Venice or Halifax? 
Which is farther south, Venice or Vladivostok? 
Which is larger, Japan or Great Britain? 
What four states in the U.S. touch at one point? 
Does a geodesic (great circle) from Tokyo to the Panama Canal pass 
east or west of San Francisco? 

The illustrations for this chapter are by Richard Edes Harrison. He also gave 
me invaluable assistance on the text. 

ANSWERS 

A two-point equidistant map of the world, when the two points are any pair of 
antipodes, is a straight line. The next problem dealt with the distribution of 
continents around the world. If one, two, or three nonoverlapping circular 
caps are randomly distributed around the globe, the probability that their 
centers lie on one hemisphere (any half sphere, not necessarily the Northern 
or the Southern Hemisphere) is 1. 

The answers to the geographical questions are: 

1. Pacific. 
2. Canada. 
3. California. 
4. Venice. 
5. Vladivostok. 
6. Japan. 
7. Arizona, Colorado, New Mexico, Utah. 
8. East. 
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With reference to question 7, I learned in 1984 that the Four Corners 
Highway passes within a few hundred yards of the spot where the four states 
meet. An access road leads to the spot, where you find local Indians selling 
wares to tourists. 

ADDENDUM 

So many strange projections ofworld maps came to my attention after I wrote 
this chapter that I have space only to comment briefly on a few. I had men- 
tioned the New Yorker's map of the United States on which New York, 
California, and Florida are huge, all other states tiny. In the late 1970s, the 
Danish writer and inventor Piet Hein marketed in Denmark what he called 
the Denmark Globe, on which Denmark is enlarged to symbolize how big it 
seems to Danes. 

In 1985 I clipped an advertisement from The New York Review of Books 
(February 14) for a map of the Americas with South America on top, and the 
United States and Canada at the bottom. Of course all place names are right- 
side up. "Run of the mill maps place the U.S. on top," the ad read. "Since 
'upper' is equated with 'superior,' this breeds misconceptions and mischief. 
The Turnabout Map offers a corrective perspective." 

Professor Tobler, cited in the chapter, wrote to me about his unpublished 
Mobius-strip map. The earth is projected onto the strip, like a Mercator 
projection that has been stretched horizontally, twisted, and the ends joined. 
The two stretched polar points become the single edge of the one-sided 
surface. The map has the following remarkable property: A pin puncturing it 
at any point emerges at the spherical antipodal point! W h o  but a topologist, 
Tobler asked, would suspect this similarity of a sphere and a Mobius surface? 
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S I X T E E N  

The Sixth Symbol and 
Other Problems 

1. WHAT SYMBOL COMES NEXT? 

Can you sketch the sixth figure in the sequence of five symbols shown in 
Figure 1041 

2. WHICH SYMBOL IS DIFFERENT? 

Every person who ever took an I.Q. test has surely been annoyed by questions 
that involve a row of symbols and a request to identify the symbol that "does 
not belong7' to the set. Sometimes there are so many different ways a symbol 
can be different from the others that brighter students are penalized by having 
to waste time deciding which symbol is "most obviously different" to the 
person who designed the test. 

It was irritation over such ambiguity that prompted Tom Ransom, a puzzle 
expert of Toronto, Ontario, to devise a delightful parody of such a test. The 
reader is asked to inspect the five symbols in Figure 105 and pick out the one 
that is "most different." 
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Figure 104 What is the sixth figure in this series? 

3. CUTTING A CAKE 

A cake has been baked in the form of a rectangular parallelepiped with a square 
base. Assume that the square cake is frosted on the top and four sides and that 
the frosting's thickness is negligible (zero). W e  want to cut the cake into n 
pieces so that each piece has the same volume and the same area of frosting. 
The slicing is conventional. Seen from above, the cuts are like spokes radiating 
from the square's center, and each cutting plane is perpendicular to the cake's 
base. 

If n is 2, 4, or 8, the problem is easily solved by slicing the cake into two, 
four, or eight congruent solids. Suppose, however, that n is 7. How can we 
locate the required seven points on the perimeter ofthe cake's top? If you solve 
it for 7, you will be able to generalize to any n. 

This pretty problem is given by H. S. M. Coxeter on page 38 of his classic 
Introduction to Geometry (Wiley, 1967). Coxeter does not answer it, but it 
should give readers little difficulty. The general solution is surprisingly 
simple. 

4. TWO CRYPTARITHMS 

Here are two elegant cryptarithms by Alan Wayne that have not been pub- 
lished before. The first is in French, the second in German. Each letter 
represents just one decimal digit, and we adopt the usual convention that zero 
must not begin a number. Both have unique solutions. 

Figure 105 Tom Ransom's I.Q. test: Which symbol is the "most different"? 
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V I N G T  E I N  
+ C I N Q  + E I N  

C I N Q  E I N  

T R E N T E  E I N  

V I E R  

5. LEWIS CARROLL'S "SONNET" 

In 1887 Lewis Carroll included in a letter to Maud Standen, a "child-friend," a 
six-line poem that he called an "anagrammatic" sonnet. (He was using "son- 
net" in an older sense, meaning any short piece of verse.) "Each line has four 
feet," Carroll wrote to Maud, "and each foot is an anagram, i.e., the letters of it 
can be rearranged so as to make one word." Most of the anagrams, he said, had 
been devised "for some delicious children" he had met the previous summer at 
Eastbourne. The words vary in length from four through seven letters, and it is 
assumed that proper names are not allowed. 

Here is the "sonnet7': 

As to the war, try elm. I tried. 
The wig cast in, I went to ride 
'Ring? Yes.' We  rang. 'Let's rap.' 

W e  don't. 
'0 shew her wit!' As yet she won't. 
Saw eel in Rome. Dry one: he's wet. 
I am dry. O forge! Th'  rogue! W h y  

a net? 

In most cases there is little doubt about the correct word. For example, the 
first foot, "As to," could be "oast" or "stoa," but more likely Carroll meant 
the commoner word "oats." For several of the feet, however, the intended 
word is not clear. No solution by Carroll has survived, and to this day there is 
contention among Carrollians over the precise set of twenty-four words 
Carroll had in mind. Readers are invited to make their own list to compare 
with the conjectures in the answer section. 
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6. THIRD-MAN THEME 

Two kings are the sole occupants of a chessboard (see Figure 106). The task is 
to add a third man, creating a position that meets these provisos: 

1. Neither king is in check. 
2. The position can be reached in a legal game. 
3. It can be proved, by retrograde analysis of previous legal moves, that 

neither side has a legal play. 

Note carefully the wording. It asks not for a double stalemate but only for a 
position in which neither side can move. The solution is unique. 

This sophisticated little problem appeared in The Problemist (September 
1974, p. 471), where it was credited to G. Husserl ofIsrael. Newman Guttman 
called it to my attention. The original problem asked for the minimum 
number of men that must be added to the board to meet the conditions, but I 
have made the problem easier by stating that the minimum is one. 

ANSWERS 
1. The sixth figure is given in Figure 107, with the vertical lines of 

symmetry shown in gray. O n  the right of each gray line are the numerals 1 
through 6; on the left are their mirror reflections. 
2. The first symbol of Tom Ransom's I.Q. test differs from the other four 

in having a gray border. The second symbol differs in not being shaded. The 

Figure 106 Where and what is the third man? 
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Figure 107 Solution to the sixth-symbol problem 

third differs in not being square, and the fourth in having a gray spot. The fifth 
is the only symbol that is not unique with respect to some property, and 
therefore it is the one symbol "most different" from the others. T o  put it 
differently, the first four are each different in the same general way, whereas 
the fifth is different in a different way, which makes it radically different. 

One is reminded of the story about the report of a psychiatrist on the most 
remarkable case in his experience. The patient was a person who showed no 
trace of any kind of neurosis. In my opinion Ransom has found a simple, 
elegant model of a semantic paradox that is frequently encountered but sel- 
dom explicitly recognized. 

3. T o  cut a square cake, frosted on the top and four sides, into n pieces of 
equal volume and equal frosting area, we need only mark the perimeter into n 
equal parts and cut the cake in the usual manner (see Figure 108). T o  under- 
stand why this is so, we adopt a stratagem given by Norman N. Nelson and 
Forest N.  Fisch in their article "The Classical Cake Problem" (The Mathemat- 
ics Teacher 66, November 1973, pp. 659 - 661). Imagine the cake cut along its 
diagonals into four congruent triangular prisms, and the prisms arranged in a 
row as shown at the right in the illustration. The base line is the cake's 
perimeter. Divide the cake into seven equal portions, A, B, C, D, E, F, G, as 
shown by the seven gray lines. Those lines correspond to the seven cutting 
planes in the solution. 

It is easy to see that the area of icing on each portion is the same. The sums of 
the one or two rectangles that form the sides of each portion clearly are equal. 

Figure 108 Solution to the square-cake problem 
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The tops of each portion (composed of one or two triangles) are also equal in 
area because the sums of the bases of these triangles are equal, and all triangles 
have the same altitude. Finally, the volumes of the seven portions are the same 
because their heights are equal and their tops are equal in area. 

The solution obviously generalizes to n portions. W e  cannot, however, 
apply the procedure to a cake on which the frosting has a finite thickness, 
because the four corners of such a cake introduce complexities. 

Stephen I. Warshaw of the Lawrence Livermore Laboratory of the Univer- 
sity of California generalized the cake-cutting problem. The procedure given 
for the square cake, he showed, also applies to any cake with a polygonal base 
each side of which is tangent to the same circle. This includes all triangles and 
rhombuses, all regular polygons (as well as the limiting case of the circle), and 
all polygons of unequal sides that meet the proviso. Even more surprising, 
Warshaw found that this generalization led to the solving of a sticky problem 
in his work: "How to find a simple way to divide a discrete mesh cell into parts 
of given proportions in computer simulation studies involving hydrodynamic 
motions. The solution, once seen, is 'obvious.'" 

4 .  The French cryptarithm is solved with 94,851 + 6,483 + 6,483 = 

107,817, and the German one with 821 + 821 + 821 + 821 = 3284. 
Many readers pointed out that the numeral 1 is commonly called eins in 

German, not ein as it appeared in the German cryptarithm. William C.  Gies- 
sen was the first to add that if this change is made, the cryptarithm still has a 
unique solution: 1329 + 1329 + 1329 + 1329 = 5316. 

5.  The first published attempt to solve Lewis Carroll's anagram poem was 
made by Sidney H. Williams and Falconer Madan in their Handbook of the 
Literature ofthe Rev. C .  L .  Dodgson (Oxford University Press, 1931). Some of 
their errors were corrected in a revised edition, the Lewis Carroll Handbook 
(Oxford University Press, 1962),  by Roger L. Green. For further criticism and 
speculation see Philip S. Benham, "Sonnet Illuminate," in Jabberwocky, the 
journal of the Lewis Carroll Society (Summer 1974). 

Drawing on the above sources, and with help from Spencer D. Brown, here 
is how matters stand on the words Carroll most likely had in mind. 

As to: oats (not oast, stoa). 
The war: wreath (not thawer). 
Try elm: myrtle. 
I tried: tidier. 
The wig: weight. 
Cast in: antics (not sciant, actins, or nastic). 
I went: twine. 
T o  ride: editor or rioted. 
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Ring yes: syringe. 
W e  rang: gnawer. 
Let's rap: plaster (not stapler, persalt, palters, psalter, or platers). 
W e  don't: wonted. 
0 shew: whose. 
Her wit: writhe (not wither, whiter). 
As yet: yeast. 
She won't: snoweth. 
Saw eel: weasel. 
In Rome: merino (not moiretz, minore). 
Dry one: yonder. 
He's wet: seweth (not thewes, hewest). 
I am dry: myriad. 
0 forge: forego. 
Th'  rogue: tougher (not rougeth). 
w h y  a net: yawneth. 

Carroll's letter containing the puzzle poem first appeared in Six Letters by 
Lewis Carroll, privately printed in 1924. It is reprinted as Letter XLV in A 
Selectiorz from the Letters ofLewis Carroll to His Child-~riends, edited by Evelyn M. 
Hatch (Folcroft, 1973). 

Now for some hot news concerning number 16 above. Can you rearrange 
the letters of "she won't" to make another common two-word phrase? 

6. The only solution to the third-man chess problem is to place a white 
bishop on the board as shown in Figure 109. Black obviously cannot move, 

Figure 109 Solution to the third-man theme 
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and White cannot move because it is not his move. T o  prove that it must be 
Black's move (therefore Black is stalemated) requires elementary retrograde 
analysis that I leave to the reader. 

Many readers could not comprehend why the third-man chess problem 
does not have many other solutions, such as a white pawn in place of the white 
bishop. The reason is that none of these positions rules out the possibility that 
it is White's move, and if White can move, the position fails to meet the 
demand that neither side can move. For instance, assume that the black king is 
on the QB1 cell. It is checked by an advancing white pawn. The black king 
moves to the corner. Now it is White's move. The given solution is the only 
one for which it can be shown by retrograde analysis that it must be Black's 
move, proving that the position is a stalemate for Black. 
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Magic Squares and Cubes 

"In my younger days, having once 
some leisure (which I still think 1 
might have employed more usefully), 
I had amused myself in 
making . . . magic squares." 

-BENJAMIN FRANKLIN, from a letter 

Two major breakthroughs have been made in the study of magic squares and 
magic cubes: All order-5 magic squares have been counted, and the first 
perfect magic cube has been constructed. I am pleased to be the first to publish 
both results. So that the magnitude of the two achievements can be fully 
appreciated, let us take a brief look at the history of magic squares. 

Although some of the greatest mathematicians have done work on magic 
squares, and even though such work leads into the theories of groups, lattices, 
Latin squares, determinants, partitions, matrices, congruence arithmetic, and 
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other nontrivial areas of mathematics, the most enthusiastic square construc- 
tors have been amateurs. The famous Franklin square, an ingenious 16-by-16 
matrix that Benjamin Franklin called "the most magically magical of any 
magic square ever made by any magician," is itself the topic of many articles 
and monographs. The literature on magic squares in general is vast, most of it 
written by laymen who had become hooked on the elegant symmetries of 
these interlocking number patterns. 

A standard magic square, as few readers need to be told, is a square array of 
positive integers from 1 through N2,  arranged so that the sum of every row, 
every column, and each of the two main diagonals is the same. N is the "order" 
of the square. It is easy to see that the magic constant is the sum of all the 
numbers divided by N. The formula is 

The trivial square of order 1 is simply the number 1, and of course it is 
unique. It is equally trivial to prove that no order-2 square is possible. 

There are eight ways to arrange the digits 1 through 9 in an order-3 array 
that is magic. It is traditional, however, not to count rotations and reflections. 
When they are excluded, the order-3 square is unique. T o  appreciate the 
gem-like beauty of this most ancient of all combinatorial curiosities, consider 
all the ways that its constant, 15, can be partitioned into a triplet of distinct 
positive integers. There are exactly eight: 

Now, in the order-3 square each of eight lines of three numbers must total 
15: the six orthogonals (rows and columns) and the two diagonals. The eight 
lines exactly match the number of triplets we have available. Since the center 
number belongs to a row, a column and both diagonals, it clearly must be a 
digit that appears in four of the eight triplets. The only such digit is 5. W e  
therefore know that 5 is the central number. 
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Consider 9. It belongs to only two triplets. W e  cannot place it in a corner 
since each corner cell belongs to three lines. Consequently it must go in a side 
cell. Because of the square's symmetry, it does not matter which side cell we 
choose, so let us put it above the 5. For the top corners, on each side of 9, we 
have no choices except 2 and 4. Again it does not matter which digit goes 
where, since one arrangement is merely a mirror reflection of the other. The 
rest of the square follows automatically. W e  have by this simple construction 
proved its uniqueness. 

