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I had a feeling once about Mathematics—that I saw it all. Depth beyond depth
was revealed to me—the Byss and Abyss. I saw—as one might see the transit
of Venus or even the Lord Mayor’s Show—a quantity passing through infinity
and changing its sign from plus to minus. I saw exactly why it happened and
why the tergiversation was inevitable but it was after dinner and I let it go.

Sir Winston Churchill (1874-1965)
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Foreword

I am delighted to be allowed to add a few words to this book by Julian Havil,
who is a teacher of mathematics at the school where I was a student sixty years
ago. I fell in love with mathematics at the school and have been a professional
mathematician ever since.

This book is not for professional mathematicians but rather it is aimed at
students of mathematics, be they eager high school students or undergraduates,
and those who teach them. It is an inspiring book that will give them an idea of
how enchanting mathematics can be.

Mathematics is often thought to be difficult and dull. Many people avoid it
as much as they can and as a result much of the population is mathematically
illiterate. This is in part due to the relative lack of importance given to numeracy
in our culture, and to the way that the subject has been presented to students. It
could be argued that the two most widely used approaches to teaching mathe-
matics, at school level and beyond, have themselves contributed to this level of
mathematical illiteracy.

The first approach was the ‘boot-camp’ method of drill and exercise that
prepared students well for examinations but often did not enable them to develop
a real understanding of mathematics. It mostly failed to encourage students to
see the beauty and enjoyment to be gained from the subject. I remember this
style well from my school years, where we used the successful and influential
textbooks written by our own head of mathematics, Clement Durell.

The second approach, very much in fashion when my own children were at
school, was called ‘New Math’ and was a reaction to the dullness and shal-
lowness of the old way of teaching. The New Math teaching was based on the
idea that children should learn to understand modern mathematical concepts
before they learned to solve practical problems, hence students would learn
about sets and relations before they had mastered multiplication and division.
Students learned the vocabulary of modern mathematics without understanding
the substance. After a few years of New Math, mathematical literacy declined
precipitously.

Is there a third approach that could be more successful? I believe there is a
promising third way, and this book by Havil shows us where to find it. The third
way is to use a historical approach to mathematics, teaching the practical skills

XV



FOREWORD

that students need, but in the context of the history of the time when these skills
were first developed.

Havil has chosen the 18th century as the context to be studied. This is the right
choice. In the 18th century, the tricks and ideas of higher mathematics arose
naturally out of the practical problems of the day. The sharp modern divisions of
mathematics into pure and applied, abstract and concrete, did not yet exist. The
presiding genius of Leonhard Euler created the language and the style in which
mathematics has developed ever since. This book is centred on the personality
of Euler and the ideas that he left for his successors to use and ponder. Euler’s
ideas are simple enough to be accessible, and deep enough to give a feeling for
the beauty of real mathematics.

In this book, as is so often the case in mathematics, a little effort on the part of
the reader will open a world of ideas. The book is so much more than an account
of a few subjects within mathematics or a list of examples of Euler’s genius.
Anyone who has the least inkling that mathematics is important, interesting and
beautiful will find the book inspiring, and very enjoyable.

In conclusion I say to the teachers and students who may use this book: Here
is a cupboard full of bottles of vintage wine. Now drink!

Freeman Dyson
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Introduction

The last thing one knows when writing a book is what to put first.
Blaise Pascal (1623-1662)

It is tempting to think that there are just three special mathematical constants:
7, e and i. In fact there are many, each with its own definition, each originat-
ing in some natural way in its own area of mathematics, each given a special
symbol and a name too. They need symbols to represent them because they are
awkward; that is, they have no convenient, finite numeric representation and no
patterned infinite one: the ratio of the circumference to the diameter of any circle
is not 3.142 or %, itis 3.14159. .., which is as mysterious as (2.71828...)*
essentially being the only function equal to its own derivative; in each case the
trailing dots suggest the irrationality (let alone transcendence) of the numbers.
Compared with these, writing i for /—1 is a small convenience. The number,
now universally known as Gamma, is generally accepted to be the most sig-
nificant of the ‘constants obscura’ and as such is the fourth important special
constant of mathematics; its symbol is the Greek letter ¥ and the constant it
represents is forever associated with the name of the Swiss genius, Leonhard
Euler (1707-1783). Its value is the unprepossessing 0.5772156. .., with its
own trailing dots making the same suggestions about its character—but unlike
its illustrious colleagues, so far they remain no more than suggestions.

This book is an exploration of y and inescapably this means that it is also an
exploration of logarithms and the harmonic series, since it is the interrelation-
ship between them that Euler exploited to define his constant as

i 1 1 1 1
14 =’111)H;o<1+5+§+z+-~+;—1117!),
where the In is the ubiquitous log to the base e, derived from the French expres-
sion ‘logarithme naturel’; the harmonic series, which occupies a less publicized
place in mathematical literature, is its discrete counterpart:
H, =1+ ! + ! + ! + -+ !
T2 73 4 n’

The mid 1970s brought with it the hand-held, microchip-centred, battery-

powered, comparatively cheap calculator, thereby bringing to an end the role
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INTRODUCTION

of logarithms and the slide rule as calculative aids. Yet the appearance of them
in a piece of mathematics is seldom a cause for surprise. Anyone who has
studied calculus would see them materialize time and again, quite probably in
the expression for the integral of some function or in their role as the inverse of
the exponential function, with e vying with & for constant supremacy. They can
also arise without warning in situations that seem remote from their influence,
and when they do so they exercise a surprising control in unexpected places—as
we shall see: we will also see that the harmonic series, and others related to it,
enjoy an important existence of their own.

The book naturally separates into two parts: Chapters 1-11 might be describ-
ed as ‘theory’, and the remainder as ‘practice’.

In the ‘theory’ part we are concerned with definitions and some consequences
of them, methods to approximate, and to some extent, with preparation for the
remaining chapters. We start by looking at the peculiar way in which logarithms
were initially defined, a way which reveals the immense intellectual effort that
must have been invested to turn multiplication into addition, to utilize an idea
from the old world that helped to usher in the new. The harmonic series, with
its three peculiar properties, is discussed and then its specializations and gener-
alizations, before looking more closely at that definition of y and having done
that, and having convinced ourselves that the number actually exists, at ways of
approximating its value, using both decimal and fractional methods. Among all
of this we prove a barely credible result about co-prime integers and establish
an identity (of Euler’s) that holds the key to the modern study of prime numbers.

The later chapters, which are devoted to ‘practice’, look at some of the ways
in which the three objects of our attention can appear in mathematics, and
to some extent, in applications of it. Gamma’s varied roles in analysis and
number theory are mentioned, some surprising appearances of the harmonic
series are discussed, and three such of logarithms. The finale is really just
another application of logarithms, but since the application is the Prime Number
Theorem, leading to the Riemann Hypothesis (neither of which we prove!), it
is deservedly singled out. It is inevitable that our journey reaches mathematics
that is ‘worthy of serious consideration’, as Euler himself said of y, but none
is more worthy than that celebrated Prime Number Theorem and that awesome
Riemann Hypothesis; the first harnesses the wayward behaviour of the primes,
the second adds finesse to that control by asking about the zeros of a function
that seems to have none, but which stands alone as the greatest problem in
mathematics today.

How difficult is the mathematics? That of course is a subjective matter. Cer-
tainly, we have not shied away from the use of symbols, since to do so would
have condemned us merely to talking about mathematics rather than actually
doing it. Yet, there are few really advanced techniques used, it is more that
in some places simple ideas have been used in advanced ways. Mathematics
makes a nice distinction between the usually synonymous terms ‘elementary’
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INTRODUCTION

and ‘simple’, with ‘elementary’ taken to mean that not very much mathematical
knowledge is needed to read the work and ‘simple’ to mean that not very much
mathematical ability is needed to understand it. In these terms we think the
content is often elementary but in places not so very simple. The reader should
expect to make use of a pen and paper in many places; mathematics is not a
spectator sport! The approach is reasonably rigorous but informal, as this is no
textbook, it is more a context book of mathematics in which the reader is asked
to take time out from studying the mathematics to read a little around it and
about the mathematicians who produced it or of the times in which they lived;
sometimes in detail but other times just a few lines and then not always, as this
is no history of mathematics book either; it merely acknowledges that mathe-
matics comes from mathematicians, not books, and seeks to bring a sometimes
shadowy figure forward to share the prominence of his ideas, and to give some
sort of feel for the way in which those ideas developed over time.

The exception to the ‘elementary’ classification is some of the content of the
final chapter on the Riemann Hypothesis; necessarily, this involves some com-
plex function theory and in particular complex differentiation and integration.
To those who have met these ideas the work should present few problems, but
to those who have not they will look rather frightening; if so, simply ignore
them or better still try to find out about them since they are a most glorious and
powerful construction; a ‘crash course’ in some elements of complex function
theory is included in Appendix D. The Riemann Hypothesis really is the greatest
unsolved problem in mathematics, so it shouldn’t be surprising that it is neither
‘elementary’ nor ‘simple’; if the chapter entices hunger in some to get to grips
with Cauchy’s great invention it will have justified itself on that ground alone.

We hope that the material will appeal to a variety of people who have a little
probability and statistics and a good calculus course behind them, and before
that a rigorous course in algebra, if such a thing still exists: the motivated senior
secondary student, who may well be seeing many of the ideas for the first time,
the college student for whom the text may put flesh on what can sometimes be
dry bones, the teacher for whom it might be a convenient synthesis of some nice
ideas (and maybe the makings of a talk or two), and also those who may have
left mathematics behind and who wish to remind themselves why they used to
find it so fascinating. The reader will judge to what extent this book achieves
its aim: to explain interesting mathematics interestingly.

The names of many mathematicians appear, names that should bring wonder
to anyone interested in the subject and its history, but it is that name Euler that
will force itself onto the page more than any other. It is not that we happen to
pass through the mathematical territory to which he holds title, but more that
it would be difficult, if not impossible, to go far in any mathematical direction
without feeling his influence. For example, much of the notation that we now
take for granted originates from him; in particular, e, i, f(x), >, A, sinx, cos x,
etc., as well as the standard manner of labelling a triangle, with the vertex the
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INTRODUCTION

capital letter corresponding to the opposite side’s small letter. It can be hard
to appreciate, or easy to forget, just how many important ideas his name is
associated with or perhaps even attached to; he invented many vastly important
concepts and touched every known area of the subject—and everything he
touched he adorned. According to R. Calinger, ‘Euler’s books and memoirs,
of which 873 have so far been listed, comprise approximately a third of the
entire corpus of research on mathematics and mechanics, both rational and
engineering, published from 1726 to 1800.” The Opera Omnia, his collected
works, has reached 74 volumes of 300 to 600 pages each; the final part has still
to be finished and will comprise at least another seven volumes. Looking up
‘Euler’ in the index of a mathematics or history of mathematics book can be a
frustrating experience, as the eye is routinely confronted with a block of page
references, sometimes unspecified, at other times separated into a list, which
might begin,

Euler angles, Euler triangle, Euler characteristic, Euler’s identity,
Euler circle, Euler circuit, Euler—Mascheroni constant, Euler line,
Euler numbers, Euler’s first integral, Euler’s second integral, Euler
polynomials, Euler’s Totient function, etc.,

and continue for dozens more entries.

And perhaps all that was needed was to know how to pronounce his name:
‘Oiler’.

The noun ‘genius’ has been defined as ‘exalted intellectual power, instinctive
and extraordinarily imaginative and creative capacity’. Extravagant use of the
word serves only to dilute its meaning or to bring into question the judgement of
the author, but we have used it already and will risk employing it on a number of
other occasions, no more fittingly than with Euler, safe in the conviction that if
he was not a genius and these people were not geniuses then none have yet been
born. Yet, to the majority, his name is probably as mysterious as his constant. He
breathed life into y through his Zeta functions (the generalizations of H,,), the
summation of one of which was to become a long-standing problem—described
as ‘the despair of analysts’—until Euler’s outrageous solution put an end to it.

With Euler and with those who preceded him and to some extent those who
followed him we will deal with times remote from the modern years of ‘publish
or perish’ and in consequence primacy over an initiative is often far from easy to
establish; it might depend on a note to a contemporary or a recorded comment
more often than an article in a learned journal, and even then that article might
appear years after the actual breakthrough (the controversy surrounding the
discovery of the calculus by Newton and Leibniz stands as an infamous example
of the problems that can arise). We hope that the reader will understand if the
story is not always complete, and agree that where it is not complete it is at
least representative.
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Dr Urs Burckhardt, President of the Euler Commission, has written, ‘Indeed,
through his books, which are consistently characterized by the highest striving
for clarity and simplicity and which represent the first actual textbooks in the
modern sense, Euler became the premier teacher of Europe not only of his time
but well into the 19th century.” Euler, as ever, provides a target too distant to
reach, or even clearly to see, yet the pleasures (and frustrations) of achieving
a fresh understanding of old ideas and realizations of new ones has proved
marvellously invigorating and has brought with it the reminder that the best
way of learning is by teaching, whether it be by the spoken or written word. We
hope that the reader will share our enthusiasm as we take brief excursions though
countries, centuries, lives and works, unfolding the stories of some remarkable
mathematics from some remarkable mathematicians.
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CHAPTER ONE

The Logarithmic Cradle

The use of this book is quite large, my dear friend,
No matter how modest it looks,

You study it carefully and find that it gives

As much as a thousand big books.

John Napier (1550-1617)

1.1 A MATHEMATICAL NIGHTMARE — AND AN AWAKENING

In an age when a ‘computer’ is taken to mean a machine rather than a per-
son and calculations of fantastic complexity are routine and executed at light-
ning speed, constricting difficulties with ordinary arithmetic seem (and are)
extremely remote. The technological freeing of mathematics from the mana-
cles of calculation is very easy to take for granted, although the freedom has
been newly won; as recently as the mid 1970s, a mechanical calculator, slide
rule or table of logarithms would have been used to perform anything other than
the most basic calculations—and the user would have been grateful for them.
In the early 17th century none of these aids existed, although it was a period of
massive scientific advance in many fields, progress that was increasingly and
frustratingly hampered by the overwhelming difficulties of elementary arith-
metic. Addition and subtraction were quite manageable, but how could the
much more difficult tasks of multiplication and division be simplified, let alone
the important but formidably challenging processes of root extraction?
Ancient civilizations had tackled the problem. For example, the Babylonians
were known to have used the equivalent of ab = %((a +b)? — (a — b)),
which, with a table of squares, provides some calculative help. The 16th century
brought with it more sophisticated ideas, particularly one using the unlikely
device of trigonometric identities, the brainchild of two Dutch mathematicians
named Wittich and Clavius. Various relationships between the trigonometric
definitions were appearing throughout Europe and, for example, Francois Vieta
(1540-1603) is known to have derived (among others) the formula

sinx cosy = %(sin(x + y) +sin(x — y)), (1.1)
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Figure 1.1. The medieval view of the trigonometric functions.

where the sine of an angle meant the length of the semi-chord of a circle, as in
Figure 1.1; it therefore depended on the radius of the defining circle. In spite of
the difficulties, extensive tables of the trigonometric functions were available,
accurate to 12 or more decimal places (although written as integers by choosing
a large whole number for the radius of the circle), their painstaking compila-
tion motivated by practical problems in navigation, calendar construction and
astronomy—and with the ingenuity of Wittich and Clavius they were set to
other work.

The identity (1.1), with a set of trigonometric tables and scaling, could be
used to convert multiplication to addition and subtraction (and division by 2);
a technique known as ‘prosthaphaeresis’ (from the Greek for addition and sub-
traction). Division could be managed in much the same way, using identi-
ties for secants and cosecants. This slender aid found use wherever it became
known and nowhere more effectively than in the astronomical observatories
of Europe, none more prestigious than Uraniborg (Castle in the Sky), on the
island of Hven, where the Swedish—Danish Astronomer Royal, Tycho Brahe
(1546-1601), lived and worked. And here appears a romantic story, bringing
about a delicious serendipity. In 1590, James VI of Scotland (later to become
James I of England) sailed to Denmark to meet his prospective wife (Anne of
Denmark) and was accompanied by his physician, a Dr John Craig. Appalling
weather conditions had forced the party to land on Hven, near to Brahe’s obser-
vatory, and quite naturally the great astronomer entertained the distinguished
party until the weather cleared, partly by demonstrating to them the process
of prosthaphaeresis. Dr Craig was Scottish and he had a particular friend who
lived near Edinburgh: one John Napier.

John Napier, Baron Merchiston, believed that the world would end between
1688 and 1700, and published his belief in a 1593 polemic on Catholicism
entitled A Plaine Discovery of the Whole Revelation of St. John; its main thesis
was that the Pope was the Antichrist. Since the book ran to 21 editions (10 in
his own lifetime), he had some justification in believing that this would be his
greatest claim to posterity (such as there was to be of it); of course, he was
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wrong (on both counts) and it is for his Table (or Canon) of Logarithms and
the two explanations of them (the 1614 Descriptio and the 1619 posthumously
published Constructio) that he is best remembered. A massively committed
Protestant, but no ‘crank’, he found time from his contributions to the religious
and political ferment of the day to efficiently manage his considerable estates,
present prophetic (and surprisingly accurate) ideas for machines of war (what
we would call the machine gun, the tank and the submarine) and, of course, to
study mathematics. The private manuscript ‘De Arte Logistica’ (which was not
published until 1839) provides an insight into his mathematical interests, which
included a study of equations (and even consideration of imaginary numbers)
and general methods for the extraction of nth roots.

The relationship between arithmetic and geometric behaviour, which we
would now write as a” x a™ = a""*", had been understood since antiquity; it
is seen (for m and n positive integers) on Babylonian tablets and also in The
Sandreckoner of the great Archimedes of Syracuse (278-212 B.c.), which we
will mention again later on p. 93. In this treatise, which was dedicated to his
relative, King Gelon of Syracuse, he constructed a systematic method for rep-
resenting arbitrarily large numbers, using the number of grains of sand in the
known universe as a tangibly large number; the work provides the first hint of
the nature of logarithms. In its own way the identity also converts multiplication
to addition; now, through his friend, Napier knew that with ingenuity more cal-
culative aid was possible and, setting aside his study of arithmetic and algebra,
he sought to improve the lot of scientists of his day, and in effect using this
property of exponents. Twenty years later he had succeeded. In his own words,
from the preface to the Descriptio:

Seeing there is nothing (right well-beloved Students in the Math-
ematics) that is so troublesome to Mathematicall practise, nor that
doth more molest and hinder Calculators, than the Multiplications,
Divisions, square and cubical Extractions of great numbers, which
besides the tedious expense of time are for the most parte subject
to many slippery errors. I began therefore to consider in my minde
by what certaine and ready Art I might remove those hindrances.
And having thought upon many things to this purpose, I found
at length some excellent briefe rules to be treated of (perhaps)
hereafter. But amongst all, none more profitable than this which
together with the hard and tedious Multiplications, Divisions, and
Extractions of rootes, doth also cast away from the worke it selfe,
even the very numbers themselves that are to be multiplied, divided
and resolved into rootes, and putteth other numbers in their place
which performe as much as they can do, onely by Addition and
Subtraction, Division by two or Division by three. . .
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1.2 THE BARON’S WONDERFUL CANON

We will tread some of Napier’s path by annotating a small part of the second
publication, The Construction of the Wonderful Canon of Logarithms, usually
abbreviated to the Constructio.

It begins with 60 numbered paragraphs that combine to explain his approach,
provide a limited table of logarithms, and give instruction on how to make more
extensive ones.

(1) A Logarithmic Table is a small table by the use of which we can obtain
a knowledge of all geometrical dimensions and motions in space, by a
very easy calculation.

His first sentence suggests Napier’s interest in the practical applications of log-
arithms, and perhaps most particularly their usefulness to astronomers such as
Tycho Brahe, with whom he corresponded during their development. Although
his invented word ‘logarithm’ (a compound from the Greek words meaning
ratio and number) appeared in the title, he used ‘artificial number’ in the body
of the text and ‘Logarithmic Table’ was written ‘Tabula Artificialis’.

It is deservedly called very small, because it does not exceed in size a
table of sines; very easy, because by it all multiplications, divisions, and
the more difficult extractions of roots are avoided; for by only a very few
most easy additions, subtractions and divisions by two, it measures quite
generally all figures and motions.

The ‘modesty’ of the volume is referred to and he makes clear the arithmetic
advantages of using logarithms, but refers only to square roots here.

It is picked out of numbers progressing in continuous proportion.
A hint as to the method.

(2) Of continuous progressions, an arithmetical is one which proceeds by
equal intervals; a geometrical, one which advances by unequal and pro-
portionally increasing or decreasing intervals. . .

His definition of arithmetic and geometric progressions, after which he lists
several examples.

(3) Inthese progressions we require accuracy and ease in working. Accuracy
is obtained by taking large numbers for a basis; but large numbers are
most easily made from small by adding ciphers. Thus, instead of 100 000,
which the less experienced make the greatest sine, the more learned put
10000 000, whereby the difference of all sines is better expressed. Where-
fore also we use the same for radius and for the greatest of our geometrical
proportionals.
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A cipher is a zero and attaching them to the right-hand side of a number does
indeed increase the size of the number. To avoid the use of fractions, it was cus-
tomary to ‘change the units’ (rather like using millimetres rather than metres).
The ‘greatest sine’ is the radius of the circle, achieved when o = 90° in Fig-
ure 1.1, and Napier chooses to represent this as 107 units, rather than a mere
10°.

(4) In computing tables, these large numbers may again be made still larger
by placing a period after the number and adding ciphers. Thus in com-
mencing to compute 10000000 we put 10000 000.000 0000, lest the
most minute error should become very large by frequent multiplication.

Here he acknowledges the dangers of compounding rounding errors and intro-
duces the use of the decimal point to help cope with them. His idea is that, even
though the final logarithm will be rounded off to an integer, the intermediate
calculations should involve as much accuracy as possible.

Extending the Hindu place-value number system to include decimals had
been one of the conceptual and notational difficulties of mathematics, and one
of its most important developments. In 1530 one Christof Rudolff (1499-1545)
used a form of decimal fractions in a published collection of arithmetic exam-
ples; he also brought to the mathematical world the radical sign ./ for the square
root. It was, though, the multi-faceted Dutch scientist, Simon Stevin (1548—
1620), who is accepted to have championed the use of decimal places more
than anyone before him, since in 1585 he produced the first known systematic
presentation of the rules for manipulating them in the treatise De Thiende. His
ideas soon reached a far greater audience when the book was quickly translated
from Dutch to French to become La Disme, which has the subtitle ‘Teaching
how all computations that are met in business may be performed by integers
alone without the aid of fractions’. More of a pamphlet than a book, there is a
resonance with Napier’s thoughts in the quite splendid introduction.

To astrologers, surveyors, measurers of tapestry, gaugers, stere-
ometers in general, mintmasters and to all merchants, Simon Stevin
sends greeting.

A person who contrasts the small size of this book with your great-
ness, my most honourable sirs to whom it is dedicated, will think
my idea absurd, especially if he imagines that the size of this vol-
ume bears the same ratio to human ignorance that its usefulness
has to men of your outstanding ability; but in so doing he will have
compared the extreme terms of the proportion which may not be
done. Let him rather compare the third term with the fourth.

What is it here that is being propounded? Some wonderful inven-
tion? Hardly that, but a thing so simple that it scarce deserves the
name invention; for it is as if some stupid country lout chanced
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Figure 1.2.

upon great treasure without using any skill in the finding. If any
one thinks that, in expounding the usefulness of decimal numbers,
I am boasting of my cleverness in devising them, he shows with-
out doubt that he has neither the judgement nor the intelligence to
distinguish simple things from difficult, or else that he is jealous of
a thing that is for the common good. However this may be, I shall
not fail to mention the usefulness of these numbers, even in the
face of this man’s empty calumny. But, just as the mariner who has
found by chance an unknown isle, may declare all its riches to the
king, as, for instance, its having beautiful fruits, pleasant plains,
precious minerals etc., without its being imputed to him as deceit;
so may I speak freely of the great usefulness of this invention,
a usefulness greater than I think any of you anticipates, without
constantly priding myself on my achievements.

His notation varied from very to reasonably cumbersome, for example, 30 1 ®
4020, 3/142 and 3142, Napier was not consistent with his own notation but his
use of the decimal point in the Constructio was to bring about a standardization,
at least to some extent; even today, the Americans would usually write 3.142,
the Europeans 3,142 and the English 3-142. Certainly, decimal is far superior to
fractional notation when comparing sizes—and composing tables—and it was
Napier’s tables of logarithms that did most to popularize this crucial initiative.

(5) In numbers distinguished thus by a period in their midst, whatever is
written after the period is a fraction, the denominator of which is unity
with as many ciphers after it as there figures after the period.

Thus 10000 000.04 is the same as 10 000 000%. ..

The original Descriptio did not include explicit use of decimals. He continues
to give several examples of the meaning of decimal notation.
The next paragraph to interest us is

(25) Whence a geometrically moving point approaching a fixed one has its
velocities proportionate to its distances from the fixed one. ..

A lengthy rhetoric follows, referring to the equivalent of Figure 1.2, to establish
that if a point P starts at A and moves continuously towards B in such a way
that BP,:BP, | is constant (and therefore moving ‘geometrically’), then that
constant is the ratio of the point’s velocities at P, and P,y 1: thatis, V,.:V,4 =
BP,:BP,4 .
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Figure 1.3.

To establish this, Napier considered the motion of P over equal time intervals
of length ¢ and implicitly approximated the varying speed over each interval
by its value at its starting point, as we might do in step-by-step solutions of
differential equations. In modern notation, suppose that at some stage P is at
position P, and that at some fixed time ¢ later it is at P, 1, then BP, = BP, 1+
P,.P,4+1 = BP,41+ V,t, using the above approximation. Since BP,;1:BP, =k,
BP, = kBP, + V,t and V, = (1/t)(1 — k)BP,.. Of course, this means that
Viy1 = (1/)(1 — k)BP,41 and so V,41:V, = BP,41:BP,, as required. In a
sense he was, of course, on subtle mathematical ground here, with the hint of
instantaneous velocity, a concept that was to be dealt with by Newton seventy
years in the future.

(26) The logarithm of a given sine is that number which has increased arith-
metically with the same velocity throughout as that with which radius
began to decrease geometrically, and in the same time as radius has
decreased to the given sine.

This crucial paragraph defines his version of logarithm. Firstly, referring to
Figure 1.2, AB is taken to be the ‘radius’ of length 107 and the possible values
of sin & are represented by distances along the line from B, with the whole 107
at A and O at B. The point P starts at A and moves towards B with a speed
numerically equal to its distance from B, which means that its initial speed is
107 and its final speed 0 (although this is impossible to achieve). The key to the
whole matter is his introduction of a second, infinite line to represent the motion
of another point Q, starting at the same time as P from an origin O but moving
continuously with a constant velocity of 107 (see Figure 1.3). He defines a set of
points Q, along this second line by the following: Q, is the point reached by Q
just as P reaches P,; since the time intervals are equal and Q moves at constant
speed, the intervals between the Q, will all be equal and its motion ‘arithmetic’.
The OQ, are defined to be the logarithm of the corresponding BP,., which we
will write as OQ, = NapLog(BP,).

If we start to construct his table of logarithms, the implications of all this
become more clear.

In the first time interval ¢, P moves to P;, where BP; = 107 — AP; =
107 — 107t = 107 (1 — 1), approximating its speed over the interval by its initial
speed of 107, During this time, Q will have moved to Q, where OQ; = 107z,
which means that NapLog{10’(1 — ¢)} = 107¢. Repeating this analysis for
the next time interval gives BP, = 107 — AP, = 107 — (AP + P1P,) =
107 — 107t — Vit = 107(1 — t) — V;r. Now we use the result of the previous
paragraph to get V1:107 = BP;:107 and therefore V; = BP; = 107(1 —1),
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which means that BP, = 107(1 —¢) — 107(1 — t)t = 107(1 — £)2. Since
0Q, = 107 x 2t = 2(107¢), we have that NapLog{107(1 — 7)?} = 2(1071).
And so the process continues. In effect, he then takes r = 1/107 to get

1 1

NapLog {107<1 - W) } = NapLog(9999999) =1,
2

NapLog {107(1 - —) } = NapLog(9 999 998) = 2,

and, in general,

1 r
NapLog {107<1 - 1—07> } =r, relN

And using the fact that the motion is continuous,

1\
NapLog {107<1 - W) } = L for any positive L.

The last paragraph that we will consider is
(27) Whence nothing is the logarithm of the radius. . .
BA = 107 is the ‘radius’ and with P = A, Q = O, NapLog(107) = 0.

The process can be thought of as taking powers of (1 — 1/107), a number
close to 1, which makes the powers close together and interpolation between
them comparatively accurate; the factor of 107 eliminates the decimals. The
Constructio continues to give methods of interpolation to fill in the gaps along
AB, and in particular Napier notes that the geometric mean of two numbers
corresponds to the arithmetical mean of their logarithms, which is true since if
L1 = NapLog Ny and L, = NapLog N, then

L
Ny =107 - 1,
107

L
N, = 107 1—L 2,
107

1\" 1\
Ny x Ny = 1071 — — 1071 - —
R = 071 g )01 5)

107

1 (L1+Lp)/2
=101 - —
(- 1)

and so

NapLog(y/Ny x Np) = 3(Ly + La).
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It is easy to see that another important observation for their construction holds:
if N1:Ny = N3:N4, then NapLog(N1) — NapLog(N2) = NapLog(N3) —
NapLog(Ny).

A small variation of the reasoning exposes the use of logarithms as a calcu-

lative aid:
; 1 \H ; 1\
NI xNp=10"{1—- — 101 — —
= 10(1- ) <10 (1~ 1)

- 7 1 Li+L,
=10"x10"{ 1 — — ,
107

Ni x N 1 \F1tE2
MXN2 071~ —
107 107

which makes

and so

Ni X N»

NapLog ( 07

) = L1 + L, = NapLog Ny + NapLog N,

and the familiar multiplicative law of logarithms emerges in a modified but still
useful form, differing only in the position of the decimal point: multiplication
had been transformed into addition. Napier noted that this ‘functional relation-
ship’ satisfied by his logarithms allows the logarithm of any whole number to
be calculated from knowing the logarithms of its prime factors, with primes
making the first appearance of many in this book. As the gaps were filled, so the
multiplication of a greater variety of numbers could be changed into their addi-
tion and the “Wonderful Canon’ be seen as the momentous aid to calculation that
it was; Napier will forever be remembered as the discoverer of logarithms. He
had built a new bridge that connected problems of multiplication and division
to problems of addition and subtraction; ‘prosthaphaeresis’ had come of age.

Unfortunately, the name of the Swiss Jobst Biirgi (1552—-1632) has slipped
into obscurity, yet he had independently thought of the same idea, with a method
differing only in detail. The most famous clockmaker of his time, a maker of
scientific instruments and algebraic tutor to Johannes Kepler (1571-1630), he
had published his method only in 1620, although it is clear that he was thinking
of the ideas as early as 1588. It would take until 1707 for the birth of another
Swiss who would leave an indelible mark on logarithms, and almost all other
branches of mathematics: Euler.