The completed square, in the form shown in Figure 110, is the Lo shu of 
ancient China. According to legend the pattern was first revealed on the shell 
of a sacred turtle that crawled out of the Lo River in the twenty-third century 
B.c., but today's Chinese scholars trace references to it back no further than the 
fourth century B.C. From then until the tenth century the pattern was a 
mystical Chinese symbol of enormous significance. The even numbers were 
identified with yin, the female ~rinciple, and the odd numbers with yang, the 
male principle. The central 5 represented the earth, around which, in evenly 
balanced yin and yang, were the other four elements: 4 and 9 symbolizing 
metal, 2 and 7 fire, 1 and 6 water, and 3 and 8 wood. 

There are 880 magic squares (excluding rotations and reflections) of order 
4. They were first given by Bernard Frenicle de Bessy in 1693. There are many 
ways to classify them. One of the best was devised by Henry Ernest Dudeney, 
who explains his system in an excellent article on magic squares in early 
printings of the fourteenth edition of the Encyclopaedia Britannica. The last 
printing of that edition substitutes for Dudeney's article a superb historical 
article by Schuyler Cammann. The current (fifteenth) edition has a trivial 
microarticle on magic squares in the Micropaedia. 

M F T A I  

WOOD - 
WATER 

Figure 110 The  Lo shu magic square of ancient China 
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How many magic squares are of order 5? The best estimate was given by 
Albert L. Candy in his Construction, Classijication and Census $Magic Squares o f  
Order Five, privately published in Lincoln, Neb., in 1938. Candy arrived at a 
total of 13,288,952. The exact number was not known until 1973, when the 
counting was completed by a computer program developed by Richard 
Schroeppel, a mathematician and computer programmer at Information In- 
ternational. The program, using a standard backtracking procedure, consists 
of about 3500 "words" and took about 100 hours of running time on a 
PDP-10. A final report, written by Michael Beeler, was issued in October 
1975. 

Candy's estimate was low by a wide margin. Not counting rotations and 
reflections, there are 275,305,224 magic squares of order 5. Schroeppel 
prefers to divide that number by 4 and give the total as 68,826,306. The reason 
is that in addition to the eight variants obtained by rotation and reflection, 
there are four other variants generated by the following two transformations, 
which also preserve magic: 

1. Exchange the left and right border columns, then exchange the top and 
bottom border rows. 

2. Exchange rows 1 and 2 and rows 4 and 5. Then exchange columns 1 
and 2 and columns 4 and 5. 

When these two transformations are combined with the two reflections 
and four rotations, the result is 2 X 4 X 2 X 2 = 32 forms that can be called 
isomorphic. With this definition of isomorphic the count becomes 
68,826,306. 

That number can be lowered even more by considering another well- 
known transformation. If every number in a magic square is subtracted from 
N2 + 1 (in this case 26), the result, called the complement, is also magic. 
When the center of an order-5 square is 13, the complement is isomorphic 
with the original. If it is not 13, a different square results. If we broaden the 
term isomorphic to include complements, the count of order-5 squares drops 
to about 35 million. 

The task of classifying order-5 squares in meaningful ways is staggering. 
Dudeney once wrote that certain ways of dividing magic squares into types 
seemed to him about as useful as dividing people into those who take snuff and 
those who do not. Nevertheless, certain divisions yield unexpected results. 
Consider, for example, the total number of order-5 squares with centers that 
are numbers 1 through 13: 
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Note that the totals steadily increase from 1 through 8 but that the totals for 
9 and 10 and for 11 and 12 are reversed. That there are more squares with a 
center of 11 than squares with a center of 12, and more squares with a center of 
9 than squares with a center of 10, came as a surprise. Of course, these same 
anomalies occur in the counts of squares with centers 14 through 25, since 
every square with a center that is not 13 has its complement. There are as many 
squares with 1 in the center as there are with 25, and the same is true for all 
numbers except 13. 

Figure 11 1 shows an order-5 square of a type that is more powerfully magic 
than any other. It is associative, which means that any pair of numbers sym- 

Figure 111 A pandiagonal, associative magic square of order 5 
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metrically opposite the center add up to N2 + 1. And it is pandiagonal (some- 
times called Nasik or diabolic), which means that its broken diagonals add up 
to 65, the constant. To put it another way, ifwe tile the plane with this square, 
we can outline a 5-by-5 square anywhere on this infinite pattern and it will be 
magic, although not necessarily associative (see Figure 112). To be associative 
too, it must have 13 in the center. 

The Lo shu is associative but not pandiagonal. An order-4 square may be 
pandiagonal or associative but not both. The order-5 square is the smallest one 
that can have both properties. Excluding rotations and reflections, 3600 
order-5 squares are pandiagonal, or if we also exclude variants obtained by the 
cyclic permutation of rows and columns, 144 are pandiagonal. In other words, 
there are 144 infinite patterns of the type shown here, each containing 25 
pandiagonal order-5 squares. Of the 144, just 16 contain a square that is also 
associative. All of this, by the way, was known before Schroeppel developed 
his computer program. - - 

o f  the sixteen associative pandiagonal squares of order 5, four have 1 in the 
first cell, four have 1 in the third cell, four have 1 in the seventh and four have 
1 in the eighth. The medieval Moslems were particularly intrigued by pandia- 
gonal squares with 1 in the center. The patterns were not, of course, associa- 

Figure 112 Cyclic permutations of the order-5 square 
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tive, but the Moslems thought of the central 1 as being symbolic of the unity of 
Allah. Indeed, they were so awed by that symbol that they often left blank the 
central cell on which 1 was supposed to go. 

It is natural to extend the concept of magic squares to three dimensions and 
even higher ones. A perfect magic cube is a cubical array of positive integers 
from 1 to N3 such that every straight line of N cells adds up to a constant. 
These lines include the orthogonals (the lines parallel to an edge), the two 
main diagonals of every orthogonal cross section and the four space diagonals. 
The constant is 

There is, of course, a unique perfect cube of order 1, and it is trivially true 
that there is none of order 2. Is there one of order 31 Unfortunately, 3 does not 
quite make it. I do not know who first proved the impossibility, but Richard 
Lewis Myers, Jr., has a simple way of doing it. Consider any 3-by-3 cross 
section. Let A,  B, C be the numbers of the first row, D, E, F the numbers ofthe 
third, and X the central number. Since the diagonals and the center column 
each must add up to 42, we can write 

From this we subtract A + B + C + D + E + F = 2(42) to get 3X = 42, and 
X = 14. Since 14 cannot be the center of every cross section, the cube is 
impossible. 

Annoyed by the refusal of such a cube to exist, magic-cube buffs have 
relaxed the requirements to define a species of semiperfect cube that appar- 
ently does exist in all orders higher than 2. These are cubes where only the 
orthogonals and four space diagonals are magic. Let us call them Andrews 
cubes, since W. S. Andrews devotes two chapters to them in his pioneering 
Magic Squares and Cubes (1917). The order-3 Andrews cube must be associa- 
tive, with 14 in its center. There are four such cubes, not counting rotations 
and reflections. All are given by Andrews, although he seems not to have 
realized that they exhaust all basic types. 

No perfect cube of order 4 exists. As far as I know, the first proof was 
published by Schroeppel in "Artificial Intelligence Memo 239," (MIT, 1972). 
The first step is to show that on any 4-by-4 section (orthogonal or diagonal) 
the four corners must add up to the constant. Let Q be the constant, and label 
the sixteen cells with other letters (see Figure 113). The gray lines indicate six 
quadruplets that catch all sixteen cells. Since each corner cell is common to 
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Figure 113 Richard Schroeppel's proof, lemma 1 

M N O P  

three lines, 3 A  + 3 0  + 3M + 3P plus each of the other cells taken once must 
equal 6Q. Ifwe subtract from this the values of the four rows, we are left with 
2A + 2 0  + 2M + 2P = 2Q, which reduces to A + D + M + P = Q ,  our 
first lemma. 

Now consider the cube's eight corners. W e  prove that any two corners 
connected by an edge must have a sum of Q/2.  Call the corners A and B. Let C, 
D and E, F be the corners of any two edges parallel to A,  B (see Figure 114). 
ABDC, EFBA, and EFDC are each the corners ofa 4-by-4 cross section, so that 
their total is 3Q. Gather the like terms: 

A C D  

E F G H  

I J K L  

Figure 114 Richard Schroeppel's proof, lemma 2 



MAGIC SQUARES A N D  CUBES 221 

Divide each side by 2: 

From this we subtract C + D + E + F = Q to obtain A + B = Q/2, our sec- 
ond lemma. 

Now consider corner B. It is joined to corners A, D, F. Since A + B = F + 
B = D + B, we can take B from each equality to prove that A = F = D. That 
is impossible, and so our proof is complete. 

Is there a perfect magic cube of order 5? No one knows. Schroeppel has 
made a beginning by proving (using algebra and combinatorial thinking) that 
if such a cube exists, its center must be 63. 

There are perfect magic cubes of order 8. A method of constructing them by 
the millions was discovered in the spring of 1970 by Myers, when he was 
sixteen and a student at William Tennant High School in Johnsville, Pa. He 
sent me a short note about it, saying that he had obtained his first cube "after 
three months, seven theories, and thirty-one sheets of graph paper." I am 
embarrassed to confess that I did not appreciate the significance of his claim. 
He did not send an actual cube, and I replied by suggesting a mathematical 
journal that could evaluate his work. 

I next heard about Myers's cubes in December 1972 from John H. Staib, a 
mathematician at Drexel University in Philadelphia, where Myers had 
enrolled as a freshman. Staib sent an order-8 cube (see Figure 115), and al- 
though he extolled its symmetries and provided hints about how Myers had 
constructed it (by superposing three Latin cubes and applying base-8 nota- 
tion), I still failed to comprehend the cube's importance. I had glanced too 
quickly at Andrew's book, noting references to magic cubes of order 3 and 
higher, without realizing that those cubes were only semiperfect. It was not 
until I started researching this report that I awoke to a full realization ofwhat 
Myers had done. 

Every orthogonal and diagonal line of eight numbers on the Myers cube 
shown in Figure 115, including the four space diagonals, add up to 2052. The 
cube is associative: Any two numbers symmetrically opposite the center add 
up to 513. It follows that not only do the eight corner cells of the cube total 
2052 but also (as Staib pointed out) the corners of every rectangular solid 
centered in the cube add up to the same number. Ifthat is not enough, the cube 
can be sliced into sixty-four order-2 cubes, and the eight numbers in each of 
these cubes add up to the constant! 
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Figure 115 Cross section of Richard Lewis Myers's magic cube of order 8 [Computer 
printout courtesy of William Gosper] 
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These remarkable symmetries make possible an enormous number of rear- 
rangements of the cube, all in a sense isomorphic, and of course every arrange- 
ment can be rotated and reflected forty-eight ways. Imagine this cube with 
each of its 512 cells replaced by the same cube in any of its thousands of 
rearrangements or orientations. In cell 1 we put a cube that starts with 1. In cell 
2 we put a cube that starts with 83 + 1 = 513, in cell 3 we put a cube that starts 
with (2 X 83) + 1 = 1025, and so on for the other cells. The result is a perfect 
magic cube of order 64.Order-64 cubes in turn will build perfect magic cubes 
of order 512, and the same is true for all higher orders that are powers of 8. 

How many order-8 magic cubes are there? By choosing different Latin 
cubes to superpose, Myers can construct millions different from one another 
and from the one given here, although not all will be associative. The number 
of Latin squares of order 8 have been counted (there are billions), but the 
number of Latin cubes has not, so that the problem ofcounting just the order-8 
cubes that can be generated by Myers's procedure alone is horrendous. 

Is 8 the lowest order aperfect magic cube can have? Are there magic cubes of 
orders not in the 8-power series? Both are open questions. 

ADDENDUM 

When I wrote the foregoing text 1 believed that Richard Myers was the first to 
construct a perfect magic cube of order 8. As I quickly learned (of course, this 
in no way detracts from Myers's achievement), this is not the case. 

Victor Meally called my attention to the construction of a perfect magic 
cube of order 8 in the late 1930s by J. Barkley Rosser and Robert J. Walker. It 
is pandiagonal in the sense that if any of its three sets of parallel sections are 
cyclically permuted, the cube remains perfectly magic. The cube was not 
published, but its construction is given in a manuscript deposited in a library at 
Cornell University. In the manuscript, the authors show that perfect pandia- 
gonal cubes exist for all orders that are multiples of 8 and all odd orders higher 
than 8. A brief summary of the construction technique for the order-8 cube is 
given in W. W .  Rouse Ball's Mathematical Recreations and Essays (Dover, 
1987), revised by H. S. M. Coxeter. 

Rosser and Walker were not, however, the first to construct a perfect magic 
cube of order 8. James G. Mauldon, an Amherst College mathematician, 
wrote to me about a remarkable 1888 paper by F. A. P. Barnard. He credits the 
first such cube to an unknown person who apparently published it in The 
Commercial, a Cincinnati newspaper, on March 11, 1875. (Details can be 
found in the fifth chapter of Magic Cubes by William Benson and Oswald 
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Jacoby.) Mauldon also sent his construction of a perfect associative magic cube 
of order 7, and perfect associative pandiagonal magic cubes of orders 9 and 11. 

The first perfect pandiagonal cube of order 8 seems to have been con- 
structed by C. Planck, who reported it in his rare, little-known Theory o a t h  
Nasiks (privately published in Rugby, England, 1905). Planck showed that in 
k-space, where k is 2 or higher, the smallest perfect pandiagonal "cube" is of 
order 2', and the smallest that is also associative (symmetrically opposite pairs 
of numbers have the same sum) is 2' + 1. W e  saw how that is true of magic 
squares, where k = 2. In 3-space the smallest perfect pandiagonal cube is of 
order 8, and the smallest that is also associative is of order 9. Myers's cube is 
associative but not pandiagonal. 

The first publication known to me of a perfect magic cube of order 7 is in 
Play Mathematics by Harry Langman (Hafner, 1962, pp. 75 -76). After this 
chapter was published as a column (January 1976), scores of readers sent me 
such order-7 cubes, as well as construction procedures for orders 9, 11, and 
higher. Readers also explored magic cubes in dimensions above 3. For a listing 
of articles on magic cubes and hypercubes that have appeared in the]ournal of 
Recreational Mathematics, see the bibliography ofJohn Hendricks's 1985 paper. 

As far as I know, no one has yet found a perfect magic cube of orders 5,6, or 
10, or proved that such cubes cannot exist. 

The 880 magic squares of order 4 are depicted in the 1976 book on magic 
squares by Benson and Jacoby, along with considerable original material that 
appears in print for the first time. The book gives the fantastic tri-magic square 
of order 32 constructed by Captain Benson in 1949. This is a square that 
retains its magic not only when every number is squared but also when every 
number is cubed. The simplest-known square of that type was of order 64, 
before Captain Benson found a way to halve the order. 
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E I G H T E E N  

Block Packing 

"Pack my box with five dozen 
liquor jugs." 

-Anonymous pangram 

A pangram is an attempt to pack as many different letters as possible into the 
shortest intelligible sentence. It is considered not cricket to use names and 
initials, such as "Schwartz" and "X. Q. Zym," or strange words, such as 
"pyrzqxgl," which in The Magic ofOz enables you to change instantly into any 
kind of animal you like if you know how to pronounce it correctly. 