The Descriptio opens with the verse at the head of this chapter, which plainly
and amusingly demonstrates Napier’s optimistic view of his invention, and
indeed it met with immediate and considerable acclaim, convincingly summed
up in the words of John Keill (1672—-1721), Fellow of The Royal Society and
Savilian Professor of Astronomy at Oxford:
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The Mathematicks formerly received considerable Advantages;
first by the Introduction of the Indian Characters, and afterwards by
the Invention of Decimal Fractions; yet has it since reaped as least
as much from the Invention of Logarithms, as from both the other
two. The Use of these, every one knows, is of the greatest Extent,
and runs through all Parts of Mathematicks. By their Means it is
that Numbers almost infinite, and such as are otherwise impracti-
cable, are managed with Ease and Expedition. By their assistance
the Mariner steers his Vessel, the Geometrician investigates the
Nature of higher Curves, the Astronomer determines the Places of
the Stars, the Philosopher accounts for other Phenomena of Nature;
and lastly, the Usurer computes the Interest of his Money.

The work found the particular affections of Henry Briggs (1561-1630), who had
become the first Professor of Geometry at Gresham College, London, in 1596;
in 1620 he was to become the first occupant of the Savilian Chair of Geometry
in Oxford; later we will meet the great G. H. Hardy, who held that prestigious
post some 300 years later—and offered it as a prize! Briggs’s interest in the
study of eclipses in particular and calculative aids in general naturally attracted
him to Napier’s idea and in a letter dated 10 March 1615 to his friend James
Ussher, he wrote

... wholly employed about the noble invention of logarithms, then
lately discovered. . . Napper, lord of Markinston, hath set my head
and hands a work with his new and admirable logarithms. I hope
to see him this summer, if it please God, for I never saw a book
which pleased me better or made me more wonder.

The meeting did take place that summer, with Briggs the guest of Napier for a
month, and another followed in 1616; Napier’s death in April 1617 prevented the
planned arrangement for a third year. Over that time they discussed variations
on the idea and came to agree on the suggestion of Napier that ‘0 should be
made the logarithm of 1 and 100000 &c the logarithm of the radius’. The
Constructio continues with an appendix by Briggs (it was he who undertook to
arrange the publication of its London edition) entitled ‘On the Construction of
another and better kind of Logarithms, namely one in which the Logarithm of
unity is 0. That important step taken, he continued in the first paragraph with
‘...and 10000000 000 as the logarithm of either one tenth unity or ten times
unity. .. ; the final form had yet to be reached. In the end, of course, it was
to be that the logarithm of 1 would be 0, and the logarithm of 10 would be 1,
and so the tables of logarithms that were to be used for the next 350 years, the
Briggsian logarithms, came into being.

With Napier’s decline and death, it fell to Briggs to calculate the new tables
and as early as 1617 he had published Logarithmorum Chilias Prima, consisting

10



THE LOGARITHMIC CRADLE

of the logarithms of the natural numbers from 1 to 1000. In 1624 he published
the formidably detailed Arithmetica Logarithmica, in which he developed far
more comprehensive tables and formulated means of calculating whole classes
of logarithms (and of putting them to use). Of course, gaps remained and the
calculations involved in filling them could be prohibitive; Edward Wright, a
translator of Napier’s work, remarked that sometimes finding the logarithm of a
number was more troublesome than performing the calculation without them!
Briggs even suggested that the logarithms should be computed by teams of
people, and he offered to supply specially designed paper for the purpose.

Itis interesting to note that first recorded appearance of ‘x’ for multiplication
appeared in an anonymous appendix to Edward Wright’s 1618 translation of the
Descriptio, thought to have been authored by William Oughtred (1574-1660),
the inventor of the slide rule.

1.3 A ToucH ofF KEPLER

One of the most immediate and significant uses to which logarithms were put
was, unsurprisingly, in astronomy. In 1601, on the death of the fractious Brahe,
Kepler was promoted to take his place. Not only did he inherit his master’s
prestigious position but also his voluminous and incredibly accurate data, which
he used to help him conduct his ‘war with Mars’, a war that he eventually won
and from which he extracted his first two laws of planetary motion.

1. Planets move in ellipses, with the Sun at one focus and the other empty.
2. The radius vector describes equal areas in equal times.

The results relating to Mars were published in Astronomia Nova of 1609 and
were later extended to the other planets, but his suspicion that there was a simple
law relating the size of the orbits to the period of the planets remained just that
for many years. In his own words:

...and if you want the exact moment in time, it was conceived
mentally on 8th March in this year one thousand six hundred and
eighteen, but submitted to calculation in an unlucky way, and there-
fore rejected as false, and finally returning on the 15th of May and
adopting a new line of attack, stormed the darkness of my mind.
So strong was the support from the combination of my labour of
seventeen years on the observations of Brahe and the present study,
which conspired together, that at first  believed I was dreaming, and
assuming my conclusion among my basic premises. But it is abso-
lutely certain and exact that the proportion between the periodic
times of any two planets is precisely the sesquialterate proportion
of their mean distances. . .

11
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Figure 1.4. The log-log plot revealing Kepler’s third law.

Figure 1.5. A planet’s elliptical orbit.

He had published the result in his 1619 Harmonice Mundi as a late but important
addition to the book, which was already at press when he finally discovered that
T o D3/%. Put another way, ‘the square of the period is proportional to the cube
of the average distance of the planet from the Sun’. How did he finally manage
to discover the law? It is not clearly documented, but in 1616 he had read the
Descriptio, and as a result logarithms would surely have helped him to see the
hidden pattern.

In modern terms, a log T—log D plot would yield the straight line in Fig-
ure 1.4: it is all so obvious, retrospectively!

The D is more easily realized as the length of the semimajor axis of the
elliptical orbit. A little calculus establishes this.

Referring to Figure 1.5, by the definition of an ellipse, x + y = 2a, and so

4 2
(x—i—y)d@:/ 2adf = 4ma.
0 0

12
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2 2 2
/ xd@—i—/ yd9=2/ xdf =4ra.
0 0 0

Therefore, the average value of the distance of the planet from the Sun is

So,

2 2wa

— xdf = — =a.
21 Jo 2
Whatever the facts with the third law, it is certain that Kepler used (and indeed

justified and developed) logarithms for the production of the 1628 Rudolphine
Tables of planetary positions, which itself contained a set of his own form of
logarithms to eight-figure accuracy. In the words of Pierre Laplace (1749—-1827)
logarithms ‘... by shortening the labours, doubled the life of the astronomer’.
A poetically formed, inaccurate, but powerfully revealing, observation.

1.4 A ToucH oF EULER

The modern eye might well judge Napier’s approach to logarithms as peculiar.
They are defined in terms of the motions of points, there is no base and the
logarithm of 10000000 was originally 0. All together, they seem so distant
from what we now think of them to be, particularly as they are no longer
used for the purpose for which they were invented: to calculate. Yet, there was
an early suggestion of what we would consider logarithmic behaviour. Before
1636, Pierre Fermat (1601-1665) (among others, and whom we will meet again
in a later chapter) had shown what we would write as

a an+l
/ x"dx =
0 n—+1

for all rational numbers n # —1, but the expression for the area under the
rectangular hyperbola y = 1/x continued to prove elusive. The first inkling
of the connection with logarithms seemed to appear in 1647, in Opus Geomet-
ricum. . ., written by the Jesuit priest, Gregory St Vincent (1584-1667). The
method of approximating areas by rectangles having an equal base was in com-
mon currency but here St Vincent used rectangles of equal area, adjusting their
base accordingly.

Referring to Figure 1.6, since the areas of the first two rectangles are equal,

y1(x2 — x1) = y2(x3 — x2) and so

1 1 X2 X3 X2 X3

—((xy—x1)=—M(x3—x)——1=——1 and — = —.

X1 b %) X X2 X1 X2
This means that for the areas to increase arithmetically, the x-coordinates
increase geometrically, with the strong suggestion of a logarithmic law con-
necting the area under y = 1/x with x. In his Waste Book of 1664, the great

13
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Figure 1.6. The hyperbola’s logarithmic behaviour.

Isaac Newton (1642-1727) wrote, ‘In ye Hyperbola ye area of it bears ye same
respect as its Asymptote which a logarithme doth its number.” Both Newton and
Nicholas Mercator (1620-1687) independently developed the idea, expanding
1/(14+x)as 1 —x+x2—x34... and integrating term by term to finish with
the now standard expression log(1 + x) = x — %xz + %x3 — - - - and thereby
a much more convenient means of calculating logarithms. Logarithms were at
once the ‘artificial’ numbers of Napier, the area under the rectangular hyperbola
and the sum of an infinite series.

As we pass over many other individual contributions, the chasm separating
the past and the present was filled by Euler more than anyone else; it was he
who saw furthest. The synthesis of the several approaches to logarithms lay
in Euler’s definition of them, which appeared in his bestselling textbook on
algebra Complete Introduction to Algebra of 1770:

220 Resuming the equation a” = ¢, we shall begin by remarking that, in

the doctrine of Logarithms, we assume for the root a, a certain number
taken at pleasure, and suppose this root to preserve invariably its assumed
value. This being laid down, we take the exponent b such that the power
a® becomes equal to a given number c¢; in which case this exponent b is
said to be the logarithm of the number c. ..

221 We see, then, that the value of the root a being once established, the
logarithm of any number, c, is nothing more than the exponent of that
power of a, which is equal to ¢; so that ¢ being = a’, b is the logarithm

of the power a’.

His wording is cuambersome by modern standards but here is the definition of
logarithm that confronts most people when they are introduced to them today.
This remarkable book is made more remarkable still with the realization that at
the time of its writing Euler was virtually blind; he dictated the manuscript to

14
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a servant, who was to function as his mathematical secretary. Later, he was to
establish the idea of a function and one that approaches its modern definition,
with y = a* a special case, and its inverse function defined as the logarith-
mic function. Earlier, in an article of 1749 with a title that transcends language
barriers ‘De la controverse entre Messers. Leibnitz et Bernoulli sur les loga-
rithmes des nombres négatifs et imaginaires’, he used the series expansion for
the natural logarithm and developed ideas of complex numbers to argue that
the logarithm of any number is multivalued. Below is his jaw-dropping argu-
ment, which uses his famous logarithmic limit (independently discovered by
Edmond Halley (1656-1742), of ‘comet’ fame). Using his terminology, w is an
‘infinitely small’ number and 7 an ‘infinitely large’ one, with / representing the
logarithm.

Since w is ‘infinitely small’, /(1 + w) = w and therefore y = I[(1 + w)" =
nw. Now let x = (1 + w)", then 1 + w = x/? and w = x'/"* — 1, which
means that [x = y = n(x!/" — 1). He then argued that there are n (complex)
values of x!/” for any x and since n is an infinite number, there must be an
infinite number of values of /x. He continued by pointing out that all but one
of the values would involve /—1, presaging one of the most subtle ideas of
the next century’s complex function theory, the Riemann surface. This limit,
Inx = lim,_, o n(x'/" — 1), and the equally famed ¢* = lim,_, oo (1 + x/n)"
both appear in his two-volume classic Introductio in Analysin Infinitorum of
1748, and in putting x = —1 in the second expression to get

1 . 1Y
—=1lm (1—-],
e n—o00 n

we can begin to unravel Napier’s thoughts.

Since NapLog{107(1 — 1/107)L} = L,NapLog{107(1 — 1/107)1%"} = 107.
Now, 107 may not be ‘infinity’ but it is quite big enough for (1 — 1/107)1%" to
be very accurately approximated by 1/e to get

7 7 1\ 71
10’ = NapLog310'{ 1 — — ~ NapLog { 10" - ).
107 e

Now, if we scale down by a factor of 107, we have that NapLog(1/e) ~ 1,
which suggests that NapLog x might well be log; /, x.

With the use of the calculus, we can be precise.

In Figures 1.2 and 1.3, if we write PB = x, OQ = y and the constant of
proportionality 1 we have dx/df = —x and dy/df = 107. The initial conditions
are that when 1 = 0, x = 107 and y = 0. These give

dy dydr 107
dx  drdx X

15
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andso y = —107 Inx + ¢, where 0 = —107 In 107 + ¢, which makes

107 107
y=—10"Inx + 10710107 = 107 In — or - = In —.
X 107 X

If we notice that InA = log, ,, 1/2, we finally have that

Y o, x
107 ~ 8 107

So, Napier’s logarithms really are a scaled-down version of logs, to the base
1/e.

1.5 NAPIER’S OTHER IDEAS

Napier’s major legacy is, then, a method of calculation that in its various forms
has helped scientists and mathematicians over centuries to pursue their inves-
tigations and theories, relatively free of the tedium of arithmetic: logarithms’
modern role is deeper still, as we shall see. He bequeathed some other inheri-
tances too.

Some of the most important practical geometrical problems of the time were
involved with celestial navigation (with the Global Positioning System not even
within the realms of science fiction) and therefore involved spherical triangles,
with the Earth by then being acceptably round. Napier was recognized for two
ideas connected with spherical trigonometry: a set of four identities useful for
solving ‘oblique’ spherical triangles, given the name ‘Napier’s analogies’, and
two ingenious rules for remembering the ten formulae used in solving right-
angled spherical triangles. Both are in use today and we list them below. They
use the now standard labelling for a triangle (spherical or plane) that capital
letters represent the vertices and the corresponding small letters the side opposite
(as we mentioned in the introduction, yet another inheritance from Euler) and
it should be borne in mind that any side of a spherical triangle can be thought
of as the angle it subtends at the centre of the defining circle. In this notation,
Napier’s analogies are

sin %(A — B) tan %(a —b) cos %(A — B) tan %(a + b)

sin %(A + B) B tan %c ' cos %(A + B) B tan %c
sinf(a —b) tani(A - B) cosi(a—b) tan3(A+ B)
sin %(a + b) B cot %c ’ cos %(a + b) B cot %c '

If the triangle is right-angled at A, the remaining five letters (two angles and
three sides) can be arranged in order as points on a circle, as shown, with each
point having two ‘adjacent’ points and two ‘opposite points’, which gives rise
to Figure 1.7.
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Figure 1.7. Napier’s circle.

Napier’s rules are, then,

o the sine of any point equals the product of the tangents of the adjacent
points,

e the sine of any point equals the product of the cosines of the opposite
points.

Moving around the circle gives five lots of two formulae.

Most famous of all is his other calculating device: Napier’s bones (or rods).
From them came the slide-rules of Oughtred, Gunter and Mannheim and, with-
out the silicon chip, we would be using something based on them today. It seems
certain that the idea stems from an ancient Arabic scheme for organizing, and
therefore simplifying multiplication; the elegant gelosia or grating method.
This (literally) romantic name is an allusion to the grid used in the method,
which resembles a type of window lattice (or gelosia) through which a jealous
spouse might peer unseen. The process starts with a blank design into which the
two numbers to be multiplied are introduced; the example shows the product

3284 x 6751 =22170284.

The two numbers are written in the top and right semicircles (in bold in Fig-
ure 1.8), the individual products of the digits are then written in the diago-
nally split squares, forming a restricted ‘times table’; the answer appears in the
remaining semicircles (the underlined digits in the figure), having been formed
by adding the digits diagonally, starting at the bottom right—carrying over
where necessary.

His development of this idea was published in his Rabdologia of 1617 (from
the Greek for ‘rod’ and ‘collection’), the year of his death, and they became
extremely popular; perhaps the rods served the needs of those for whom loga-
rithms were too abstract an idea. He devised several variations; some capable
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Figure 1.8. The gelosia method in action.

of root extraction, but it is the type that deals with basic multiplication and
division that has been most widely remembered. With these, each of the 10
possible arithmetic rods comprises a digit at the top and the multiplication table
for that digit permanently written below, in the same way as the gelosia’s were
written out each time; an 11th rod is simply the digits 1 to 9, written in order,
as illustrated on the left in Figure 1.9. To multiply two numbers, represent one
of them as a row of rods with the number forming the top row (of course, that
means repeated digits require repeated rods); 5978 on the right in Figure 1.9.
The index rod is then placed next to the set-up and the second number multiplied
one digit at a time and the results added, taking account of decimal positions.
For example, in the illustration, the digit 5 is being multiplied to give 29 §90
using the same diagonal adding as with the gelosia.

In 1890, the French Civil Engineer, Henri Genaille, produced an elegant
refinement which has become known as Genaille’s rods and which removed
the need to remember the carry; they quite literally allow the user to read off
the answer to a product of a number with a single digit with no calculation
whatever.

Finally, the Rabdologia contained yet another scheme for easing calculation:
Napier’s abacus. The use of chequered (chess) boards for calculating was well
established by Napier’s time and in his Abacus he used such a board with
counters which take the move of a bishop or rook to perform all four arithmetic
operations, as well as root extraction. For this he needed the ancient idea of
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Figure 1.9. Napier’s bones.
multiplying by doubling; in other words, writing numbers as powers of two. He

would never have realized it, but in doing so he was using binary arithmetic,
presaging the modern computer by some 350 years.
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CHAPTER TWO

The Harmonic Series

Mathematicians are like lovers. Grant a mathematician the least principle, and
he will draw from it a consequence which you must also grant him, and from
this consequence another.

Bernard Le Bovier de Fontenelle (1657-1757)

2.1 THE PRINCIPLE

On 11 July 1382, in the beautiful Norman city of Lisieux, Nicholas Oresme
died at the age of 59; he had been the city’s bishop since 1377. Born into the
Late Middle Ages (in Allemagne in 1323), his scholarship extended from the
development of the French language to taxation theory and his distinguished
career included the Deanship of Rouen and being chaplain to King Charles V of
France, for whom he translated Aristotle’s Ethics, Politics and Economics. He
taught the heliocentric theory of Copernicus over 100 years before Copernicus
was born and suggested graphing equations nearly 200 years before the birth
of Descartes; his treatise De Moneta brought him the soubriquet of the greatest
medieval economist, but it is in his research in mathematics (it is probable that
he was the first to use ‘+’ for addition and it was he who, in his Algorismus
Proportionum, extended index notation to fractional and negative powers) and
in particular in infinite series that our interest lies. To be exact, we are concerned
with his work on the harmonic series and his proof of a single property of it and
in that specialization we consciously ignore almost everything that this great
man achieved,; it is rather like remembering the inimitable Carl Frederick Gauss
(1777-1855) for a measurement of magnetic flux. The greatest mathematician
of them all will reappear time and again throughout the next pages, but now it
is Oresme’s turn, but before that we establish a. ...

2.2 GENERATING FUNCTION FOR H,,

The definition of the harmonic series,

n

1 11 1
H, = — =14 -4+ 4+ -
n= s =l gkt

r=I1
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is equivalent to
1
H =H_1+—-, r>1land H =1,
r

which can be used to establish the generating function:

1 1 >
1 =Y Hux".
1—x n(l—x) ; *

If we make no assumption about the H,, we can multiply across by the (1 — x)
to get

—In(1—x) =1 —x)ZH,xr

r=1

and then use Newton and Mercator’s expansion of In(1 — x) to get
(@] o
x+ %x2 + %x3 o= ZH,xr - ZH,x’+1, assuming |x| < 1.
r=1 r=1

Comparing coefficients of x”, we have

1
-=H,—H._1 forr>1,
r

1
H,=H,_1+- and H =1,
r

the definition is recovered and the result is established.

In a letter dated 15 February 1671, James Gregory (1638-1675) wrote, ‘As
to yours, dated 24 Dec., I can hardly beleev, till I see it, that there is any general,
compendious & geometrical method for adding an harmonical progression. . . .
To this day, we share Gregory’s disappointment, as a formula for H,, for general
n does not exist, nice though it would be to have. The simplicity of the definition
of the series belies its subtlety and many consequences can be drawn from it.
Below we give three.

2.3 THREE SURPRISING RESULTS
2.3.1 Divergence

No property is more unexpected than H,,’s divergence, and it is this that Oresme
proved; that is, as n — oo, H, — 00, but so very slowly. The first 100
terms sum to 5.187 ..., the first 1000 to 7.486... and the first 1 000 000 to
14.392...; it is hard to believe that, for large enough n, H, will exceed any
chosen number, but such is the case; it would take a sensitive eye indeed to spot
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the divergence numerically. In 1968 John W. Wrench Jr calculated the exact
minimum number of terms needed for the series to sum past 100; that number
is 15092688622 113788323 693 563264 538 101 449 859 497. Certainly, he
did not add up the terms. Imagine a computer doing so and suppose that it takes
it 10~ seconds to add each new term to the sum and that we set it adding and
let it continue doing so indefinitely. The job will have been completed in not
less than 3.5 x 10'7 (American) billion years.
Oresme’s celebrated proof, in modern notation, is shown below:

H —1+1+ 1+1 + 1+1+1+1
< 34 56 7 8

T i !
9" 10 11 1213 1415 " 16

1 1+1 n 1+1+1+1
2 4 4 &8 8 8 8

Y (L L
1616 16 16 16 16 16 ' 16

\
+
|
+

—1+1+2+4+8+ —1+1+1+1+1+
a 2 4 8 16 a 22 2 2 ’

which is, of course, divergent.
Inevitably, such a result has many proofs and we will consider two more.
With the pursuit of elegance as motive:

H, —1+1+1+1+ _?2
= 2 3 4 T2

4
1 1 1 1 1
(3 (e
<(143)+ (i) +(GGrg)+ G+g)+ e
2 3 4 5 6 7 8
= Hy, acontradiction.

And with deference to Euler, whose part in this story (and so many others) is
so great:

0 e 0
/ dx :/ (1 — e dx
oo 1 —€F —oo
0

0
=/ ex(1+ex+e2x+e3x+-~-)dx:/ e+ 4. dx

—00 —0o0

:[ex+%e2x+%€3x+"']go®=1+%+%+"'=[—1H(1—ex)](100,
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which is clearly infinite when evaluated at the upper limit. There we have it, with
its improper integral and non-legitimate binomial expansion; it can be tidied of
course, but forcing the detail would blur its sweeping stylishness.

2.3.2 H, is non-integral

The second surprise is that, even though H, increases without bound, it manages
to avoid all integers in doing so (apart from n = 1) and, more than this, any
consecutive subseries of H, is never an integer. That is, for positive integers
m,n withm < n,

S 1 1 1 1
mn = +m+1+m+2+ +n
is never an integer.

The argument we give is delicate and a bit wordy, but the method of proof is
to show that S, is a fraction with an odd numerator and an even denominator,
which ensures that it cannot be integral. To this end, we need an intermediate
result, which itself is a little surprising at first.

In any finite, consecutive subsequence of the sequence 1, 2, 3, ..., there is
a unique term with a highest factor of 2. That is, if we factorize each term and
focus on the factors that are the powers of 2, there is only one with the term
with the highest power of 2. The following argument establishes this.

If the sequence contains powers of 2, the term with the highest power of 2
is the number we seek. Otherwise, the sequence is contained strictly between
two consecutive powers of 2, say 2¢ and 20+ that is 2.2% ! and 4.2¢71, the
highest power of 2 between them being 3.2%!; if the sequence contains this
number, it is the number we seek, otherwise the sequence lies entirely within
one of the two intervals, say 2.29-1 and 3,227 thatis, 4.2 2 and 6.2 2, the
highest power of 2 between them being 5.2% 2. The process continues until the
sequence contains one of the key numbers or is of length 2, in which case we
select the even number.

Now suppose that we factorize each of the denominators of S;,;, into a product
of prime factors and select the unique term whose denominator contains the
highest power of 2; call it 1/k. When each term of S, is written as a fraction
with denominator the least common multiple of all of these, 1/k must have an
odd numerator and the numerators of all of the others must be even, consequently
the numerator of S,,,,,, considered as a single fraction, must be odd; clearly the
denominator is even and we have the result. Of course, taking m = 1 proves
the result for H,.

2.3.3 H, is almost always a non-terminating decimal

We have that H; = 1, H, = 1.5 and Hg = 2.45 and of course, since H,, is
always a fraction, its decimal expansion must either be finite, as with these
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examples, or infinitely recurring. The final surprise is that, apart from these
three cases, all of the other H,, are the infinitely recurring variety. Our proof of
this remarkable fact will take us from comparatively shallow to very deep water,
with the need of a most profound and significant result of number theory: the
Bertrand Conjecture. In 1845 the French mathematician Joseph Bertrand (1822—
1900) conjectured that for every positive integer n > 1, there exists at least one
prime p satisfying n < p < 2n (having verified it for n < 3 000 000). He was
not destined to provide a proof, but five years later the Russian mathematician
Pafnuty Chebychev (1821-1894) was, and he was to come close to proving
another of the great results of mathematics: the Prime Number Theorem, but
more of that much later.

Firstly, it is clear that any number which can be represented as a finite decimal
can be written as a fraction with denominator a power of 10. Ten is two times
five and so the denominator is a power of two times five, and, after possible
cancellation, of the form 2%5#. To show that H,, is not a finite decimal, it
is enough to show that the denominator of H,, when it is written as a single
fraction, contains prime factors greater than 5. Simply by writing out H3, H4 and
Hs we can establish that they are infinitely recurring; now write H, = a, /by,
n > 7, where a, and b,, are in their lowest terms. We need to show that b,, is
divisible by some prime p > 7. To that end we will prove that for all primes
pE [%(n + 1), n], p divides b, and do so by induction on n. For n = 7 the
interval is [4, 7], the set of primes {5, 7} and since H; = % we are done. Now
assume the result for , then we need to show that forall p € [% (n+2),n+1],
p divides by,+1, where

an+1 _ dn + 1 _an(n+1)+bn

bpy1 b, n+1  by(n+1)

Since this new interval can only add n + 1 to the list of primes and since if
n—+11is prime, b,+1 = b, (n 4+ 1) is incapable of cancellation with the a1, we
have what we need and the result is true by induction. The Bertrand Conjecture
guarantees that the set of intervals [p, 2p — 1] for p > 7 overlap and therefore
contain every integer n > 7, since it guarantees a prime between every pair p
and 2p. Now we have all that we need. If n > 7, there is a prime p > 7 such
that n € [p,2p — 1], which means that p € [%(n + 1), n] and so divides b,,.
The reader may wish to look at what happens with p = 5.

Having studied the full harmonic series, we will look at some interesting
subseries of it.
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CHAPTER THREE

Sub-Harmonic Series

The mathematician requires tact and good taste at every step of his work, and
he has to learn to trust to his own instinct to distinguish between what is really
worthy of his efforts and what is not.

James Glaisher (1848-1928)

The incredibly slow divergence of H,, suggests that we would not need to alter
its terms by much to force convergence, and by altering we mean omitting or
cancelling. In this chapter, we will attempt just that.

3.1 A GENTLE START

If we start taking out terms in a structured way, we might start with

1+1+1+1+ —11+1+1+1+
2 4 6 8 2 2 3 4 ’
or alternatively
1+1+1+1+ 1+1+1+1+ —1+1 1+1+1+
37577 T3 e TR T\ 3 Ty ’

both of which clearly diverge, which will have implications on p. 102.

So removing ‘half’ of the terms is not enough to force the depleted series
to converge, nor would a third or any other fraction of it. Taking only powers
of any single number leaves us with a convergent geometric series, but that
really is taking out an awful lot of terms and not, in our development, very
interesting. Is there something in between? A tantalizing possibility is to sum
over the reciprocals of odd, perfect numbers (a perfect number is an integer
which is equal to the sum of its proper divisors and 1; for example, 6 and 28).
It is known that such a sum is finite; the problem is that no examples of these
numbers are known and so our series may be entirely non-existent!

27



CHAPTER 3

3.2 HARMONIC SERIES OF PRIMES

Primes are forever a source of interest and their scarcity (we will see just how
scarce they are later) makes the series taken over the reciprocals of primes a
pretty sparse one, and their lack of pattern (and we will be looking at that later
too) a very attractive one.

1 1 1 1 1 1
PR R TI FR
has indeed had a great deal removed from H, but amazingly this also diverges.
Of course, this must mean that there is an infinite number of primes, a fact
established by Euclid in about 300 B.c. It is well worth a look at one version
of his famous proof, as well as another entirely different, equally elegant and
more modern argument. Firstly, Euclid.

Suppose that there are a finite number of primes and that the biggest of them
is N, then the considerably bigger number composed of 1 plus the product of
all of the primes up to and including N, P = 1+2 x3 x5x7 x --- x N, either
is prime (which would contradict our assumption that N is the biggest prime)
or it is composite, and therefore divisible by primes. All of the primes leave a
remainder of 1 when dividing P and so there must be other primes bigger than
N, which is again a contradiction to the assumption that the number of primes
is finite, with N as the biggest. The only escape is that the number of primes is
infinite, and the proof is complete.

If P does happen to be prime it is given the appropriate name of ‘Euclidean’
prime. How common are these Euclidean primes? Things start off productively,
with P a prime for N any of the first five primes 2, 3, 5, 7 and 11 (giving P as
3,7,31, 211 and 2311, respectively); the next Euclidean prime appears when
N = 31, to give P = 200560490 131, and the only other example for N less
than 10001is N = 379, with P rather too big to list! At present the largest known
example is with N = 24 029. Is there an infinite number? Nobody knows, but
they do become very rare as N becomes very large.

A modern number theorist’s proof of Euclid’s result looks and feels different.
In 1938 the consummate practitioner Paul Erdos (1913-1996) gave the one that
follows, which uses a counting technique and a neat device used by number
theorists: that any integer can always be written as the product of a square
and a square-free integer. This is clear enough if the integer is factorized into
the product of its prime factors and the repeated ones collected together; for
example, 2851875 = 33 x 5% x 11 x 132 = 3 x 11 x (3 x 52 x 13)2; of course,
for a perfect square, the square-free part is 1. When we discuss the Riemann
Hypothesis we will come across the Mobius function and see just how important
it can be that an integer does or does not contain repeated factors. The proof is
as follows.
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Let N be any positive integer and py, p2, p3, ..., pn the complete set of
primes less than or equal to N, then each of the positive integers less than or
equal to N can, of course, be written as a product of powers of the p; and, using
the above observation, in the form p1 pz2 p§3 . pZ” x m2, where e; € {0, 1},
depending on whether a particular prime is present or not. Consequently, there
are 2" ways of choosing the square-free prime factorization and clearly m?> < N
and so m < +/N. This means that the integers less than or equal to N can be
chosen in at most 2" x +/N ways and therefore that N < 2" x +/N, which
makes 2" > +/N andn > % log, N. Since N is unbounded, so must the number
of primes be.

The proof leaves one breathless and wondering how anyone could ever have
thought of it, but that was part of the genius of the man.

With the prime series now definitely infinite, we look to establishing its
divergence. Euler (inevitably) attacked the problem and in doing so brought
about an incredible result that spawned the whole subject of analytic number
theory. Here we will give a proof based on Erdos’s extension of his argument.
Suppose that the series does converge. Then there must be a tail of the series
which sums to less than %, that is, there must exist an i such that

1 1 1 1
+

Di+1  Pi+2  Di+3 2

Now let N; (x) be the number of positive integers less than x which are divisible
by only the first i primes. If n is one of them, as before we can write n = k x m?,
where k is a square -free number. Since there are precisely i primes that could
divide k, k = p{' p3*p3> ... pi", where a, € {0, 1} and so there are 2’ possible
values for k, depending on whether a particular prime is present or not. Clearly,
m? < n < x and so m can be chosen in fewer than \/x ways, consequently,
N;(x) < 2'/x. The number of positive integers less than x which are divisible
by a prime p is at most x/p (consider p,2p,3p, ..., np, where np < x and
son < x/p), therefore the number of positive integers less than x which are
divisible by any prime other than the first i primes is at most

X X X

+ cee,
Pi+1  Pi+2  DPi+3
which is, of course less than 2x But by definition this is x — N;(x), hence
x—N;i(x) < 2x and N; (x) > 2x Combining these two bounds we have X <
N, (x) < 2! /x and hence 1 3x < 2°/x, which is true only for x < 2%*2 Take
> 22+2 and we have our contradiction! And a perfectly beautiful one too.

So, the sum of the reciprocals of the primes diverges—but how slowly? Very

slowly. For example,

p<1 million
Z — =12.887289...

p prime
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Our computer, which adds in a new term to the sum every 1079 seconds, would,
after 15 (American) billion years, have summed the series to a number just over
4. We will look at a form of Euler’s proof later and that will also provide us
with a measure of the rate of this glacially slow divergence.

As with the full harmonic series, even though the sum of the reciprocals of
primes diverges, it manages to miss every integer. The proof is surprisingly
easier than the one for the harmonic series. In fact, for any sequence of distinct
primes p1, p2, ..., Pm, if

1 1 1 1
—+ 4+ —+---+ — =n,
P P2 pP3 Pm
then
1 1 1 1 a
- — - ... = e S
P1 P2 pP3 Pm p2p3p4 - Pm

for some integer a, hence ap; = pap3p4--- pm and so pap3ps - - - py 18 divis-
ible by p1, which is impossible.

Leaving only the primes fails to force convergence. If we pursue this thread,
the most natural next step is to leave only the twin primes, that is, consecutive
pairs of primes; it is customary (but not universal) to ignore 2 for this purpose
and to count 5 twice, so the pairs are (3,5), (5,7), (11,13), ...,(1019,1021), ...,
and these are incredibly sparse. In fact, it is not even known whether there is
an infinite number of them and therefore if our series is infinite (this is called
the Twin Primes Conjecture). It is interesting to note that the pair (1019,1021)
generate two Euclidean primes. Using only twin primes, all that is left of Hyo

D) (D) (A D) ()
375 577 113 1719 '

Do we achieve convergence now? Finally, the answer is yes, but no one is sure
to exactly what number; it is about 1.902 160582 4. .. and is known as Brun’s
constant, after the Norwegian mathematician, Viggo Brun (1885-1978), who,
in 1919, established the convergence. Not much is known about it, although its
size is a strong indicator of just how sparse twin primes are. Thomas Nicely
provided the above estimate in 1994 and in the process uncovered the infamous
and much-publicized Intel Pentium division bug (‘for a mathematician to get this
much publicity, he would normally have to shoot someone’), which made itself
apparent with the pair of twin primes 824 633 702441 and 824 633702 443.
His announcement to the world was by a now famous email, which began:

It appears that there is a bug in the floating point unit (numeric
coprocessor) of many, and perhaps all, Pentium processors. In
short, the Pentium FPU is returning erroneous values for certain
division operations. For example, 1/824 633702441.0 is calcu-
lated incorrectly (all digits beyond the eighth significant digit are
in error). . .
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On 17 January 1995 Intel announced a pre-tax charge of $475 million against
earnings, as the total cost associated with the replacement of the flawed chips.

Incidentally, it would have been very convenient had the series diverged, as
that would have meant that there is an infinite number of twin primes and so
resolved the Twin Primes Conjecture. (The reader may convince themselves
that 5 is the only candidate for repetition by reasoning that any prime greater
than 3 must be of the form 6n % 1, any pair of twin primes must be 6n — 1 and
6n + 1 and therefore that a consecutive sequence of three is impossible beyond
3,5,7)

3.3 THE KEMPNER SERIES

The most novel culling of the terms of the harmonic series has to be due to A. J.
Kempner, who in 1914 considered what would happen if all terms are removed
from it which have a particular digit appearing in their denominators. For exam-
ple, if we choose the digit 7, we would exclude the terms with denominators
such as 7,27, 173, 33779, etc. There are 10 such series, each resulting from the
removal of one of the digits 0, 1, 2, ..., 9, and the first question which naturally
arises is just what percentage of the terms of the series are we removing by the
process? For example, if we remove all terms involving 0 we are left with

11 (I (I
I+ -4+ F-+—++—+_—+el.

2773 9o 11 19" 21
L I L I S
99 " 111 119 " 121 7T 999 ’

whereas if we remove all terms including 1 we are left with

R L I B
273 9720 2" %3 30 "3 8¢
1 1
—_ —_ —_ t' —_— e,
997200 T202 T T og9 T

Up to a given limit, we can count exactly how many terms have been removed
by grouping the denominators of the terms by the number of digits they have
in them, firstly assuming that we are removing O (see Table 3.1).

This means that when we have culled the denominators involving a 0 we are
left with

909" — 1)
9-1
= %(9" — 1) terms of the 10" — 1 possible.

9+9°+9°+9* ... 49" =

If we now perform the same analysis when we remove the digit 1 instead,
we have Table 3.2.
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Table 3.1. Removing the digit O.

Denominator Number of allowed
range denominators
1—-9 9
10 — 99 9x9=92
100 — 999 9x9x9=93

1000 — 9999 9x9x9x9=09%

-l 10n—1 on

Table 3.2. Removing the digit 1.

Denominator Number of allowed
range denominators
1—-9 8
10 — 99 8x9
100 — 999 8x9x9=28x92

1000 — 9999 8x9x9x9=8x9>

10 > 10n—1 8x9n!

The difference arises from the fact that O is now allowable but cannot be the
first digit of any number. Now we are left with

84+8x9+8x9%+8x9° ... 48x9"!
9" —1
9—-1
= 9" — 1 terms of the 10" — 1 possible.

=38

Itis obvious that this last argument is valid for each of the other digits 2, ..., 9
even though the actual sums (given they exist) will vary with the digit removed.
Looked at in a different way, with the digit O the fraction of terms that we
have removed is
(10" = 1) — 309" = 1) 99" —1

=1-= — > 1-0=1
10" — 1 810" — 1 n—oo

and with the other digits it is

(10”—1)—(9"—1)_ 9" —1 —0=1
10" — 1 - 10" — 1 n—>oo -
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That is, asymptotically, we have removed ‘almost all’ terms! Put another way,
we have the initially startling fact that almost all integers contain every possible
digit. If we reflect on the number of digits that integers have as they get bigger,
this is less surprising perhaps.

So, we really have removed a great many terms from the harmonic series
and it should be no surprise that the depleted series do in fact converge. To see
this, again we need to take separately the cases of the removed digit being O
or otherwise. If we look back to Table 3.1 we have that the nine single-digit
integers are each greater than or equal to 1, which makes the terms with those as
denominators each less than or equal to 1, the 9> double-digit integers are each
greater than or equal to 10, which makes the terms with those as denominators
each less than or equal to %, etc., to give an upper bound for the sum of the
series of

1 1 1
Ix149%x —4+P x —+9*x — +---

10 102 103
=91+ o + 92+ 93+
- 10 10 10
9
= 5 = 90.
1-15

The necessary changes for the other digits brings about an upper bound of

1 2 1 3 1
8x1+8x9xm+8x9 X1—02+8x9 XW_F...

9 9 \? 9\

—8( ! )—80
- - ) = s0.
1—15

These are loose bounds but they do their job and show that the series do indeed
converge. Of course, the slowness of the convergence hinders the computation
of the exact sums, but R. Baillie has provided a method for summing the series
with great accuracy and economy which resulted in Table 3.3, here given to five
decimal places.

3.4 MADELUNG’S CONSTANTS

Finally, having omitted terms, we can take the alternative route and cancel
them, most famously by considering the series 1 — % + % - 4—11 + .- to get the
alternating harmonic series, which sums to In 2, which is of course a special
case of that Newton—Mercator logarithmic series. A more intriguing alternative
is to consider a more complicated modification to get —% + % + % - % + % -
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Table 3.3. The Kempner-depleted harmonic sums.

Missing
digit Sum
0 23.103 44
1 16.176 96
2 19.25735
3 20.569 87
4 21.32746
5 21.83460
6 22.20559
7 22.49347
8 22.726 36
9 22.92067
cee % — 4 % — -+, which may at first seem a touch arbitrary. The

pattern is revealed when the series is written in sigma notation, to get

> (—l)iriﬁ, G.1)

i=1

where r; (i) is the number of ways of representing the integer i as the sum of
two squares (including 0 and negative integers, so 4 = 02422 = 0> +(-2)> =
22 + 0% = (=2)2 + 0%). The missing terms (denominators 3, 6, 7, ...) come
about because not all integers can be so expressed. Whether or not a particular
integer is capable of being expressed as the sum of two squares was originally
established by Euler, when in 1738 he published the result that a positive integer
can be so expressed if and only if each of its prime factors of the form 4k + 3
occurs as an even power.

Itis hardly obvious, but the above series does converge and the limit is known
to be —m In 2. Less obvious still is the fact that the series is connected with rock
salt. The crystallographic structure of NaCl is that of a cubic lattice and the
electrostatic potential at the origin caused by unit charges at those lattice points
is, by definition,

(_ 1)i+ Jj+k

o0
My= ), s
oo VI2H R K

where not all three variables can be simultaneously zero. The series is a very
delicate one, as we can see by considering the subseries of it with k = 0 and
i = j, which brings about the infinite harmonic series once again and that of
course diverges. The erratic behaviour of the series can be seen in Figure 3.1,
the first of many bizarre graphs that we will consider.
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Figure 3.1. The electric potential of NaCl in three dimensions.
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Figure 3.2. The electric potential of NaCl in two dimensions.

Notwithstanding this, a form of convergence can be defined for the series
and with that definition of convergence its sum is —1.747 564 59 ..., which is
one of the Madelung constants. An alternative formulation is

= ;73(1)
2 —1)i =2,
i=1( ) \/l_

with 73 (i) the number of ways in which the integer i can be written as the sum
of three squares, which in Flatland reduces to

- 72(0)
- ==
;< )ﬁ

with the cubic lattice becoming a square one and the convergence a much
happier one, as Figure 3.2 indicates.
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Its sum is —1.61554 ... and another Madelung constant (of which there is
an infinite number as the dimension of space increases), and one which involves
the Zeta function, which we will be meeting next.

Our series (3.1) is derived from this by omitting Rudolff’s ./ sign.
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CHAPTER FOUR

Zeta Functions

We may—paraphrasing the famous sentence of George Orwell—say that ‘all
mathematics is beautiful, yet some is more beautiful than the other’. But the
most beautiful in all mathematics is the Zeta function. There is no doubt about
it.

Krzysztof Maslanka

It is time to look at one of the ‘advanced’ functions of mathematics and one
which lies at the core of the study of analytic number theory; a function which,
according to M. C. Gutzwiller, ‘is probably the most challenging and mysterious
object of modern mathematics’. We will see it here in its own right and, in
Chapter 6, linked to a second ‘advanced’ function and again in the final chapter,
where its deepest behaviour is the stuff of the Riemann Hypothesis.

4.1 WHERE n IS A POSITIVE INTEGER

The series

1 11

Zr—2=1+2—2+§+-~-

r=1
holds a special place in mathematical lore. A simple calculation suggests that
it converges to the number 1.644 934. .., which is hardly illuminating, and as
we have seen from the harmonic series, it might just be diverging very slowly.
Actually, it does converge and is a special case of the whole family of convergent
series defined for integers n > 1 by

e ¢]

1 1 1
g(n)zzr—n=1+2—n+3_n+'-~.

r=I1
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Bracketing the terms and comparing them with the geometric series establishes
the convergence:

o0

|
+

1 1 1 1 1 1
TIMETY A ST TR TR T A
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|
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+

[l
0
_l’_
[\)
f»—
+
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[\)
|-
N———
[\ ")
_l’_
N
[\)
f»—
N—
(98]
_l’_

o on—1

provided that 1/2”_1 <1,thatis,2" !> 1,n—1>0andn > 1.

The above case (with n = 2) has a distinguished history, following its appear-
ance in 1650, when Pietro Mengoli (1625-1686) asked for its value. John Wallis
(1616-1703) computed it to three decimal places in 1665 but failed to recognize
the significance of 1.645 (reasonably enough). In 1673 Oldenburg posed the
problem to the great Gottfried von Leibniz (1646-1716) (who was defeated by
it) and it proved too much for other impressive mathematicians too, including
Jacob Bernoulli (1654-1705), who had included a reference to it in his 1689
tract, published in Basel, Tractatus de seriebus infinitis with the entreaty, ‘If
anyone finds and communicates to us that which thus far has eluded our efforts,
great will be our gratitude’; and so the problem has become known as the
‘Basel Problem’, ‘the scourge of analysts’, according to Montucla. The younger
brother, Johann Bernoulli (1667-1748) (and mentor to the young Euler), tried
and failed too and perhaps it was he who encouraged his brilliant student to
attempt it—and having attempted it he eventually conquered it. In 1731 he
computed the sum to six decimal places, in 1735 he sharpened his calculation
to the number 1.644 934 066 848226436 47. .. and, later in that year, with his
star still in its early ascendancy, he wrote, ‘quite unexpectedly I have found an
elegant formula involving the quadrature of the circle’, by which he meant 7.
With his genius for analytic manipulation and his characteristic disregard for
rigour he had shown that

LA R o’
1222 32 6

The curious number 1.644 934. . . turns out to be %7{2, an astonishing result that

did much to enhance Euler’s growing reputation. Not unreasonably, it, combined
with the divergence of the reciprocals of the primes, led him to remark (in 1737)
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that there are many more primes than perfect squares. It would take more than
100 years and the controversial work of another mathematical giant (Georg
Cantor) to give rigour to this comment—and in doing so, to show it in that
rigorous sense false.

Euler’s original proof is magical and demands to appear here above all others,
including a later, more careful and completely different version provided by him
to answer critics. It begins with the standard Taylor expansion of sin x,

x3 X3 x7!

sinx=x——+———+---,
which converges for all x. Euler interpreted the left-hand side as a polynomial
of infinite degree. Since it is a polynomial it can be written as a product of
factors and since the roots are 0, £m, £27, £3m, .. ., the polynomial can be
written as
x(x2 =) — 4P (2 —9n?). ..,

and this can be rewritten as

2 2 2
X X X
Ax<1_;7><1_52ﬁ)(1_32ﬁ)'“

sin x

Since

—-1 asx — 0,
X

it must be that A = 1. So,

. _ x3 x5 x7 _ | x2 1 x2 1 x2
SIHX—X—E—FE—%—F“’—X —; —227[2 —327[2

This astonishing piece of ingenuity is now part of the theory of infinite products,
and through that theory is made rigorous. Now he equated the coefficients of
x3 on both sides to get

11 1 1 1
31 w2 2272 3232 4272
or
1 1 1 72
gttt =y

and the result has appeared as if from nowhere.

Bearing in mind the level of resourcefulness (and genius) required to establish
the result, we can share A. G. Howson’s amusement that ‘one of the questions
set to candidates for the first London University Matriculation Examination (in
1838), an examination set for students of 19 years or under who wished to enter
the university, was: “Find the sum to infinity of the series

1 1 1

ettt
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and
1 1 1

1x2+2x3+3x4

+...”

There is no indication how the examiner intended the question to be solved;
the examination syllabus, which did not include the calculus, referred only

to “arithmetical and geometrical progressions” and “arithmetic and algebra”.
Partly through the connection with

1 1 1
B + 72 + 3 +oee

the number %nz turns up surprisingly often and frequently in unexpected places,
as we shall see. A quite astonishing appearance of it is this: if we take two
positive integers at random, the probability of them being co-prime (that is,
having no common factors) is none other than 1 in %nz. This is so shocking
that we will take the considerable efforts that are needed to establish the proof,
but before we can do so we will need more of Euler’s help and so we must
revisit it later.

In the final chapter we will mention three famous lists of mathematical prob-
lems, one of the turn of the 20th century, the second near its end and the third
at the turn of the 21st century. Euler made four such. The first was read to the
Mathematics Department of the University of Berlin on 6 September 1742 and
consists of seven problems, not as a challenge to the mathematical community
(as were the others) but as a list of ideas that he considered important and on
which he was currently working. It was the following.

1. Determination of the orbit of the comet which was observed in the month
of March in the year 1742.

2. Theorems about the reduction of integral formulas to the quadrature of
circles.

3. On the finding of integrals which, if the value determined is assigned
after the integration of the variable quantity.

4. On the sum of series of reciprocals arising from the powers of natural
numbers.

5. On the integration of differential equations of higher degrees.

6. On the properties which certain conic sections have in common with
infinitely many other curved lines.

7. On the resolution of the equations dy + ayy dx = bxm dx.
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For the most part, they lack the crispness of the modern specification of a prob-
lem. Problem 3 seems obscure, problem 7 is a form of the Riccatti differential
equation, which we would write as
d
hd +ay? = bx™,
dx

and in problem 4 we see the reference to Zeta series.

There was ample evidence that his efforts were in part rewarded in his Intro-
ductio of 1748. In it, by equating other coefficients, he listed results for ¢ (x)
forx =2,4,6,...,26. For example,

(4)—1+1+1+ ot
W= tata -~ 90
To demonstrate the difficulty of the problem, the sum for x = 26 is

1 1 1
{(26)=m+ﬁ+3ﬁ+"'
2% % 76977927 x 720

27!
1315862 2

11094481976030578 125 ©

and all without a calculator.
Using similar ideas he was able to prove, for example,

1 1 1 2
ﬁ+3_2+5_2+”._?’
1 1 1 xt
1—4+3—4+5—4+"'—%,
1 1 1 73
FERE I AT S
1 1 1 570
TTFTE T 53

In a later paper, published in 1750, he recorded one of his major triumphs by
solving the general problem for even n, showing that

(2n)2n
2(2n)!

> 1
(@n) =3 ="t B,
r=1

where By, are the Bernoulli Numbers, which we will discuss in Chapter 10.

Astonishingly, no general formula is known for ¢ (n) for n odd (and of course
greater than 1), which makes the last two results listed above all the more
tantalizing.
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For interest, here are the first few sums to several decimal places:

1 1 1
{(3)=§+?+3—3+...:1.2020569031...,

1 1 1
§(5)=ﬁ+§+3—5+...=1.0369277551...,

1 1 1
g(7)=F+2—7+3—7+...:1.0083492773....

£ (3) is another of the many named mathematical constants; it is called Apery’s
constant, honouring Roger Apery, who, in 1978, proved it to be irrational. Not
even that is known of any one of the others, even though the sums for even n
are obviously transcendental. Given the pattern that exists for even powers, it
is tempting to conjecture that

o0
1 p
¢n+ =) gy ="

r=I1

for some integers p and g, which, in the case n = 2, would amount to trying to
prove that
1.0369277551...

s =0.003388434...
T

isrational. Umm. There is inexorable progress though. In 2000, T. Rivoal proved
that there are infinitely many integers n such that ¢(2n + 1) is irrational, and
subsequently in 2001 that at least one of ¢ (5), £(7), £(9), ..., ¢(21) isirrational.
Again in 2001 this result has been tightened by Zudilin to replace 21 by 11.

4.2 WHERE x Is A REAL NUMBER

We have been looking at ¢ (n) for n a positive integer. The earlier proof showed

that
21
(=3 — n>1,
r=1

is meaningful and made no assumption about n being an integer. If we replace n
by the continuous, real variable x > 1, we meet the real “Zeta function’, whose
graph is shown in Figure 4.1.

The vertical asymptote is at x = 1 because of the divergence of ¢(1) and
the horizontal asymptote is at y = 1 since the terms of ¢(x) beyond the first
contribute vanishingly small amounts as x — oo.

The asymptotic behaviour can be more exactly measured. If we overestimate
the areaunder y = 1/u” for fixed x, between u = 1 and u = n+1 by rectangles
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Figure 4.1. The Zeta function.

Figure 4.2.
of width 1, as in Figure 4.2, we have that
Zn: 1 /n-i-l du
= ux 1 ux
since this quantity is just the sum of the areas of the shaded, curved triangles at

the top of each region, which can be slid to the left to fit in the first rectangle,
which has area 1. This means that

1 1 1
— = 1-— <1
w  x—1 (n 4+ 1)1

and so, asn — oo, |¢(x) — 1/(x — 1)| < 1, which means that

<1,

n

u=1

|x = DE) =1 < [x = 1]
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Now take the limit as x — 17 and we have that (x — 1)¢(x) — lasx — 1T,
We will use this result later and also extend the definition of the Zeta function
once again, this time from real x to complex z, with profound implications.

4.3 Two REsULTS To END WITH

Before we move on to see how the Zeta functions bring about existence of
Gamma (with a little help from Euler), we will mention two miscellaneous and
nice results related to them.

Firstly, we know that the prime series

Zl

p prime

diverges, but it must be that the series of prime powers converges. Exactly
to what numbers is yet another question with no answer but we can at least

conclude that
1 21
< Z —2<Z—2=——1<1 forn > 1,

1
LS at);

p prime p prime r=2

which isn’t much but it’s about as much as we can expect for so little work in
this most difficult area of mathematics.

The final item we will mention is a 1697 result of Johann Bernoulli, and is
very easy on the eye. It is that

/lld 1+1+1+
Cdr = — 4 — 4
Oxx 11 22 33

The integral is improper, with 0° indeterminate, but we also have the well-
known result that lim,_,o x* = 1 and with this in place we can indulge in a
feast of integration by parts to prove the formula

/lidxzf eI gy = / (xlnx)r
0o x* 0

—Z / (— xlnx)rdx—z(rlv)r/ x"In" x dx
' Jo

r=0

_1+Z(_1)r rlnr d
= ] o ) X X dx.
r=
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Now we attack the integral using parts and the fact that In x grows much more
slowly than any power of x to get

1 r+1 1 1 r+1
/ x"In" xdx = al In" x| — r / a In" ! xdx
0 r —|— 1 0 r —|— 1 0 X

r 1
=— / x" I~ xdx
r+1 0

r r! 1 r
= ... (=D (r+1)rf0 x"dx

- r!
B

and so

o S (—1)" r!
—dx=1 -1
/0 T +§ n TV ey

ad 1
1+r;(rjtl)rﬂ

1 1 1
=F+§+3—3+"'.
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CHAPTER FIVE

Gamma’s Birthplace

The mathematician may be compared to a designer of garments, who is utterly
oblivious of the creatures whom his garments may fit. To be sure, his art origi-
nated in the necessity for clothing such creatures, but this was long ago; to this
day a shape will occasionally appear which will fit into the garment as if the
garment had been made for it. Then there is no end of surprise and delight!

Tobias Dantzig

5.1 ADVENT

So, the harmonic series diverges, slowly. Just how slowly can be measured
using its interpretation as a discrete logarithm. The area || ]"( 1/x)dx =1Innis
bounded below by the areas of the underestimating rectangles and above by the
areas of the overestimating rectangles, which using Figures 5.1 and 5.2 results
in the inequality

Ll /nld LI RS
— _— P —< _— < _— _— . e _’
273 T 273 n—1
ie.
1
H,—1<Ilnn< H, — -
n
or

1
Inn+—- < H, <Inn + 1.
n

‘We have an estimate of H), as Inn with an error of at least 1/x and at most 1,
with H, confined between the curves, as shown in Figure 5.3. Put another way,

1
—-<H,—Inn <1
n

and so, if the limit exists, 0 < lim,,_, oo (H, —Inn) < 1.
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W= M=

1 2 3 n—1 n X

Figure 5.1. Underestimating by rectangles.

If we overestimate using trapezia, as in Figure 5.4, we achieve a different
insight:

/nldx
1 X
=Inn
A ) A D (G ) ()
2 2 2\2 3 2\3 4 2\n—-1 n
1 1 1 1 1 1 1 1 1 1
:z(1+5+5+§+§+z+1+ LIS R ‘)
:1(1.}.2(14_14_1_}_. + ! ) l)
2 2 3 4 n—1 n
(12 -1-5)+3)
—N1+2|H, —1——)+ -
2 n n
=1<2H—1—l)
2 " n
1 1
=h-3-5
Therefore,
1 1
H,,%lnn+§+g,

which means that . .
H,—lnn~ -+ —
AT

and so we may reasonably think that

lim (H, —Inn) ~ 0.5.
n—oo

48



GAMMA'’S BIRTHPLACE
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Figure 5.2. Overestimating by rectangles.
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Figure 5.3. The contained harmonic series.

So, it looks like the difference between the harmonic series and the natural
logarithm might tend to a number between 0 and 1 and near 0.5.

5.2 BIRTH

We have already mentioned that in 1735 Euler established the remarkable fact
that
oL 1 1 n?
(D =s+mtpt= o

and thereby solved the ‘Basel problem’, which had been frustrating mathemati-
cians for years. In that same year, he published the paper ‘De Progressionibus
harmonicus observationes’, which disclosed a further natural interest in Zeta
functions and which led to Gamma coming into existence. We will look at the
relevant part of the paper, using Euler’s own invention of ), although he did
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Figure 5.4. Overestimating by trapezia.

not make use of it himself on this occasion. Using the ubiquitous result
ln(l+x)=x—%x2+%x3—%x4+~-~ , —1l<x<1,
he replaced x by 1/r to get

( 1) 11 1 1
n(l+-)=-—-s5+—=——5+
p

and so

and

1 < +1 lewl 1 &1 1T 41
Y-yt ) i m

r=1 r=1 r=1 r=1 r=1
therefore,
z Z<l<+l>1>+Z Iy Ly
n(r —Inr - —+ - — =
23 r3 4 r4
r=1 r=1
and
n n n n
1 1 1 1 1 1 1
1 1 - - 4z — —

which makes
n n n n
1 1 1 1 1 1 1
Z 1 == _ _Z 1z .
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In the limit as n — oo we have the difference between the divergent harmonic
series and the divergent natural logarithm expressed in terms of an infinite
number of convergent Zeta series, the sums of which would therefore be very
nice to know. We have seen that Euler did eventually solve the general problem
of summing the Zeta series for even powers but also that the problem with
odd powers remains open to this day and of course he was bound to resort to
numeric methods to approximate the sum on the right-hand side, which in the
‘De Progressionibus’ he announced as 0.577 218.
In fact, Euler had the logarithm on the right-hand side to give

"1 sl 11 11
— =1 1 — JR— — 4 - [

In his own words from ‘De Progressionibus’:

Quae series cum sint convergentes, si proxime summentur prodibit

1 1
l+=-+---+-=1log(i +1)+0.577218
i

2
Si summa dicatur s, foret, ut supra fecimus,
di
ds = —,
i+1

ideoque s = log(i + 1) + C. Hujus igitur quantitatis constantis C
valorem deteximus, quippe est C = 0.577 218.

Moving from 18th-century Latin to 21st-century English:
This series, since each term is convergent taken one after the other,

will proceed

1 1
1+ -4+ -4+ - =1logi +1)+0.577218.
i

2
If the sum is called s it would be that
di
ds = -
i+1

as we have seen above, and so s = log(i + 1) + C. Therefore,
we have revealed the value of this constant to this accuracy to be
C =0.577218.

And a birth is recorded under the name of C. Other letters have subsequently
been used but it is y that has become permanently attached to the number
which, as we mentioned in the Introduction, he regarded as ‘worthy of serious
consideration’. He lavished considerable attention on it himself, partly hoping
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to identify it in terms of some other known constant or function. In 1781 under
the name of C (albeit with the logarithm of n rather than n+ 1) he communicated
the memoir ‘De Numero Memorabili in Summatione Progressionis Harmonicae
Naturalis Occurente’ to the Petersburg Academy, which was entirely devoted to
its study, and in which he admits that its nature still eluded him. He remarked
that he had hoped that his C was itself the logarithm of another number of
import but, having failed to identify any such number, continued by giving a
whole list of series by which its approximate value might be calculated, two of
which were

21
D cED-D=1-y

i=2

and
i ! 2i)—1)=1—y —In3
: m(@(l) )= y —lIns.

i=1

He used the first (which we will prove in Chapter 12) to evaluate the constant
to five decimal places and the second to evaluate it to 12 decimal places of
accuracy.

The years have passed and the number has indeed been afforded that ‘serious
consideration’ by any number of mathematicians but has hardly cooperated,
and even at its venerable age of 267+ it is still so deeply shrouded in mystery
that it is not even known if it is a fraction. In fact, the great G. H. Hardy, whom
we will soon discuss, offered to vacate his Savilian Chair at Oxford to anyone
who could prove Gamma to be irrational!
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The Gamma Function

There is no branch of mathematics, however abstract, which may not some day
be applied to phenomena of the real world.

Nikolai Lobatchevsky (1792—-1856)

We will now look at that second ‘advanced’ function and its link with Euler’s
constant and with the Zeta function.

6.1 EXoTIC DEFINITIONS. ..

[(()

occupied some of Euler’s many mathematical thoughts during the years 1729
and 1730 and in a letter to Christian Goldbach (1690-1764), dated 8 January
1730, he proposed its use in a quite startling way. It converges for x > 0 and
can be considered as a function of x in that domain, a function whose properties
are surprising and unexpectedly useful. In 1809 Adrien-Marie Legendre (1752—
1833) gave it the name Gamma and the matching symbol I" and so we have

1 x—1 1
r'x) = / (ln (l)) dt = / (=Ingy*~'ds, x>0.
0 t 0

The substitution ¢+ — — In ¢ results in the useful alternative

The striking integral

o
I'(x) =/ *le7tdr, x> 0.
0
Clearly,
o
mn:/ e dt = [—e "I = 1.
0
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Figure 6.1. The extended Gamma function.

And also
o0
'(x+1) =/ tYe ' dt
0
o
= [t "I° +x/ et dr = xI'(x).
0

This last property is its ‘functional relationship’, which can be used to extend
the definition beyond x > 0 (we will meet a further critically important func-
tional relationship in the final chapter) by rewriting the identity as

Fo = r'x+1)
X

and so, for example, I (—%) =-2I (%). The vertical asymptote at x = 0
prevents the function being meaningful for the negative integers but otherwise
the extension is to all R (and later to C, minus those integers). Its graph is shown
in Figure 6.1.

The function begins to reveal some of its subtleties when we take x = n to
be a positive integer, since the functional relationship becomes

I'my=m—-—DHI'h—1)=m—-1Dn-2)I"(n—-2)
=mn—-1)n-2)n-3)'n-3)=---=@m-—1)!
and so the Gamma function can be thought of as an extension of the factorial
function, which is defined only for positive integers. If we allow the exclamation

mark to be used in this extended sense (rather than using I") we discover the
painful ‘factorial fact’, disbelieved by so many students, that

ol=(-D'=rd)=1.
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If we accept a standard result that

/ooe_uz du = ﬂ
0

>
we can easily develop other exotic looking things such as
JT

1 3 1,1 [ 1/2 —t * 2
- — —u
(E)!ZF(E)ZEF(§)=§/O t 7e dt:/o e dMZT

and the possibly even more striking
-W=r@)=vr.

Of course, infinitely many exact values of I can be generated in this way, but
interestingly there is no known exact value for I” (%) or " (4—1‘) or infinitely many
other values, although many are known to be transcendental.
In fact, on 13 October 1729, Euler had already proposed to Goldbach the
definition
I'(x) = lim I} (x),
r—>0o0

where

rir*

x1+x)2+x)---(r+x)

rx

D))

and for the moment this turns out to be a more useful form than the previous
two.

Itis hardly obvious that this is in fact the Gamma function, but we can recover
the original definition by establishing that in the limit the functional relationship
and boundary condition are satisfied,

Fr(x) =

Flpitl

x+Dx+2)---(x+r)x+14+7r)

r
= —xI,
X+l’+1x 7 (x)

I,(x+1) =

SO

PG+ 1) = lim 0+ 1) = lim — M) =xIx),

rooox +r—+1
which is the functional relationship and

r! r

TA+n+2) - (+r)

I3 (1)
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120 .
x!
100
80
60
40
20

0 2 3 4 5

Figure 6.2. The factorial function.

In(I"(x))
N R O

\

Figure 6.3. Plot of In(/"(x)).

SO

. . r
P = lim 1) = fim =1

and the boundary condition is indeed satisfied.