Many ultimate pangrams of twenty-six different letters have been con- 
structed by word players, but they tend to be inelegantly obscure, for example 
"Vext cwm fly zing jabs kurd qoph," by Dmitri Borgmann. It means that an 
annoyed fly in a Welsh mountain hollow, humming shrilly, pokes at the 
nineteenth letter of the Hebrew alphabet drawn by a Kurd. Cryptographers 
find a perfect pangram amusing because it can be written in a simple letter- 
substitution cipher as ABCDE FGHIJ KLMNO PQRST UVWXY Z. 
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The difference between creating pangrams and working on packing prob- 
lems in combinatorial geometry is not as great as one might suppose. The 
restraints in the former are the formation rules of English spelling and gram- 
mar, and those in the latter are the rules of mathematics. At least two eminent 
mathematicians, Augustus De Morgan and Claude E. Shannon, are on record 
as having spent considerable time composing pangrams, and I know of many 
lesser mathematicians who have tried their hand at it. 

In mathematics a packing problem in general is one in which a given set of 
mathematical objects are to be packed as efficiently as possible into a given 
space according to given rules. Computer scientists, for example, are con- 
cerned with finding fast algorithms for packing sets of numbers into "bins," 
with the sum of the numbers in each bin not tdexceed a specified limit. Such 
algorithms are needed for the efficient storage and retrieval of information. - - 
Geometrically the task can be viewed as a problem in one-dimensional pack- 
ing: packing rods of varying lengths inside long pipes into which the rods fit 
snugly. 

In a complex industrial society all kinds of problems arise involving the 
packing of three-dimensional objects into a specified area: the storing of 
objects in a warehouse; the packing of supplies into ships, planes, and freight 
cars; the packing of objects in cartons for distribution to stores, and so on. 
Perhaps it is the increasing need for packing algorithms that has stimulated 
some mathematicians in recent years to spend more time on such problems. 

Here, we consider only the simplest kind of solid packing: the packing of 
"bricks" (rectangular parallelepipeds) into a "box" (also a rectangular parallel- 
epiped). To simplify still more, we assume that all three dimensions of both 
bricks and box are integral, and that the volume of the box exactly equals the 
total volume of the bricks to be put inside. As David A. Klarner says in his 
article "Brick-packing Puzzles," many people are surprised to learn that even 
with these strong simplifications there are problems that are both elegant and 
challenging. By elegant Klarner means the following. If the bricks will pack 
the box perfectly, the problem is elegant if finding a way to pack it seems 
simple but is actually difficult. And if the bricks will not pack the box, the 
problem is elegant if there is a simple but subtle way to prove impossibility. 
Klarner, now at the University of Nebraska in Lincoln, is one of the pioneers 
of brick-packing theory. It is to him that I am indebted for most of what 
follows. 

About 1960 the Dutch mathematician Nicolaas G. de Bruijn was struck by 
the fact that his son, age seven, was unable to fill a 6 X 6 X 6 box with 
twenty-seven bricks, each 1 X 2 X 4. The two volumes are the same and the 
packing seems easy, but one always ends up with at least one hole that the last 



BLOCK PACKING 229 

brick will not fill. Studying the matter led de Bruijn to interesting results. 
They were first published as problems in a Hungarian journal, then later 
summarized by de Bruijn in his paper "Filling Boxes with Bricks". 

De Bruijn calls a brick harmonic if its three measurements are integral and 
can be ordered so that each length is a multiple of the preceding one. In 
algebraic terms a harmonic brick has the form a X ah X abc, where the letters 
are positive integers. The 1 X 2 X 4 brick is, of course, harmonic. It is called 
the canonical brick because it not only is the simplest harmonic brick of three 
distinct measurements but also approximates the shape of ordinary bricks used 
in masonry (see Figure 116). 

De Bruijn was able to prove that a collection of identical harmonic bricks, 
each a X ab X abc, will perfectly pack a box if and only if the box is a x  X 
aby X abcz. "Perfectly pack" means to fill completely; it is the same as saying 
that the brick will tile the box. De Bruijn showed that perfect packing is 
possible only if the box's dimensions are multiples of the brick's dimensions. 
T o  put it another way, if the bricks pack the box at all, there will be a way to do 
it trivially. That means they will pack when all are identically oriented. (Of 
course, they may also pack in nontrivial ways.) If the bricks are not harmonic, 
there are boxes they will fill only in a nontrivial way. For example, five 
nonharmonic bricks of 1 X 2 X 3 will pack a 1 X 5 X 6 box, but they cannot 
pack the box if they are all parallel. 

De Bruijn's results generalize to hyperbricks in all higher Euclidean spaces, 
and they also hold for 2-space "bricks" (rectangles). The canonical plane 
brick- the 1 X 2 domino - will pack a rectangle only if one side is even, and 
then, of course, a trivial packing is possible. 

Let us return to the task that puzzled de Bruijn's son. Since 6 is not a 
multiple of 4, we know from de Bruijn's work that the canonical brick will not 
pack an order-6 cubical box. Is there a simple impossibility proof? 

Figure 116 The canonical brick 
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There is, and it is a generalization of the solution to the old brainteaser about 
an order-8 checkerboard that has had two diagonally opposite corner squares 
removed. Can the board be covered with thirty-one dominoes? The fact that it 
cannot is evident once you rcalizc that the two missing squares are the same 
color. The board therefore contains thirty-two squares of one color and thirty 
of the other. Since a domino must cover two squares of opposite color, after 
thirty dominoes are put down there will always be two uncovered squares of 
the same color that cannot be covered by the last domino. 

T o  apply the same kind of parity check to the cube-packing problem, 
imagine that the order-6 cube is divided into twenty-seven order-2 cubes and 
that the order-2 cubes are shaded as is shown in Figure 117. No matter how a 
canonical brick is oriented inside such a cube, it will fill four shaded cells and 
four white cells. The cube, however, has eight more shaded cells than white 

Figure 117 Color scheme for an order-6 cube-packing problem 
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cells. Therefore, after twenty-six bricks are placed, eight cells of the same 
color will remain. Clearly the last brick cannot fill them. 

Will 125 canonical bricks pack a 10 X 10 X 10 box? They will not, and the 
same impossibility proof applies. Indeed, the proof applies to any cube with a 
side that is even and not a multiple of 4. Will 250 bricks of 1 X 1 X 4 pack the 
order-10 cube? As the impossibility proof shows, the answer is no. Sometimes 
more than two colors are needed for elegant impossibility proofs, but it is 
surprising how much can be done with just two colors. 

Here is a delightful tiling problem from Klarner that is easily proved 
impossible by two-coloring, although not a checkerboard coloring. You have 
a 25 X 25 square you want to tile (no overlap, no vacancies) with a mixture of 
2 X 2 squares and 3 X 3 squares. I shall give his impossibility proof in the 
answer section. 

One of Klarner's theorems introduces the concept of cleavability. If a 
rectangle can be tiled with identical rectangles, there is always a way to tile it 
so that it can be cut into two smaller rectangles, each ofwhich can also be tiled. 
Such a rectangle is said to be cleavable. 

Does this unusual theorem have a 3-space analogue? That is, if a box can be 
fully packed with identical bricks, can it always be cut into two smaller boxes, 
each packable with the same bricks? The answer, Klarner found, surprisingly 
is no. The smallest example (discovered by David Singmaster) is the 5 X 5 X 
12 box. It can be packed with 1 X 3 X 4 bricks, but not in a way that is 
cleavable. 

Is there an infinite number of noncleavable boxes a given brick will pack? 
Again the answer, surprisingly, is no. Klarner was the first to show that in any 
Euclidean space an infinite set of boxes packable by a given brick has a finite 
subset of packable boxes that can be used for packing all the others. In addition, 
he showed that for every brick, there is a finite set ofpackable but noncleavable 
boxes. In 1971 two Hungarian mathematicians, G. Katona and D. Szasz, 
refined Klarner's findings by giving a constructive proof that included specific 
numerical bounds. 

If instead of identical bricks, we allow a mixture of different bricks (as in 
Klarner's tiling problem), many beautiful new problems arise. One of the 
simplest is a 3 X 3 X 3 box puzzle that, Klarner says, first appeared in a Dutch 
book in 1970. W e  want to pack it with six 1 X 2 X 2 bricks and three unit 
cubes (see Figure 118). It looks ridiculously easy, yet many find it irritatingly 
difficult. The reader is urged to construct a set, either by making the pieces out 
of wood or by gluing cubes together. 

The packing has a unique solution (not counting rotations and reflections) 
requiring that the three unit cubes be along a space diagonal (see Figure 119). 
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Figure 118 The 3 X 3 X 3 packing puzzle 

To prove it, first consider any 3 X 3 cross section. If it is checkerboard-col- 
ored, five cells are of one color and four are of the other. No matter how a 
1 X 2 X 2 brick is placed, it will occupy 0,2,  or 4 cells of each cross section, 
with the colors of the occupied cells evenly divided. As a result, each of the 
nine sections must have one and only one cell occupied by a unit cube. (A 

Figure 119 Key to the 3 X 3 X 3 packing puzzle 
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section cannot contain all three cubes because that would force some sections 
to be without cubes.) In addition, in every section the unit cube must be at the 
center or at one of the corners. The only way to meet these requirements is to 
place the cubes along a space diagonal. Placing the six bricks then follows 
automatically. 

John Horton Conway of the University of Cambridge set himself the task a 
few years ago of designing a more difficult cube-packing puzzle. Conway's 
cube, although it appears to be almost as easy as the 3 X 3 X 3 puzzle, is so 
hard that some people cannot solve it until they are told its whimsical secret. 

Conway's cube has many variants. The one he likes best requires eighteen 
harmonic bricks (see Figure 120). The task is to pack them into a 5 X 5 X 5 
box or, what is the same thing, to build an order-5 cube. It is fiendishly 
difficult if one tries to solve it by trial and error. 

Returning to the packing of identical bricks, we can ask the following 
general question. If a box is not perfectly packable with a set of bricks, what is 
the maximum number of bricks that will go into it? Even when the bricks are 
harmonic, it is an extremely difficult problem, although a good start has been 
made in a paper published in 1974 by Richard A. Brualdi and Thomas H. 
Foregger. 

The authors define a "representing set," abbreviated R, as a set of cells in the 
box such that no matter where a brick is placed, it will occupy at least one cell 
of R. When R is made as small as possible, it is said to have minimum 
cardinality. The authors show that the maximum number of identical bricks 

Figure 120 The eighteen bricks of John Horton Conway's cube-packing puzzle 
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(not necessarily harmonic) that will go into a box is equal to or less than the 
minimum cardinality of R. 

In 2-space the maximum number of harmonic bricks (dominoes) invariab- 
ly equals the minimum cardinality of R, but that does not hold for higher 
spaces. Consider canonical bricks and cubical boxes. The order-4 cube is the 
smallest that is packable, and ofcourse the packing is trivial. The order-6 cube, 
as we have seen, is not packable, but all bricks but one are easily put inside. 

What about the order-5 cube? It has 125 cells. That is not a multiple of 8, so 
that it is not fully packable by canonical bricks. Will fifteen such bricks (total 
volume 120) go inside? T o  put it another way, can you build an order-5 cube 
with fifteen canonical bricks and five unit cubes? The minimum cardinality of 
R is 15, but try as you will it is impossible to get fifteen bricks inside. After 
fourteen bricks have been placed, the thirteen remaining cells will never 
accommodate the last brick. Brualdi and Foregger have a complicated color- 
ing proof of the impossibility, but in meditating about it one afternoon, I had a 
happy inspiration. It led to the following reductio ad absurdurn proof. 

Assume that fifteen bricks will pack. The total surface area of the order-5 
cube is 6 X 25 = 150. Since each face has an odd number of squares, one cell 
on each face must be filled by a unit cube. (No more than one unit cube can 
occupy a cross section because there are fifteen such sections and only five unit 
cubes.) This leaves a surface of 150 - 6 = 144 to be packed by faces of the 
canonical bricks. Now each brick must have one and only one of its 1 X 2 ends 
on the surface. This leaves a surface of 144 - (15 X 2) = 114 to be packed by 
1 X 4 and 2 X 4 rectangles. But 114 is not evenly divisible by 4. Therefore the 
original assumption is false. 

A similar proof is obtained by considering the cube's three planar midsec- 
tions. Each plane is a 5 X 5 matrix, making seventy-five cells in all. One cell in 
each 5 X 5 square must be intersected by a unit cube. (This could be done with 
a single unit cube at the center, or two or three unit cubes suitably placed.) 
Each of the fifteen canonical bricks must intersect two cells, or thirty cells in 
all. Taking thirty-three cells from seventy-five leaves forty-two to be inter- 
sected in sets of four or eight, and since 42 is not a multiple of 4, impossibility 
follows. 

The next cube of interest is the order 7. It is easy to put forty-one canonical 
bricks inside it, but will it hold forty-two, leaving seven holes to be filled by 
unit cubes? Surprisingly the answer is not known. Foregger posed this as an 
unsolved problem (E 2524) in the March 1975 issue of American Mathematical 
Monthly. Although every canonical brick must intersect a pair of cells in the 
planar midsections, after the necessary subtractions are made, the remaining 
cells are a multiple of 4. Therefore the previous impossibility proof does not 

apply. 
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Brualdi and Foregger found many special cases in which the maximum 
number of harmonic bricks equals the minimal cardinality of R. For example, 
if the smallest face of the brick packs each face of the box, there is equality. For 
canonical bricks there is equality if one of the box's dimensions is even. The 
general problem, however, is far from solved. 

I can think of no better way to conclude than by quoting the final sentence 
of Klarner's article: "A word of warning in closing! Engaging in experiments 
with little wooden blocks is fraught with the danger that friends, family and 
colleagues will assume you are entering your second childhood, and that you 
should be put away. A good defense is to have a few copies of Conway's puzzle 
on hand to divert their attention while you make a getaway." 

ANSWERS 

Readers were asked to prove that it is impossible to tile a square of side 25 with 
a mixture of 2 X 2 and 3 X 3 squares. David A. Klarner's proof begins by 
two-coloring the square with stripes (see Figure 121). No matter how a 2 X 2 
square is placed, it will cover two colored cells and two white ones. Since the 
large square contains an excess of twenty-five colored cells, the excess will 
remain no matter how many 2 X 2 squares are placed or where they are placed. 
If the square can be tiled, we must therefore find a way to place a set of 3 X 3 
squares so that they cover twenty-five more colored cells than white ones. 

It is apparent that a 3 X 3 square, however placed, covers either six colored 
cells and three white ones or six white cells and three colored ones. In each 
case, the difference is 3. But 25 is not a multiple of 3, and so there is no way the 
3 X 3 squares can cover an excess of twenty-five colored cells. Therefore the 
tiling is impossible. 

Klarner has shown in general that if a rectangle can be tiled at all by squares 
of a X a and b X b, it can always be split into two rectangles (one possibly 
empty), one of which is tilable by a X a squares alone and the other tilable by 
b X b squares alone. 

The second task was to build a 5 X 5 X 5 cube with eighteen specified 
bricks. In working on puzzles of that type one tends to place large pieces first, 
then try to fit smaller ones into the gaps. In this case it is a fatal strategy. If you 
worked on the puzzle by trial and error, you probably found that if you left the 
three small bricks to the last, they never fitted. The puzzle is difficult precisely 
because those three pieces must be in a unique configuration, and it is unlikely 
that you would hit on it by chance. 

Let us approach the problem by way of combinatorial geometry. If we 
checkerboard-color a 5 X 5 cross section, we find that it contains thirteen cells 
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2 5 

Figure 121 David A. Klarner's impossibility proof 

of one color and twelve of the other (see Figure 122). Consider all the bricks 
except the three small ones. No matter how one brick is placed, it must fill an 
even number of cells (0,2,4, or 8) in every section. Half of the cells it fills will 
be one color and half will be the other. 