6.2 ... YET REASONABLE DEFINITIONS

This all might seem a bit contrived. Why generalize the factorial in such a
seemingly bizarre way? After all, if we think about the problem geometrically
we have the discrete factorial as in Figure 6.2 and what we want to do is to join
the dots in a useful way. However we join them, we will want an explicit formula
and if we write the extension as f(x), then certainly we want f(1) = 1 and
f(x+1) =xf(x). Do these conditions restrict us to a single way of joining up
those dots? The answer is ‘no’ but we need only one more reasonable condition
to change that answer to ‘yes’ and that condition is pointed to by a significant
result of 1922, known as the Bohr—Mollerup Theorem. If we look at the plot of
In(I"(x)) for x > 0, as shown in Figure 6.3, we see that it is always convex.
The Bohr—Mollerup Theorem tells us that, with the two conditions above and
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THE GAMMA FUNCTION

with In( f (x)) convex, f(x) must be the Gamma function—no other function
will do!

6.3 GAMMA MEETS GAMMA

Karl Weierstrass (1815-1897) rewrote the definition and by so doing brought
about the link between Gamma the number and Gamma the function,

er Inr

0D )

ex(ln r—1—1/2—1/3—~~—l/r)e(x+x/2+x/3+~~~+x/r)

(D) (3) ()

— Fnr=1=1/2—1/3—=1/r)

Fr(x) =

1 er e*/? e e

() 3) (3) (43)

o—X(1+1/241/3+-+1/r—Inr)

x/3

x/r
X

X

e* ex/Z ex/S ex/r

(3) (+3) (+3) (+3)

and so
1 . 1 X o X —x/r
= lim = xeV H 14+ —)e
I'(x) r—ooI(x) ol r

with

. 1 1 1 1 .

lim |[-+=-4+=-4+-+—-——Inr | = lim (H, —Inr) =y.

r—oo \ | 2 3 r r—00

If we take this a bit further, we have

—1nF(x)=lnx+yx+Z<ln<l+§) —é)

r=I1
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Differentiating both sides with respect to x and moving the minus sign across
gives
I (x) 1 > /1 1/r
=———-Y —+ Z _ —
I'(x) X —\r 1+x/r
1 — (1 1
= - — + - )
X 4 ; (r r+ x)

which defines the Digamma (or Psi) function ¥ (x) = I’ (x)/ " (x).
Now, evaluating this at x = 1 gives
)--

_rm (o
=T =t y+§(r rtl

and so I'’(1) = —y, and we have the geometrically appealing result that y is
numerically the gradient of the Gamma function at the point with x-coordinate 1.
If we incorporate the 1/x into the sum, we have that

(1 1
"’“):‘”;(;—rﬂ—_l)

and so

[e¢]

1 1 > (1 1 1
“’<x+1>‘“’<x>=2(;—r+x>‘2(;‘r+x—_1)=;

r=1 r=1

and we have a familiar looking recurrence relation
1
Yx+1)=vx)+ ot

familiar because we can recall the recurrence definition of the harmonic series
as

1

Hr = Hrfl + -

’
for r > 1, with H; = 1. Taking x as the non-negative integer n, using the
condition ¥ (1) = —y and chasing the recurrence relation down those integers

results in the nice relationship ¥ (n) = —y + H,—1.

6.4 COMPLEMENT AND BEAUTY

In this final section we will establish an important formula involving the Gamma
function (again originally discovered by Euler), and a beautiful and far-reaching
connection between it and the Zeta function.
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THE GAMMA FUNCTION
Using the earlier result we can write

1 1 2 e by X
- _ yX ,—YX 1 s 1—-2 x/r ,—x/r
rorn - ¢ f]( +r>< r>e ‘

r=1

but I'(1 — x) = —xI'(—x) and so

1 o
F(x)F(l—X) H( )

=1

and since we have the magical Euler formula

. x2 X2 x2
sm(ﬂx) =7Tx<] — p)(l — ?>(1 — 3—2>

we have that .
1 1 _ sin(mwx)

rxra—-xy =«

or the

Complement Formula

Ferd-x= sin(r x)

which is valid whenever x and 1 — x are not zero or negative integers. A
‘reflection formula’ for a function f(x) is one which relates f(x) to f(a — x)
for some constant a. The Complement Formula is then the reflection formula
of the Gamma function, with a = 1.

Now recall that

oo
I'(x) =/ *le7'dr forx >0
0
and make the change of variable t = ru to get
(0.¢] o0
') = / (ru)* e " r du = r"[ e du.
0 0

Hence

l — 1 /oo ux—le—ru du
r I'(x) Jo

_Ooi_ 1 - OO)c—l—ru
;m—zﬂ_mmgﬁu e du

and

r=1

1 [e¢)
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having pushed the sigma through the integral, and summing the infinite geo-
metric series results in

W= [
CO=Tn )y v T

so we get

A Beautiful Formula

x—1

du

¢ (x) =/
0

et — 1

which is valid for x ¢ {1,0, —1, —2,...}; a relationship which we will later
see has far-reaching consequences.
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CHAPTER SEVEN

Euler’s Wonderful Identity

In great mathematics there is a very high degree of unexpectedness, combined
with inevitability and economy.

G. H. Hardy (1877-1947)

7.1 THE ALL-IMPORTANT FORMULA. ..

Euler wanted to establish the divergence of the reciprocals of the primes. We
have already seen Erdos’s stylish proof of this but that will not prevent us from
revelling in the glory of Euler’s inventiveness, particularly as it brought about
a result which is the cornerstone of analytic number theory, and which we will
have considerable use of later.

The positive integers are a Unique Factorization Domain, that is, every pos-
itive integer is uniquely expressible as a product of primes (which is why 1 is
not considered prime), and from this innocent fact Euler extracted wonder by
producing the equivalent of the following arguments.

Since for any positive integer r, we can write r = 213253 ... for some
ri,ra,r3, ... €1{0,1,2,3,...} we have that
1 1 1

PX (211312573 .. )X T QXTIBXRENTS L
and forx > 1

oo
1 1
(D=3 == D soamsa

r=1 r1,r2,r3,....20

1 1 1
(Z 2”')(2 3m><2 5)
r1 20 1220 320

pg(é >= 1 (i@i)a)

pprime “a=0

1
pXO[
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Now each term is a geometric series summing to
1 1
1—1/p*  1-p>

which means that we have

’

Euler’s Formula

;(x)zzrixz ]_[ % x> 1.
r=1

1 — X
p prime p

With this result the primes, the building blocks of the integers, are inextricably
linked with the Zeta functions and through this link analytic number theory
came into being.

7.2 ... AND A HINT OF ITS USEFULNESS

We have already seen proofs of the infinity of the primes, but Euler’s result
quickly provides two more. Taking the limit as x — 1 results in

ad 1
Y=
r=

p prime
with the divergence of the harmonic series forcing the product to be infinite and
therefore so must be the number of primes.
And, with the result for ¢(2), we have

N | =

p prime

with the right-hand side rational if there were to be a finite number of primes;
since 777 is irrational (proved by Legendre in 1796) it must be that there are an
infinity of primes—once again.

Following Erdos’s proof by contradiction that

>,
p prime

is divergent, we can now taste the flavour of an Eulerian approach and also use
it to give a useful estimate of the size of

1
5
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EULER’S WONDERFUL IDENTITY

To do this, take logarithms of Euler’s identity to get

—1
gy = Y. 1n<1—p—lx> )

p prime

Now apply that most useful logarithmic series, In(1 —¢) = —f— %ZZ — %t3 -

with r = 1/p* to get

A 1 1 1
In 1—F =F+ 2sz+3p3x+4p4x+-~-

and
1
1n§(X)= - —
rlme p
- z : =
- p* 4p4x
1 1 1
=T it X ( )
p prim p prim
where
1 1 1 1 1 1
2p2x + 3p3x + 4p4x t-- < 2p2x + 2p3x + 2p4x +

1 1y
A

Now, playing see-saw with the inequality signs, p* > 2, so

11 1 1 1\ !
—<- and 1——>1—-—=- and (l—-— <|{l-= =2,
2 x 2 2

r* 14 pr*
which makes
1 1 1 1
2p2x+3p3x+4p4x+.”<ﬁ
and so
1 1 1 > 1
Y (gt tgnt) < X
2 3 4 2
p prime <2px 3px 4px pprimepx
1
SR o )
pprlme
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This means that

1
In¢(x) = Z F%—error,

p prime

where the error is less than ¢ (2). But

Ing(x) =In[(x — 1D (x)] +1In

X —

and so

1 1
In[(x — 1)¢(x)] + In = E — + error.
x—1 ~  p*
p prime

Recalling the result from pp. 43—44 we have that, for all x > 1,

1 1
Z — —n + bounded error.
p* x—1

p prime

Now let x — 1 and we have the divergence.
We can estimate the rate of divergence by saying that for large n,

1 1
Hl_p_IRZ;%lnn

p<n r<n

and taking logs gives
— Z In(1 — p~" ~Inlnn,
p<n

which means that
1 1
— E (————2—--~) ~Inlnn

and so

Z l ~ Inlnn.

p<n

The reciprocals of the primes diverge as an approximate double In. A more
careful (and rigorous) argument shows that

ngngo<Z%—lnlnn>=y+ Z (ln(l—%)+%>

p<n p prime

=0.2614972128...

with another reappearance of y and an appearance of one of the Meissel—
Mertens constants.
Later, we will have considerably more work for Euler’s formula to do.
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A Promise Fulfilled

The good Christian should beware of mathematicians, and all those who make
empty prophesies. The danger already exists that the mathematicians have made
a covenant with the devil to darken the spirit and to confine man in the bonds
of Hell.

St Augustine (354-430)!

Earlier we mentioned the barely credible result that the probability of two ran-
domly chosen integers being co-prime is 1:%7‘[2. With Euler’s formula, com-
bined with several other mathematical tools listed below, we are able to prove
the fact; but first those tools.

(1) In set theory, the symbols N and U (respectively, the intersection and
union of sets) are defined to be the set of all elements common to both
and contained in either or both, respectively. These ‘binary’ operations on
sets give rise to an algebra, known as ‘Boolean algebra’, named after the
English mathematician George Boole (1815-1864), from which we need
only the distributive law AN (BUC) = (AN B)U(ANC). (Incidentally,
the reader in search of greater challenge than this book can offer might
wish to consult G. Spencer-Brown’s 1969 publication Laws of Form, in
which he develops an arithmetic for Boolean algebra.)

If n(A) is taken to mean the number of elements in the set A, we can

easily see that n(A U B) = n(A) + n(B) — n(A N B) and, using the

distributive law, that

n(AUBUC) =n(AU(BUCQC))
=n(A)+n(BUC) —n(AN(BUCQC))
=n(A)+n(B)+n(C)—n(BNC)—n((ANB)YU(ANC(C))
=n(A)+n(B)+n(C)—n(BNC)—n(ANB)—n(ANC)
+n(ANBNC).

1 Here, ‘mathematician’ means ‘astrologer’.
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1.0
» W
0.6 %
0.4
0.2
0 2 4 6 8 10

X

Figure 8.1. The Floor function compared with x.

Using induction or otherwise, it is easy to prove that the pattern of ‘one at
a time minus two at a time plus three at a time minus four at a time, etc.’ con-
tinues to any number of sets. This result is often called the inclusion—exclusion
principle.

(2) Anequivalent result. The expression (1 —x1)(1 —x2)(1 —x3)(1 —x4) - - -
when expanded takes the form

= +x2+x3+x4+-0) + (x2 +x2x3 + X354 + -+ +)
— (X1X2X3 + X2X3X4 + X1X2X4 + -+ ) + -+,

where the brackets contain the sums of the x taken one at a time, two at
a time, three at a time, etc., and the signs between them alternate.

(3) The modern form of the Greatest Integer function, [ - ], are the Floor and
Ceiling functions, succeeded in name and notation in the 1960s when
Kenneth E. Iverson introduced them. The definitions are, respectively,

Lx | is the greatest integer < x and [x] is the smallest integer > x.

If N and n are positive integers with n < N and the sequence 1n, 2n, 3n, ...,
xn stops where x is the biggest multiple such that xn < N, then x = |[N/n].
This means that there are | N /n| numbers up to and including N that have n as
a divisor. We will use this fact on several occasions throughout the book, and
with Erdos’s proof on p. 29 have already done so.

Also notice that [x | = x — « for 0 < a < 1, which means that, as x — o0,

b,

X

1

but in a rather complicated way, as we can see from its appealing graph in
Figure 8.1.
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Now we are ready for the proof.
Consider the set of all primes P = {p1, p2, p3, ..., Pr} less than a positive

integer N, then there are
>[5l
P LP1
of the N numbers that are divisible by at least one of the primes. Similarly,
there are
2]
> LP1DP2

of them divisible by at least two of the primes, etc. Now consider the N2 pairs
of integers, each of which is at most N, | N/pj |? of them share p; as a divisor,

etC., and SO
Z N
P

P1

of them share a single prime as a divisor. Similarly,

il

pip2

of them share two primes as divisors, etc. The problem is that in doing this we
have to multiply counted numbers: if a number is divisible by three primes, it
is divisible by any two or one of them, which is where the inclusion—exclusion
theorem comes in. Referring to the letters of its statement, if we write A for
the set of pairs sharing a single prime factor, B for the set sharing two prime
factors, etc., the inclusion—exclusion principle gives

Tl RN R

P1 pip2 pip2p3

where [Ty is the number of co-prime pairs.
Put the other way around

My = N? —XP: {%JQJFZ mezJ XP: {pmsz

I ot st o
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Now we are going to let N — o0. Using result (3) we have that

. 1 {NJ 1
lim —| — | =—
N—oo N | p1 P1
and so on for each term. With this and result (2), we have the probability that
any two positive integers are co-prime is
1 1 1
R D Dy
2 2.2 2.2.2
p Pi p P1P2 p P1P2P3
1 11 111
=1-2_— 2t
2 2 .2 2.2 2
P p] P p] p2 P pl p2 p3
1

1

) ( : )(1—1;7;2)(1—;7;2

1—p1_2

1 —_—
)___—,;@)’

which establishes the result.
Using the Beautiful Formula from p. 60 with x = 2 we get

< u 1.2 1.2
/0 T du=¢QIr'Q)=gn-xl=¢n

s0, the probability that two integers are co-prime is also
(o)
u
1: / du.
0 et — 1

How is this possible? You may very well ask!
Itis also true that the probability that k randomly chosen integers are co-prime

is 1:¢ (k), but that we will not prove!
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What Is Gamma . .. Exactly?

Constants don’t vary—unless they’re parameters.

Anon.

9.1 GammMma ExisTs

We have pretty convincing evidence that the constant y exists, but no precise
proof. Euler did not live in an age of great mathematical rigour and he assuredly
was not given to spending his days trying to prove what seemed to him to be
intuitively obvious: such thoroughness was to be the stuff of the 19th century.
In the 21st, we would be uncomfortable without the security of knowledge that
y really does exist and so we will deal with that matter now.

Given that y does exist, perhaps the first thing to notice is that we seem to
have two definitions of it, one featuring Inn and the other In(n + 1). In fact,
they are equivalent and it is more generally the case that

1 1 1 1
lim (- 4+=-+=-+--+—-——In(n+ )
n—»oo\1 2 3 n

is independent of & > —n, which is easy to see:

1
lim (—+—+—+~-~+——ln(n+a))
n—00 3 n
. 1 1 1 1
=lm|(|(-4+-+-+---+—-——Inn—In(n+a)+Inn
n—soo\1 2 3 n
im (Lt e o (148
=lim(|(-+-4+-4+---+——Inn—In —
n—»oo\1 2 3 n " n
=1 1+1+1+ +1 1
Tatee\1 T2 T3 T A

Unsurprisingly, establishing the existence of y has attracted many proofs and
we have chosen one that follows C. W. Barnes of the University of Mississippi.
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It is not the shortest but it is elegant, gives an equality for the Euler definition
of e, and again makes use of the value of ¢ (2).
We need two very reasonable principles.

(i) For a continuous function f(x),
b
/ f(x)dx = (b —a)f(E) forsomeé € [a,b].

(i) An increasing sequence of real numbers that is bounded above must
approach a limit.

The first of these principles (often known as the first mean value theorem for
integration) simply says that the area under the continuous curve f(x) over the
interval [a, b] is equal to the area of the rectangle based over the same interval
with height determined by some value within that interval, as suggested in
Figure 9.1.

The second is a standard (and again reasonable) result of real analysis, relying
on the completeness of R.

So, we can start. Using the mean value theorem, we have on the one hand,

1/n 1 1 1 1 1
Inxdx={-— Incy, =—In¢,, —— <c¢p < -—.
1/n+1 n n+1 nn+1) n—+1 n

On the other hand, if we use the world’s most devious integration trick and
integrate In x by parts we have

1/n 1/n 1n
/ lnxdx:/ lxlnxdx:[xlnx—x]l/nH
1/n+1 1/n+1

1 1 1 1 1 1
= —ln——— —_ ln —
n n n n+1 n+1 n+1

_ 11 1 1 InG 4+ 1) 1
o nnn n n+1nn n—+1

Yo+ = Ly —— !
= n — —In —_ -
n—+1 " n " n+1 n
1
-l 1) — Dlnn) — ———
n(n+1)(n nn+1)—(n+1)lnn) YA
1 (n+1)" 1

"+ A+ D)

. 1 i (n+1)”_1
o n(n—l—l)(n nntl )

Equating the two forms we get

1 1 (n+1)"
— lne, = In —1),
nn+1) nn+1) nhtl
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\

a g b

Figure 9.1. The first mean value theorem for integration.

which means that

(n+1)" (n+1)"
lncn:lnw—l or an—lncnzl

and

(n + 1)n/nn+l

In——— =1
Cn

and this means that

(l’l + l)n/nn-H

Cn n
So,
n* 1 1V 1
e:m— and e=<1+—>
n" ncy n/) ncy
for any positive integer .
Since
1 1
<cp < —, n<—<n+1
n—+1 n Cn

and so |

1 < <14+ -

ney, n
and if we write |
a, =
ney

we have that

1Y 1
e:an<1+—>, l<a, <1+ — forneN.
n n

This is the equality for e that we mentioned earlier.
If we take the limit,

1
Iim 1< lim a, < lim (1 +—>,
n— 00 n—o00 n—o0 n
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which makes lim,,_, o0 @, = 1, we recover the Euler definition

Y Y
e = lim an<1+—> = lim <1+—).
n—0o00 n n—0o0 n

Now change 7 to r and take logarithms of both sides of

1 r
e:a,<1+—)
-

1 r+1
l1=Ina, +rIln{1+4+ - ) =Ina, +rln
r r

1 1 r+1
- =—-Ina, +1n .
roor r

to get

and

Summing gives

Xn:lzillna,+iln<r+l)
r:lr r:lr r=1 r

n 1 n
= z;lnar +) (n(+1)—Inr)
r=

r=1
n 1
= Z-lna, +In(n+1)
p
r=1

and so
n n

1 1
——In(n+1) = —Ina,.
Since each of the a, > 1, the above is an increasing sequence as a function
of n; we now show that it is bounded above.
Since 1 <a, <1+ 1/n,
il In(n + 1) illna <illn<l+l>
- — _ , Z i
r=1 r r=1 r r=1 r r

It is geometrically clear that In(1 4+ x) < x for x > 0 and so

1 1
In{1+-) <-
r r
n n 2

1 1 T
Z 1 1 -
;r n(n+)<;r2< 6

and we have the promised re-emergence of ¢(2).

and
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So, the left-hand side is bounded above as well as increasing and it therefore
tends to a limit: recalling the earlier observation that

=1l 1+1+1+ +l In(n + o)
y = lim 1 t5t3 . nn+a)l,

put ¢ = 1 and we are finished.

9.2 GaMMA Is... WHAT NUMBER?

Now we know that y exists, it is not unreasonable to ask for its value and since
its exact nature remains one of its mysteries, we are bound to concentrate on
approximations. We have already seen on pp. 47 and 48 that it lies between 0
and 1 and looks likely to be around 0.5.

To find a decimal expression for y we could simply evaluate y,, = H, —Inn
for increasing values of n, but the convergence is extremely slow; for example,
y100 = 0.582207331 65153 ..., which is accurate only to one decimal place,
and y1000000 = 0.577216164901481 ... is accurate only to five decimal
places. With each component equally reluctantly diverging to infinity, it seems
a shame that they combine to an equally reluctant convergence. The reason is
exposed by the inequality

1 1
—2(n+1) <y,,—y<ﬂ, n €N,
Assuming that this is true, if we want an accuracy of m decimal places, we
require ¥, — y < 5 x 107"~ ! and so

1
— <5x 107",
2}1 < X

which means that n > 10™, and the strict inequality is needed, since

1 1 - Nt ]
J— > - = — — > — —_ =
Yn =V 2n+1) 2n n 2n n

and if n = 10™,

Lo, 5 (1
RN S PURNE N W Y SRR
Yn =V = o 1o 107 ) = 1om+ 10

5 10" —1 _4 55 10~ +D
= 1o\ o) = .99999999999 5 x )

(m—1) times

which guarantees that the approximation is incorrect in the mth decimal place.
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==

=
+

n n+l <+« N-1 N

Figure 9.2. The upper bound.

Having used the inequality, we give R. M. Young’s proof of it, which uses the
technique we adopted on p. 43 to describe the behaviour of the Zeta function
as x — 17 Referring to Figure 9.2,

N
Z shaded areas touching the curve

e )
| )

/n+21 1 )
—dx —
n+l X n+2

Now let N — oo and we have, by definition,

o0
Zshaded areas = —y +yYn = Vn — V.

n

If we now horizontally translate the shaded regions so that they all lie in the
first rectangle between n and n 4 1, we see that each region has an area less
than one-half of the rectangle enclosing it (owing to the concavity of 1/x) and
so the total area of all of the regions is less than one-half of the area of the first
rectangle, which is clearly 1/n, which means that

1

—y < —.
Yn—VY n
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m m+1 m+2

Figure 9.3. The lower bound.

To achieve the lower bound, embed a right-angled triangle in each region as
shown in Figure 9.3, where the hypotenuse is the continuation of the hypotenuse
of the circumscribed triangle to the right. The shaded triangle and the circum-
scribed one used to define it are clearly congruent and since the area of the latter

is
1 1 1

2 <m +1 m+ 2)’
summing these gives

[e¢]

1 & 1 1 1
—y = haded = - = .
Yn =V Zs ade areas>2r;l<m+1 m+2) St D)

n

And so we have !

m<)/n—)/<—

as required.

9.3 A SURPRISINGLY GOOD IMPROVEMENT

The above bound relates to the In n form of the definition of y and even though
in the limit we have seen that

1 1 1 1
y=Ilm|-+-4+=-4+--+—-—In(n+ ) for any o > —n,
1 2 3 n

we might expect the choice of « to influence the approximations for finite values
of n, and so it does, as we can see if we construct an error function ¢, (), defined
by

1 1 1 1
en(a)zT—i—z—l—g—}—-u—i—;—ln(n—i—a)—y, nzl1l, «a>-—n,

where y can be represented in decimal form to any degree of accuracy using
its original definition (given we have the patience and calculating accuracy
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0.04 0.004
0.02 0.002
0 0
02 04 V6 08 1.0 02 04 6 08 1.0
~0.02 —0.002
—0.04 —0.004
(@) (b)
—6
0.00004 4x10
0.00002 2% 1070
0 0
02 04 & 08 1.0 02 04 6 08 1.0
-0.00002 2 % 10-6
—-0.00004
—4 %1070
(©) (d)

Figure 9.4. The error function near its zero. (a) n = 10, zero is 0.503 962 732 569 747;
(b)yn = 100, zerois 0.500414 587 370 329; (c)n = 10000, zero is 0.500 004 166 069 63;
(d) n = 100000, zero is 0.500 000401 909 347.

needed). Of course, for all «, &, () — 0 as n — oo, but it is interesting (and
surprising) to look at the function for fixed n as « varies.
If we differentiate with respect to o, we get

de, (@) 1
de ~ n+a
and so the function will forever (but diminishingly) decrease from 400 at its
vertical asymptote at @ = —n, to —00 as « increases, making its zero unique.

Figure 9.4 concentrates on the interval 0 < o < 1 and over this small interval
inevitably give a false impression of linearity but the eye is drawn to the zero
at a value of « ever closer to 0.5.

If we take the strong hint provided by these plots, we would reasonably take
o= % if we wish to minimize the error for any n and so consider the form of
the definition as

. 1 1 1 1 1 .
y=nli>nc}o(T+§+§+“.+;_ln<n+§>> —nlglgopn.
Recall that, with @ = 0, y109 is accurate only to one decimal place and y1 900 000
only to five decimal places; now, with ¢ = %, o100 = 0.577219790 14049 and
01000000 = 0.577215664 900631, and these are accurate to five and eleven

decimal places, respectively.
The explanation for this huge improvement is that
1 1
2+ 12 TV T a2
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and we give Duane W. DeTemple’s proof of the result:

pn = Pn+1 = Hy —In(n + %) = Hy1 +1In(n + 3)

1 1 3
=—n+1 —In(n + 3) +In(n + 3).

Define the function

f(x)=—xlj—ln(x+%)+ln(x+%), x>0,
1 1
/ — _ +
T x+3 @+3)
1 1 X242 43— (14 2x +x?)
T+ Gt bhe+d T AE02a+he+d)

= la+ D2+ D Ma+ D!

andsince (x + D' <+ D <+ DL -0 < fx+ H7H
As f(00) =0,

Fk) = —foo Flo0dx < 1/Oo(x + 1) td
k 4 Ji
= —pla+ D7 = 5k + 7.

Since (k+1)% > k(k+1), (k+1)* > K2(k+1)%and (k+3)™* < 1/ (k2 (k+1)?)
and so

1\-3 1 1

L 2%k+1 171 1
T2k2k+ 12 2\k2 (k4 1)?
k+1
=/ x_3dx,
k

00
Pn—Y = Z (o — Pr+1)

k=n
> 1l — 1 [
_ 1 1,-3 _ 1 -3
_Zf(k)<122(k+2) <3 j x7dx
k=n k=n
_ 1
T 2402’

And we have the inequality one way around.
The other half is found in the following way.
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Since x + Dx+3) =x+2x+2 <+ DL+ H e+ >

(x+ D 2andso —f'(x) > $(x + D7
As before,

fk) = —/oof/(x)dx > lfoo(x+1)—4dx
k 4 Ji
= -5l + DR =Sk + D72
So,

oo
pn=v =Y (k= Prs1)

k=n
> 1 = 1 [
_ o -3 o -3
=> fk) > lzZ(kH) > 12/n+1x dx
k=n k=n
3 1
T 24+ 12

And we are done.

Again, if we wanted an accuracy of m decimal places, we require p, — y <
5x 1071 and so

10m+1

—— <5x107" and n> ~ 0.288 675 x 10™/2.

24n2 5% 24

Again, the strict inequality is needed, since

1 L, N 1\ 2 L2
e _ LA _2
P = S+ 12 24n2 7 24n? -
and so, if n = /10m+1 /(5 x 24),
5 x 24 ( 2120

> 24 % 10m+1 - 10(m+1)/2

on—V ) =4.999999999 45...x 10~ "+D,

(m—1) times

which again guarantees that the approximation is incorrect in the mth decimal
place.

9.4 THE GERM OF A GREAT IDEA

Stretching the properties of &~ perhaps a little too much, we can rewrite the

statement 1 1
Vn:Hn_lnn%§+E = y=05
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as
1 1
— Yy X~ — or Xy, — —,
Yn—VY n Y = Vn n

which for n = 1000 gives y =~ 0.577 215581568 204 . . ., which is accurate to
six decimal places, and forn = 1 000 000 gives y ~ 0.577215664 901481 ...,
which is accurate to twelve decimal places; it may not be rigorous but we are
on the right track in approximating y ! Actually, this is the first of a series of
approximations, which continue mysteriously as

1 1 1 1 1 1
20 T 1202 T 120n% T 25206 24008 T T 1oam

YN Vn—

the mystery deepening with the knowledge that the term involving n'? has —691
on the top and 32 760 on the bottom.
In fact, the approximation may be written more fully as

1 By 1
iR D e

r=

which is a special case of the Euler—Maclaurin summation formula, where By,
are known as the Bernoulli Numbers—both of which we will look at next.
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CHAPTER TEN

Gamma as a Decimal

A mathematician is a blind man in a dark room looking for a black cat which
isn’t there.

Charles Darwin (1809-1882)

10.1 BERNOULLI NUMBERS

Our earlier focus on the Zeta series has meant that, in terms of the summation
of series, we have in a way started on the second rung of the ladder, with the
first occupied by the family 1% 4 2% 4 3%k 4 ... 4 »* for k € N. In 1784,
at the age of seven, Gauss had famously summed the integers from 1 to 100
in seconds (to the amazement of his teacher) when he noticed that the series
could be thought of as 50 pairs of numbers each summing to 101; of course,
the young genius could not have known that the ancient Greeks, Hindus and
Arabs each had rules which amounted to the sum for £k < 4, nor would he
have been aware of the work of Johann Faulhaber (1580-1635). Known in his
time as ‘The Great Arithmetician (or weaver) of Ulm’, Faulhaber was indeed
trained as a weaver but his mathematical prowess brought his appointment as
the city’s mathematician and surveyor, who designed waterwheels, fortifications
and surveying instruments and who associated and collaborated with the likes
of Kepler, Descartes and Napier; he also prepared the first German publication
of Briggs’s logarithms. In fact, he was a ‘Cossist’ more than an ‘Arithmetician’,
whose 1631 publication Academiae Algebrae contained not only the sums up
to k = 17 but also the important observation that

LD S S a polynomial in n(n +'1)' k odd,
(2n 4+ 1) x apolynomial inn(n + 1) k& even.
(The term Cossist derives from the Italian word ‘cosa’, meaning ‘thing’; the
mathematicians of the time used the word to represent an unknown quantity, we
would use the word ‘algebraist’.) In 1636 Fermat had need of an answer as he
calculated such sums in his development of the quadrature of f (x) = x*, prior
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to Newton’s calculus. He found a recurrence relation relating the sum for k with
the sums for k — 1, k — 2, ..., which was ingenious but soon intractable and,
although improved on in 1654 by Blaise Pascal (1623-1662), the problem had
to wait until the next century to be solved by one of its greatest mathematical
names.

The first few expressions can be written:

14+2+3+--+n=4n@n+1),
P+22 43+ +n? = Qn+ Dinn+1),
P+22 43+ 40’ = Lt + D,
420430+t = Qn+ Dagn(n 4+ DB + 1) — 1],

which reveals nothing more than Faulhaber’s observation and the very pretty
relationship

P42 4374 nP =1 +2+43++n)

It was Jacob Bernoulli who solved the problem and the solution was announced
to the world in his famous treatise Ars Conjectandi, posthumously published
in 1713. In listing the results to k = 10, Bernoulli described the pattern that
mattered; somewhat generously inferring that others might also have the same
powers of insight, he wrote (without proof):

Whoever will examine the series as to their regularity may be able
to continue the table. Taking c to be the power of any exponent or

1
/nc)o n lnc+1 + %nc + %CA}'IC_I
c

cc—le—-2 5 cc—lc—2.c—3.c—4 _ s
—— Bn + Cn
234 23456
cc—lec—2.c-3.c—4c—5¢c—-6 _ .4
+ Dn"",
2.3.45.6.7.8

and so on, the exponents of continually decreasing by 2 until n
or nn is reached. The capital letters A, B, C, D denote in order
the coefficients of the last terms in the expressions for [ nn, [ n*,
fnﬁ, fng, etc., namely, A is equal to 1/6, B is equal to —1/30, C
is equal to 1/42, D is equal to —1/30.