Since there are an odd number of cells in each section, one or three of its cells 
must be occupied by a 1 X 1 X 3 brick. In addition, the brick must be placed so 
that if it fills one cell, it will be a cell of the same color as the central cell. If it 
lies entirely within the section, two of its three cells must match the color of 
the central cell. 
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No matter how a small piece is placed, it will occupy five sections. It follows 
that the three pieces, if they contribute to all fifteen sections (as they must), 
will have to be placed so that no two contribute to the same section. There is 
only one way to do that and at the same time meet the coloring requirements. 
Once the small pieces are correctly positioned, it is not hard to find one of the 
more than 500 ways of packing the larger bricks around them. 

John Horton Conway, who invented this cube puzzle, could have substi- 
tuted another 1 X 2 X 4 for the 2 X 2 X 2, thus providing the maximum 
number of canonical bricks that will go into a 5 X 5 X 5 box. Adding the 
order-2 cube, however, provides amusing misdirection. The puzzle can also 
be given with twenty-nine bricks of 1 X 2 X 2, together with the three 1 X 
1 X 3 bricks. Whether most people would find that easier or more difficult is 
hard to say. The principle behind Conway's cube generalizes in the sense that 
three 1 X 1 X (2n - 1) bricks have a unique configuration in a cubical box of 
side 2n + 1 that makes it possible to pack the rest of the box with 1 X 2 X 2 
bricks. 

ADDENDUM 

The chapter posed an unsolved problem about the packing of "canonical 
bricks" ( I  X 2 X 4) into cubes of side n, with n greater than 3. When n is even, 
the cube can be fully packed (in a trivial way) only if n is a multiple of 4. I gave a 
simple proof that if n is even and not a multiple of 4, complete packing is 
impossible. It is necessary to omit one brick. 

Figure 122 Key to John Horton Conway's cube puzzle 
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When n is odd, the situation is more interesting. Each n X n "slab" must 
contain a unit hole; consequently the maximum number of bricks that an 
odd-order cube can take is (n3 - n)/8. For what values of n can this maximum 
packing be achieved? 

When I wrote, only the 5-cube had been proved impossible. The proof was 
later generalized by David A. Klarner to cover exactly half of all odd n, namely 
cubes with sides equal to plus or minus 1 (modulo 8). Many impossibility 
proofs for the 7-cube were found by readers, but they did not generalize. 

The problem is now solved. Robert Ammann of Lowell, Mass., first proved 
impossibility of maximal packing for all odd n except n equal to plus or minus 
1 (modulo 16). He then found a maximal packing for the 15-cube that 
generalized to provide maximal packings for all odd n equal to plus or minus 1 
(modulo 16). 

Frank Barnes, working independently in England, obtained Ammann's 
earlier impossibility result and conjectured that maximum packings exist for 
the 15-cube and all others with sides plus or minus 1 (modulo 16). Told of 
Ammann's work, Barnes verified its soundness. In addition, he found a way to 
show that all impossible cubes could be packed by omitting just one brick from 
the maximum number. It is hoped that all these results will eventually be 
published. 

Neither Ammann nor Barnes has an academic post. Ammann is a computer 
programmer working in nonmathematical areas. Although Barnes has lec- 
tured on mathematics at the University of Michigan and the University of 
Reading, he has been earning a living for the past two years by piloting a 
hot-air balloon for advertising purposes. 

After the above comments ran in my column for October 1976, a proof by 
Michael Mather, that the order-7 box could not be packed with forty-two 
canonical bricks, was published (The American Mathematical Monthly 83, No- 
vember 1976, pp. 741 - 742) as a solution to Problem E 2524. Mather showed 
more generally that it is possible to pack a cube of side 2n + 1 with 2n(2n + I)  
bricks, each of size 1 X 2 X (n + I),  if and only if n is even or equal to 1. 

David Klarner found what he calls a "divide and conquer" way to put 
forty-one canonical bricks into the order-7 cube. Cut the cube into three 
sub-boxes 2 X 7 X 7, 3 X 5 X 7, and 4 X 5 X 7. "It is easy," he writes in a 
1987 letter, "to pack twelve bricks into the 2 X 7 X 7, and even easier to pack 
seventeen into the 4 X 5 X 7." Putting twelve bricks into the 3 X 5 X 7 is not 
so easy, but it can be done. There are nine holes. One arrangement has three 
1 X 1 X 3 holes. 

Klarner uses the term "atomic" for a box (not necessarily a cube) that cannot 
be optimally packed by divide and conquer. In other words, no maximal 



packing will split into smaller boxes that can be optimally packed. The most
interesting packing problems involve atomic boxes. We can ask: does the
canonical brick have an infinite or finite number of atomic boxes it will pack?

The question is open. Some years ago Klarner proved that in the case of
tiling a box (packing completely with no holes), for every brick there is a finite
set of boxes with integer sides that are atomic. For several years he thought a
similar theorem applied to optimal packing with holes. That is, for any given
brick there is a finite number of atomic boxes it will optimally pack.

“How wrong I was!” he writes. He has since proved that for the 1 × 2 × 2
brick there is an infinite number of atomic cubical boxes it will pack optimally.

Much remains unknown about packing canonical bricks into noncubical
boxes. Klarner tells me that his student Wade Satterfield has shown that twen-
ty-one bricks cannot fit into a 5 × 5 × 7 box. (It is a simple, clever proof, not
yet published, based on a parity contradiction.) The same proof also shows
that twenty-seven canonical bricks will not pack the 5 × 5 × 9. Will the proof
generalize to show that 3n such bricks will not pack a 5 × 5 × n box? No,
writes Klarner, it breaks down for all odd n greater than 9

“It is an open question,” he continues, “whether there exists any odd num-
ber n such that one can pack 3n canonical bricks into a 5 × 5 × n box. Since
one can pack six canonical bricks into a 5 × 5 × 2 box, it follows that if one
can pack 3k such bricks into a 5 × 5 × k box for some odd number k, then
this can be done for all numbers larger than k.”
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N I N E T E E N  

Induction and Probability 

"The universe, so far as known to us, 
is so constituted, that whatever is 
true in any one case, is true in all 
cases of a certain description; the only 
difficulty is, to find what description." 

-JOHN STUART MILL, 
A System of Logic 

Imagine that we are living on an intricately patterned carpet. It may or may 
not extend to infinity in all directions. Some parts of the pattern appear to be 
random, like an abstract expressionist painting; other parts are rigidly geomet- 
rical. A portion of the carpet may seem totally irregular, but when the same 
portion is viewed in a larger context, it becomes part of a subtle symmetry. 

The task of describing the pattern is made difficult by the fact that the carpet 
is protected by a thick plastic sheet with a translucence that varies from place to 
place. In certain places we can see through the sheet and perceive the pattern; 
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in others the sheet is opaque. The plastic sheet also varies in hardness. Here 
and there we can scrape it down so that the pattern is more clearly visible. In 
other places the sheet resists all efforts to make it less opaque. Light passing 
through the sheet is often refracted in bizarre ways, so that as more ofthe sheet - 
is removed, the pattern is radically transformed. Everywhere there is a myste- 
rious mixing of order and disorder. Faint lattices with beautiful symmetries 
appear to cover the entire rug, but how far they extend is anyone's guess. No 
one knows how thick the plastic sheet is. At no place has anyone scraped deep 
enough to reach the carpet's surface, if there is one. 

Already the metaphor has been pushed too far. For one thing, the patterns of 
the real world, as distinct from this imaginary one, are constantly changing, 

- - 

like a carpet that is rolling up at one end while it is unraveling at the other end. 
Nevertheless, in a crude way the carpet can introduce some of the difficulties 
philosophers of science encounter in trying to understand why science works. 

Induction is the procedure by which carpetologists, after examining parts of 
the carpet, try to guess what the unexamined parts look like. Suppose the 
carpet is covered with billions of tiny triangles. Whenever a blue triangle is 
found, it has a small red dot in one corner. After finding thousands of blue 
triangles, all with red dots, the ~arpetolo~ists  conjecture that all blue triangles 
have red dots. Each new blue triangle with a red dot is a confirming instance of - 
the law. Provided that no counterexample is found, the more confirming 
instances there are, the stronger is the carpetologists' belief that the law is true. 

The leap from "some" blue triangles to "all7' is, of course, a logical fallacy. 
There is no way to be absolutely certain, as one can be in working inside a 
deductive system, what any unexamined portion of the carpet looks like. O n  
the other hand, induction obviously works, and philosophers justify it in other 
ways. John Stuart Mill did so by positing, in effect, that the carpet's pattern has 
regularities. He knew this reasoning was circular, since it is only by induction 
that carpetologists have learned that the carpet is patterned. Mill did not 
regard the circle as vicious, however, and many contemporary philosophers 
(R. B. Braithwaite and Max Black, to name two) agree. Bertrand Russell, in 
his last major work, tried to replace Mill's vague "nature is uniform" with 
something more precise. He proposed a set of five posits about the structure of 
the world that he believed were sufficient to justify induction. 

Hans Reichenbach advanced the most familiar of several pragmatic justifi- 
cations. If there is any way to guess what unexamined parts of the carpet look 
like, Reichenbach argued, it has to be by induction. If induction does not 
work, nothing else will, and so science might as well use the only tool it has. 
"This answer is not fallacious," wrote Russell, "but I cannot say that I find it 
very satisfying." 
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~ u d o l f  Carnap agreed. His opinion was that all these ways of justifying 
induction are correct but trivial. If "justifym is meant in the sense that a 
mathematical theorem is justified, then David Hume was right: There is no 
justification. But if "justify" is taken in any of several weaker senses, then, of 
course, induction can be defended. A more interesting task, Carnap insisted, is 
to see whether it is possible to construct an inductive logic. 

It was Carnap's great hope that such a logic could be constructed. He 
foresaw a future in which a scientist could express in a formalized language a 
certain hypothesis together with all the relevant evidence. Then by applying 
inductive logic, he could assign a probability value, called the degree of 
confirmation, to the hypothesis. There would be nothing final about that 
value. It would go up or down or stay the same as new evidence accumulated. 
Scientists already think in terms of such a logic, Carnap maintained, but only 
in a vague, informal way. As the tools of science become more powerful, 
however, and as our knowledge of probability becomes more precise, perhaps 
eventually we can create a calculus of induction that will be of practical value 
in the endless search for scientific laws. 

In Carnap's Logical Foundations ofProbability (University of Chicago Press, 
1950) and also in his later writings, he tried to establish a base for such a logic. 
How successful he was is a matter of dispute. Some philosophers of science 
share his vision (John G. Kemeny for one) and have taken up the task where 
Carnap left off. Others, notably Karl Popper and Thomas S. Kuhn, regard the 
entire project as having been misconceived. 

Carl G. Hempel, one of Carnap's admirers, has argued sensibly that before 
we try to assign quantitative values to confirmations, we should first make sure 
we know in a qualitative way what is meant by "confirming instance." It is 
here that we run into the worst kinds of difficulty. 

Consider Hempel's notorious paradox of the raven. Let us approach it by 
way of 100 playing cards. Some of them have a picture of a raven drawn on the 
back. The hypothesis is: "All raven cards are black." You shuffle the deck and 
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deal the cards face up. After turning fifty cards without finding a counterin- 
stance, the hypothesis certainly becomes plausible. As more and more raven 
cards prove to be black, the degree of confirmation approaches certainty and 
may finally reach it. 

Now consider another way of stating the same hypothesis: "All nonblack 
cards are not ravens." This statement is logically equivalent to the original 
one. If you test the new statement on another shuffled deck of 100 cards, 
holding them face up and turning them as you deal, clearly each time you deal 
a nonblack card and it proves to have no raven on the back, you confirm the 
guess that all nonblack cards are not ravens. Since this is logically equivalent to 
"All raven cards are black," you confirm that also. Indeed, if you deal all the 
cards without finding a red card with a raven, you will have completely 
confirmed the hypothesis that all raven cards are black. 

Unfortunately, when this procedure is applied to the real world, it seems 
not to work. "All ravens are black" is logically the same as "All nonblack 
objects are not ravens." W e  look around and see a yellow object. Is it a raven? 
No, it is a buttercup. The flower surely confirms (albeit weakly) that all 
nonblack objects are not ravens, but it is hard to see how it has much relevance 
to "All ravens are black." If it does, it also confirms that all ravens are white or 
any color except yellow. T o  make things worse, "All ravens are black" is 
logically equivalent to "Any object is either black or not a raven." And that is 
confirmed by any black object whatever (raven or not) as well as by any 
nonraven (black or not). All of which seems absurd. 

Nelson Goodman's "grue" paradox is equally notorious. An object is 
"grue" if it is green until, say, January 1,2000, and blue thereafter. Is the law 
"All emeralds are grue" confirmed by observations of green emeralds? A 
prophet announces that the world will exist until January 1, 2000, when it 
will disappear with a bang. Every day the world lasts seems to confirm the 
prediction, yet no one supposes that it becomes more probable. 

T o  make matters still worse, there are situations in which confirmations 
make a hypothesis less likely. Suppose you turn the cards of a shuffled deck 
looking for confirmations of the guess that no card has green pips. The first ten 
cards are ordinary playing cards, then suddenly you find a card with blue pips. 
It is the eleventh confirming instance, but now your confidence in the guess is 
severely shaken. Paul Berent has pointed out several similar examples. A man 
99 feet tall is discovered. He is a confirming instance of "All men are less than 
100 feet tall," yet his discovery greatly weakens the hypothesis. Finding a 
normal-size man in an unlikely place (such as Saturn's moon Titan) is another 
example of a confirming instance that would weaken the same hypothesis. 

Confirmations may even falsify a hypothesis. Ten cards with all values from 
the ace through the 10 are shuffled and dealt face down in a row. The guess is 
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that no card with value n is in the nth position from the left. You turn the first 
nine cards. Each card confirms the hypothesis. But if none of the turned cards 
is the 10, the nine cards taken together refute the hypothesis. 

Here is another example. Two piles of three cards each are on the table. One 
pile consists of the jack, queen, and king of hearts, the other of thejack, queen, 
and king of clubs. Each has been shuffled. Smith draws a card from the heart 
pile, Jones takes a card from the club pile. The hypothesis is that the pair of 
selected cards consists of a king and queen. The probability of this is 219. 
Smith looks at his card and sees that it is a king. Without naming it, he 
announces that his card has confirmed the hypothesis. Why? Because know- 
ing that his card is a king raises the probability of the hypothesis being true 
from 219 to 3/9  or 113. Jones now sees that he (Jones) has drawn a king, so he 
can make the same statement Smith made. Each card, taken in isolation, is a 
confirming instance. Yet, both cards taken together falsify the hypothesis. 

Carnap was aware of such difficulties. He distinguished sharply between 
"degree of confirmation," a probability value based on the total relevant 
evidence, and what he called "relevance confirmation," which has to do with 
how new observations alter a confirmation estimate. Relevance confirmation 
cannot be given simple probability values. It is enormously complex, swarm- 
ing with counterintuitive arguments. In Chapter 6 of Carnap's Logical Foun- 
dations he analyzes a group of closely related paradoxes of confirmation rele- 
vance that are easily modeled with cards. 

For example, it is possible that data will confirm each of two hypotheses but 
disconfirm the two taken together. Consider a set of ten cards, half with blue 
backs and half with green ones. The green-backed cards (with the hearts and 
spades designated H and S) are QH, 10H, 9H, KS, QS.  The blue-backed cards 
are KH, JH, 10S, 9S, 8 s .  The ten cards are shuffled and dealt face down in a 
row. 

Hypothesis A is that the property of being a face card (a king, a queen, or a 
jack) is more strongly associated with green backs than with blue. An investi- 
gation shows that this is true. Of  the five cards with green backs, three are face 
cards as against only two face cards with blue backs. Hypothesis B is that the 
property of being a red card (hearts or diamonds) is also more strongly asso- 
ciated with green backs than with blue. A second investigation confirms this. 
Three green-backed cards are red, but there are only two red cards with blue 
backs. Intuitively one assumes that the property of being both red and a face 
card is more strongly associated with green backs than blue, but that is not the 
case. Only one red face card has a green back, whereas two red face cards have 
blue backs! 

It is easy to think of ways, fanciful or realistic, in which similar situations 
can arise. A woman wants to marry a man who is both rich and kind. Some of 



246 CHAPTER NINETEEN 

the bachelors she knows have hair and some are bald. Being a statistician, she 
does some sampling. Project A establishes that 315 of the men with hair are 
rich but only 215 of the bald men are rich. Project B discloses that 315 of the 
men with hair are kind but only 215 of the bald men are kind. The woman 
might hastily conclude that she should marry a man with hair, but if the 
distribution of the attributes corresponds to that of the face cards and red cards 
mentioned in the preceding example, her chances of getting a rich, kind man 
are twice as great if she sets her cap for a bald man. 

Another research project shows that 315 of a group of patients taking a 
certain pill are immune to colds for five years, compared with only 215 in the 
control group who were given a placebo. A second project shows that 315 of a 
group receiving the pill were immune to tooth cavities for five years, com- 
pared with 215 who got the placebo. The combined statistics could show that 
twice as many among those who got the placebo are free for five years from 
both colds and cavities, compared with those who got the pill. 

A striking instance of how a hypothesis can be confirmed by two indepen- 
dent studies, yet disconfirmed by the total results, is provided by the following 
game. It can be modeled with cards, but to vary the equipment let us do it with 
forty-one poker chips and four hats (see Figure 123). O n  table A is a black hat 
containing five colored chips and six white chips. Beside it is a gray hat 
containing three colored chips and four white chips. O n  table B is another pair 
of black and gray hats. In the black hat there are six colored chips and three 
white chips. In the gray hat there are nine colored chips and five white chips. 
The contents of the four hats are shown by the charts in the illustration. 

You approach table A with the desire to draw a colored chip. Should you 
take a chip from the black hat or from the gray one? In the black hat five of the 
eleven chips are colored, so that the probability of getting a colored chip is 
511 1. This is greater than 317, which is the probability of getting a colored 
chip if you take a chip from the gray hat. Clearly your best bet is to take a chip 
from the black hat. 

The black hat is also your best choice on table B. Six of its nine chips are 
colored, giving a probability of 619, or 213, that you will get a colored chip. 
This exceeds the probability of 9/14 that you will get a colored chip if you 
choose to take a chip from the gray hat. 

Now suppose that the chips from both black hats are combined in one black 
hat and that the same is done for the chips in the two gray hats (see Table C in 
Figure 123.) If you want to get a colored chip, surely you should take a chip 
from the black hat. The astonishing fact is that this is not true! Of the twenty 
chips now in the black hat, eleven are colored, giving a probability of 11/20 
that YOU will get a colored chip. This is exceeded by a probability of 12/21 that 
you will get a colored chip if you take a chip from the gray hat. 
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The situation has been called Simpson's paradox by Colin R. Blyth, who 
found it in a 195 1 paper by E. H. Simpson. The paradox has turned out to be 
older, but the name has persisted. Again, it is easy to see how the paradox could 
arise in actual research. Two independent investigations of a drug, for exam- 
ple, might suggest that it is more effective on men than it is on women, 
whereas the combined data would indicate the reverse. 

One might imagine that such situations are too artificial to arise in statistical 
research. In a recent investigation to see if there was sex bias in the admissions 
of men and women to graduate studies at the University of California at 
Berkeley, however, Simpson's paradox actually turned up. (See "Sex Bias in 
Graduate Admissions: Data from Berkeley," by P. J. Bickel, E. A. Hammel, 
and J. W. O'Connell.) 

Blyth has invented another paradox that is even harder to believe than 
Simpson's. It can be modeled with three sets of cards or three unfair dice that 
are weighted to give the required probability distributions to their faces. W e  
shall model it with the three spinners shown in Figure 124, because they are 
easy to construct by anyone who wants to verify the paradox empirically. 

Spinner A, with an undivided dial, is the simplest. No matter where the 
arrow stops, it gives a value of 3. Spinner B gives values of 2,4,  or 6 with the 
respective probability distributions of .56, .22, and .22. Spinner C gives values 
of 1 or 5 with the  roba abilities of .51 and .49. 

TABLE A 
- 

TABLE B @ TABLE ~f @ 
0 0 

a3 @ 0 @ 0 
e4 e4 0 @ 0 

Figure 123 E. H. Simpson's reversal paradox 
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Figure 124 The three spinners for Colin R. Blyth's paradox 

You pick a spinner; a friend picks another. Each of you flicks his arrow, and 
the highest number wins. If you can later change spinners on the basis of 
experience, which spinner should you choose? When the spins are compared 
in pairs, we find that A beats B with a probability of 1 X .56 = .56. A beats C 
with a probability of 1 X .51 = .51. B beats C with a probability of (1 X 
.22) + (.22 X .51) + (.56 X .51) = .6178. Clearly A, whichbeats both ofthe 
others with a probability of more than 112, is the best choice. C is the worst 
because it is beaten witha probability of more than 1/2 by both of the others. 

Now for the crunch. Suppose you play the game with two others and you 
have the first choice. The three spinners are flicked, and the high number 
wins. Calculating the probabilities reveals an extraordinary fact. A is the worst 
choice; C is the best! A wins with a probability of .56 X .51 = .2856, or less 
than 1/3. B wins with a probability of (.44 X .51) + (.22 X .49) = .3322, or 
almost 1/3. C wins with a probability of .49 X .78 = .3822, or more than 
1/3. 

Consider the havoc this can wreak in statistical testing. Assume that drugs 
for a certain illness are rated in effectiveness with numbers 1 through 6. Drug 
A is uniformly effective at a value of 3 (spinner A). Studies show that drug C 
varies in effectiveness. Fifty-one percent of the time it has value 1, and 49 
percent of the time it has value 5 (spinner C). If drugs A and Care the only two 
on the market and a doctor wants to maximize a patient's chance of recovery, 
he clearly chooses drug A. 

What happens when drug B, with values and a probability distribution 
corresponding to spinner B, becomes available? The bewildered doctor, if he 
considers all three drugs, finds C preferable to A. - 

Blyth has an even more mind-blowing way of dramatizing the paradox. 
Every night, a statistician eats at a restaurant that offers apple pie and cherry 
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pie. He rates his satisfaction with each kind of pie in values 1 through 6. The 
apple pie is uniformly 3 (spinner A); the cherry varies in the manner of spinner 
C. Naturally, the statistician always takes apple. 

Occasionally the restaurant has blueberry pie. Its satisfaction varies in the 
manner of spinner B. 

Waitress: Shall I bring your apple pie? 

Statistician: No. Seeing that today you also have blueberry, I'll take the 
cherry. 

The waitress would consider that ajoke. Actually, the statistician is ration- 
ally maximizing his expectation of satisfaction. (An error. See Addendum.) Is 
there any paradox that points up more spectacularly the kinds of difficulty 
Carnap's followers must overcome in their efforts to advance his program? 

ADDENDUM 

Many readers quite properly chided me for carelessness when I described 
Colin R. Blyth's paradox of the man and the three pies. It was I (not Blyth) 
who said that the man's decision was to maximize his "expectation of satisfac- 
tion." What he is maximizing is, in Blyth's words, "his best chance" of 
getting the most satisfying pie. It is a subtle but important difference. Both the 
dining statistician and the doctor have a choice between two intents: maxi- 
mizing their average of satisfaction in the long run or maximizing their 
chance of getting the best pie or drug on a particular occasion. 

T o  put it another way, Blyth's pie eater is minimizing his regret: the 
probability that he will see a better pie on the next table. His doctor counter- 
part, as Paul Chernick suggested, could be trying to avoid a malpractice suit 
that might result if a dissatisfied patient went to another doctor and got more 
effective treatment. "Is the case of a scientist closer to that of a player in the 
spinner game," asked George Mavrodes, "or is it closer to that of the statistical 
pie eater? . . . I do not know the answer to that question." 

John F. Hamilton, Jr., revised the dialogue between the waitress and the 
statistician as follows: 

Waitress: Which pie will be better tonight, A or B? 

Statistician: The odds are on A. 

Waitress: What about A and C? 
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Statistician: Again, A will probably win. 

Waitress: I see, you mean A will probably be the best of all. 

Statistician: No, actually C has the greatest chance of being the best. 

Waitress: Okay, cut the funny stuff. Which pie do you want to order, A 
or C? 

Statistician: Neither. I'll have a slice of B, please. 

The paradoxes of confirmation are not, of course, paradoxes in the sense of 
being contradictions, but paradoxes in the wider sense of being counterintui- 
tive results that make nonsense of earlier nalve attempts, by John Stuart Mill 
and others, to define the meaning of "confirming instance." Philosophers 
who discuss the paradoxes are not ignorant of statistical theory. It is precisely 
because statistical theory demands so many careful distinctions that the task of 
formulating an inductive logic is so difficult. 

Richard C. Jeffrey, in The Logic ofDecision Making (University of Chicago 
Press, 2d ed. 1983), formulates an amusing variant of Goodman's "grue" 
paradox. W e  define a "goy" as a girl born before 2000 or a boy born after that 
date, and a "birl" as a boy born before 2000 or a girl born after that date. Until 
now, no goy has had a penis, and all birls have. Hence by induction, (A) the 
first goy born after 2000 will have no penis, and (B) the first birl born after that 
date will. However, the first goy born after 2000 will be a boy, which contra- 
dicts A. Similarly, the first birl born after 2000 will be a girl, which contradicts 
B. 
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T W E N T Y  

Catalan Numbers 

If an infinite sequence of positive integers is simple enough, such as the 
doublingseries(1,2,4,8,16, . . . )orthesquares(l,4,9,16,25, . . . ),itis 
easily recognized. And few mathematicians would fail to recognize the Fi- 
bonacci numbers (1, 1 ,2 ,3 ,5 ,8 ,  . . . ) or the triangular numbers (1,3,6,10, 
15,21, . . . ). If the sequence is unfamiliar, however, an enormous amount 
of time can be wasted searching for a recursive or nonrecursive procedure that 
generates the sequence. (A procedure is recursive if calculating a next term 
calls for knowledge of the preceding terms; a nonrecursive formula gives the 
nth term without such knowledge.) 

It is hard to believe, but it was not until 1973 that A Handbook oflnteger 
Sequences (Academic Press, 1973) was published. This invaluable tool, com- 
piled by N. J. A. Sloane of Bell Laboratories, lists more than 2300 integer 
sequences in numerical order. A mathematician who encounters a puzzling 
sequence no longer needs to spend hours trying to find its generating formula. 
He simply looks for the sequence in Sloane's book. The chances are excellent 
that it is there, followed by a list of references where the reader can check on 
the nature of the beast. 

Our topic here is the Handbook's sequence 577: 1, 2, 5, 14, 42, 132, 429, 
1430,4862,16796, . . . . The components of this sequence are called Cata- 
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lan numbers. They are not as well known as Fibonacci numbers, but they have 
the same delightful propensity for popping up unexpectedly, particularly in 
combinatorial problems. In 1971 Henry W .  Gould, a mathematician at West 
Virginia University, privately issued a bibliography of 243 references on 
Catalan numbers; in many cases the authors were not even aware they were 
dealing with a sequence known for more than two centuries. In 1976 Gould 
increased the number of references to 450. Indeed, the Catalan sequence is 
probably the most frequently encountered sequence that is still obscure 
enough to cause mathematicians, lacking access to Sloane's Handbook, to 
expend inordinate amounts of energy rediscovering formulas that were 
worked out long ago. 

It was Leonhard Euler who first discovered the Catalan numbers after 
asking himself: In how many ways can a fixed convex polygon be divided into 
triangles by drawing diagonals that do not intersect? An example can be 
provided with triangles, quadrilaterals, pentagons, and hexagons (see Figure 
125). Note that in every case, regardless of how the n-gon is triangulated, the 
number of diagonals is always n - 3 and the number of triangles is n - 2. It is 
easy to prove that this relation holds in general. The number of possible 
triangulations for each of these four polygons are the first four terms of the 
Catalan sequence. 

Applying an induction process that he described as "quite laborious," Euler 
obtained the following recursive formula: 

Numbers above the line have the form (4n - lo), where n is a positive 
integer greater than 2. The exclamation mark is of course the factorial sign. It 
stands for the product of all positive integers from 1 through the preceding 
expression. For example, if n = 6 (the sides of a hexagon), the formula 
becomes 

Unusually simple recursive formulas are obtained by putting another 1 in 
front of the series: 1, 1, 2, 5, 14, . . . . Let k be the last number of a partial 
sequence and n the position of the next number. The next number is then 
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Figure 125 Leonhard Euler's polygon-triangulation problem 

Johann Andreas von Segner, Euler's eighteenth-century contemporary, 
found a whimsical recursive procedure for the same form of the Catalan 
sequence. Write the partial sequence forward, then put below it the same 
numbers in backward order. Multiply each top number by the one below it and 
add all the products; the result is the next number of the sequence. For 
example, 
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Euler's polygon triangulation is isomorphic with many seemingly unre- 
lated problems. It was Eugene Charles Catalan, the Belgian mathematician for 
whom the sequence is named, who in 1838 solved the following problem. W e  
have a chain of n letters in a fixed order. W e  want to add n - I pairs of 
parentheses so that inside each pair of left and right parentheses there are two 
"terms." These paired terms can be any two adjacent letters, or a letter and an 
adjacent parenthetical grouping, or adjacent groupings. In how many ways 
can the chain be parenthesized? 

For two letters, ab, there is only one way: (ab). For three letters there are two 
ways: ((ab)c) and (a(bc)). For four letters there are five ways: ((ab)(cd)), 
(((ab)c)d), (a(b(cd))), (a((bc)d)), and ((a(bc))d). The numbers of these ways, 1,2, 
and 5, are the first three Catalans, and the Catalan sequence enumerates the 
ways of parenthesizing all longer chains. 

H. G. Forder, writing on Catalan numbers in 1961, showed a simple way to 
establish one-to-one correspondence between the triangulated polygons and 
the parenthesized expressions. An example is a triangulated heptagon (see 
Figure 126). Label its sides (excluding the base) a throughf: Every diagonal 
spanning adjacent sides is labeled with the letters of those sides in parentheses. 
Each remaining diagonal is then lettered in similar fashion by combining the 
labels on the other two sides of the triangle. The base is lettered last. The 

Figure 126 Parenthesized triangulation of a heptagon 
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expression for the base is uniquely determined by the dissection. If you apply 
this technique to the polygons portrayed in Figure 125, you will obtain the 
parenthesized expressions shown at the right in Figure 127. 

The British mathematician Arthur Cayley proved that Catalan numbers 
count the number of trees that are planar, trivalent, and planted. A "tree" is a 
connected graph (points joined by edges) that has no circuits. "Planar" means 
that it can be drawn on the plane without intersections. "Planted" means that 
it has one "trunk," the end of which is called the "root." The graph can thus 
be drawn to simulate a tree growing up from the ground. "Trivalent" means 
that at each point (except at the root and at the ends of branches), the tree forks 
to create a spot where three edges meet. 