These coefficients are such that each one completes the others in
the same expression to unity. Thus D must have the value —1/30
because

i+ -L+i+(+D) -5 =1

o~
N[—
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With the help of this table it took me less than half of a quarter
of an hour to find that the tenth powers of the first 1000 numbers
being added together will yield the sum

91409924 241424 243 424 241 924 242 500.

From this it will become clear how useless was the work of Ismael
Bullialdus spent on the compilation of his voluminous Arithmetica
Infinitorum in which he did nothing more than compute with im-
mense labour the sums of the first six powers, which is only a part
of what we have accomplished in the space of a single page.

The withering comment regarded the prodigious efforts of Ismael Bullialdus
(1605-1694), who needed a six-volume opus to achieve the result for the first
six powers. Notice the use of the ‘backwards proportional sign’ for ‘=", of nn
for n?, of what is now the integral sign for summation (Euler’s influence had
yet to take affect), of a dot for multiplication and the implied brackets in the
expressions involving c. Incidentally, he erroneously gave the coefficient of 1>
fork =9 as —% rather than its correct value of —%. In identifying what he
called A, B, C, D, ... Bernoulli had isolated the numbers in the expansion
which are independent of the power and if we begin to list them all, including
those which are zero, we have the appropriately named (by Euler) Bernoulli
Numbers By, Bj, Ba, ...

1 1 1 1 5

1
L oz = 0 —-—=, 0 = 0 -=, 0 —
26 0 30 0 42 0 30 0 66

0,

with a pattern anything but transparent. The next term is 691/2730 and, to
emphasize the point, the sequence continues

7 3617 43867
6’ 510" 798

In more modern guise, and using the standard notation

ny n!

for the binomial coefficients, Bernoulli was really saying that

1o L2\, o (2
14243+ +n=3n -|-§n=E 0 Bon” + lBln,

PP+22 43+ n?=1nd + In + in

-0 e o),

83



CHAPTER 10

P23 43+ =tn + 10 + In?

(O (o
#(5)mn+ (5) 3n).

P2t 43t ot = It e -

(o (o (o
Qo ()

Although the Bernoulli Numbers lack an obvious pattern, they do possess a
recursive definition, which Bernoulli announced through his computation of
D. His explanation related to the expansion for k = 8, which he gave as

8 8 8 8 1 9 1 8 2 7 7 5 2 3 1
1+2+3+-~+n_9n+2n+3n 1Sn+9 0™
Noting that for n = 1 both sides must be 1, it is possible to solve for any
one of the numbers in terms of the others and this he did for his D, using for
us a slightly strange algebraic form. Every odd-numbered Bernoulli Number
(other than the first) is 0 and of course every even one can be found from the
recurrence relation, albeit tediously. There are plenty of alternative ways of
generating them and they appear as part of the coefficients of any number of

expansions, for example
X

e —1

(given by Euler), and they can be efficiently generated in terms of what are
known as ‘tangent numbers’ but no one would describe them as cooperative.
Euler computed them up to B3g, in 1840 Ohm extended this to Be; and the fol-
lowing year Adams computed them to Bjo4—the numerator of which has 110
digits (contrasting with the denominator, which is simply the number 30). The
calculations cry out for the computational aids that we now take for granted,
an application of computers that was presaged in 1843 by Augusta Ada King,
Countess Lovelace (and daughter of Lord Byron), who suggested to Charles
Babbage that he produce a ‘plan’ for their calculation, using his Analytical
Engine. Later, in her annotated translation of a publication of one Luigi Fed-
erico Menabrea (one time Professor of Mechanics at Turin and later the Italian
premier) dealing with ideas relating to the Analytical Engine, she described
several such ‘plans’, which might be considered to be the earliest recorded
computer programs for a device which she romantically posited ‘weaves alge-
braic patterns, just as the Jacquard-loom weaves flowers and leaves’.
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With Fermat’s Last Theorem finally laid to rest, it is of no more (and no less)
than historic interest that the Bernoulli Numbers have played their role in its
attempted resolution. In 1850 Ernst Kummer (1810-1893) proved the theorem
for all powers which were ‘regular’ primes, with the definition of ‘regular’ the
elegant ‘a prime p is regular if and only if it does not divide the numerator
of By, B4, Bg, ..., Bp_3’. It is known that the number of irregular primes is
infinite but unfortunately whether the same is true for regular primes is unknown
(the first irregular prime is 37 since B3, = —208 360 028 141 x 37/510).

10.2 EULER-MACLAURIN SUMMATION

We have noted that
_ 1 1 1 1 i
e

can be thought of as the difference between the sum and the integral of the
function f(x) = 1/x, in that

A 1
7/=n1ggo<T+§+§+~-~+;—lnn>

"1 "1
= lim (Z-—/ —dx)
n— 00 k 1 X
k=1
n n
= lim_ (Zf(k)— /1 f(x)dx>
k=1
and if we relegate y to secondary importance we could write
n
1 "1
S ey
k=1 X
and so
S
-~ —dx +y.
=1 k 1 X

With this emphasis we are approximating a sum by an integral and even though
integration can be tough it can also be significantly easier than summation: we
may be on to a good idea here. We are, but in developing the initiative Euler
and Colin Maclaurin (1698—1746) have beaten us by the best part of 300 years,
producing what has become known as the Euler—-Maclaurin summation formula.
We will not prove it but we will use it for our purposes, and it has wide application
in many areas of mathematics, perhaps most of all in numerical analysis, analytic
number theory and the general theory of asymptotic expansions. In 1736 Euler
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had developed both the simplest form of the formula and, later in the year, the
general form, quite independently of Maclaurin, who had published it in his
Treatise of Fluxions of 1742. In one of its general forms it states

> rh) = /1 Fedx+ LFD) + F)
k=1
— Bok o1, ke
+k§(2k)!(f () — f2*71D) + Ru(f.m),

2
R, (f,m) < W

/n |2 ()| dx,
1

where the By are, of course, the Bernoulli Numbers and the (2k — 1)th ‘powers’
of the function are in fact the (2k — 1)th derivatives of it. Use of the expansion
can be subtle and here is a case when neglect of the remainder term (R, (f, m))
can be perilous since for most functions that appear in applications the series
diverges; fortunately, it is usual that not many terms are needed to achieve
good accuracy and so the approximations provided by the series are generally
excellent. This fact troubled Euler and it was left to Siméon Poisson (1781—
1840) in 1823 to pay serious attention to the remainder term.

10.3 Two EXAMPLES

1. As a first move, we can gain some confidence by showing that the Euler—
Maclaurin formula gives the result we would expect for f(x) = x3. The deriva-
tives are, of course, f'(x) = 3x2, f”(x) = 6x and f"'(x) = 6; the remaining
derivatives are zero and so the error term is zero too:

. 3 " 3 1,13 3 By 2 2 By
dYok=[ Xdx+ia +n) + 5 Gn? =3 x 1) + 16 - 6)

=t o1l L3 T l@n? —3)

= %n‘l + %n3 + %nz = (%n(n + 1))2.

2. As a second application of the formula, we will look at a justly famous (if
misnamed) result for approximating n! for large n. This time take f(x) = Inx
to get

/ 1 " 1
== f'x=-=.
X X
" 2 (n) n—1
fro==, -, [fP)=(=D

(n—1)!
x3’ ’

xl’l
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This time we will suppress the error term to get

n n

Zlnk :/ Inxdx + %(lnl + Inn)
1

k=1

+Bz 1 1 +B4 2 2 +BG 24 24 n
20\n 1 M \nd 13 6! \n> 19 '

Using standard properties of logarithms on the left-hand side and that meanest
integration-by-parts trick, on the right-hand side (writing Inx = 1 x Inx) we
get

Inn!=nl + L+ N

nn!=nlnn—n+-lnn+ — — —_—

2 120 360n° 126005 "

where C,, is the constant to this number of terms. Now exponentiate both sides
to get

1 1 1
| — pltp™0 Cy - [ .
nl=n'e™ /et exp (lZn 36003 1260m5 T )

Using the Taylor expansion of e* then gives (which the reader can check!)

1 1 139
!: n_-—n Cn 1 I _
ni=nlene ( 20 T 28802 T 518400
571 163 879 )

T 2488320n% T 2090188805 |

which could be an excellent approximation to n!, if only we knew the asymptotic
value of ¢, given that the limit exists. The series is the well-known *Stirling
approximation’, which James Stirling (1692—1770) published to the first eight
terms in his most important work Methodus Differentialis of 1730. In fact, his
interest was in the logarithms of factorials and he left the series in its logarithmic
form, computing log;, 1000! to 10 decimal places, using an approximation for
the constant. In the same year Abraham de Moivre (1667-1754) published
Miscellanea Analytica, which, apart from anything else, contained his own
(later to be corrected) table of logarithms, his own form of the approximation
and a proof of the constant’s existence. It would be some years before Stirling
would be able to find the constant in exact form and in doing so found it to be

e — /27 and the series is then
n—oo

1 1 139
! — n_—n 2 1 . _
e o ””( 2 T 28802 T S1840n0

571 n 163879 n
2488320n* 209018 880n°
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Here is a case when the error term does misbehave, since for any fixed n it
decreases as we take more terms to a point when it starts to increase; fortunately,
with m fixed, as n increases the error term does tend to zero and we obtain ever
better approximations to n!.

We will need Stirling’s approximation several times and while it is handy, we
can sensibly mention another constant that in a way arises from it and which
we will also mention again later. We can rewrite the first-order approximation
as

n! —
nht+1/2o—n ~ V2,
meaning that
n'
lim ——— = +2m.

n—oo ph+1/2¢—n
Replacing n! by some other asymptotically large quantity and dividing by an
appropriate expression can lead to a constant other than /2. In particular, the
nice 00112233 ... n" and f(n) = i 1241/241/12 =02 /4 combine so that
00112233 /)
im ——— Ty,

n—oe f(n)

the Glaisher—Kinkelin constant, which is about 1.28242713....
Exotic it may be, but useful it is too—as we will see!

10.4 THE IMPLICATIONS FOR GAMMA

If we apply the Euler—-Maclaurin formula to f(x) = 1/x, we get

’ 1 " 2
f(x):—ﬁ, f (x)ZF’
W _ 3x2 ) _ o r
f (x)__ x4 ) R} f (x)_(_)xr+1

This means that

Z ( )2/( 1@ ( 1)2]{ 1(2k 1)'>
2 n

1/1 1 " B 1
=1 | -+- —\1 - — R, (f, m),
nn+2<1+n)+k2_;2k< n2k>+ o (f,m)
with the factorial cancelling and the odd power of —1 replaced by —1 itself.
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But
"1
y:nlggo<z%—hln)
k=1
1 " By
=§ ZE Roo(f, m)
k=1
and so
n
1 1 B 1
];; 1nn+y+2——Z % 2+ (Ru(fym) — Roo(f. m)

and looking at the first few terms (and ignoring the error term) we have

n

1 1 1 1
- =1 — —

];k Y T T T 120n% T 25am6 T

and we have
n
1 1 1 1 1

L N |

4 Zk M T T2 T 120n% T 250m6 T

k=1

And here is the generalization of the series for y that has been suggested on
p. 79. Euler used the series up to the term 1/12n'% and with n = 10, Hjp =
2.928968253 9682539 and In 10 = 2.302 585 092 994 045 684 to compute y
to those 16 decimal places 0.577 215664901 5325....

Of course, the desire to extend the accuracy of the estimate was great and,
in 1790, the Italian geometer Lorenzo Mascheroni (1750-1800) published in
Adnotationes ad calculum integrale Euleri an approximation of y to 32 decimal
places, which he had calculated in a similar way; the estimate then became
0.577215664 901532860618 1. ... This was all well and good until 1809,
when Johann von Soldner (1766—1833) used his

X

1
Li(x) = —dx
1
2 nx

function (which will engage our attention later) to give the value
0.577215 664901 532 8606065 .. .,

which differs in that underlined 20th decimal place (and after). The matter
was resolved (but the confusion not removed) when, in 1812, the inimitable
Gauss prevailed on the 19-year-old calculating prodigy F. G. B. Nicolai (1793—
1846) to check the results. This he did, using the Euler—-Maclaurin summation
formula with n = 50 and recalculating with n = 100 to evaluate y to 40
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decimal places—and finding agreement with Soldner. In spite of this, both val-
ues were in circulation (and even appeared together in one publication), which
led subsequent indefatigable calculators (again using Euler—-Maclaurin sum-
mation) independently to provide their own confirmation of Soldner’s estimate.
Mascheroni’s permanent contribution to y’s story (apart from making a mistake
that led to at least eight subsequent recalculations of the number) was to name it
y (we have seen that Euler originally used C, and O and A have also been used).
By such serendipity, its full accepted name is the Euler—Mascheroni constant.
(A more distinguished legacy of Mascheroni is his result that any geometric
construction that is possible with straight edge and compass can be achieved
with a compass alone.)

Inevitably, things have moved on since then: in 1962 Donald Knuth took 250
terms of the Euler—Maclaurin series, with n = 10000 to compute y to 1271
decimal places and in 1997 Thomas Papanikolaou computed it to 1 000 000
decimal places (the one millionth digit is 9) and in 1999 it was calculated
to 108 000 000 decimal places by P. Demichel and X. Gourdon! At the time
of the paperback printing, the latest approximation is to 10'° decimal places,
recorded on 30 June 2008 by Shigeru Kondo and Steve Pagliarulo. Of course,
such accuracy is far beyond anything that can conceivably prove ‘useful’, but
that is not the point, an observation made in 1915 by James Glaisher (1848—
1928) when he expressed the view:

No doubt the desire to obtain the values of these quantities to a
great many figures is also partly due to the fact that most of them
are interesting in themselves; for e, w, ¥, In2, and many other
numerical quantities occupy a curious and some of them almost a
mysterious, place in mathematics, so that there is a natural tendency
to do what can be done towards their precise determination.
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Gamma as a Fraction

A man is like a fraction whose numerator is what he is and whose denominator
is what he thinks of himself. The larger the denominator the smaller the fraction.

Count Lev Nikolaevich Tolstoy (1828-1910)

11.1 A MYSTERY

Itis a simple matter of arithmetic to use the decimal approximations of a number
to generate fractional approximations of it. For example,

y = 0.577215 664901 5328606065 ...

results in the approximations:
5 57 577 5772 57721 1 57 577 2881 57721
10° 100’ 1000° 10000° 100000° 2’ 100" 1000° 5000 100000" """~

Yet, compare the accuracy of the approximations with the mysterious sequence

34 11 15 71 228 3035

And what about. gg;ggg? These perplexing numbers are progressi.vely more
accurate approximations to y and better than any comparable fraction arising
as above. If we do want to approximate y by fractions, we would do well to

look to them. The question is, where do they come from?

11.2 A CHALLENGE

Fermat was given to posing number-theoretic problems. The most famous of
them is his ‘Last Theorem’ (so called because it is the last of his assertions to
succumb to proof), but there were numerous others. Euler disposed of many of
them and one in particular was partly solved by him in 1759 and completed by
Joseph-Louis Lagrange (1736-1813) in 1768. It was half of a challenge thrown
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to the European mathematical community by Fermat in January 1657 and read,
‘Find a cube which, when increased by the sum of its proper divisors, becomes a
square’; the other half was the same question with the words ‘square’ and ‘cube’
reversed. Bernard Frénicle de Bessy (1605-1675), an official at the French mint,
a fine amateur mathematician and computor and correspondent of several of
the great mathematical names of the time (particularly Fermat), provided four
solutions to the first problem on the day he received it, and six more the day
following. The challenge echoed across the English Channel to find the deaf
ears of Wallis (who may well have been its main target) and the comment,
‘Whatever the details of the matter, it finds me too absorbed by numerous
occupations for me to be able to devote my attention to it immediately. .. .
Undeterred, a second challenge followed the next month, part of which was to
find an integer y which would make dy? + 1 a perfect square for any positive
integer d, or failing that, to solve the two special cases d = 61, 109. Again,
Frénicle de Bessy played his part by calculating the smallest solutions for all
d < 150 and challenged others to at least solve the cases d = 150 and d = 313,
hinting that the second example may be beyond anyone’s ability! Fermat fuelled
the intellectual ferment with ‘“We await these solutions, which, if England or
Belgic or Celtic Gaul do not produce, then Narbonese Gaul will.” (Narbonese
Gaul was the area around Toulouse where Fermat lived.) Finally, rising to the
bait, Wallis found particular solutions to both in very quick time and in doing
so approached the solution of the ignored, initial challenge, as we show below.
The challenges had generated interest in a problem that was 500 years older
than Fermat and which became the subject of study and learned treatise by
many, including the first president of The Royal Society, William Brouncker
(16207-1684).

If we consider the first challenge and make the reasonable assumption that
Fermat had meant the cube to be that of a prime number, we require 1 4+ p +
P>+ p3 =q%or (14 p)(1 + p?) = ¢>. Since 2 and only 2 (as the reader may
wish to prove) is a factor of both brackets, the equation may be written as

ab = (3¢)*

with a and b co-prime.
Since a and b have no common factors we can legitimately conclude that
a = m? and b = n? for some integers m and n and therefore that

14+ p=2a=2m> and 1+ p?>=2b=2n

so any such p must satisfy both the equations p = 2m? — 1 and p? = 2n% — 1.
We are looking for primes of the form 2m? — 1 whose squares are of the form
2n? — 1, which looks as though it might be a big ask.

With this analysis we can see that the two challenges are essentially the
same. The second equation is the more demanding of the two and is a special
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case of the problem: for a given non-square integer d find all x and y so that
x2 = dy2 = 1, which is known as Pell’s equation, after John Pell (1611-1685),
another of the Founder Members of The Royal Society. His 1659 translation
into English of one Johann Rahn’s Teutsche Algebra brought to the English-
speaking mathematical world the use of — for division and it may have been
Pell himself who originated this use of the notation (the ‘obelus’ had been used
for subtraction long before this). It was Euler who attributed Pell’s name to the
equation, but it is generally considered to be a rather generous (or mistaken)
honour. With the plus sign and d = 4 729 494 it can also feature in the solution of
a surprisingly difficult problem regarding the size of a herd of cattle, which was
purportedly set by Archimedes to Apollonius as another (possibly revengeful)
intellectual challenge. Whether or not Archimedes originally formulated the
problem as a challenge or otherwise, it appeared in The Sandreckoner, which
we mentioned on p. 3. It has subsequently earned the name of ‘Archimedes’
Revenge’, as the herd turns out to have a size which has 206 545 digits.

11.3 AN ANSWER

What has this to do with those mysterious fractions that approximate y (and
any other number) so well? They are called the ‘convergents’ of what are known
as ‘continued fractions’ (or, archaically, ‘anthyphairetic ratios’). Firstly, it was
Wallis who coined the name (in the 1653 edition of his book Arithmetica Infini-
torum); they have been studied by any number of mathematicians over the years,
including the 6th-century Indian mathematician Aryabhata (in whose work they
make their first appearance), Johann Lambert and Joseph-Louis Lagrange (who
made significant contributions to the theory), Christian Huygens (who used
them in his design of a mechanical model of the Solar System), Euler (who laid
down much of the modern theory of them, and used them to prove that both e
and e are irrational) and Gauss (who explored many of their deep properties).
Perhaps their heyday was in the 19th century but there is a current resurgence
of interest in them, partly through their connection with chaos theory and com-
puter algorithms and they do have their part to play in our story. We will only
see a tiny part of the use of this comparatively overlooked area of mathematics,
but enough to be clear that they are more important than they at first seem and
less difficult to use than they first look. Firstly, their definition.
A continued fraction is an expression of the form

1
ao +

a; +
ay +
as +

as+ -
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where ag is an integer (possibly negative or zero) and ay, as, ..., are non-
zero positive integers; the expression could be finite or it could go on forever.
Standard fractional notation is cumbersome and has given way to the alternative
[ao; a1, az, . . .],in which the semi-colon separates the number’s integer from its
fractional part and the commas separate what are known as its ‘partial quotients’.
For example,

1 1
34— =3+ T
2+ 24 ——
541 &)
1 1
=3+ =3t 7
2+ 53 1)
_; 21 159
B 46 46

or in a more compact notation, [3; 2, 5, 4] = 159 . If we build up the expression
one term at a time, we get

1 38

S ERETE

3—1—1 ! d 3+
—=— an
2 2 s

thereby generating the convergents of the partial fraction. Put another way,
14569 is approximately 2 5 and also 3 11, with the latter the better approximation.
Clearly, any finite continued fraction can be telescoped into an ordinary fraction
in this way, with each of the convergents successively better approximants to that
fraction. Converting an ordinary fraction to its continued form simply requires

us to strip off the integer part, invert and repeat the process; for example,

B2y
13 13 ()
1
=l =l
2+ 3 2+ 1/()
1
=1+2+ . :1+2+ ]
1+ 2 1+ 1/3)
1
=1+ 0
2+ T
(1 2

or[l;2,1,1,2] and 1n the same way, 13 is successively (and more accurately)
approximated by and . This highlights a possible source of ambiguity, as
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the % above could have been inverted to 2 and then split into two 1s, but it is
standard practice to agree that the fraction does not end with a 1.

11.4 THREE RESULTS

Continued fractions have many properties and are a fascinating subject in their
own right, but at present we must resist the temptation to study them beyond
mentioning the three properties of them that we will need, and even these we
will not prove.

1. Each convergent is automatically in its lowest terms.

2. If p,/qn are convergents that approximate an irrational number x and if

q < qn and if p/q # pp/qn, then |py/qn — x| < |p/q — x| and, more
strongly, [pp — qnx| < [p — gx|.

This means that each convergent of a continued fraction is the best-
possible fractional approximation to x with a denominator of its size
or less.

. If x is an irrational number and a and b co-prime integers such that
a 1

—_— < — .

b 2b?

then a /b is one of the convergents of the continued-fraction representation
of x.

X —

11.5 IRRATIONALS

The process of converting an irrational number to a continued fraction simply
requires the decimal expansion to be dealt with in much the same way as a
rational number. For example,

1 1
—340.14159.-- =3 =3
T=oF tI06253... I
T —
15.996 59 ...
1
=34 1
74+ :
54—
t 1003417,
1
=3+ 1 El
74+ .
15 + :
1 -
t 20210654,
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which continues as

T =1[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2, 1,84, ...],

s 22 333 355 103993
with initial convergents =, 352, 173 and 33755 -

Of course, 27—2 is the approximation with which we are most familiar and,
in what is possibly the first recorded attempt to approximate 7, Archimedes
included in his work Measurement of a Circle the bounds % <m< %, which
he found by inscribing and circumscribing a circle with regular polygons of 96
sides. We know that % is universally accepted as the most convenient approxi-
mation to use and with good reason, since we know from above that there is no
fraction with a smaller denominator that is better. For the same reason, the more
accurate % is the best-possible rational approximant to 7 with denominator
<106, which says good things about the 16th-century European mathematicians
who were known to use it and even better things about the Chinese mathemati-
cian Tsu Chung-chih (A.D. 430-501), who described % as an ‘inaccurate value’
and % as the ‘accurate value’ of 7. Notice that the other Archimedean bound
is not a convergent.

(It is impossible to resist mentioning the nice result that

1,4 4

1—- 22
/Md 2
0

1+x2 77 ’
which can be proved by using polynomial division and term-by-term integration
to arrive at the indefinite integral %x7 — %x6 +x3 — %xS +4x —4tan" ! x))
The continued fraction for other numbers can be found in the same way. For
example, V2= [1;2,2,2,2,...] with convergents %, %, % R
The ‘Golden Ratio’

p=11+V5)=[L11,1,1,...],
with convergents the Fibonacci numbers

) ’ 3 ety

235
I 3

A\ W

e=1[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10, 1, 1, 12, ... ],

with convergents %, %, %, %, %,

Notice how the continued-fraction representation of these numbers reveals an
otherwise hidden pattern and one that makes them exceptional in an important
and strange way, which we will discuss in Chapter 14.

It is also true that 7% = [97;2,2,2,2,16539, 1, ...], which makes the fifth
convergent % a particularly accurate rational approximation to 7* (and
therefore its fourth root is a particularly accurate decimal approximation to

m—differing in the 13th decimal place).
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Those earlier fractional approximations to y come, of course, from its own
continued fraction form of

y=100;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4, 1, 1,
40,1,11,3,7,1,7,1,1,5,1,49,4,1,65, ...]

with convergents

1 3411 15 71 228 3035 323007

As an indication of the accuracy that is achieved,

‘ 323007

—y|=1.025x10""2
559595 ”‘ 025> 10

Thomas Papanikolaou, who was mentioned earlier, also calculated the con-
tinued fraction for y up to and including the 470 006th partial quotient and from
this he could conclude that if y is rational, the denominator of the fraction must
be greater than 10242080 Of course, an infinite number of fractions with such
denominators (and larger) do exist, but (unreliable) intuition moves us to think
that a ‘naturally occurring’ number, such as y, simply would not behave in such
an extreme way; to confound that view, someone needs to produce an accepted
‘natural’ fraction with such a denominator! This aspect of y’s behaviour was
touched on by the great German mathematician David Hilbert (1862—-1943) in
a seminal lecture given in 1900, which we will describe in more detail and from
which we will quote at greater length later:

Take any definite unsolved problem, such as the question as to the
irrationality of the Euler—Mascheroni constant C, or the existence
of an infinite number of prime numbers of the form 2" + 1. How-
ever unapproachable these problems may seem to us and however
helpless we stand before them, we have, nevertheless, the firm con-
viction that their solution must follow by a finite number of purely
logical processes.

The mathematical world still awaits the discovery of that particular ‘finite num-
ber of purely logical processes’.
The connection with Pell’s equation is profound.

11.6 PELL’S EQUATION SOLVED

The solutions to Pell’s equation are hardly predictable: if we take it as a> —db® =
1, then with d = 60 the smallest solution is a = 31, b = 4; withd = 62 it is
a=63,b=_8yetwithd =6litisa =1766319049, b = 226153 980!
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If a and b satisfy a> — db® = 1, they cannot possibly have any common
factors. That said, the underlying pattern is revealed by the following argument:
1
b(a+ bd)

The factorization makes clear that @ > b+/d and so we can manufacture the
inequality

az—db2=1<:)(a—b\/3)(a+b\/3):1@%_ﬁz

a Jd Jd 1
0< ——A+d = = —.
SRR TN F TN TN AT

Invoke the third property of continued fractions and we see that a /b must be
a convergent of Jd , so the search for the solutions of Fermat’s problems should
be among the continued-fraction expansions of the numbers defining them. For
example, with Fermat’s first problem on p. 92, the first solution is p = 7 and
n =15to give p =7 and g = 20 as the smallest solution.

11.7 FILLING THE GAPS

Continued fractions are the first choice among many possibilities for rational
approximation, but they do leave plenty of gaps in the list of best possible
approximants. With y we have seen that we have the consecutive continued
fraction convergents of

1 3411 15 71 228 3035

but if we set a computer to search for the best-possible rational approximations
up to and including any given denominator, we get

1 34 11 15 41 56 71 157 228

and the next interval is filled with
228 1667 1895 2123 2351 2579 2807 3035

773957 2888 3283 3678 4073 4468 4863 5258

and, of course, the gaps get bigger and so does the list of fractions to fill them.

In short, continued fractions provide a nice, methodical method of rational
approximation and they are extremely useful in general theory, but they do not
tell the whole story; very few things do.

11.8 THE HARMONIC ALTERNATIVE

We will introduce (without pursuing the idea far) just one alternative method
of fractional approximation, mainly because it encourages deeper thought into
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our base 10 system and also it provides a first example of the usefulness of the
terms of the harmonic series. It has to be said that the method does not find the
best fractions, but it is nonetheless novel and worthy of study.

We are really interested in the fractional part of a number and so we will
choose to divide a decimal fraction into its whole number part, considered as a
single number, and its fractional part, divided into its components. For example,
the expression 62.372 58 is a shorthand for

1 | 1 1 1
62+ — x 3 T4 — x24+ — x5+ — x8,
T RO T R T A T A Tl

which can be written in the rather more complicated form

62+ - (3 - 110<7+ 110(“ E<5+ 110<8)))>>

and of course such expressions could be extended indefinitely, as the number
dictates. The 3, 7, 2, 5, 8 are simply a special case of any sequence of non-
negative integers which are each less than 10 and we could adopt notation
similar to that for continued fractions, writing the number as [62; 3,7, 2, 5, 8].
More generally,

1 1 1
[n;a,b,c,. ]_n+ﬁ(a+ﬁ<b+ﬁ<c+ )))

where 7 is the whole number part and a, b, c, . .. form the fractional part and
S0 are non-negative integers <9.

So far this is doing no more than looking at the obvious in a different way
and playing with notation, but the expanded form of the expression, with its
repeated To» suggests that we could alter that number to a different one to
achieve a representation in another base (the a, b, c, ... would naturally be
restricted to be less than that base). This is nothrng new. Replace 0 by 1 » and
we have the binary system of Os and 1s, with 1 3 the tertiary system, etc. More
interesting still, what if we mix the bases and represent the number in a mixed-
base system—using the terms of the harmonic series? This would mean that
our number would be written in the form

T .))

and rational approximations to it would be any first part of this, where a < 2,
b<3,c<4,....

A closer look at the form of this representation reveals that, rather than writing
the number as

1 1
n+Ea+Wb+~~ witha, b, --- <9,
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we are writing it as

1 1
n—i—Ea—i— b+Zc+ witha <2, b <3, c<4,....

If we start with 7, we get

et (o Hor 2o (i (s o 15 )

or in the more compact notation
7 =1[3,0,0,3,1,5,6,5,...]
to give the fractional approximations

25 47 2261 15833 42223 11400211
87157 720 7 5040 ' 13440° 3628800 °

Since the Taylor expansion of e* is

3,3,3,

2 x3 x4

X
lx+ g+ 4

putting x = 1 gives e as

1+1+%(1+%(1+%<1+%(14“%(”%(”%(Hm)))))))

ortheverynicee = [2; 1,1, 1,1, 1, 1, 1, ... ] to give fractional approximations
5 8 65 163 1957 6855 109601
273724 60° 720 252 40320 °

Finally, with y we have

(T TON
o350 M)

or in the shorthand notation [0; 0, 1,0, 1,4,1,4,1,3,0,...] and the rational
approximations

1 1 13 23 83 2909 23273 3491 3491

272°24° 40" 144’ 5040° 40320 6048 6048’

These various approximations are not at all bad, as the reader can measure.
Notice that with the possibility of a zero, consecutive approximations can be
the same. We will soon be looking at a variety of other ways in which the
harmonic series appears.
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Where Is Gamma?

One cannot escape the feeling that these mathematical formulas have an inde-
pendent existence and an intelligence of their own, that they are wiser than we
are, wiser even than their discoverers, that we get more out of them than was
originally put into them.

Heinrich Hertz (1857-1894)

Gamma’s definition y = lim,,_, o (H, —In n), when rewritten as the asymptotic
approximation H,, =~ Inn + y, provides a simple (and accurate) method for
approximating the partial sums of the harmonic series. The lack of an explicit
formula for H, together with its glacially slow divergence makes the approxi-
mation all the more important and with that approximation we have an inevitable
appearance of y; already we have seen the estimate used on a number of occa-
sions. Its connection with the Gamma function guarantees y’s role in analysis
and the Gamma function’s connection with the Zeta functions guarantees y’s
role in number theory. The number is inevitably, intrinsically (and frequently,
intricately) involved in mathematics, reluctant though it is to show itself in ele-
mentary areas of the subject. It would be easy to relegate this chapter to a long
list of integrals, sums, products and limits which involve y but instead we will
give a representative few and leave it to the interested reader to seek out more;
in doing this we will be paying no more than lip-service to that ‘serious consid-
eration’ of which it is worthy. To begin with we will look at another example
of y allowing the harmonic series to be replaced by logarithms, this time not
as an estimate but as the exact limit.