The illustration of this structure (Figure 127) is almost self-explanatory. 
The gray lines show how each triangulation corresponds to a planted trivalent 
tree. Next to the polygons, corresponding trees are drawn in conventional 
form. It is easy to see how the grouping of a tree's branches corresponds to its 
parenthesized expression. Below each expression, we convert it to a binary 
number by replacing every left-hand parenthesis with 1 and every letter with 
zero, ignoring all right-hand parentheses. These binary numbers are conve- 
nient shorthand ways of designating the polygon dissections and their trees. 
Right-hand parentheses are not needed because, given the left-hand ones and 
the method of grouping letters, the right-hand parentheses can always be 
added in a unique manner. 

The Polish mathematician Jan Lukasiewicz found a pleasant way to obtain 
each tree's binary number (see Figure 128). Picture a tree with four top ends. 
They are labeled 0 and the trivalent points are labeled 1. Imagine a worm 
crawling up the trunk and around the entire tree along the broken path in the 
illustration. At each point, the worm calls out the label. Once apoint is called, 
it is not called again. In this example the worm calls out 1101000, which 
proves to be the very binary number we obtained from the tree's parenthesized 
expression. 

In 1964 it was discovered that normal planted trees are also counted by 
Catalan numbers. They are ~ l a n t e d  trees of n points, including the ends but 
not the root. They can also be described as planted trees of n edges. A point in 
such a tree can have any valence. 

Many ways have been found for showing a one-to-one correspondence 
between trees of this kind and the planted trivalent trees. The simplest one was 
pointed out by Frank Bernhart (see Figure 129). The trivalent trees are drawn 
so that at each point of valence 3 the edges go up, down, and to the right. 
Imagine that each horizontal edge shrinks to a point and disappears. If there is 
a trivalent point at the right end of the edge, it is carried to the left to merge 
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Figure 127 Triangulation and planted trivalent trees 



CATALAN NUMBERS 259 

Figure 128 A worm generating a tree's binary number 

with the point at the left. All the vertical edges remain distinct. This simple 
transformation changes all planted trivalent trees of n ends into all planted 
trees of n edges. 

A worm crawling up and around any tree in this new set (the trees at the 
right in the illustration) will call out the same binary number as the tree's 
partner if it alters its procedure as follows. The worm starts at the bottom point 
rather than at the root. Each time it crawls up an edge, it calls 1, and each time 
it crawls down an edge, it calls 0. 

Consider chessboards of sides 2,3,4,  . . . . All squares north and west of a 
main diagonal are shaded (see Figure 130). W e  are to move the rook from the 
lower left corner to the upper right corner. It cannot enter a shaded cell, and its 
only allowed movements are north or east. For a board of side n, how many 
different paths can the rook take? 

Once more the Catalans give the answer. Below each board of side n write 
the binary number for the planted trivalent tree of n ends. Taking the binary 
digits from left to right, move the rook one square to the right for each 1 and 
one square up for each 0. (The final digit is ignored.) This pattern generates a 
path, and in this way all the rook paths are obtained. 

Here are seven more recreational problems solved by the Catalans. For the 
first five, I shall indicate how the corresponding binary numbers (ignoring 
final digits) solve the problem. 
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Figure 129 Transformation of planted trivalent trees to planted normal trees 

1. Two men, A and B, are running for office. Each man gets n votes. In 
how many ways can the 2n votes be counted so that at no time is A behind B? 
(1 = vote for A, 0 = vote for B.) 

2. Place a penny, a nickel, and a dime in a row. O n  the penny put a stack of 
n face-up playing cards with values in consecutive order from bottom to top. 
The cards are moved one at a time from the penny to the nickel or from the 
nickel to the dime. (No other moves are allowed.) By mixing these two types 
of moves, you will end, after 2n moves, with all the cards on the dime. Given n 
cards, how many different permutations can you achieve on the dime? (1 = 
move from penny to nickel, 0 = move from nickel to dime.) 

3. An inebriated man leaves the door of a bar and staggers straight ahead. 
His steps are equal, but before each step, he has a random choice of going 
forward or backward. How many ways can he take 2n  steps that will return 
him to the door? (1 = step forward, 0 = step back.) 
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This random walk can be given other forms. A king starts on the first row of 
a chessboard and moves one square forward or back along the file to end on the 
starting square after 2n moves. Draw a space-time diagram of the moves, with 
time measured along the horizontal base line. The zigzag path can be viewed 
as the profile of a mountain with peaks an integral number of miles high and a 
base length of 2n miles. The paths depict all mountain ranges of this type. 

4. An even number (2n) of soldiers, no two the same height, line up in two 
equal rows, A and B. How many ways can they do it so that from left to right in 
each row the heights are in ascending order and each soldier in row B is taller 
than his counterpart in row A?  (Number the soldiers 1 ,2 ,3 ,  . . . according 
to increasing height, and number the digits of the binary numbers from left to 
right. The 1 digits give the numbers for row A, and the 0 digits give the 
numbers for row B. The problem is easily modeled with playing cards.) 

5. Tickets are 50 cents, and 2n customers stand in a queue at the ticket 
window. Half of them have $1 each and the others have 50 cents each. The 
cashier starts with no money. How many arrangements of the queue are 
possible with the proviso that the cashier always be able to make change? 
(1 = 50 cents, 0 = $1.) 

1100100 1 1 10000 1010100 101 1000 1101000 

Figure 130 How Catalan numbers count a rook's paths 
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6. Hexaflexagons are curious toys made by folding straight or crooked 
strips of paper into a hexagonal structure that alters its "faces" when it is 
flexed. (They are described in the first chapter of my Scientijic American Book of 
Mathematical Puzzles G Diversions. Simon & Schuster, 1959.) A regular hexa- 
flexagon of a specified type passes through different states as it is flexed. The 
total number of states, for all varieties of regular he~af lexa~ons  of n faces, is a 
Catalan number. For example, a hexahexaflexagon (six faces) can be made in 
three ways. The total number of states is the Catalan number 42. 

If we ignore the states and ask in how many essentially different ways a 
regular hexaflexagon of n faces can be made, the answer is provided by a 
sequence that counts the triangulations of convex polygons when rotations 
and reflections are excluded. This remarkable sequence (No. 942 in Sloane's 
Handbook) is 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, . . . . 

In unpublished papers, Bernhart and other flexagation addicts describe 
ways of mapping the changes of states, as a flexagon of n faces is flexed, by 
tracing paths around the lines of a triangulated polygon of n + 1 sides. 

7. An even number of people are seated around a circular table. Each 
extends one arm and they clasp hands in pairs, but in such a way that no pair of 
joined arms crosses another. Given the number ofpairs, in how many ways can 
this be done? More precisely, place 2 n  spots in fixed positions on the circum- 
ference of a circle and then find all the ways they can be paired by drawing 
nonintersecting chords. 

Can you find a simple geometric way to establish a one-to-one correspon- 
dence between this problem and any of the above problems? 

A nonrecursive formula for the nth Catalan has different forms depending 
on how the positions of the Catalans are numbered. The formula is simplest if 
the sequence begins 1, 2, 5,. . . . In this numbering, the nth Catalan is 

If the series begins 1, 1, 2, 5, . . . , it turns out that odd Catalan numbers 
greater than 1 appear at all positions, and only at those positions, that are 
powers of two. Thus the fourth, eighth, sixteenth, and so on Catalans are odd. 
This is only one of many unusual properties of the sequence that have been 
discovered. 

A word of caution: When one works oncombinatorial problems, it is easy to 
confuse the Catalan sequence with a closely related one: 1 ,2 ,  5, 15, 52, 203, 
877, . . . . As Gould points out in notes on his bibliography (which also 
includes a separate listing of references on the above series), when structures 



are complicated, it is easy to miss a fifteenth structure (when n = 4) and to be
tricked into supposing you have encountered a Catalan sequence. The numbers
are called Bell numbers after Eric Temple Bell, who published a lot about
them. They count the partitions of n elements. For example, the number of
rhyme schemes for a stanza of n lines is a Bell number. A quatrain has fifteen
possible rhyme schemes. A 14-line sonnet, if convention is thrown to the
winds, can have 190,899,322 (the fourteenth Bell) distinct rhyme schemes. But,
you may object, who would write a sonnet with a rhyme scheme such as
aaaaaaaa aaaaaa? Allowing a word to rhyme with itself, James Branch Cabell
conceals just such a sonnet (each line ending with “love”) in Chapter 14 of
Jurgen (Grosset and Dunlap, 1919). I would guess it no accident that Cabell’s
14-line poem starts as the fourteenth paragraph of Chapter 14.

Figure 131 shows how Bell numbers count the rhyme schemes for stanzas
of one line through four lines. Lines that rhyme are joined by curves. Note that
not until we get to quatrains does a pattern (No. 8) require an intersection.
Joanne Growney, who worked this arrangement out in 1970 for her doctoral
thesis, calls the schemes that do not force an intersection of curves “planar
rhyme schemes.” Bell numbers count all rhyme schemes. Catalan numbers are
a sub-sequence that counts planar rhyme schemes.

The Bell sequence is No. 585 in Sloane’s Handbook. But the Bells chime
another story that we must postpone for a future book.
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Figure 131 How Bell numbers count rhyme schemes
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ANSWERS 

The problem was to show that if 2n spots on a circle are joined in pairs by 
nonintersecting chords, the number of ways of doing so are counted by the 
Catalan numbers. Figure 132 shows how Frank Bernhart establishes a one-to- 
one correspondence of the chord patterns with planted normal trees of n + 1 
edges. It also gives their binary numbers. Since these trees are counted by 
Catalan numbers, as I explained, the same sequence counts the chord patterns. 
T o  make the diagrams easier to interpret, the small chords are shown curved. 

Imagine that the circles and chords are elastic strings. Break each circle at 
the top and bend it into a straight line. The chord problem then becomes: 2n 
points on the line are paired in all possible ways by joining them with curves 
above the line that do not intersect. This is equivalent to finding all "planar 
rhyme schemes" for 2n lines that consist of n couplets, allowing coupled lines 
to be separated by other lines. 

Figure 132 Correspondence between nonintersecting chords and planted trees 
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If the line is now closed by bringing its ends together below, we get an 
inside-out version of the original problem. It could represent a lake with 2n 
houses on the perimeter, paired in all possible ways by nonintersecting paths. 
(All paths joining a given pair of houses are assumed to be the same; think of 
each pair as being joined by an elastic string that can be lifted up, stretched or 
shrunk and replaced anywhere on the plane outside the lake.) 

T o  obtain the binary numbers, imagine a worm at the bottom of each circle, 
inside the circle and facing west. As the worm crawls clockwise around the 
circle, it calls out 1 when it encounters a chord for the first time and 0 when it 
encounters a chord a second time. The procedure works in reverse. Given the 
binary number, the worm labels the spots 1 and 0. There will be only one way 
to join each 1 to a 0 without an intersection of chords. 

ADDENDUM 

My column on Catalan numbers produced so many letters telling me about 
other applications of the numbers, and other properties, that I can mention 
only a few of special interest. 

Vern Hoggatt, Jr., who edited The Fibonacci Quarterly, explained how easily 
the Catalans can be found in Pascal's famous number triangle. Merely go 
down the center column (1, 2, 6, 20, 70, . . . ) and from each number 
subtract the adjacent number (numbers on left and right of the central number 
are, of course, the same). Result: the Catalan sequence! 

Paul Stockmeyer called my attention to Jack Levine's "Note on the Num- 
ber of Pairs of Non-Intersecting Routes" (Scripta Mathematica 24, Winter 
1959, pp. 335 - 338). Stockmeyer's colorful interpretation of Levine's result is 
to imagine two people at the same intersection of a square grid. Each simulta- 
neously goes one step, randomly choosing to go either north or east. When 
their paths intersect they outline a polyomino. The Catalans count the num- 
ber of distinct polyominoes that can be formed after each person has taken n 
unit steps. The theorem underlies many later papers, such as "A Catalan 
Triangle," by Louis Shapiro (Discrete Mathematics 14, 1976, pp. 83-90.) 

Shapiro also sent me his paper, "A Short Proof of an Identity of Touchard's 
Concerning Catalan Numbers" (The]ournal of Combinatorial Theory, 20, May 
1976, pp. 375-376.) Here is Shapiro's interpretation of the identity. Put n 
points on a circle. Each point is either painted red, or green, orjoined by a line 
to another point. The lines must not cross. Catalan numbers count the number 
of different patterns for each n. 

My column on the related sequence of Bell numbers ran in Scientijic Ameri- 
can (May 1978) and will be included in a later book collection. 
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T W E N T Y - O N E  

Fun with a Pocket 
Calculator 

Ifyou could climb into a time machine and go back to ancient Athens for avisit 
with Aristotle, what could you carry in your pocket that would most astonish 
him? I suggest it would be a pocket calculator. Its Arabic number system, its 
light-emitting diodes, its miniaturized circuitry isomorphic with Boolean 
logic (Aristotle, remember, invented formal logic), and above all, its compu- 
tational speed and power would intrigue him more than any other small object 
I can think of. 

The revolutionary consequences of these miraculous little gadgets are only 
beginning to be manifest. Among engineers and scientists the slide rule has 
already become as obsolete as the abacus. It is sad to think of the mathemati- 
cians of recent centuries who devoted years to the arduous calculation of 
logarithms and trigonometric functions. Today an engineer finds it takes less 
time to calculate such numbers all over again on a pocket machine than to look 
them up in a book or make a slide-rule approximation. 

Among mathematics teachers, controversy over the "new math" has been 
replaced by controversy over how pocket calculators should be used in ele- 
mentary education. Alrnost everyone agrees that, at the high school level and 
above, the machine will be an enormous boon. "It is unworthy of excellent 
men," wrote Leibniz (who invented a mechanical computer), "to lose hours 
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like slaves in the labor of calculation." Freed from such drudgery, students 
surely will be more inclined to study the basic concepts and structures of 
mathematics. It is no credit to our education that when a mathematician 
discloses his profession to a stranger, he waits for the inevitable remark: "I 
can't even balance my checkbook." Would you tell a poet or a novelist about 
your spelling difficulties? 

Teachers are arguing not about the ultimate value of the pocket calculator 
but about when it should be introduced. The consensus is that it should not be 
until a child has learned how to add, subtract, multiply, and divide on paper. 
After that, there seems to be no good reason for not allowing students to take a 
calculator to class or even to use one in examinations. In any case, the revolu- 
tion is unstoppable. Already there is talk of having calculators built into desks, 
like old-fashioned inkwells. 

The recreational-math buff who buys even one of the least expensive 
calculators will soon be wondering how he ever managed without it. Consider 
a cryptarithm such as 

T H I  S 
I S -. 

* * T O O  
HARD * 
* * * * * *  

Few tasks could be more boring than solving this puzzle without a calculator. 
It is apparent that S must be 2 ,3 ,4 ,7 ,8 ,  or 9 (otherwise S and O would not be 
distinct), and I cannot be 0, 1, or the same as S. One can easily determine by 
hand that IS must be 72, 57, 68, or 79. From here on, however, there are no 
good clues, and most people need a calculator to run through the possible 
values of T and H in a reasonable time. (We assume the usual conventions: 
Each letter stands for only one digit, different letters stand for different digits, 
asterisks represent any digit, and numbers do not begin with 0.) 