12.1 THE ALTERNATING HARMONIC SERIES REVISITED

The name Riemann has already appeared several times, attached to the word
Hypothesis. It is not yet time to consider either the man or the problem but we
can now mention a peculiar result of his regarding the convergence of series
and its novel implications for y (and any other number).

The (geometric) series 1 — % + % - % - -+ converges to % and the series of
positive terms associated with it 1 + % + JT + % -+ to2.Yet, itis not always the
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case that sacrificing the cancellation brought about by omitting the minus signs
has such innocent consequences, and the harmonic series is a particular case in
point: we know that the alternating harmonic series converges (to In 2) and that
the harmonic series diverges. This phenomenon is encapsulated in the concept
of ‘conditional convergence’, with the alternating harmonic series conditionally
convergent and that alternating geometric series above ‘absolutely convergent’.
Conditionally convergent series are delicate, as we can see from

1 1+1 1+1 1 1 1+
T2 4 6 8 10 12 14 16
_11 1+1 1+1 1+1 1+
) 2 '3 4 5 6 7 8

= JIn2

and the alternating harmonic series now converges to half of itself!

Riemann’s peculiar result is that any conditionally convergent series can be
made to sum to any number at all! For example, if we wish an arrangement of
the alternating harmonic series to sum to the Golden Ratio ¢ = %( 1 +45),
that arrangement begins

1 1 1 1 1 1 1 1 1 1 1 1
O R A R TR E R TR T A TR
1 1 1 1 1 1 1

TR R T T AT R TR
We can manufacture an arrangement to sum to any given number / by adding
in as many of the positive, odd terms as are needed to make the sum exceed
[, bring in the negative even terms to bring the sum below /, and continue in
this see-saw way for as long as we please; the divergence of each of the two
subseries guarantees that we will always be able to do this.

There are general results associated with this phenomenon, the proof of one
of which naturally brings in (and takes out) y and to look at it we need the
concept of a ‘simple’ arrangement of the alternating harmonic series. Such an
arrangement is defined to be any in which the terms of the two subsequences of
positive and of negative terms appear in descending order. For example, the re-
arrangements which led to % In 2 and to ¢ are both simple, yet the rearrangement
1+%—%+%—%+%—--- is not.
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With this definition in place, let p, be the number of positive and ¢, the
number of negative terms in the first n terms of a simply rearranged alternating
harmonic series, then the result to interest us is that the rearrangement converges
if and only if

. pn
o= lim —
n—>o00 ¢y,
exists, in which case the sumis In2 + % In «. Above we have o = % and so the
sum is In2 + %ln% = %1n2.
To establish the result, write the sum of the first n terms of the series as
Y %—; ak, then

ay = —_— — —.
k=1 k=1 2k — 1 k=1 2k
But
Pn 1 B 2py 1 Pn 1
= 2k -1 k=1 k k=1 2k
and so
n 2[711 Pn qn
1 1 1
Ya=>i-Yx-Yy
k=1 k=1 k k=1 2k k=1 2k
1 1
- H2Pn - inn - Ean

= (In2py — y2p,) — 30 pp — ¥p,) — 30 gn — ¥,

p
=In2+ %ln (q—n> - Y2p, + %ypn + %an,

n

where the y;,, are the approximations to y to that number of terms.
Therefore,

n
n—>ook=] n—0o gy,

:1n2+%lna

and we are done.
If, for example, we wish to write In 3 in terms of the alternating harmonic
series it must be that

In3=In2+ JIne,
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which makes o = %, and indeed the representation is

In3 l—i-l l—l-l—i-l 1+1+1
n3= . s .
3 2 5 7 4 9 11

1+1+1 1+1+1
6 13 15 8 17 19
1 1 1 1

1 1
<+i‘m+z+£‘ﬁ+ﬁ
+1 1+1+1 1+1+1
29 14 31 33 16 35 37

T
39 18 ’

where the bracketing groups equal numbers of the terms by matching patterns
of the signs. Each group comprises nine + signs and four — signs and with this
pattern repeated throughout the expansion we will have o = %, as required.

Of course « is the limit of p, /g, and we cannot expect in general the limit to
reveal itself by simple repetition. Recall that Euler had hoped that y might be
the logarithm of some important number. If that is the case, it would be possible
to write

y =In2+ % In ¢,

where the « is the ‘important’ limit of the ratio of the + and — signs in its
representation in terms of the alternating harmonic series, which starts

1
2
ifs/ 1.1 1 1 1 1 1 1 1
+§K‘Z‘a+§‘§+5—ﬁ+§‘ﬁ+Iﬁ
1

1 1 1 1 1 1 1

1
< 2 6 B BT wty 2t

1 1 1 1 1 1 1 1 1
<_ﬁ_%+ﬁ_ﬁ+§_%+£_§+ﬁ

1 1 1 1 1 1 1 1 1
< 34 36+29 38+31 40+33 42+§
1 1 1 1 1 1 1 1 1
( 4716 37 w839 50 a4 2 a3

1

1 1+1 1+1 1+1
54 56 45 58 47 60 49
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Within the braces there are five round brackets, each containing nine terms with
identical sign patterns and, at the end, one bracket of seven terms. If this repeat
is continued, we would have 23 + signs and 29 — signs in the repeated cycle
of 52 terms; this would mean that o« = % andy =In2 + % In %, and we will
have outdone the great Euler! His constant is then

23
=1n2,/ =
T

Unfortunately, it isn’t, since this evaluates to 0.577 246. ... That cycle was too
much to hope for and the pattern breaks at around the 550th term. Is there a pat-
tern with a longer repetition? Who knows? If y =1n2 + % Ing,thena = %62)/
and the convergents of the continued fraction of this number are

34 19 23 548 571 1119 2809 6737 63442 450831

and at least we have hit on one of them, with our % making an appearance.

12.2 IN ANALYSIS

One of the (many) problems with integration is that we cannot always integrate a
function in ‘closed form’; that is, no finite combination of the usual functions of
mathematics will combine to be the anti-derivative of the function, and there is
often only a slight change needed to convert possible to impossible, or the other
way around. Forexample, In u, u Inu, (Inu)/u, 1 /(u In u) are all straightforward
to integrate, yet 1/Inu, u/Inu are simply not possible. The irksome thing is
that some of these ‘difficult’ integrals occur with great frequency and in many
important applications, so much so that they lose their anonymity and are given
names. For example,

sin u cosu 2 e 4 1
du, du, e du, du, —du
u u u Inu

are all impossible in closed form and give rise to the functions:

2 x 2
erf(x) = — / e " du (the error function),
Vv Jo
* 1
Li(x) = / —du (the logarithmic integral),
5 Inu
)  cosu o
Ci(x) = du (the cosine integral),
X u
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. X sinu L
Si(x) = du (the sine integral),
0 u
o0 e*ll
Ei(x) = / du (the exponential integral).
Y U

They each appear in their different ways and places.

Laplace’s error function, erf (x), is easily recognized as essentially the prob-
ability density function of the Normal distribution (the constant is needed to
make the total area 1).

Li(x) appears regularly in number theory in estimates of asymptotic values,
including a conjecture of Littlewood and Hardy concerning the Goldbach Con-
jecture (mentioned in a few lines). It will later become the central focus of our
attention when it appears as Gauss’s estimate of the prime counting function
7 (x)—Euler had, of course, already considered the function (in 1768). Subse-
quently it appears in the work of Mascheroni (1790) and Caluso (1805) but it
came to prominence (and was given its name) after it was the object of study in
Soldner’s Theory of a New Transcendental Function of 1809 (admittedly with
the alternative lower limit of 0). We mentioned this work on p. 89. It was in that
paper that Soldner gave that corrected value of y and also the series expansion
of Li(x) as

oo

In" x
Li = .

ix)=y+Inlnx + Z py

r=1
Ci(x) has the similar form

o 2\r

. (—x7)
Cix)=—y —Inx — Z IS

r=1
but Si(x) involves neither In nor y in its expansion of

2r—1

. _ - _ 1yl X
Si(x) = r;( VST e o

This last trio work hand-in-hand in many applications and in widely diverse
areas of mathematics, including quantum field theory, electromagnetic theory,
semiconductor physics, and analysis of the Gibbs phenomena of Fourier analy-
sis (the misbehaved bits at the fly-back points).

Ei(x) is important partly because the integral of any function of the form
R(x)e*, where R(x) is arational function, can be shown to reduce to elementary
integrals and Ei (x).

y also appears in what are known as ‘modified Bessel functions of the second
kind’, named after the German astronomer F. W. Bessel (1784—-1846), although
they were studied earlier by yet another Bernoulli (Daniel) (1700-1782) and,
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inevitably, Euler. These functions appear among the solutions of what is known
as the Bessel Equation,

2
23 z +x j—+(x2—a2)y=0,

where o > 01is constant. It arises in the study of problems concerning vibrations
of membranes, heat flow in cylinders and the propagation of electric currents in
cylindrical conductors—and some of the problems of analytic number theory.

Other, nameless integrals and limits involving y are easy to find. Recall from
p. 58 that y = —I"’(1) and we have, using one of the definitions of the Gamma
function (and differentiating under the integral sign),

o0 00
F(x) = / uX—le—u du = / e(x—l)lnue—u du
0 0

o]

o0
F/(x)=/ W le™Inudu and ﬂ(l):f e “Inudu,
0 0

o0
y = —/ e “Inudu.
0

Increasing the level of ingenuity develops this into a more exotic result:

[} 1 [}
—y:/ e‘”lnudu:/ e‘”lnudu+/ e “Inudu.
0 0 1

Now we integrate by parts in each case, the second integral perfectly straight-
forwardly, integrating e ™" to —e™", but the first by using the underhand trick
of integrating e to —e™* + 1 to get

SO

which makes

—y =[(—e"" + D nul

—u 4 00 __ ,—U
/ ( ¢ ) -I—[—e*"lnu]To—/ ¢ du.
1 u

The two evaluated components are both 0, with the exponential drowning the

logarithm, and so
1 —u 0o ,—Uu
— 1
0 u 1 u

1 —u o0 ,—Uu
1—
y:/ wdu—/ ¢ du.
0 u 1 u

and
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Finally, if we make the substitution u = 1/t in the second integral and swap
back variables to u we get

1(1_e—u) le—l/u ll_e—u_e—l/u
y:/ —du—/ du:/ Tzl ze
0 u 0 u 0 u

This is not only a fearsome integral conquered but also an integral definition of
y over a finite interval, which can be used to calculate its value, provided that for
reasons of continuity we agree to define the integrand to be 1 at u = 0 (graphing
the function is a good test for any graph plotter and numerically approximating
the area an even better one).

With this result we can derive the series expansion for the Ei(x) function,
using a method very similar to Soldner’s for Li(x).

Assume x > 1 (the ideas still work if x < 1), then

o0 —Uu o0 —Uu X —u
Ei(x):/ ¢ du—/ ¢ du—/ ¢ du

X 1 u

[ [
1
o0 X —Uu X
1

:/ f ¢ du—/ —du

1 1 1 u

o0 le_u—l X1
=/ (/ du—/ du)—f —du

1 0 0 u 1 u

(o) X 1 —u _q X1
:/ /e du—i—/ ¢ du—f —du

1 0 0 u 1 u

00 1 -1 X U _ X1
:/ ¢ /e du—/ ¢ du—/ —du

1 u 0 u 0 u 1 u
=—y—f Z( 1),

1 X
:_V_Z(_l)rﬁ/(; u " tdu —Inx
r X
=—y— Z(—l) —[—} —Inx
0

x" S (—x)"
— r —
——)/—E (—l)m—lnx——y—lnx—g o

r=1 ’ r=1

du —Inx

We have used the standard Taylor expansion of e ~* to deal with the third integral.

108



WHERE IS GAMMA?

There are a countless number of other integrals, sums and products in which
y is involved and below we list a few more examples:

1 1 00
/ Inln - dx = —y, / e*lenxdx=—‘/TE(y+21n2),
0 0

X
1 o0 2

1 1
— 4+ dx =y, / efxlnzxdx=%+y2,
0

1 1 1\
lim (n—F(—)):y, lim —]_[ (1__> =,
n—00 n n—oc Inn p
p<n

o
. 11 .1 1\ 6e¥
I () = g T () =5

psn

oo

A(r) —1 o0 1 1
e e (==
r— r 0 1—e X

Lo * {x})  x — |x]
Yreh-n=t-y [ e [Py
i X 1 x

The two integrals evaluating to expressions involving w display nice relation-
ships between it, e and y . The two product forms were both arrived atin 1874 by
Franz Mertens (1840-1927) and we will have use of one of them in Chapter 15.
The p that appears is prime and the first form can be developed to the very nice

. 1
y:nll)ngo{—lnlnn—Zln(l—;>}

psn

1 1
= lim —+0<—>>—lnlnn},
"*w{[é;l(p p?

which is reminiscent of Gamma’s definition, but using primes only.
The second summation result involves the Von Mangoldt function

AG) = Inp, r= p”f, p prime,
0, otherwise,

which will come to our closer attention again in Chapter 16.

Each expression in the list is established in its own way and we will content
ourselves with proving just two of them: the one involving the Floor function
and the other the Zeta function, and so keep an earlier promise, made on p. 52.

Firstly we will deal with

* Sondow (1998).
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where the notation {x} is used for the fractional part of x and is therefore related
to the Floor function by {x} = x — | x]. It seems impossible ever to arrive at an
exact answer for such a strange integral, but we will see that y naturally makes
an appearance which solves the problem.

To begin with, by definition of the Floor function,

n n 1
/ %d)m/ _2<Z l>dx.
X X 1<r<x

We need to rewrite this expression and to do so imagine the interval divided
into unit sub-intervals with the right-hand-side end point excluded, then

./w : ( >
— 1)dx
(2
o 1<rx
PAE e A5 )
2 2
1 X 27 X :

1<r<x <r<x
4 noq
+/3 x_2( > 1>dx—|—---+/n1x—2( > 1>dx
1<r<x 1<r<x
2 3
=f —z(l)dx—l—/ —(2)dx
1 X 2 X
41 no
+f —(3)dx—|—'~+/ —(n—1)dx. (12.1)
3 x? n—1 x2

Now consider the expression

1 1
Z / —dx_ —2dx+/ —dx+f —dx
X

"l G|
-I-/ —dx+---+/ — dx.
4 x? n—lx2

In this sum the interval [1, 2) is covered just once, the interval [2, 3) is covered
twice, the interval [3, 4) is covered three times, ... the interval [n — 1, n) is
covered n — 1 times, and that is precisely what Equation (12.1) is saying. The
two are the same. Therefore,
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So,

n n o, _
Hn=1+/ ﬂdx=1+/ al ;X}dx
1

1 )C2 X
"x {x} "1 {x}
-1 2 W= ~ Yy
+/] x2  x? +/] x  x2
=1+Inn {iz}dx
X

This means that

o o0
y:lim(Hn—lnn)zl—/ md and / %dx:l—y,

as required.

With Euler (and us) failing to identify y in terms of the logarithm of an
important number, we mentioned on p. 52 that he provided a number of formulae
for its evaluation, one of which was

1
Y O -D=1-y,
i=2

which he used to calculate the value to five decimal places. We will now derive
his expression:

I
—_
+
=
85
<o
L=
N
~ |
|
5
N
~
| | =
—_
N——
N—
N—
I
—_
+
-
1e
N
| —
+
N
~
~ |
—_
N———"
N——"

r=2 r=2 i=1

00 00 1 e’} 00 1
=1—z(zl—,)=1—z(z;)

r=2 “i=2 i=2 ‘r=2

I

—

|
e

|

B
N——"

1

—

|
e
~ | =

—

o~

‘~

N

|

—_

N

and the result clearly follows.
Yet again we have used the expansion of In(1 — x) to eliminate the logarithm.
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Inn+2y -1

0 10 20 30 40 50

n

Figure 12.1. Dirichlet’s result.

Following Euler’s path a little further, we need 15 terms of the series to
achieve five decimal places of accuracy, and so

y 2 1-36@) =D =3¢6) D~ 3¢6@ -1

— 1B - == @15 -1
=1-—(0.322467 4+ 0.0673523 + 0.0205808 + - - - + 0.000 002 039 22)
=0.577217...,

which is perfectly easy to calculate with a modern computer running state-of-
the-art software. . .

12.3 IN NUMBER THEORY

Although y’s appearance in number theory is no matter for surprise, the manner
of its appearance can be puzzling. We will list just a few ways in which it
emerges.

o In 1838 Lejeune Dirichlet (1805-1859) proved that

1 > " #(divisors(r)).
n

r=1

the average number of divisors of all integers from 1 to n, approaches
Inn 4+ 2y — 1 as n increases (see Figure 12.1).

Further along the line,

1000

1000 ; #(divisors(r))
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1 n—1
0.7 FL,;

np_n
r|or
0.6

- WHHM N"Nf“}“W"‘m‘m'um‘m“,'u
W

W

0.4

0 40 60 80 100

n

Figure 12.2. De la Vallée Poussin’s result.

evaluates to 7.069, and In 1000 + 2y — 1 =7.06219....

Equally baffling, in 1898 Charles de la Vallée Poussin (1866—1962) (more
of him later) proved that if we divide an integer n by all integers less than
it and average the deficits of each quotient to the integer above it, the
answer approaches y as n — oo. This time the calculation is

5(2]-1)

with the graph shown Figure 12.2.

And, again, further down the line we have

1 X2 /1100007 10000
10000 r r ’
r=1
which evaluates to 0.577 216. ...

Incredibly, the result remains true if the divisors are those in any arith-
metic sequence or if they are only the prime divisors.

y also appears (rather messily) in three standard asymptotic measures of
the efficiency of the Euclidean Algorithm. In each case it appears because
of the implicit appearance of the Glaisher—Kinkelin constant, mentioned
on p. 88, and the explicit appearance of Porter’s constant, which is the
impressive

6In2
72

24
<3ln2+47/ o) —2) — 1.46707. ...
T
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e On p. 34 we mentioned Euler’s result regarding the possibility of repre-

senting an integer as the sum of two squares. If it is possible to do so,
asymptotic estimates of the number of possible ways involve the Sier-
pinski constant (2.584 9817...), which itself involves y—and which is
rather too cumbersome to define!

To understand the last example it is necessary to appreciate a convergence
that might be extracted from a divergent sequence. If a bounded infinite
sequence {a,} converges to a limit /, any infinite subsequence will con-
verge to that same limit. That is perfectly reasonable. Now suppose that
the sequence does not converge and that we consider the set of limits L of
all infinite subsequence that do converge (a technical result known as the
Bolzano—Weierstrass Theorem ensures that there is at least one such),
then L has a maximum and a minimum. If we write the maximum as
[~ and the minimum as [_, these are called superior and inferior limits,
respectively, and they are written as

|7 =limsupa, and [_ =liminfa,.
n— 00 n—00
For example, the oscillating sequence —1, 1, —1, 1, —1, 1, ... clearly

does not converge but has the two convergent subsequences 1, 1, 1, 1, 1,
1,...and —1, —1, —1, —1, ... with limits of 1 and —1, of course. This
means that

limsupa, =1 and liminfa, = —1.
n— 00 n—00

A little more subtly,
11212312341

PIIRPTTTSS e
does not converge but the subse?quences %, %, l, %, ... and %, %, %,
. converge to 0 and 1, respectively, and so

Wl

bl

limsupa, =1 and liminfa, =0.
n— 00 n—00

With these ideas in place, we can at once mention an important idea in the
study of primes, list a truly impressive-looking formula, mention Erdos
once again, give another example of y appearing and reveal a (typically
poor) mathematical joke. The length of the interval between consecutive
primes, p,4+1 — Pn, is of clear importance and one of the consequences
of the Prime Number Theorem (which we are inexorably approaching)
is that, on average, p,+1 — pn is about In p,. That said, the average in no
way typifies the sequence’s behaviour, as p,+1 — p, oscillates wildly and
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is very much a contender for lim sup,,_, ., and lim inf,,_, », investigation.
The latter is the more problematic, as it is not even known if

liminf(py+1 — pn) < 00,
n—>oo

although Erdos (and others) have made some progress with this. It is the
lim sup,,_, ., that provides our stupendous formula, which is a 1990 result
of Maier and Pommerance, following a 1935 result of Erdos and also a
number of others in between,

i (Pn+1 — pn)(logloglog p,)? 4e¥
im sup z —,

n—oo (log pp)(loglog py)(loglogloglog p,) c

where ¢ = 3 + e7“. Any comment would seem superfluous. It is the
natural logarithm, but to use In would be to deny the opportunity to
mention the joke: what noise does a drowning Analytic Number Theorist
make? Log...log...log...log...

With this idea in place, we have finally the wildly divergent sequence
generated by Euler’s curiously named Totient function ¢(n) (presum-
ably from the Latin ‘tot’, which means ‘so much’), which is defined to
be the number of positive integers not greater than n and co-prime to
n. It finds extensive use in very many number-theoretic investigations.
Edmund Landau (1877-1938) proved that

lim sup ¢(n) = oo
n— o0

but that

Inl
1im inf M — eiy.
n—oo n

He also proved that for N large,

N

1
—— ~ AlnN + B,
e

where A is the elegant
{2)¢3)
£(6)

and B is distinctly inelegant but its expression contains 7, £(3) and y.

As an example of the elegance and usefulness of the Totient function, the
reader should be aware that it might help with a route to mathematical immor-
tality in that if the Goldbach Conjecture is true (every even number greater than
2 is the sum of two primes), then for all positive integers n there are primes p,
q such that ¢(p) + ¢(g) = 2n.
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Figure 12.3. Euler’s Totient function.

12.4 IN CONJECTURE

e Suppose that we toss a fair coin indefinitely and record the sequence

of heads and tails. Now we choose an integer n and list all 2" possible
sequences of heads and tails. How many times will we have to toss the
coin in order to see each of our sequences appear? It is known that the
minimum possible number of tosses is 2" 4+ n — 1 and it is conjectured
that the average number approaches 2" (y + n In2) for large n.

e A second conjecture concerns Mersenne primes, which are primes of the

form 2?7 — 1, where p is prime (a natural hunting ground for big primes).
It has been conjectured that if M (x) is the number of primes p < x for
which 27 — 1 is prime then M (x) ~ klnx, where k = e? /+/2. Since
there are only 42 known Mersenne primes (as this paperback edition goes
to press), the evidence has to be considered a touch scanty.

12.5 IN GENERALIZATION

Carl Gustav Jacobi (1804—1851) is quoted as saying, ‘One should always gen-
eralize’, and such a view is very much part of mathematical philosophy, but
there are often several directions in which the generalization could be made. So
it is with y.

116

e We could move into two dimensions—but how? We will describe one

way, which leads to the Masser—Gramain constant and requires a different
approach to the harmonic series. Take the real line and the positive integer
points on it and select the origin as a fixed reference point, then the interval
[0, 1], of length 1, is the smallest interval containing the integer 1; the
interval [0, 2], of length 2, is the smallest interval containing the integer
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2, etc., and we can think of the expression

as

n
1
lim Z - —1Inn).
n—00 length of interval [0, r]

r=1

Having generalized ‘interval’, we now need to generalize ‘integer’. For
300 years, Fermat’s Last Theorem had been a ‘primordial soup’ from
which vast and vastly important areas of mathematics have been devel-
oped. We have already mentioned its connection with the Bernoulli Num-
bers. With Andrew Wiles (born 1953) finally settling the matter, it may
be that it has given its final ‘birth’, but in the mathematical ferment of the
19th century it brought about the development of numbers of the form
a + b/—1, where a and b are rational numbers and, when both are inte-
gers, numbers called Gaussian integers (named after ...). Now we can
move to two dimensions and from R to C to define the exotic

n
. Z 1
8= nll>nolo < JT(pr)z - lnn)’

r=2

the Masser—Gramain constant (we need to start at 2 to make the defini-
tion sensible). The denominators are the two-dimensional equivalent of
interval length: the areas of circles and the p, are defined by

pr = min{p : there is a closed disc with radius p containing
at least r distinct Gaussian integers}.

Perhaps itis not surprising that the exact value of the constant isn’t known!

Euler (naturally) embraced the idea of generalization and did so by con-

sidering
lim i 1 —Inn
n— 00 = r

as
lim (Zf(r) —/nf(x)dx)
n— 00 p— 1

with f(x) = 1/x as just one particular positive, decreasing function.
From this he generalized to

1
f(x)=—, where0<a <1,
xC{
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to produce two divergent components that combine to converge to finite
sums—known as Euler’s generalized constants.

With f(x) = In" x/x, with m a positive integer, we have a final family
of generalizations to which we will refer, known as Stieltjes constants
¥m» about which not so very much is known. Their definition is

n
. In™ r " 1n" x
o= i (L [ )

r=1

n
In™ r I+t x 7"
— i -
am (2 -0 ])

r=I1

n
In"r In"tlp
= 1 -—).
Jim (Z T )

r=1

Of course,

n
) ( 1 lnn)
yo = lim -—— ) =
n— 00 r 1

These are of particular importance because of their appearance in the
series expansion of the complex form of the Zeta function (it is called the
Laurent expansion, which is discussed in Appendix D). To be exact,

]r
;<z>——+Z ) — -1

There are other generalizations (including a lattice sum form of immense
complexity) but we hope that by now the point is made that Euler’s sim-
ple and natural original definition can lead to interesting and sometimes
important extensions. To paraphrase Andrew Wiles, ‘we think we will
stop here’.



CHAPTER THIRTEEN

It’s a Harmonic World

1 tell them that if they will occupy themselves with the study of mathematics they
will find in it the best remedy against the lusts of the flesh.

Thomas Mann (1875-1955)

We will now take a brief look at several of the ways in which H,, appears, and
the pattern of numbers 1, %, %, ... forming its terms appear, in some areas of
considerable diversity. The selection is by no means comprehensive and each
initiative can be developed (in some cases very considerably) beyond where we
leave it, but to delve deeper or to embrace more widely would engulf more pages
than this book could afford. Firstly, though, we ought to address the question

of the name ‘harmonic’.

13.1 WAYS OF MEANS

With two numbers a and b, if one had to write down three examples of an
average of two numbers a and b, it is likely that they would be (in order) their
arithmetic, geometric and harmonic (or subcontrary) means, defined by

2

A=1 b), G = Vb, H=—"—"
20@+0) “ 1/a+1/b

respectively, and there is a nice order to them and relationship between them.
The Babylonian identity ab = §((a + b)> — (a — b)?), which we mentioned
on p. 1, can be rewritten as

a+b\ b+ a—b\
= d .

2 2
a+b\?

2

which tells us that

WV

ab,
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and therefore that A > G. Itis also perfectly clear that both A and G lie between
a and b. Also,

_ab G?
S Ma+b) AT

which gives us the pretty G = +/AH and the order H < G < A. Chasing
inequalities easily shows that H is greater than the smaller of @ and b and so
all three means are nicely ordered within the interval, which is reasonable—but
there are other definitions of means. Although our interest is really with H, it
would be a shame to omit at least some mention of where it and the other two
definitions fit in to the greater scheme of things.

The famous theorem that bears his name evidences a tiny part of what
Pythagoras of Samos (ca.569—ca.475 B.C.) helped to bring to the world, a
sentiment agreed by Bertrand Russell (1872-1970), who said,

It is to this gentleman that we owe pure mathematics. The contem-
plative ideal, since it led to pure mathematics, was the source of a
useful activity. This increased its prestige and gave it a success in
theology, in ethics, and in philosophy.

The distinction between what Pythagoras himself discovered and what was
discovered by his clandestine society is impossible to make, so secretive were
they, but it is clear that he knew of the three means that we have mentioned. It
is also clear that later Pythagoreans defined at least seven more as part of the
following general schema.

Given two numbers a and ¢, define a number b to be a ‘mean’ of the other
two, such that a < b < c. If this inequality holds, then b —a,c —band c — a
are all >0 and the Pythagoreans investigated the idea of comparing the ratios of
pairs of these differences with the (not necessarily distinct) ratios of the original
numbers. For example, if we take the ratio

b—a_a_b_c

c—b a b ¢

we will arrive at b = %(a + ¢), or A. Alternatively, we could take

c—b b ¢
b—a a b
to get b = \/ac, or G. The harmonic mean H emerges from
c—b ¢
b-a a

Playing with the possibilities, as no doubt the Pythagoreans did, results in
several novel definitions of mean, for example

c—b a

b—a c

120



IT’S A HARMONIC WORLD

reduces to the elegant symmetric mean

a2+02
T atc’
whereas
c—b a
b—a :E

produces the distinctly inelegant and unsymmetrical

¢c—a++a?—2ac+5c2
3 :

This last definition recovers a little of its dignity by giving the mean of 1 and
2 as the Golden Ratio ¢ = 1.6180339.... The reader may wish to investigate
the other alternatives, some of which collapse, while others are as strange as
the example above. All but the first three of the definitions have disappeared
through the millennia, but a definition of mean which is important to this day
is missing—the ‘root mean square’

b=

a? +c2
2 9

but you can check that this can be recovered as VASor A=/(R?2+ G?)/2.
Generalizations of the definitions of arithmetic, geometric and harmonic
means to n numbers are obvious and we will have need of them in later chapters.
In fact, generalizations of the definition of means exist in the modern day,
notably with

2
al +c?
ab=l 4 cp—1’

a? 4 cr e
o Holder’s means, defined by H,(a, c) = [ ] ,p#0;
o Lehmer’s means, defined by L, (a, c) =

aP —cP 1/(p=1)
e Stolarsky’s means, defined by S, (a, ¢) = [—} ,p#0,1.
pa — pc

Anditiseasytoseethat A= Hy =L = 8,G =lim,0H, =L = 5_
and H = H_| = Ly.

13.2 GEOMETRIC HARMONY

The Pythagoreans held that ‘All things consist of number’, that is, positive inte-
gers or their ratios—and preferably small integers too. Integers were endowed
with qualitative attributes such as gender that today belong to the world of
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Table 13.1. Pythagorean solids.

Faces f  Verticesv  Edges e

Cube 6 8 12
Tetrahedron 4 4 6
Octahedron 8 6 12
Icosahedron 20 12 30
Dodecahedron 12 20 30

Table 13.2. Harmonic polyhedra.

f e v
6 12 8
30 70 42

170 408 240

the numerologist rather than the mathematician, yet some concepts have car-
ried over the millennia, for example figurate numbers (square, triangular, cubic,
pyramidal, etc.). His mysticism had the five ‘Pythagorean solids’ known to him,
the cube, tetrahedron, octahedron, icosahedron and dodecahedron, coupled with
earth, fire, air, water and aether (see Table 13.1). The Pythagorean, Philolaus,
is said to have called the cube ‘a geometric harmony’ because the numbers 6, 8
and 12 are in harmonic progression, with 8 the harmonic mean of 6 and 12 (but
then so is the octahedron if the order of the numbers does not matter), which
leads to a nice question (asked and answered by John Webb) about which other
polyhedra are harmonic in the sense of Philolaus.

Yet another of Euler’s results helps to provide the answer; the fundamentally
important topological fact that for any convex polyhedron the number of ver-
tices, faces and edges are related by v 4+ f = 2 + e. Add to this the condition
of ‘geometric harmony’ that

2
V= ——
Ije+1/f

and some of Webb’s judicious algebra and we have that
e—f=D=2(f =D’ =~1,

which is Pell’s equation. The continued-fraction approximations of v/2 then
yield a list of the infinite number of possibilities for ‘harmonic polyhedra’,
which starts with the values given in Table 13.2. The first one is called a cube. . .
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Table 13.3. Pythagorean musical scale.

Note do re mi fa SO la ti do

Ratio 1:1 9:8 81:64 4:3 32 27:16 243:128 2:1

13.3 MusicAL HARMONY

The sequence of 6, 8 and 12 appear again in the Pythagorean world. If a string
of length 12 units emits a middle C when plucked, the same string shortened
to 8 units will emit G, a perfect fifth above C, and if the string is shortened
to 6 units it will emit C an octave up. The young Pythagoras is thought to
have noticed such behaviour through hearing the variously concordant and
discordant sounds of blacksmiths” hammers sounding together and, through his
subsequent investigations with stretched strings, is credited with the discovery
that musical intervals which are recognized as concordant are related by small
integer ratios. More generally, a half length gives a frequency ratio of 2:1, the
musical octave; a third length gives a ratio of 3:2, the musical fifth; a quarter
length gives a frequency ratio 4:3, the musical fourth; a fifth length gives a
frequency ratio 5:4, the major third. That the arithmetic sequence 1, 2, 3,4, 5 is
involved only strengthened the belief in the sacred nature of number. It is easy
to see that the reciprocals of any sequence of numbers in arithmetic progression
are themselves in harmonic progression; the Pythagoreans knew this too, and
so we arrive at the modern definition of a harmonic sequence. In the attributed
words of the Pythagorean, lamblichus:

the harmonic mean was then called subcontrary, but which was
renamed harmonic by the circle of Archytas and Hippasus, because
it seemed to furnish harmonius and tuneful ratios.

As we discuss the Pythagorean contribution to musical theory we should men-
tion the musical scale that bears his name, which was based on the view that
the fifth is a particularly pleasing ratio and that the scale should be constructed
from it and the 2:1 octave. So, taking ‘fifths of fifths’ and scaling down by 2
as much as necessary to bring it within the octave brings about Table 13.3 and
the Greek musical scale of the Pythagorean school. The process will never fill
the octave (there are plenty of numbers missed, not least the embarrassingly
irrational +/2) and it will never reach an octave exactly since no power of % isa
power of 2. To be so would mean that (%)" = 2™ or 3" = 2" which brings
in logarithms with

In3
mn :“—220.405465...,

n In
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Table 13.4. Gradus Suavitatis.

Gradus
Ratio suavitatis
1/2 (octave) 2
3/2 (fifth) 4
4/3 (fourth) 5
5/4 (major third), 5/3 (major sixth) 7
6/5 (minor third), 9/8 (major whole tone), 8/5 (minor sixth) 8
10/9 (minor whole tone), 9/5 (minor seventh), 15/8 (major seventh) 10
16/15 (diatonic semitone) 11
81/64 (pythagorean major third), 45/32 (tritone) 14
and continued fractions with 0.405465... =[1,1,1,2,2,3,1,5,...] giving

best approximations of

m+n 1 2 3 8 19 65

no o 1T12°57127417 7

Therefore, it is arithmetically optimal to build a scale based on the fifth if we
use 1, 2, 5, 12, 41, ... of them to the octave (quite what they would sound
like is another matter), which means that the Pythagorean scale is not in this
sense optimal. Another way to look at the inexactitude is that in the scale the
interval between successive notes is either a ‘tone’ of 9:8 or a ‘minor semitone’
of 256:243; unfortunately, the semitone is not quite half a tone since two of
them give a frequency ratio of (256:243) # 9:8. Factorize into primes and the
error lies in the approximation that 2!° ~ 312 or (%)12 ~ 27 and so going up 12
fifths and then down 7 octaves brings you back to where you started—nearly.
The difference is known as the ‘Pythagorean comma’, which will be our full
stop!

Harmony was close to Euler’s heart too. During the Middle Ages the quad-
rivium comprised the four mathematical ‘arts’—arithmetic, music, geometry,
astronomy—and constituted the higher part of knowledge, as opposed to the
trivium, the elementary part, which comprised grammar, rhetoric and dialectic.
Euler lived later, but it was understandable that a man such as he would take an
interest in music, particularly as parts of his long life coincided with the lives of
Bach, Handel, Haydn and Mozart. In 1731, when he was 24 years old, he wrote
An attempt at a new theory of music, exposed in all clearness according to the
most well-founded principles of harmony (although it was not published until
1739) and returned time and again to musical theory, refining and developing
his thoughts. We will make no great attempt to pursue him here (this study alone
occupied 263 pages) but simply mention his use of primes in trying to quantify
the melodiousness, the ‘degree of sweetness’—or as he called it the ‘gradus
suavitatis’—of sounds. The gradus suavitatis of a single note was taken to be
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1 and beyond that, if the frequency ratio of two notes is m:n and if the least
common multiple of m and n is L, he made the definition

Gm.nmy=1+ [] (-0,

p prime
p divides L

with multiplicities taken into account. For example, G(4,3) =14+ (2 — 1) x
(2 -1) x (3—1) = 3 and, more fully, we have Table 13.4.

Now that we have the name of the series properly established, we will look
at some of those places in which it appears.

13.4 SETTING RECORDS

A record is ‘the best there is so far’. There are any number of examples of
sequences of numbers naturally appearing wherein there is ‘improvement’ at
some stage and beyond that another and H,, naturally appears in the analysis of
them. For example, consider rainfall figures and assume that the rainfall in one
year does not affect that in any subsequent year; that is, annual rainfall figures
are independent random variables. The first year of recording is a record by
definition. In the second year, the rainfall level could equally likely be less or
more than the first year, so the expected number or record years in the first two
yearsis 1 + % Continue this reasoning for a third year and we have two of the
six possible orderings of the rainfall for the three years having the third year
as a record and so the expected number of record years is 1 + % + % years.
Continue this reasoning for n years, and we have that the expected number of

record years is

1+1+1+ +1—H
23 n "

Two arbitrarily chosen examples are revealing. The Radcliffe Meteorological
Station in Oxford has data for rainfall in Oxford between 1767 and 2000 and
there are five record years; this is a span of 234 recorded years and Hp34 = 6.03.
For Central Park, New York City, between 1835 and 1994 there are six record
years over the 160-year period and Hieo = 5.65, providing good evidence that
English weather is that bit more unpredictable! An interesting implication of
the surprisingly small values of H,, (for example Hioop and Hjoooooo are 7.49
and 14.39, respectively) is that, without climatic change, record years would be
very rare even over these large time spans.

The accuracy of the predictions, based on the assumption of statistical inde-
pendence between readings, can be turned around to itself be a measure of that
independence. In particular, and to quote Ned Glick,

...at a 1954 meeting of the Royal Statistical Society, F. G. Foster
and A. Stuart pointed out that record low and record high annual
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rainfalls in Oxford were much more rare than record breaking per-
formances (low times or high distances) in annual track and field
competitions of the British Amateur Athletic Association. This con-
trast is not surprising: athletic recruiting and training have inten-
sified over the past century; but no one has done much about the
weather. Although athletic performances do fluctuate, there is an
average trend over decades for national competitors (and there-
fore winners) to run faster, jump higher or throw further; while
weather conditions over a century are more intuitively random,
without dramatic linear trend. Of course, it is possible for 100 ran-
dom observations to be ordered so that the sequence has as many
as 10, 50 or 100 record highs. But detailed calculation shows that
the probability of 10 or more record highs in a 100-long random
sequence is less than 5%. Therefore, in a situation where data are
less familiar than rainfalls or race times, the mere finding of many
record highs or lows suggests that the data are not a simple random
sample; that is, an alternative hypothesis should be sought to fit
the data better. Foster and Stuart gave formal procedures using the
sum or the difference of record high and record low frequencies to
fit or to test the hypothesis of randomness. Other statisticians have
also considered such inferential procedures.

13.5 TESTING TO DESTRUCTION

Suppose that we have n wooden beams that are to be used as horizontal supports
in building projects. Naturally, we would want to know how strong they are, with
the minimum breaking strain the crucial factor. To test this breaking strain we
can imagine placing a beam on two supports, one at either end, and applying a
gradually increasing force at its centre; when the beam breaks we will record its
breaking strain. Applying this technique will assuredly give us the information
we want but at the cost of the destruction of all of the beams. We will know
what was, rather than what is, true. A less expensive and more useful approach
would be this: let the breaking strain of the #th beam be B, for I < r < n, then
we adopt the following procedure.

e Test the first beam to destruction, so that we know Bj.

e Test the second beam by gradually increasing the force to B; but no
further. If it survives, we will know that B, > Bj; if it breaks, we record
its breaking strain, B».

e Test the third beam by gradually increasing the force to min{Bj, B;}. If
it breaks, record B3, otherwise move on to the next beam.
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Using the same reasoning as with record years, given that the strength of the
beams is an independent variable, the expected number of beams broken is
H,=1+ ! + ! +-- 1+ !
T 203 n’
So, rather than breaking all of the 1000 beams, we would expect to break about
Hipoo = 7.5 of them to establish the minimum breaking strain, no doubt to the
delight of the building company. It can also be shown that the variance of the
number of beams broken is H, — 772/6, with another appearance of 72 /6.

13.6 CROSSING THE DESERT

We will look at the problem in its form as a puzzle of World War II and solved
by N. J. Fine in 1947, although it dates back further.

You have to cross the desert by jeep. There are no sources of fuel in the desert,
and you cannot carry enough fuel in a jeep in order to make the crossing in one
£0. You do not have time to establish fuel dumps, but you do have a large supply
of jeeps and drivers, none of which you want to lose. How can you get across
the desert, using the minimum amount of fuel?

We will measure the distance a jeep can travel in terms of a tankful of fuel; one
jeep by itself can travel a distance of one tankful. If two jeeps set out together,
they should travel for 1 3 of a tankful, then Jeep 2 transfers 1 3 of its tankful to
Jeep 1, and returns to base on the remaining 3 tankful. Jeep 1 is then able to
travel a total of 1 + 3 tankfuls.

With three jeeps, they should stop after travelling 5 of a tankful, then transfer
5 of a tankful from Jeep 3 into each of Jeeps 1 and 2, which are now full.
Jeep 3 now has of a tankful, Jeeps 1 and 2 now proceed as before, with Jeep 2
returning with an empty tank to Jeep 3. Between them, they have enough fuel to
get back to base. Meanwhile, Jeep 1 has travelled a total of 1 + % + % tankfuls.

The same reasoning shows that with four jeeps you can achieve a distance
of 1 + % + % + % tankfuls, and with 7 jeeps you can get a jeep across a desert

that is
1 1 1 1
3PSt
tankfuls wide. The divergence of the series means that with this system of
transferring fuel, we can effect the crossing of a desert of arbitrarily large

size—as long as there are enough jeeps and drivers.

13.7 SHUFFLING CARDS

A ‘top in at random’ shuffle is one in which the top card of a card deck of n
cards is removed and inserted at random in the deck. How many times must
this shuffle be repeated before we can regard the deck as ‘random’?
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We follow the progress of the card which is initially at the bottom of the deck.
This card (label it B) stays at the bottom until another card is inserted below
it. Since there are n places into which a card taken from the top can go, the
chance that it will go below B is 1/n, and therefore on average it will take n
‘top in at random’ shuffles before a card is placed below B. With this done, the
chance that a card taken from the top and inserted at random into the deck will
go in below B is 2/n since there are now two places below B, and the expected
number of shuffles needed to get a second card below B is n/2 and the expected
number of shuffles needed to get two cards below B is n + n/2. Note that at
this stage the cards below B are in random order. Continuing in this way, we
see that the expected number of ‘top in at random’ shuffles needed to get B up
to the top of the deck is

n n n
nt s+ttt

2 3 4 n—1

TR R
273 "4 n—1

At this stage the cards below B are in random order, and just one more shuffle,
which puts B at random into the deck, is needed to randomize the deck. The
total number of shuffles needed is therefore

n

n n n
n+§+§+z+"'+n_l+l
=n<1+1+1+1+...+;+1)
2 3 4 n—1 n
=nH,.

For an ordinary bridge deck of 52 cards this makes it about 230 ‘shuffles’.

13.8 QUICKSORT

Of the many different algorithms that have been devised to sort an array of data,
Quicksort (devised by C. A. R. Hoare) is favoured more than most because the
time that it takes to perform a sort is usually comparatively short.

The general idea of Quicksort is that an item of the array, called the pivot
point, is selected and the array divided into two, with all items with a value less
than the pivot point moved to or remain on its left and all items with a value
more than the pivot point are moved to or remain on its right. The process is then
continually repeated in each sub-array until the data are sorted, which occurs
when the length of each sub-array is 1; no effort is made to arrange the data in
each sub-array. To look at the mathematics involved, write 7,, for the average
time for the algorithm to sort a list of n items arranged in some unknown order.
Suppose that the rth element of the list is chosen as the initial pivot point (which
we assume takes 1 unit of comparison time), then we need n — 1 comparisons

128



IT’S A HARMONIC WORLD

to divide the data into the two partitions plus the 1 and so
T, =n+T_1+T,—,, r=12...,n withTy=0.

We can eliminate r by summing over it to give
n n n
ZT :Zn"'Z(Tr—l"'Tn—r),
r=1 r=1 r=1

n n n—1
nLy=n*+> T+ Ty r=n"+2) T,
r=1 r=1 r=0

2n—]
T, =n+;ZOT,.
r=

This makes
2n—1 2 n—2
nT,,—(n—l)Tnlzn{n—i—— Tr}—n—l{n—1~|—— T}
n; (n—1 n_lg ;
n—1 n—2
=n2—(n—1)2+22T,—2ZT,=2n—1+2Tn,]
r=0 r=0

and so we get
nl,=2n—14+2T, 1+(n—DT—1 = m+DT,—1+2n—-1, n=1,2,...
with Tp = 0.

A magical leap avoids the world of recurrence relations and we state the

solution
n+1

T, =2 1 - —3n—-2, forn>1,
7 (n+);r n orn
which we can check. If it is, then
n
1
(n+1)T,,_1+2n—l=(n+l)x(2nZ——3(n—1)—2>+2n—1
r

r=1

"1
=2n(n+1)z;+(n+1)(—3n+1)+2n—1

r=1

n
1
=2+ 1)) —=3n*—2n+1+2n—1
r
r=1
n+1
:2n(n+1)2;—2n—3n2:nTn.

r=1
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Figure 13.1.

And we are done, since we also have

1
1
T0=2(0+1)Z;—3x0—2=0.

r=1

Using this we can give a measure of the efficiency of Quicksort by estimating
H,, by the natural logarithm and replacing n by n + 1 for large n:

n+1
Tn:2(n+l)Z;—3n—2r’\¥2(n+l)<ln(n+l)+y—

r=1

3n+2>
2n+1)

= O(nlnn).

This compares pretty favourably with alternatives like the simple Bubble sort,
where the same average is about O (n?); of course, worst-case scenarios can
happen, which force the n In n towards n?.

13.9 COLLECTING A COMPLETE SET

There are many occasions when, as a marketing ploy, sets of objects are dis-
tributed among products to encourage sales, particularly among children. We
will model the situation with packets of breakfast cereal and suppose that there
are n distinct toys distributed randomly (which is a big assumption), one to
each box, and among an unlimited number of boxes. The question is: what is
the expected number of boxes that must be bought for the child to collect the
whole set of toys?
First, we need a preliminary result. The infinite geometric series,

1
1~|—x+x2+x3+-~-=]— for |x| < I,
—Xx

which we have used several times before, can legitimately be differentiated with
respect to x to give

1
2 3 _
I +2x 4+ 3x" +4x +"'—m,

with the same range of convergence. Now to the problem at hand.
Let E, be the expected number of boxes to be opened to collect the rth new
toy. Pictorially, see Figure 13.1. Since the first box must yield anew toy, E1 = 1.
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()
- )

Then

1 1n-1
E=12"" 1" +3< )
n n n

IR R

Putting x = 1/n in the above result then gives

E_n—l 1 _n
T T a—1n? a—1

Continuing this argument,

n—2 2n-2 2 -2 2 -2
E;=1 +2= +3( = = +..
n

) )

n (1-2/n)? _n—2'

And so the expected number of cereal boxes that must be bought to collect the
whole set of toys is

I,=Ei+E;+E3+---+E,
- n "1
:Zn—r—i—l :nZ;:
r=1 r=1

A non-random distribution would, of course, increase this number. The reader
could model this by, for example, throwing a fair six-sided die until all six
numbers have shown uppermost, in which case, n = 6 and Tg = 14.7. Using
an ordinary bridge deck of cards and cutting until all cards have shown would
require n = 52 and a lot more patience: T5; = 205.

13.10 A PurNAM PRIZE QUESTION

The William Lowell Putnam Mathematical Competition is an annual contest for
college students in America, established in 1938 in memory of its namesake.
It awards cash prizes to both individuals and teams. Problem B5 of the 1992
Putnam competition involved determinants and was the following. Is A, /n!
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bounded, where

31 1 1 1
1 4 1 1 1
1 1 5 1 1
An = 1 11 6 1
I 11 1 -+ n+1l

We show the essential steps of an elegant solution of this problem and leave it
to the interested reader to provide the details of the uses of determinants!

31 1 1 1 1
1 4 1 1 1 1
1 1 5 1 1 1
A,=|1 1 1 6 1 1
. . 1 1
1 1 1 1 n+1 1
0 00O 0 1
2 0 0 O 0 1
0o 3 0 0 0 1
0O 0 4 0 0 1
=0 0 0 5 0 1
. 0 1
0O 0 0 ©0 n 1
-1 -1 -1 -1 -1 1
2 0 00 0 1
0 3 00 0 1
0 0 40 0 1
=0 0 0 5 0 1
. ) 0o 1
0 00O n 1
0 00O 0 H,
=n'H,.

So, A, /n! = H, and since H, diverges, the answer is that A, /n!is unbounded.

13.11 MAXIMUM PoOSSIBLE OVERHANG

If a stack of playing cards (for example) is placed on the edge of a table and
made to overhang as in Figure 13.2, we can ask the question, What is the
biggest overhang possible? Suppose that the cards are 2 units wide. Clearly, we
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>
<4

\ 4

Figure 13.2. Overhanging cards.

get maximum overhang from one card to the next if the upper card is displaced
so that its centre of gravity is just above the edge of the one it is on top of. Let
d, be the distance from the right edge of the top card to the same edge of the
rth card from the top. Then d; = 0 and if d,-+1 is to be the centre of gravity of
the first » cards,

di+D+bh+D+d+D+---+d+1)

dii1 = . 1<r<n.
Hence
rdrq1 =r+di+da+---+d—1+d, r=0,
and

(r—=Ddy=r—1+di+do+---+d—1, r=1
Subtracting gives
rdry1—(r—Ddy =1+d,, r2=1

And, therefore,
dpi=d+1/r, r>1,

the second formula defining the harmonic series, and so d,4+1 = H;, and setting
r = n gives H, as the total overhang, and again the divergence of H, means
that theoretically the overhang can be as large as we please.

13.12 WoORM ON A BAND

This intriguing problem seems to have been invented by Denys Wilquin in
1972. A (mathematical) worm starts at the end of a (mathematical) rubber band
of initial length 1 m. The worm crawls at a constant 1 cm min~! and at the
end of each minute the band instantly stretches by 1 m. So, just after 1 min of
crawling the worm is 1 cm from the start and 99 cm from the end, but the band
then instantly stretches by 1 m with the worm stationary relative to it, and as it
is 1% from the start and 99% from the end it is 2 cm from the start and 198 cm
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from the end. Just at the end of the second minute the worm is 3 cm from the
start and 197 cm from the end, that is, (1 + %)% = 1.5% from the start and
98.5% from the end; the band stretches again and becomes 3 m long; the worm
is, therefore, 4.5 cm from the start and 295.5 cm from the end. Just at the end
of the third minute the worm is 5.5 cm from the start and 194.5 cm from the
end, that is, (1 + % + %) = 1%% from the start and 98%% from the end. And
so the process continues. The question is, does the worm ever reach the end?
The answer relies critically on the fact that when the rubber band stretches the
percentage of it that the worm has crawled along remains constant; therefore,
he crawls 100 o th of its length in the first minute, 200 s~—th in the second minute,
300 =~ th in the third, etc. So, after n» minutes the fraction of the band that he has

crawled is
1 /1 il 1 N 1 . 1\ _ H,
100 3 n) 100

Again, using the logarithmic estimate for H,, we have that H, = 100 when
Inn + y =~ 100, which is when, n ~ ¢1%9=Y minutes. Our tireless worm will
need longer than the estimated life of the Universe to complete his journey.

13.13 OpTIMAL CHOICE

This final, surprising appearance of the harmonic series is remarkable for its
particularly counterintuitive nature and appears in many forms: picking a sec-
retary, a suitor, a car, a restaurant, etc. The common ground is that there is a
list from which a single choice has to be made, the list is randomly ordered
and there is a single best choice—and we would like to make it. We could,
of course, appraise each candidate and so guarantee success, or at the other
end of the spectrum we could be lazy and simply pick one at random; if there
are n choices in total, the chances of success in picking the best would then
be 1 and 1/n, respectively. Is there an optimal strategy that fits somewhere in
between, making us work a bit—but not too much? The answer is ‘yes’, and a
very elegant ‘yes’ too. That strategy is to reject the first r candidates on the list
and then choose the first candidate better than the best reject.

Why is this sensible and when is it optimal? What value does r have? Suppose
that the best candidate is B, then we will fail if B is among the first » candidates
and since all subsequent candidates will be compared to B we will inevitably
have to choose the lucky nth candidate, otherwise we have a chance of success—
but what chance? The answer depends on where B is among the remaining
choices and we need to deal with each possibility separately.

If B happens to be in the (r + 1)th position, we will choose it for certain; this
happens with probability 1/n. Now suppose that B is in the (» 4 2)th position,
then if the occupant of the (r + 1)th position is the best yet we will fail in our
goal by choosing it, otherwise we will choose B nonetheless. This means that
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we will choose B if the best yet among the first » + 1 choices lies among the
first r of them; this occurs with probability r/(r 4 1). We do need B to be in
the (r 4 2)th position, and this happens with that same probability of 1/#n, so
the total probability of success in this case is

1 r

X .
n r—+1

Now the process continues, supposing that B is in the (r + 3)th, (r +4)th, ...,
nth position, giving the probabilities of success as

1 r 1 r 1 r
X , — X , A - X .
n r+2 n r—+3 n n-—1

The total probability of success (that is, of choosing B) using this strategy is
then

PG 1) 1 4 r . r n r I r
n,r)y=-— cee .
n r+1 r+2 r+3 n—1
For any given n it is this probability that we wish to maximize as r varies from

0 to n — 1 and the harmonic series is evidently making another appearance. In
terms of it we have

P(n,r) = %{1 +r(H,—1 — Hp)}.
This is easily computed for small values of n, for example, n = 5, 10, 100,
1000, and the behaviour is shown in Figure 13.3.

The points have been joined to emphasize the behaviour. We can clearly see a
trend appearing, with the maximum value of P (n, r) decreasing from just over
0.4 to something under it and achieved at a value of r slightly more than a third
of n. Table 13.5 gives the maximum probabilities and the values of » at which
they are achieved for the first few and several larger values of n.

From this we can see that the strategy results in a probability of success
(that is, of choosing B) of at least 37% no matter how large n is; it may not
be certainty but it is a great deal better that the diminishing 1/n of the random
guess.

The full analysis of the problem again has us approximating the H, by the
natural logarithm for large n (and therefore large enough r)

‘l —
P.r)~ (14 r(n( 1) +yl=[Inr +yD} = %{1 +rn 1)}.

If we treat r as a continuous variable, we can use calculus to find the approximate
coordinates of the maximum that we have seen in the plots,

dP(n,r) 1 n—1 1 1 n—1
— = lln———rx—-t=—-1In — 1y,
dr n r r n r
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Figure 13.3. Continuous form of P (n, r).

Table 13.5. Optimal choice table of values.

n Opt.r Max. P(n,r)

1 0 1.000

2 0/1 0.500

3 1 0.500

4 1 0.458

5 2 0.433

6 2 0.428

7 2 0.414

8 3 0.410

9 3 0.406

10 3 0.399

20 7 0.384

50 18 0.374
100 37 0.371043
200 73 0.369 461
300 110 0.369 352
400 147 0.368671
500 184 0.368512
1000 368 0.368 195
5000 1839 0.367942
10000 3678 0.367911
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Table 13.6. Another optimal choice table of values.

n Opt.r  Max. P(n,r)

2 1 0.500
3 1 0.500
8 3 0.409 8
11 4 0.3984
19 7 0.3850
87 32 0.3715
106 39 0.3709
193 71 0.3695
1264 465 0.368 13
1457 536 0.368 10

which means that for any stationary points,In(n—1)/r = landso (n—1)/r = e
and there isn’t much lost in saying n/r = e. So, the optimal r is about n/e and
gives the maximum P (n, r) approximately as

1 1 1
—{l—l—rl (n )}~—1n3~—w0.37,

n r n r

the base of Napier’s logarithms.
A little intrigue remains, though. The continued-fraction representation of
1/e is just that of e shifted one place and so it is

1/e=10;2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1, 1,12, ... ].

: 1 13 4 7 32 39 71
This means that the first few convergents are 3, 3, 5. 17> 19- ¥ 106> 195

465 536
1264° 14577 """ . .
Table 13.5 lists some values of n and the corresponding optimal r, together

with the value of P (n, r). Another selection of values of n yields the equivalent
Table 13.6.

The selection of the n is hardly arbitrary: they are of course the denomina-
tors of the convergents of 1/e, and the optimum r are nothing other than the
corresponding numerators. A bigger test is n = 14 665 106—the denominator
of the 20th convergent of 1/e; the numerator is 5 394 991—and guess what the
optimum r is? Correct. It is reasonable, but why is it true?

A peculiar feature of the procedure is that every candidate can be told the
outcome of the interview immediately at its end—if they actually get an inter-
view, that is! If we wish to sacrifice this feature, we can look at things slightly
differently. Suppose that we replace the verb ‘reject’ with the alternative verb
‘reserve’, then, if the best candidate is within the first » interviewed, we will
inevitably continue to interview to the last candidate, but having done that we
would choose that best candidate anyway from our initial reserves. Of course,
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Figure 13.4. The alternative strategy.

in a sense the procedure has failed because we will have enjoyed no saving of
effort but we can ask, for example, what the value of r should be to ensure that
the odds of success are just in our favour. Now, we have

1 r
P(n,r) = ;{1 +r(H,—1 — H)} + ;17

with the additional term the probability that the best candidate is within the
first r interviewed. Even with the logarithmic approximation, finding  so that
P(n,r)= % is not capable of analysis but we can see what is happening with,
for example, n = 1000.

The function is maximizing to 1 at r = 1000 (unsurprisingly), but we are
interested in where it equals % and a bit of computation reveals that this is
achieved when r = 186 and continuing to higher n indicates that we have an
asymptotic form r/n ~ 0.186 6822 ... —whatever that is. In summary, if we
apply the procedure, having automatically interviewed a bit under 20% of the
candidates we have an even chance of picking the best of them!
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It’s a Logarithmic World

How can it be that mathematics, being after all a product of human thought
independent of experience, is so admirably adapted to the objects of reality?

Albert Einstein (1879-1955)

As we have mentioned in the Introduction, the reader of this book will need little
convincing that logarithms appear with great frequency in mathematics and its
applications, particularly with so many differential equations involving them or
exponentials in their solution. Power laws abound in nature: Kepler’s third law,
the universal law of gravitation, Boyle’s Law, etc. A browse through any science
book will yield any number of examples, and where there is a power law, there
is a linearizing logarithm, as Kepler may have experienced. The intensity of
earthquakes is measured on the logarithmic Richter scale, fractal dimension is
defined in terms of logarithms, distance in the Poincaré model of hyperbolic
geometry is logarithmic, and so the list continues. The final two chapters are
devoted to one particular and major use of them as a measure of the number
of primes below any number. Here we will look at three other examples of
them forcing themselves into the solution of a problem. They can hardly be
representative, but each has a novel appeal and each has been developed into
important ideas.

14.1 A MEASURE OF UNCERTAINTY

A dictionary definition of ‘entropy’ is ‘a measure of the disorder of a system’.
The word is famously associated with the Second Law of Thermodynamics,
but in 1948 it found use in the hands of the American scientific genius Claude
Shannon (1916-2001), the ‘father of the information age’, on whose theories
rest the ideas of modern digital communication. A delicious eccentric, his house
was home to five pianos and 30 other instruments, chess-playing machines
(including one that moved the pieces with a three-fingered arm, beeped and
made wry comments), rocket-powered Frisbees, motorized Pogo sticks, a mind-
reading machine, a mechanical mouse that could navigate a maze and a device
that could solve Rubik’s Cube. His love of juggling led to the invention of a
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Figure 14.1. Claude Shannon’s Fig. 6.

machine with soft beanbag hands that juggled steel balls and also a tiny stage on
which three clowns juggle 11 rings, 7 balls, and 5 clubs, all driven by an invisible
mechanism of clockwork and rods. His love of the unicycle led to him using
one as transport along the corridors of the Bell Laboratories, where he worked
for many years. His love of both led to the design of a unicycle with asymmetric
gearing so that he could more easily juggle... as he unicycled along.

As an employee at the Bell Telephone Company, he was naturally interested
in problems that arose from communication in all its forms, an interest which led
to his influential 1948 paper, later to appear in book form as The Mathematical
Theory of Communication, co-authored with the mathematician Warren Weaver.
The ideas were embraced, made rigorous and expanded by Alexandre Khinchin
(whose work on continued fractions we will touch on later in this chapter) in
two important papers, to appear in English in 1959 as the book Mathematical
Foundations of Information Theory. From there, the subject has blossomed
into a critically important area of modern applied mathematics. It is from the
Shannon—Weaver book that our first example is culled, as they quantify the
concept of the disorder in a communication system, phrasing the idea in terms
of probabilities. We will not move further to see him develop the initiative
into a series of seminal results, crucial to modern communication systems,
although the reader may well wish to consult either book to take the study
further; both are currently available. How can uncertainty be measured and
how do logarithms naturally appear as a measure? We let Claude Shannon tell
us (also see Figure 14.1):

6 Choice, uncertainty and entropy

We have represented a discrete information source as a Markoff
process. Can we define a quantity which will measure, in some
sense, how much information is ‘produced’ by such a process, or
better, at what rate information is produced?

Suppose that we have a set of possible events whose probabilities
of occurrence are pi, p2, ..., py. These probabilities are known
but that is all we know concerning which event will occur. Can we
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Figure 14.2. A reasonable 2-state entropy graph.

find a measure of how much ‘choice’ is involved in the selection
of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(p1, p2, ..., pn), it is reasonable
to require of it the following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = 1/n, then H should be a mono-
tonically increasing function of n. With equally likely events
there is more choice, or uncertainty, when there are more
possible events.

3. If a choice be broken down into two successive choices, the
original H should be the weighted sum of the individual val-
ues of H. The meaning of this is illustrated in Fig. 6. At the
left we have three possibilities p; = %, p2 = %, p3 = %. On
the right we first choose between two possibilities, each with
probability %, and if the second occurs make another choice
with probabilities % % The final results have the same prob-
abilities as before. We require, in this special case, that

HG.3.9)=HG. D) +3HG. 3.

=

The coefficient % is because this second choice only occurs
half the time.