There are so many other ways that pocket calculators stimulate interest in 
both serious and recreational mathematics that I can touch on only a few high 
spots. If the machine has a memory key that makes it possible to hold the 
partial sums of a converging infinite series, it can be of enormous value in 
guessing the limit before searching for a proof. For example, take this unfa- 
miliar series in which the numerators are the odd numbers in sequence and the 
denominators form the doubling series: 
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After each division add the result to the previous sum. The partial sum, after 
10 fractions have been added, is 5.95. . . . The series seems to be converging 
on 6. Is that the limit? 

Try entering any number in the readout and then repeatedly pushing the 
square-root key. You will see the roots quickly converge on 1. Suppose that 
after each square-root extraction, you double the result before taking the next 
root. Is the limit 2? No, it is 4. Instead of doubling, each time multiply by m. 
The limit proves to be m2. Generalize further by taking repeated nth roots (if 
your machine can do it) and multiplying each result by m. Can you write and 
prove the formula for the limit? (I am indebted to Don Morran for this 
problem.) 

Several books have been written on competitive games between two or 
more players that make use of pocket calculators, but few of the games use the 
machine for more than rapid calculation. Lynn D. Yarbrough's "keyboard 
game" is a pleasant exception. It appeared in the special games and puzzles 
issue (January 1976) of the magazine Creative Computing. 

The keyboard game begins with the first player entering any positive 
integer, say 100. The second player punches the subtract key, then any digit 
key on the three-by-three array (see Figure 133), and finally the equals key. 
The game continues with players alternately subtracting digits (0 excluded) 
until a player loses by activating the minus sign. 

There is one condition that prevents this game from being trivial. O n  each 
turn, after the first subtraction, a player must choose a key adjacent (ortho- 

Figure 133 Three-by-three array for keyboard game 
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gonally or diagonally) to the key last pressed. Thus if 5 is played, the next 
player may subtract any digit except 5. If 4 is played, the next play is limited to 
1, 2, 5, 7, and 8. If 3 is played, it is limited to 2, 5, 6, and so on. 

Without this proviso, the first player can win easily by choosing a multiple 
of 10 for the initial number and then subtracting the right-hand digit of the 
readout whenever it is his turn. With the proviso, the game is fun to play. 
Better still, it has a surprising solution. It turns out that the second player (the 
one who makes the first subtraction) can always win regardless of the initial 
number. If the beginning number is greater than 15, he wins by punching 
either 1 or 3 (it makes no difference which) until the total is 13  or less, then 
playing carefully thereafter. Interested readers can consult Yarbrough's article 
for the complete strategy and for variants of the game when 0 is allowed. 

One of the more curious recreational uses for the pocket calculator is as a 
device for performing magic tricks, most of them of the ESP variety. Here is a 
stunt that children find particularly amusing. Ask a child to enter 98765432 
and to divide by 8. He or she will be mildly surprised by the result: 12345679. 
The digits are in sequence except for 8, the divisor, which has mysteriously 
vanished. 

Ask the child to name his favorite digit. Suppose he says 4. You immediately 
say: "Very good. Multiply the number on display [I23456791 by 36." Now he 
is really surprised, because the number he gets is 44444444 (or nine 4's if the 
readout can accommodate that many). The multiplier you give is always the 
product of 9 and the named digit. The working is easy to understand: 
11 1 11 11 1 119 = 12345679. Since 9 times 12345679 is 11 1 11 11 11, a multi- 
plier of 9n (where n is a digit) is sure to give a row of n's. 

Dividing a row of 1's by integers other than 9 until the quotient has no 
fractional remainder produces other "magic numbers." For example: 
11 11 1117 = 15873. Multiplying 15873 by 7n, where n is a digit, produces a 
row of n's. Again: 11 11 11/33 = 3367. Multiply 3367 by 33n and you get a 
row of n's. 

A trick I call the Arabian Nights Mystery, because it is based on the proper- 
ties of 1001, begins by asking someone to think of any three-digit number, 
ABC. Tell him to repeat the number to make ABCABCand enter the six-digit 
number in the calculator. While he is doing it, stand with your back turned so 
that you cannot see what is going on. 

"I'm beginning to get some vibes," you say, "and they tell me that your 
number is exactly divisible by the unlucky number 13. Please divide by 13 and 
tell me if 1'm right." 

Your companion makes the division. Sure enough, there is no remainder. 
"It's strange," you continue, "but my clairvoyant powers tell me that the 
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number now on display is exactly divisible by the lucky number 11." He 
makes the division. You are right again. 

"Now I have a strong impression," you continue, "that the number on 
display is exactly divisible by the still luckier number 7." This proves to be the 
case. 

Tell your companion to take a good look at the readout. It is ABC, the 
number he first thought of. 

The trick cannot fail. Multiplying any three-digit number ABC by 1001 
obviously produces ABCABC. Because the prime factors of 1001 are 13,11, 
and 7, dividing ABCABC by those three numbers must result in ABC. 

One of the oldest and still one of the best of all number-guessing tricks is 
particularly interesting because it introduces a celebrated theorem that goes 
back to a book on arithmetic believed to have been written in the fourth or 
fifth century by a Chinese mathematician and poet named Sun-tsu (or Sun- 
tse). One of the book's problems is to find the smallest natural number 
(positive integer) such that when it is divided by 3,5, and 7, the remainders are 
respectively 2, 3, and 2. Sun-tsu supplies the answer, 23. He also gives, in 
verse, a general rule that he calls the t'ai-yen (great generalization) for solving 
the problem. 

Guessing a number from 1 through 315, by using the divisors 5, 7, and 9, 
appears in the medieval arithmetic (1202) of Leonardo Fibonacci, the Italian 
mathematician for whom Fibonacci numbers are named. Tricks of this form 
were popular throughout the Middle Ages and the Renaissance. They can be 
presented with any number of divisors, provided that they are relatively prime 
(have no common divisor) and that the chosen number is not greater than the 
product of all the divisors. (The divisors themselves need not be prime. For 
example, they could be 3 and 4, with the chosen number ranging from 1 
through 12.) Since a pocket calculator makes for fast computing with divisors 
larger than digits, let us see how the trick operates with 7, 11, and 13, our 
lucky and unlucky numbers. Their product is 1001, so we can safely ask 
someone to think of any number from 1 through 1000. 

The trick is most effective if no one knows you are using a calculator. Hand 
someone a pencil and paper, then cross the room and sit with your back toward 
the spectators. Surreptitiously take the calculator out ofyour pocket and use it 
on your lap. 

Ask your companion to think of any number not greater than 1000, divide it 
by 7 ,  and tell you the remainder. He repeats this procedure twice more, 
dividing the original number by 1 1, telling you the remainder, then dividing 
the original number by 13 and telling the remainder. How do you calculate 
the selected number? 
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Let a, b, and c be the three remainders. The chosen number is the remainder 
after making the following calculation: 

The three coefficients should be memorized or written on a small strip of 
paper pasted on the calculator. These are the simple steps you follow: 

1. While your companion is dividing his chosen number by 7, enter 715. 
Multiply it by the announced remainder. If your calculator has no memory 
key, you will have to jot down the product and also the next two products so 
that you can add them later. If   our machine has a memory that allows chain 
addition, enter the product in the memory. 

2. While your companion is dividing his chosen number by 11, enter 364. 
Multiply by the announced remainder and add it to the preceding result. 

3. While he does his final division by 13, enter 924. Multiply by the 
announced remainder and add to the preceding sum. The number now in your 
readout is equal to your companion's chosen number modulo 100 I. If it is less 
than 1001, it is the number. If it is greater, reduce it to the chosen number by 
repeatedly subtracting 1001 until the number on display goes below 1001. 

How was the formula derived? The derivation is best explained with an 
example, so let us use Sun-tsu's simpler version. The divisors are a = 3, b = 5, 
c = 7, and the chosen number must be no greater than 105. 

The coefficient of a is the lowest multiple of bc that is one more than a 
multiple of a. There are rules for finding this coefficient, but when the divisors 
are small, as they are in this case, it is easy to get the number by inspection. 
Simply go up the multiples of bc (35, 70, 105, . . . ) until you come to a 
multiple that has a remainder of 1 when it is divided by 3. The multiple is 70. 

The other two coefficients have similar forms. The second coefficient is the 
lowest multiple of ac that is one more than a multiple of b. It is 21. The third 
coefficient is the lowest multiple of ab that is one more than a multiple of c. It is 
15. W e  can now write the formula: 

The number below the line is abc. This ancient version of the trick is the one 
most popular today with mathemagicians. It accommodates a chosen number 
from 1 through 100, and the formula is simple enough so that with practice 
the calculations can be done in the head. The mental steps can be simplified by 
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replacing 70a with - 35a, since - 35 is equal to 70 modulo 105. This 
procedure also keeps the total lower, so that fewer subtractions of 105 are 
needed to reach the chosen number. 

The remarkable theorem behind such tricks is called the Chinese Re- 
mainder Theorem in honor of Sun-tsu. In !general, it states: Given a set of 
relatively prime natural numbers greater than 1 (dl, d,, . . . , d,) and a corre- 
sponding set of natural numbers (r,, r,, . . . , r,), there is a unique number 
modulo x (where x is the product of all the d nutnbers) such that, when it is 
divided by di, the remainder is ri(mod d,) for every value of i. 

This is one of the most valuable theorems of congruence arithmetic. It 
serves not only for proving deeper theorems but also for answering many 
practical questions. Early astronomers and astrologers employed it for solving 
problems concerning solar, lunar, and planetary cycles. Oystein Ore's Number 
Theory and Its History (McGraw-Hill, 1948) gives several applications of the 
Chinese Remainder Theorem to ancient puzzles as well as to a systematic 
procedure for the splicing of telephone cables. In 1967 Elwyn R. Berlekamp 
used the theorem in developing a fast algorithm for the computer factoring of 
polynomials. [A useful reference is Section 4.6.2 of Seminumerical Algorithms, 
Volume 2 of The Art of Computer Programming (Addison-Wesley, 1969) by 
Donald E. Knuth. Kurt Godel made use of the theorem in his famous undeci- 
dability proof.] 

Another remarkable number theorem, which goes back to Fibonacci, un- 
derlies a prediction trick recently proposed by Francis T. Miles. Write the 
numerals 1,6,  and 8 on a piece of paper and turn it face down without letting 
anyone see what you wrote. Someone now uses the calculator to generate 
three "random" digits by the following method. He writes down any number 
he likes and writes below it any second number. Below that, he puts the sum of 
the two numbers. The third number (the sum) is then added to the second 
number to get a fourth. This procedure is continued (each time by adding the 
last sum to the preceding number, using the calculator when the numbers get 
large) until the list has twenty numbers. Tell your companion to divide the last 
number by the s receding one, or vice versa if he ~refers, and to take note of the 
first three digits of the decimal fraction. They are almost certain to be the three 
digits you predicted. 

The trick works because in a generalized Fibonacci sequence, which is what 
the spectator is generating, the ratio between adjacent terms approaches the 
golden ratio, 1.618033 . . . , as a limit. It does not matter which number is 
divided by which, because the reciprocal of the golden ratio is .618033. . . . 
A magician I know likes to predict four decimal digits by placing four playing 
cards face down on the table. After turning over a six, an ace, and an eight, he 
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looks crestfallen, as if he had missed on the fourth digit, since there is presum- 
ably no zero card. Then he turns the fourth card to reveal a blank face. If the 
fourth digit is not zero, he says, "As you see, I don't take chances." 

No article on play with pocket calculators would be complete without 
mentioning the recent proliferation of whimsies exploiting the fact that most 
of the readout digits resemble letters when they are viewed upside down. 
Magic magazines were the first to publish such jokes, but they became widely 
known only after they were discussed in Time (June 24, 1974, pp. 56-58). 
The procedure is to ask a question, then give a series of computations to 
produce a result that spells the answer when it is inverted. 

The earliest of these upside-downers seems to have involved questions 
about who won a certain skirmish between Arabs and Israelis. After punching 
in the relevant information, one got the answer: 71077345. Inverted it spells 
SHELLOIL. Knuth devised the most mathematically interesting story line: 337 
Arabs and 337 Israelis battle over a square property 8424 meters on a side. 
Naturally we sum the squares of 337 and 8424. Is there another way to obtain 
71077345 as the sum of two squares? Yes, there is just one additional way: 
5,3242 + 6,537'. Several books dealing entirely with such inversions have 
been published. 

My off-color contribution to this useless pastime has appeared only in magic 
periodicals. What do Congress and belly dancers have in common? Multiply 
the prime number 2417 by the number of months in the year, divide by the 
number of letters in "Congress," then multiply by the number of letters in 
"George Washington." Turn the machine around to read the answer. For 
greater precision, add 1.0956 to the number on display, then subtract .1776. 

The number 1776, by the way, in addition to being a famous date, has the 
following curious property. Select any positive digit N. Punch the calculator's 
N key three times to put NNN in the readout. Multiply by 16, then divide by 
N. The result is always 1776. 

ANSWERS 

The solution to the cryptarithm is 
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The problem appears in Joseph S. Madachy's Mathematics on Vacation 
(Scribner's. 1966). Other questions are answered as follows. 

T o  prove that the series 

converges on 6, first halve each term to obtain 

Subtract this from the original series: 

The sequence at the right of the first term has a sum of 2, so the entire series 
must have a sum of 3. Since this series is half of the original series, the original 
has a sum of 6. 

If we begin with any natural number and then repeatedly take the nth root 
and multiply it by m, the limit L is 

Don Morran's   roof is as follows. Assume that m ~ ' / "  approaches a nonzero 
limit L. At the limit mL1/" = L; mnL = Ln; Ln - mnL = O;  L(Ln- ' - mn) = 
0: L = mn/("- 1). 

ADDENDUM 

Since I wrote this column, magicians interested in mathematics have invented 
hundreds of new tricks, games, and stunts that use a pocket calculator, as well 
as more elaborate tricks requiring special computer programs. I will add here 
only one clever trick, invented by Karl Fulves, that anyone can perform. 

Turn your back and ask someone to select a row, column, or either of the 
two main diagonals on a calculator's square of nine digit keys. He puts the 
three selected digits, in any order, into the readout. Ask him to select another 
row, column, or diagonal. He then multiplies the number on display by a 
number consisting of the three newly-selected digits, again in any order. 



276 CHAPTER TWENTY-ONE 

With your back still turned, ask him to choose any nonzero digit in the 
product, then to call out to you (in any order) the remaining digits. You 
correctly tell him the chosen digit. - 

The working of the trick depends on the fact that every row, column, and 
main diagonal contains three digits that add to a multiple-of 3. Any permuta- 
tion of those digits will, of course, leave the sum unchanged. This assures that 
any three-digit number formed by those digits will be a multiple of 3. The 
product of two such triplets is certain to be a multiple of 9, with digits that add 
to a multiple of 9, and this also will be the case regardless of how the digits are 
~ermuted.  
I 

As the spectator calls out the digits, add them in your head, "casting out 
nines" as you go. This is done as follows. Whenever a sum is more than 9, add 
the digits of the sum to obtain a single digit. After the last digit is called, 
subtract it from 9. The remainder will be the spectator's chosen digit, with one 
exception. If the remainder is 0, the selected digit is 9. 

1fyou repeat the trick, Fulves suggests the foilowing variation. Instead of 
crossing out a digit, ask the spectator to think of any digit (except 0) and add it 
to the number in the readout. He then calls out, in any order, the digits in the 
result, and you tell him the digit he selected. 
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Tree-Plant Problems 

Your aid I want, nine trees to plant 
In rows just half a score; 

And let there be in each row three. 
Solve this: I ask no more. 

Look at the back of a dollar bill and you will see above the eagle on the Great 
Seal of the United States thirteen five-pointed stars - symbols of the thirteen 
original states-arranged as a six-pointed star. The pattern shows that 13 is 
the first nontrivial (larger than 1) figurate number of a type called "star 
numbers." (See Chapter 2.) 

There are, of course, a multitude of other ways to arrange thirteen points on 
the plane to meet the demands of aesthetic symmetry or the provisos of 
recreational mathematicians. In a moment, we shall consider two unsolved 
problems, far from trivial, that concern ways of arranging thirteen points. But 
first let us take a look at how the Colonists arranged the thirteen bright stars on 
their earliest flags. 
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According to popular legend, the first stars-and-stripes flag was sewn by 
Betsy Ross, who based it on a rough drawing supplied by George Washington. 
She is said to have displayed her handiwork to Washington and others in May 
or June of 1776 at a house somewhere on Arch Street in Philadelphia. To 
show how she made the pattern for her stars, she is said to have folded a sheet 
of paper and then, with one snip of her scissors, to have cut out a perfect 
pentagram. The thirteen stars, so the story goes, were arranged on a blue field 
in a circle to imitate King Arthur's Round Table. It is the first design in Figure 
134. In 1976 our Bicentennial year, the flag was on a 13-cent stamp. It appears 
in such famous paintings as "Washington Crossing the Delaware" by Archi- 
bald M. Willard, "The Spirit of '76," and the picture by Henry Mosler that 
used to be in many schoolbooks showing Betsy's nimble fingers at work on 
Old Glory. 

Alas, the story has been totally discredited. Its sole source was Betsy's 
grandson, who said he heard it when he was eleven. Not a single flag with 
thirteen stars in a circle has survived, and there is no evidence that such a flag 
existed in Revolutionary times. Many historians doubt that a stars-and-stripes 
flag of any design flew during a single sea or land battle of the Revolution. 

The second design in the illustration shows how the stars are arranged on a 
flag that John Hulbert, captain of acompany of minutemen from Long Island, 
is said to have flown in 1775. This arrangement too is not supported by any 
evidence. The truth is that no one knows who designed the first stars-and- 
stripes flag, and almost nothing is reliably known about the flag's earliest 
history. 

Figure 134 Alleged arrangements of the thirteen stars on early flags of the United States 
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W e  do know that on June 14, 1777, the Second Continental Congress 
resolved "that the flag of the United States be thirteen stripes, alternate red 
and white; that the union be thirteen stars, white in a blue field, representing a 
new constellation." There is not a word about the number of star points, how 
the stars are to be arranged, or which color of stripe should outnumber the 
other. As a result, from 1777 until 1795 there were wild variations in flag 
designs. Some flags even violated the Congressional order by having red and 
blue stripes or red, white, and blue stripes; some had blue stars on a white 
background. 

The stars had five, six, seven, or eight points and were arranged in all kinds 
of ways. Number 3 in the illustration is on a flag said to have been used by the 
Bennington militia in 1777. Numbers 4 and 5 appear in paintings by a Dutch 
artist on flags alleged to have been flown by John Paul Jones on ships in 1779. 
Number 5, with its field stretched horizontally, was perhaps the most com- 
mon pattern on flags from 1777 to 1795. (Note that it is Number 2 rotated 45 
degrees.) Number 6 is supposed to have been on the flag of a Maryland 
regiment and number 7 on a flag flown in Boston, both around 1781. Number 
8 is credited to the North Carolina militia of 1781. 

In 1794, after Vermont and Kentucky had become states, Congress decided 
to add two more stars and two more stripes, arranging the stars as is shown in 
Figure 135. One congressman thought this was "a trifling business which 
ought not to engross the attention of the House." Another called it "a con- 
summate specimen of frivolity." Hut the bill was passed, and the flag became 
official the following year. This was the flag that Francis Scott Key is alleged 
to have seen flying over Fort McHenry during the War of 1812 and that 
inspired him to write "The Star-spangled Banner." 

In 1817, after five more states hadjoined the union, Congress decided to go 
back to thirteen stripes and to have a new star added each time a state was 
admitted. A flag with twenty stars in a four-by-five rectangle became official 
in 181 8. From then until 1913 there were twenty-four changes of the flag as 
stars were added. The stars were usually five-pointed and in staggered rows, 
although many other arrangements were popular, including star-shaped pat- 
terns. After the admission of New Mexico and Arizona in 1912 the flag was 
stable for forty-six years, its forty-eight stars arranged in a six-by-eight rectan- 
gle. In 1959, to accommodate a new star for Alaska, President Eisenhower 
ordered a seven-by-seven field, the rows staggered with odd rows aligned at 
the left. When Hawaii became a state later in 1959, he ordered the field 
changed to its present form of fifty stars in staggered rows of six and five. 

There are many puzzles based on the arrangement of n spots on a field, but 
the oldest and most popular are known as "tree plant" problems. They have 
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Figure 135 The flag of 1794, with fifteen stripes and fifteen stars 

that name because in early puzzle books they were usually presented with a 
. - . - 

story about a farmer who wishes to plant a certain number of trees in an 
orchard so that the pattern of trees will have r straight rows of exactly k trees in 
each row. The puzzles were made difficult by maximizing the number of - 
rows. Surprisingly, the general problem of determining the largest number of 
rows, given n and k, is nowhere near solved even when k is 3 or 4. 

"These tree-planting puzzles," wrote Henry Ernest Dudeney, England's 
greatest puzzle expert, in Amusements in Mathematics (Dover, 1958), "have 
always been a matter of great perplexity. They are real 'puzzles' in the truest 
sense of the word, because nobody has yet succeeded in finding a direct and 
certain way of solving them.  he^ demand the exercise of saga&, ingenuity 
and patience, and what we call 'luck' is also sometimes of service. Perhaps 
some day a genius will discover the key to the whole mystery." 

When k i5 2, the problem is trivial. 1f n points are arranged so that no three 
are in line, every pair forms a row of two. When k is 3, the problem not only 
becomes interesting but also is related to such mathematical topics as bal- - 
anced-block designs, Kirkman-Steiner triples, finite geometries, Weierstrass 
elliptic functions, cubic curves, projective planes, error-correcting codes, and 
many other aspects of significant mathematics. The latest and most definitive 
paper on the topic is "The Orchard Problem," by Stefan A. Burr, Branko 
Griinbaum and N. J. A. Sloane. What follows is taken mainly from that paper. 
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The first nontrivial reference on tree-plant problems is a book called Ratio- 
nal Amusementfor Winter Evenings, by John Jackson, published in London in 
182 1. According to Dudeney, who owned a copy, it contains ten such puzzles. 
The mathematician J. J. Sylvester worked continually on the general problem 
from the late 1860s until his death in 1897. (The temperamental Sylvester had 
a stormy career. He was denied a degree at Cambridge because of his Jewish 
faith but obtained one at Trinity College of the University of Dublin. He was 
a professor at the University of Virginia for three months until an altercation 
with a student led to his resignation. At Johns Hopkins he founded American 
Journal ofMathematics. One of his books is The Laws o f  Verse [he was fond of 
writing poetry], and for many years in England he was a barrister.) 

Maximum solutions for three-in-a-row tree plants, from three through 
eleven points, are shown in Figure 136. Note that not until n equals 9 does the 
maximum number of rows exceed n. It is easy to get eight rows with nine 
points (a three-by-three square array does it), but adding two more rows is a bit 
tricky. In his book Jackson introduced the problem with the quatrain that is 
this chapter's epigraph. The solution, derived from a famous theorem in 
projective geometry called the Pappus theorem, has been credited to Isaac 
Newton. 

The eleven-point pattern is given by Dudeney (Problem 213 of his Amuse- 
ments) as a military puzzle. In lecturing on tree-plant problems, Sloane has 
simplified Dudeney's narrative line by describing a World War I battlefield 
on which eleven Turks were surrounded by sixteen Russians. Each Russian 
fired once, and each bullet passed through exactly three Turkish heads. How 
were the Turks standing? The remarkable solution-eleven points in sixteen 
rows of three each -is said by Dudeney to have been constructed about 1897 
by the Reverend Mr. Wilkinson. (Does any reader know who he was?) Sloane 
tells me that this is the only practical application of the orchard problem he 
knows, although he once invented a fictional "Haltwhistle triode" of n pins, 
which, because of unexplained capacitance effects, have to be arranged in rows 
of three. 

Twelve points will make nineteen rows. This result was announced, appar- 
ently for the first time, by R. H. Macmillan in a 1946 note to The Mathematical 
Gazette and is proved maximal in the Burr-Griinbaum-Sloane paper. Figure 
137 (left) shows a way of drawing the pattern symmetrically by placing three 
points and one line at infinity. This pattern can be ~rojected to give a standard 
solution, but it is difficult to show on a small sheet of paper. Imagine the 
pattern viewed in perspective with the eye below and to the right. Each of the 
three sets of four parallel lines (labeled with a's, b's, and c's) will converge, the 
three meeting points lying on the horizon to form the nineteenth row. 
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Figure 136 Some solutions to the three-in-a-row problem 
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Figure 137 Twelve points in nineteen three-point rows (left) and Sam Loyd's 
solution for rows of four 

Only one other three-in-a-row case has been solved, that of n = 16. Burr, 
Griinbaum, and Sloane prove the maximum number of rows to be 37. Thus 
the lowest unsolved case is n = 13. The best-known result, twenty-two lines, 
is shown in Figure 138. One point is at infinity. If the pattern is viewed in 
perspective from the left, the six parallel horizontal lines, of two points each, 
will converge on the thirteenth point. In other words, the pattern can be 
projected to give a standard solution, but it is difficult to show it except on a 
large sheet. 'The best-known results for n equals 14 through 20 are 26,31,37, 
40, 46, 52, and 57. 

When the number of points demanded for each row rises to four, the 
problem becomes more difficult. As in the case of k = 3, maximums have been 
established through twelve points, with thirteen as the lowest unsolved case. 
Examples of best patterns from four through twelve points are shown in 
Figure 139. They are taken from Griinbaum's "New Views on Some Old 
Questions of Combinatorial Geometry," a paper he gave at the International 
Colloquium on Combinatorial Theories in Rome in 1973. The best known 
results for n = 13 through 20 are 9, 10, 12, 15, 15, 18, 19, and 21. 

The case of n = 10 has many topologically distinct solutions (see Chapter 2 
of my Mathematical Carnival, Knopf, 1975), providing Dudeney and his Amer- 
ican rival, Sam Loyd, with more than a dozen puzzles. When n equals 16, the 
best-known result (fifteen rows) is an elegant pattern of three nested penta- 
gons surrounding a central point (see Figure 140). In The Canterbury Puzzles 
and Other Curious Problems (Dover, 1958), where this arrangement solves 
Problem 21, Dudeney admits he cannot prove it but says he has a "strong pious 
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Figure 138 Thirteen points (one at infinity) in three-point rows 

opinion" that fifteen rows is maximal. It is surprising and infuriating that no 
one has done better with seventeen points than this same pentagonal pattern 
with the seventeenth point added as a total irrelevancy. 

The pentagonal pattern appears in the photograph of a blossom of Hoya 
carnosa, a member of the milkweed family. Imagine the sides of the outer 
petals extended to points as shown in Figure 141. The three largest sets of 
pentagonally placed vertexes, together with the flower's center, beautifully 
give the fifteen rows of four each in the best-known solution for twenty 
points. 

The number of rows of four begin to exceed the number of points when n 
equals 21 (for which 23 is believed maximal), but when n equals 18,19, or 20, 
rows equal to n are possible. Figure 142 shows how Griinbaum gets nineteen 
rows with nineteen points. The case of n = 20 is answered in two of Loyd's 
puzzle books with eighteen rows (see Figure 137, right). In about 1945 Mac- 
millan found a simple, symmetrical way to make twenty rows with twenty 
points. It was later rediscovered by Griinbaum, who was unaware at the time 
of Macmillan's unpublished results. Can readers construct it? 
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Figure 139 More solutions for rows of four points 

Figure 140 Dudeney's flower pattern: sixteen points in fifteen rows 
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Figure 141 A blossom of Hoya carnosa, a milkweed, in a pattern of points 

When n equals 13, no one has done better than the nine rows shown in 
Figure 143. Dudeney gives this as the solution to Problem 149 of his Modern 
Puzzles and How to Solve Them, reprinted as Problem 435 in 536 Puzzles G 
Curious Problems (Scribner's, 1967), a collection of his puzzles. 

Very little work has been published on rows of five or more points. Accord- 
ing to Griinbaum, the best results known for k = 5, points five through 
twenty, are 1 , l ,  1,1 ,2 ,2 ,2 ,3 ,3 ,4 ,6 ,6 ,7 ,9 ,10 ,  and 11. I do not know how 
many of them have been proved maximal. A set is known of thirty-five 
symmetrically arranged points that determine thirty-six rows of five. Griin- 
baum conjectures that no smaller example exists in which the number of rows 
of five exceeds the number of points. I know of no work that has been done on 
the extension of tree-plant problems to spaces of three dimensions or more. 
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Figure 142 Nineteen points in nineteen rows of four 

Burr, Griinbaum, and Sloane conjecture that, with the four exceptions of n 
equals 7, 11, 16, and 19, the formula for the maximum number of rows of 
three, given n points, is 

The brackets indicate rounding down to the nearest integer. If the conjecture 
is correct, no one can do better with thirteen stars than twenty-two rows. For 
rows of more than three points there are not even good conjectures. 

ANSWERS 

Figure 144 shows how to solve the problem of placing twenty points in 
twenty rows of four points each. Note how the petals of the milkweed flower 

Figure 143 Thirteen points in nine rows of four 
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Figure 144 A twenty-row solution for twenty points 

almost provide this solution. Unfortunately, the little pentagram close to the 
flower's center is not quite large enough. 

ADDENDUM 

The biggest surprise in my mail on this chapter, when it ran as a column, were 
two letters that improved on the pattern shown in Figure 144. Ton van 
Teeseling of Amsterdam and Douglas McClean of Cape Town each went one 
better by finding solutions with twenty-one rows! Teeseling's pattern requires 
three points at infinity to get it on a page. McClean's solution, which I ran in a 
later column, requires no points at infinity. 

The pattern I published was not left-right symmetric. Leonard Lopow was 
the first of many readers who observed that McClean7s pattern could be made 
symmetric by shifting one point. Lopow found a second solution, more com- 
pact and also symmetric, that is shown in Figure 145. There is no proof that 
twenty-one is maximal. "I hesitate to offer my 'pious opinion,"' Lopow 
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Figure 145 A twenty-one row solution for twenty points 

commented, "but I'll take off twenty-two hats to the guy or gal who does 
better than twenty-one rows." 

T. H. Wilcocks wrote from England to pose an interesting problem involv- 
ing tree plants. Given a specific task, find the smallest rectangular checker- 
board on which the solution can be given by placing checkers on the cells. For 
example, the 7-by-7 board is the smallest that will accommodate ten checkers 
in five straight lines of four each. It provides a pleasant puzzle that was 
published and answered in Games magazine (July 1982). 

Tree-plant patterns are often useful in solving what combinatorialists call 
tournament and committee problems. Mention also should be made of two 
areas of recreational mathematics that are based on the patterns: 

Can consecutive integers, starting with 1, be placed on the points of a given 
pattern so that all its rows have a constant sum? If so, find all solutions; if not, 
prove impossibility. 

Can interesting ticktacktoe-like games be devised in which two players 
alternately put a counter on a point until a player wins by filling a row with his 
counters, or loses by being the first who is forced to complete such a row? 
Thomas H. O'Beirne seems to have been the first to explore games of this sort. 
See his article in New Scientist cited in the Bibliography. 
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