Theorem 2. The only H satisfying the three above assumptions is
of the form:

n
H=-KY pilogp
i=1

where K is a positive constant.
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~ Each of s"~! branches

s branches

Figure 14.3. The tree diagram for equally likely choices.

We need not concern ourselves about the meaning of the most famous legacy
of Chebychev’s student, Andrei Markov (1856-1922). Passing the reference
by, the first two conditions are intuitively reasonable, but the third demands
more care. Firstly, to develop a feeling for what is happening, suppose there
is only one event possible, then there is no uncertainty and we would want
H(p1) = H(1)tobe 0. Now suppose that there are two possibilities, then we can
write H(p1, p2) = H(p, 1 — p).If pisclose to O or 1, there is little uncertainty
and we intuitively feel that in these cases H should be near 0, with the maximum
uncertainty achieved when p = 1. We would then reasonably expect a graph
of f(p) = H(p,1 — p) to look something like that in Figure 14.2. The third
condition carries with it the usual meaning of tree diagrams and is best looked
at in two stages. If all n choices are equally likely, write (as Shannon did)

111 1
Am)=H|-,—, —, ..., — ).
nnn n
Now suppose that n = s™ for some positive integers s and m, then the choice

can be made in two stages, as in Figure 14.3.
Which makes

AG™) = A(s) + %A(s”’_l) x s = A(s) + AGs™ D),

using the fact that we can make the remaining s ! choices in s equally likely
ways, each with a probability of 1/s. Repeating the process results in A(s"") =
mA(s)+ A(1) and since A(1) = H(1) = 0, we have that A(s™) = mA(s) and
we can begin to discern properties of logarithms appearing.

We will continue to follow Shannon’s reasoning as he develops the full log-
arithmic behaviour of this equally likely form of uncertainty and from that
establishes the result for its most general form.

For an arbitrary large chosen positive integer n, choose a positive integer m
and positive integers s and ¢ so that s” < " < s”*!, which makes (to any
base)

logs™ < log " < logs™ ™!,

<
< (m+ 1 logs,

<
<

mlogs < nlogt
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mlogs < nlogt < (m+ 1)logs
nlogs  nlogs nlogs

m _logt m 1
—<— < —+ -,
n " logs n o n
1
ogogr_m 1
logs n " n
which we will write as
logt m 1
N
logs n n

He then establishes a similar inequality for the function A.
We have that A(s") < A(t") < A(s"*1) and since A(s™) = mA(s) and
A("™) = nA(t), we have

mA(s) < nA(t) < (m + DA(s),

mA(s) < nA(t) < (m+1)A(s)

nA(s)  nA(s) = nAGs)

m _Al) m 1
< < —

n o A(s) n o n’

and, as before,

Aty m 1

'A(s) T alTn
Combining these gives

A(t) _ logt < g

A(s) logs| n

and since n can be taken to be arbitrarily large, this makes

At) logt d A)  AC(s)
——=— and — =
A(s) logs logt logs

for all such s and ¢, which must mean that A(z) = K logt, for some constant
K.
The move to the general expression for H is made in the following way.
Suppose that we have n different choices c¢,, with each choice occurring n,
times 1 < r < n. This means that

n
ny
n:E n, and p,=—.
n

r=1

We can think of the available choice in two ways.
The possibilities can be listed as shown in Figure 14.4 and the choice be made

by considering them to be n possibilities, all equally likely, to give A(n). Or

143



CHAPTER 14

ny ny n,
Figure 14.4.
n n, n,
Figure 14.5.

we can group the identical ones together, see which group is chosen and then

see which member of that group is chosen, which is represented in Figure 14.5.

Now our measure of choice is H(p1, p2, ..., pn) + 2 _r_; PrA(n,), where the

first part relates to the uncertainty of which box is chosen and the second part

the uncertainty of which of the equally likely choices are made within a box.
Equating the two forms gives

A() = H(p1, p2 -, pa) + ) prA(ny),

r=1

which makes

n
Kilogn = H(pi.pa..... pa) + K1 Y _ prlogn,

r=1

SO

n
H(p1, p2,..., pn) = Kilogn — K4 Zprlognr

r=1

n n
= Kllogan, — Klzprlogn,

r=1 r=1

n n
= K, Zpr logn — K Zpr logn,

r=I1 r=I1
n n n

= K X;prlog; = Klzprlogpr.
r= r=

Note that K| must be chosen to be negative, since the logarithms are all negative
and H must be increasing as a function of n, so write K = — Ky, with K > 0,
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0 0.5 1.0
Figure 14.6. The look of H in the 2-state case.

to give

n
H(p1, p2,.... pn) = —KZprlogpr.

r=1

The choice of a value for K is arbitrary, as is the base of the logarithms, and
Shannon’s concept of entropy (he points out) ‘... will be recognized as that of
entropy as defined in certain formulations of statistical mechanics. .. .

If we perform a small check with the case n = 2, choosing K = 1 and natural
logarithms, we have that f(p) = H(p,1l —p) = —plnp—(1—p)In(l — p),
which looks like the graph in Figure 14.6, and which is what we would have
hoped for. Uncertainty is logarithmic—and very important.

14.2 BENFORD’S LAw

Logarithm tables have helped to solve countless problems since Napier’s inven-
tion of them, and they have created one too, a particularly strange phenomenon
that at first sight seems barely plausible, but to which they themselves are the
solution. Suppose that an English-speaking student is learning the French lan-
guage and has a combined English/French and French/English dictionary, split
into two halves. It is very likely that the English/French half of the book will
be more used than the other and we would expect as time goes by for the book
to show uneven signs of wear; there is no surprise here. A book of logarithms is
different. If, over time, it is used for a variety of calculations, we would expect
its use to be evenly distributed throughout its pages: it isn’t.

The distinguished American mathematician and astronomer Simon New-
comb (1835-1909) was made a Foreign Member of The Royal Society on 13
December 1877, exactly the same date as Chebychev was so honoured. We have
mentioned Chebychev before and more of his mathematics will be discussed in
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Table 14.1. Distribution of first significant digits.

Intuitive Suggested
d probability probability

1 0.111... 0.30103
2 0.111... 0.176 09
3 0.111... 0.124 94
4 0.111... 0.09691
5 0.111... 0.07918
6  0.111... 0.066 95
7 0.111... 0.05799
8 0.111... 0.05115
9 0.111... 0.04578

0.30 ]
- Intuitive probabilities
[] Suggested probabilities
> 0.20
z
e}
e
&~ 0.10
0
1 2 3 4 5 6 7 8 9
d
Figure 14.7.

Chapter 15, but Newcomb’s offbeat observation has its place here. He noticed
that the books of logarithms that he shared with other scientists showed greater
signs of use at their beginning than they did at their end. Since log tables are
arranged in ascending numeric order, this suggested that more numbers with
small rather than large first significant digits were being used for calculation.
Yet, all sorts of numbers of all sorts of sizes were being dealt with; why didn’t
the distribution of their most significant digits even out? Newcomb’s investiga-
tions led him to the empirical law that the fraction of numbers that start with the
digit d is not the intuitively reasonable % but the remarkable log;,(1 4+ 1/d). In
1881 he mentioned the phenomenon in a brief article in the American Journal of
Mathematics but, without the mathematical justification to support it, it was no
more than a curiosity and disappeared from the mathematical landscape—until
1938, when Frank Benford, a physicist at G.E. noticed precisely the same thing.
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The distribution of first significant digits did not appear to be a uniform % but
that remarkable log;y(1 4+ 1/d), summarized in Table 14.1 and Figure 14.7,
which compare the intuitive and suggested probabilities of the first significant
digit appearing.

If the suggested probabilities are the true measure of the frequency of occur-
rence of naturally occurring numbers, it is small wonder that at some time
someone would notice that the front of a book of log tables is about six times
more dirty than the back.

To add weight to the hypothesis, he compiled a table of 20229 numbers,
including such wildly disparate categories as the areas of rivers, death rates,
baseball statistics, numbers in magazine articles and the street addresses of
the first 342 people listed in the book ‘American Men of Science’. The table
is reproduced in Table 14.2 and is largely consistent with the idea that these
seemingly unrelated sets of numbers follow the same first-digit probability
pattern as the worn pages of the logarithm tables.

The assertion that distribution of first significant digits is log;o(1 + 1/d) has
subsequently become known as Benford’s Law. But where is the mathematics
to support it? The counterintuitive nature of the law is a phenomenon seen
elsewhere in probability theory, perhaps most common is the ‘birthday paradox’
(which shows us that only 23 people are needed to have the odds of at least
two of them having the same birthday in excess of even). Theodore Hill of
the Georgia Institute of Technology refers to another when he has his students
choose between tossing a fair coin 200 times or faking the results. It is natural
for the fakers to mix up the sequence of heads and tails as much as possible but,
as he points out, ‘the overwhelming odds are that at some point in a series of
200 tosses, either heads or tails will come up six or more times in a row’.

Many sets of numbers certainly do not obey Benford’s Law: random num-
bers at one extreme and numbers that are governed by some other statistical
distribution on the other, perhaps Uniform or Normal. It seems that for data to
conform to the law they need just the right amount of structure. The last row of
averages of the data in the Benford table, with its excellent fit to the law, reveals
some of the mystery and it was Hill who saw into it. In 1996 he showed that if
distributions are selected at random and random samples are taken from each
of these distributions, the significant-digit frequencies of the combined sam-
ple would converge to conform to Benford’s Law, even though the individual
distributions selected may not. Hill calls it the ‘random samples from random
distributions’. In a sense, Benford’s Law is the distribution of distributions!

There are other ways of approaching the phenomenon. If such a law is to be
universal, it must for example apply to the base 5 system of counting of the
Arawaks of North America, the base 20 system of the Tamanas of the Orinoco
and to the Babylonians with their base 60, as well as to the exotic Basque system,
which uses base 10 up to 19, base 20 from 20 to 99 and then reverts to base 10.
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Table 14.2. Benford’s data.

First digit
Title 1 2 3 4 5 6 7 8 9  Samples

Rivers, area 31.0 164 107 113 72 86 55 42 5.1 335
Population 339 204 142 8.1 72 62 41 37 22 3259
Physical constants 413 144 4.8 86 106 58 1.0 29 106 104
Numbers from newspaper articles 30.0 18.0 120 100 80 60 60 50 50 100
Specific heat 24.0 184 162 146 106 4.1 32 48 4.1 1389
Pressure 29.6 183 128 9.8 83 64 57 44 47 703
H.P. lost 30.0 184 119 108 81 70 51 51 36 690
Molecular weight 26.7 252 154 108 67 51 41 28 32 1800
Drainage 27.1 239 138 126 82 50 50 25 19 159
Atomic weight 47.2 18.7 55 44 6.6 44 33 44 55 91
n=1 nl/2 25.7 203 97 68 66 68 72 80 89 5000
Design 26.8 148 143 75 83 84 70 73 56 560
‘Readers digest’ data 334 185 124 75 71 65 55 49 42 308
Cost data 324 188 101 101 9.8 55 47 55 3.1 741
X-ray volts 27.9 175 144 90 81 74 51 58 48 707
American League 32.7 17.6  12.6 98 74 64 49 56 3.0 1458
Blackbody 31.0 173 14.1 87 6.6 70 52 47 54 1165
Addresses 28.9 19.2 126 88 85 64 56 50 5.0 342
Mathematical constants 25.3 160 120 100 85 88 68 7.1 55 900
Death rate 27.0 18.6 157 94 67 65 72 48 4.1 418
Average 30.6 185 124 94 80 64 51 49 47 1011
Probable Error (4ve/—ve) 0.8 04 04 03 02 02 02 02 0.3

1 YHLdVHD



IT’S A LOGARITHMIC WORLD

The law must be base independent. And indeed it is, since base independence
of data has been shown to imply Benford’s Law.

The units of measurement should not matter either. For example, the fast-
disappearing British Imperial system of measurement of length and mass is

12 inches = 1 foot, 16 ounces = 1 pound,
3 feet = 1 yard, 14 pounds = 1 stone,
5% yards = 1 pole (or rod, or perch), 2 stones = 1 quarter,
4 poles = 1 chain, 4 quarters = 1 hundredweight,
10 chains = 1 furlong, 20 hundredweights = 1 ton,

8 furlongs = 1 mile.

(Incidentally, these are nothing more than examples of a finite mixed-base mea-
suring system, as discussed on p. 99. For example, with the length data, sup-
pose that we have the imperial distance of 7 miles, 5 furlongs, 3 chains, 1 pole,
2 yards, 1 foot and 11 inches. In miles this is the expression

7+5><l—i—3xlxi—i—lxlxixl+2xlxixlxi
8 8 10 8 10 4 8 10 4 5%
+1x-x— l><L><l+ll><l><i><l><i><lxi
8 1 4 % 3 8 10 4 5% 3 12

5
=7+ l(5+ i<3 + l(l + L(2+ l<1 + i(11)))>>>
8 10 4 51 3 12
=1[7;5,3,1,2, 1, 11] = 7.6672 miles.)

Euler’s manuscript, ‘Meditations upon experiments made recently on the firing
of a canon’, concerned a series of seven experiments carried out in 1727 and
which forever cast the letter e for the base of the natural logarithm; in it he
measured the cannon ball’s diameter in ‘scruples of Rhenish feet’. Surely the
same cannon balls would or would not conform to Benford’s Law whether their
diameters be measured by the English Imperial system, Euler, or our modern
metric system or indeed by any other system of measurement. The same point
can be made for their masses too. In 1961, Roger Pinkham, a mathematician
then at Rutgers University in New Brunswick, proved just that: scale invariance
did imply Benford’s Law. It is this fact that we will focus on and show how
such a result can be established.

A change of units is achieved by multiplying by some scaling number and
before we immerse ourselves in the mathematics, we can get a feel for the
phenomenon by seeing what happens when we do just that in a particular case.
Suppose that we take a hypothetical set of 100 ‘canon balls’ of diameters 1-100
scruples of Rhenish feet, order them descendingly by size and plot order against
diameter, to arrive at Figure 14.8(a). Now we change units by multiplying each
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Figure 14.9. The logarithmic ideal.

diameter by a random number (in this case, between 0 and 1), and then again,
and once more, re-ordering to get Figure 14.8(b)—(d).

The same shapes result from any scalings and the concavity of the resulting
curves forces bigger numbers to become more rare. The eye encourages the
thought that the plots are approximating some limiting curve. Which curve?
Figure 14.9 is a scaled plot of log;,(1 + 1/diameter)—which makes one think.

More specifically, consider first significant digits, uniformly distributed, and
then suppose that we change the units by multiplying by 2. The first significant
digits of the data after the rescaling are given in Table 14.3, which gives rise to
the bar chart in Figure 14.10. Equally likely digits are not scale invariant.
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Table 14.3.

Effect of multiplication by 2

Interval [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5)
First significant digit after x2 2 3 4 5 6
Interval [3.5,4) [4,4.5) [4.5,5) [5,10)
First significant digit after x2 7 8 9 1

05+

0.4

0.3

0.2 0O Actual

O Expected
"o B i B
0 2 3 4 5 6 7 8 9

1

Figure 14.10. The expected and actual frequencies
(distribution of first significant digits).

Now to some mathematics; we will give a statistical definition of scale invari-
ance and use it to show that scale invariance does indeed imply Benford’s Law.

We need the ideas of the probability density function ¢ (x) and the cumulative
density function @ (x) of a continuous random variable. These definitions are
the usual

b
P(angb):/ ¢(x)dx,

where @(x) = P(X < x) = fx ¢(t) dt and therefore d® (x)/dx = ¢(x).

We will say that a random variable X is scale invariant if the probabilities that
itlies in any interval before and after scaling (i.e. multiplying) by any factor (say
1/a) are the same, not worrying about the details of any domains of definition.
If we fix on a lower limit and allow the upper limit to vary, we could write this
as

1
P(a<X<x)=P<a<—X<x>=P(aoe<X<ax),
a
which means that
D(ax) — DP(ax) = Dd(x) — DP(x) or PD(ax)=P(x)+ K, foralla.

If we differentiate both sides of the above identity with respect to x, we get
agp(ax) = ¢(x) and therefore ¢ (ax) = (1/a)p(x).
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Now let Y be the random variable ¥ = log;, X with ¥ (y) and ¥ (y) defined
analogously. Then

U(y) =P <y)=P(log, X <y)=PX D) =20b") =P(x).

This means that

= 2wi)=Low
¥y _dy y _dy X
_d_x X) X dy
and
dx
Y(y) =ex) x o =xp(x)Inb,
y
SO

dx
Y (log, x) = @(x) x o =x¢(x)Inb,

which means that
Y (log, ax) = axg(ax)Inb.

Using the scale invariance we then have

Y (log, ax) = axe(ax)Inb

1
=ax—¢(x)Inb
a
=xpx)Ind
= Y (logy x).
Therefore,
¥ (log, x +log, a) = Y (log, x)
and

Y (y +log,a) = ¥ (y).

Since a can be chosen to be anything we wish, {(y) repeats itself over
arbitrary intervals and it can only be that it is constant. The logarithm of a
scale-invariant variable has a constant probability density function.

We can now relate this to the first-digit phenomena by expressing the numbers
in scientific notation x x 10", where 1 < x < 10, the first significant digit
d of the number is simply the first digit of x. As we scale the number, we
scale x, adjusting its value modulo 10. In this way, we can always think that
1 < x < 10 whether scaled or not and if we take the base of the logarithms to be
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Table 14.4. Second digit probabilities.

Theoretical Actual
d probability  probability
0 0.1 0.11968
1 0.1 0.11389
2 0.1 0.108 82
3 0.1 0.10433
4 0.1 0.10031
5 0.1 0.096 67
6 0.1 0.09337
7 0.1 0.09035
8 0.1 0.08757
9 0.1 0.08499

10, y = log;o x will have a constant probability density function of 1 defined on
[0, 1]. Therefore, assuming the scale invariance above and forn € {1, ..., 9},

Pd=n)=Phn<x<n+1)
= P(loggn < logjgx < logio(n+ 1))
= P(logjgn <y <logjp(n + 1))
= (logp(n +1) —logjgn) x 1

n+1 1
= logyg ( ) = log;g (1 + ;>,

which is Benford’s Law.

The analysis can be extended to look at the frequency of subsequent digits
in the data. For example, if we write the number as x;x> x 10", where 10 <
x1x2 < 99, and define the random variable X accordingly, we get

P (1st significant digit is x; and the second is x»)
=Pxixm<X<xixp+1)

1
=1 14+ —).
0g10< +x1x2>

Extending the argument gives

’ 1
P (second digit is x2) = Z]oglo (1 4 ;)
rA2

r=1

etc. Table 14.4 shows the full set of probabilities for the appearance of second
digits, with O now a possible value.
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Table 14.5.

First digits of the first 1000 Fibonacci numbers

Digit 1 2 3 4 5 6 7 8 9
Frequency 301 177 125 96 80 67 56 53 45
Percentage 30 18 13 10 8 7 6 5 5

Using the standard result of conditional probability that
P(A| B) = P(Aand B)/P(B)

we have

P (second significant digit is x, | first significant digit is x1)

1 1
=1 1+ — 1 1+—).
010 < xlxz)/ 0810 < X1>

So, for example, the probability that the second digit of a number is 5 given
that its first digit is 6 is

loglo(l + %)

= = 0.0990,
log (1 + 6)

whereas if it started with 9 the probability is

loglo(l + %)
—=100_T 957 — 0.0994.
loglo(l + g)

The most likely start to a number turns out to be 10, with a probability of

loglo(l + 1_10)
— = 0.1375.
loglo(l + T)

Having made an appearance, 0 is the most common second digit, but the
probabilities are beginning to level out and are nearer the uniform % that
intuition suggests should be the case; as we move along the digits of the number
the distribution does approach uniformity and intuition is eventually right.

As we have seen, all manner of diverse data conform to the law. Table 14.5
suggests that the Fibonacci numbers would seem to.

A study by B. Buck and A. C. Merchant of the University of Oxford and
S. M. Perez of the University of Cape Town showed that alpha decay half-lives
(the time it takes atomic nuclei to lose half their radioactivity by emitting alpha
particles) obey Benford’s Law both observationally and theoretically. They also
remarked that the same behaviour has been observed in monthly electricity bills
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in the Solomon Islands, the street addresses of eminent American scientists,
and the initial digits of 20 of the more important physical constants. Of much
more practical interest, financial data seem also to conform; in fact, Benford’s
Law can be used to test for fraudulent data in income tax returns and other
financial reports. Mark Nigrini has made a specialization of this sort of ‘forensic
auditing’, which is called digital analysis. He has written:

Benford’s Law provides auditors with the expected digit frequen-
cies in tabulated data. By examining the digit and the number fre-
quencies, auditors can gain data insights that might be missed using
traditional analytical procedures and sampling methods. The digit
and number patterns could point to number invention, systematic
frauds, data errors, or biases in the data. Research is currently
underway on advanced tests to detect anomalies in data subsets.

One case in which he was involved illustrates his point. Using digital analysis,
a company’s audit director discovered something odd about the claims being
made by the supervisor of the company’s healthcare department. The first two
digits of the healthcare payments were checked for conformity with Benford’s
Law, and this revealed a spike in numbers beginning with the digits 65. An
audit showed 13 fraudulent cheques for between $6500 and $6599 related to
fraudulent heart surgery claims processed by the supervisor, with the cheque
ending up in her hands. The analysis also uncovered other fraudulent claims
worth around $1 million in total.

This novel and important accounting technique has, of course, heralded Web
sites devoted to the production of Benford-compliant data, not for illegal or
immoral use, naturally!

14.3 CONTINUED-FRACTION BEHAVIOUR

A look back at the continued fractions in Chapter 11 might bring to the reader
the thought that 1 appears a great deal in the continued fraction form of a
number and that, on the whole, the partial quotients are small (although by no
means exclusively so, with the 431st of 7 being 20 776 the 5040th of y 11626
and the mere 5th of 7% 16 539); Gauss noticed this too and went much further
when he wrote to Laplace on 30 January 1812 about a ‘curious problem’ that had
occupied him for 12 years and which he was unable to resolve to his satisfaction.
We will take the reader through what must have been the equivalent of Gauss’s
reasoning, which led to one of the most remarkable results it is possible to
imagine.

Suppose that X is a random variable defined on R™ and that we write { X} for
the fractional part of X. If the fractional part of X is uniformly distributed, then
P({X} < x) =x,0 < x < 1, but suppose that it is not, then this probability
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will vary according to the value of X and we would have to divide up the real
line, as in Figure 14.11, to get

P({X} <x) =) (P(X <k+x)— P(X < k).
k=1

All well and good, but now we apply this idea to continued fractions.
Define §, by
1 1
& =an + 1 =ap +

an+1 +
an+2+...

€n+1 '

in which case, 1/&,4 is the fractional part of &,. Now let
w(x) = P({&} < x)

(P(En <k+x)— Py < k)

((sn k+x)_P<sln>%>>
(=& <e)] -l <2))
(

(

M

~
I
=

pqu

w-
I
_

tnqg

k

—_

M

(LD -r(t <)
P<{§n < —) - P<{5n—1} < kiX))
1<wn1<%)_wnl<kix>>’

and we have a recurrence relation for w,(x); the question is, can we find an
explicit formula? An intuitive way forward is to argue that, since the relation
holds for all n, if the limit w(x) exists as n — 00, we can reasonably hope for

it to satisfy
— 1 1
o0 =2 (e(5) -(e5))
k2=1: k k+x

and, remembering that w(x) is the limit of the probability of a fraction being
less than x, it should be that w(0) = 0 and w(1) = 1, which is where mortals
might leave the matter.

k

—

o

k

—

o

w-
I
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Figure 14.11.

Gauss mentioned in his letter to Laplace that he ‘could prove by a very simple
argument’ that w (x) = log, (1 4 x), which brings us to the promised surprising
appearance of logarithms. Of course, this does satisfy the two conditions and
we will show, as no doubt he did, that it does satisfy the recurrence relation
also, but what mysterious thought process he used to arrive at the solution is
hard to imagine.

So, if w(x) =log,(1 + x),

XN:I k+1  k+x
(0] X
o A W R Sy

N
k+1 k+x
=log, [ | X

X
plie k+x+1
(Z 1+x><2f M)(}Y 3/+/x>
=log, | = x = X = X
17 24x)\ 2" 34%)\ 3 4+7%
(N—i—l>< N+x )
TN N+x+1
_ (I+x)(N+1)
= logy N+x+1 Nooo logy(1 +x).

What Gauss could not do was to forge these ideas into the statement
P([0;a1,a2,a3,...,a,] < x) = w,(x) =logy(1 +x) + ¢,

and therefore rigorously produce what might be thought of as his ‘second stat-
istical distribution’ (although the first, the ubiquitous ‘Gaussian’ or ‘Normal’ or
‘Error distribution’, which was used by Gauss in 1809 to analyse astronomical
data, was used by Laplace in 1783 to investigate errors in measurement and
came into being through the work of de Moivre, who in 1733 developed it as
an approximation to the Binomial Distribution).

In the end, the problem was solved independently by two mathematicians.
In 1928 R. O. Kuzmin showed that, for almost all continued fractions, &, =
O(qﬁ), where 0 < g < 1, and in 1929 Paul Lévy (1886-1971) showed in a
completely different way that ¢, = O(g"), where ¢ = 0.7 and we have error
terms that are not only relatively small but asymptotically zero.
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Table 14.6. Partial quotient distribution for almost all continued fractions.

For large n, % probabilities for partial quotients

k 1 2 3 4 5 6 7 8 9+
P(ay, =k) 41 17 9 6 4 3 2 2 16

From this incredible result we can find another: the probability density func-
tion of the partial quotients

Plap,=k)=Pk <& <k+1)=PE <k+1)— P& <k)

1 1
RURES
— log, <1 + l) — log, <1 + ;>
n— 00 k k+1
:10g2<(k+ 1)2> :10g2<k(k+2)+ 1)

k(k +2) k(k +2)

1
= log, (1 + —k(k+2)>

which gives rise to Table 14.6. We can check that it is indeed a probability
density function:

1
Zlogz <1+—>
o k(k +2)
_il (k+1)?
TR (k(k+2))

N
Z {2log, (k + 1) —log, k — log, (k + 2)}

N

{log,(k + 1) — log, k} + Z {log, (k + 1) —log, (k 4+ 2)}
1 k=1

=log,(N + 1) +1log, 2 — log, (N +2)

N +1
= log, 2 + log, <N+2> mlog22= 1,

Mz i

o~
Il

with the terms of the two series cancelling.
For example, this tells us that in the approximation for y

1
P(a, = 11626) =1 l+—— )~ 1078
(@ ) °g2< +11626x11628>
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Table 14.7.

Frequency of digits in 1000 partial quotients of y

k 1 2 3 4 5 6 7 8 9+
an 417 168 75 57 41 33 22 19 168
Actual (%) 42 17 8 6 4 3 2 2 17

Table 14.7 provides ample evidence that y behaves as ‘almost any’ number,
yet e must be exceptional since 1 is the only odd number appearing in the
continued-fraction expansion and every even number appears once and only
once; evidently, the Golden Ratio ¢ is exceptional too.

Now that we have a probability distribution, it is natural to ask what is the
average of the a,—and here is another surprise: there isn’t one, as we can see
from the following argument. By definition, the average value is

o0 o0
> kP(an=k) —— Y klog, ( 1+ _ ,
P n—00 P k(k+2)

which seems fine, but as k becomes large, k(k + 2) ~ k2 and

1 1 1 1
togy (14— V~logy (14 =) = —In(1+—=)~ ——.
°g2( +k(k+2)> ng( +k2> In2 n( +k2> n2 k2

which makes

i kPG =k~ i kx = i 1
a, = N — X — = —— —
" In2 k2 " In2 k

k,n large k,n large k,n large

and the divergent harmonic series makes another surprising (and unwelcome)
appearance. Of course, this analysis does not work for ¢ and e, although it is
obvious that the average convergent for ¢ is 1. It is undefined for e, as we can
see if we reason that adding the convergents means adding pairs of 1s, which
is linear in n, and the arithmetic series 2 4+ 4 + 6 + - - -, which is quadratic in
n; division by n will leave something of the order of n and be divergent.

Even though the arithmetic mean is not properly defined for the a,,, Aleksandr
Khinchin (whom we mentioned earlier on p. 140) proved that the geometric
mean does converge, and that for almost all numbers (ajaza; - - - a,)'/" —
k = 2.68545..., which is appropriately known as Khinchin’s constant; the
plots in Figure 14.12 suggest that y, 7 and « itself obey Khinchin’s law.

The geometric mean for ¢ is obviously 1 and for e it is undefined, which
can be seen using Stirling’s approximation, which we developed in Chapter 10.
Recall that to a first approximation it states that n! ~ +/2znn"e™".
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2.75

2.70
2.65
2.60
2.55

Figure 14.12. The tendency to Khinchin’s constant.

An examination of the pattern in the continued fraction form of e shows that

3n—1 3n 3n+1

[To=[Ta=[]a=2n
k=1 k=1 k=1

soif N = 3n,

al N N/31 /N N/3 L a1 anN/3 —N/3Y N
[Tar) =@"*dny w(z 2 NNV e )
k=1

1/N _
— (vV271) (%N)l/(ZN)(%N)l/Szlﬂe 1/3

1/3
—— 1 x1x (3> N'3 =0.6259-.-N'/3,
N—o00 3e

which diverges to oco.

The Khinchin result can be pushed a little further if we recall the use of the
harmonic series in measuring the independence of record events, as discussed
on p. 125. With almost all continued fractions the geometric means of the a,
will fluctuate around and home in on « and it makes sense to record the n for
which the geometric mean of the a, are the ‘best yet’ in approximating « ; for
example, with « itself the sequence starts

1,2,3,15,23, 26, 81, 104, 109, 111, 120, 127, 135, 136, 141, 142,
144, 145, 146, 147, 148, 5920, 5943, 8381, 8401, 89953,91 368, . ...

So, over 91 368 convergents we have 27 records and Hoj36g = 12; the same
calculations for 7 show that there are 27 records up to 4497 058 convergents
and Hi497058 = 16, which suggests an unsurprising dependence among the
convergents in both cases.

If we recall a definition of the statistical independence of two events A and
Bis P(A and B) = P(A) x P(B), we can quantify this suspicion since, using
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1.77
1.76
1.75
1.74
1.73
1.72

Figure 14.13. Another Khinchin constant.

the distribution above, it can be shown that the partial quotients are ‘weakly
dependent’ in that

P(ay =r and ayg = 5) = P(ay = 1) X P(anpx = 5) x (14 0(g%)),

where 0 < g < 1.
The curious 2.68545 ... that is Khinchin’s constant is in fact

o0 1 Inr/In2

| | 1 AN )
( +r(r+2))

r=1

which Khinchin identified by proving the general result that, if f(r) is a suffi-
ciently well-behaved function defined on positive integers, then

1
—Zf(ar) — 2Zf(r)ln<1+ e +2))

His constant results from taking f(r) = Inr. Of course, all manner of choices
of f(r) are available and picking f(r) = 1/r, generalizing the harmonic mean
from p. 121 and rewriting gives

H — n In2
P (1 /ay) n—oo 32 (1/r) In(l 4 1/r(r +2))
= 1.74540568...

and we have the harmonic mean of almost all continued fractions also converg-
ing to a limit independent of the fraction itself, as we can see in Figure 14.13.
In this case the limit appears to have no name attached to it; perhaps we should
call it Khinchin’s second constant.
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CHAPTER FIFTEEN

Problems with Primes

Mathematicians have tried in vain to this day to discover some order in the
sequence of prime numbers, and we have reason to believe that it is a mystery
into which the mind will never penetrate.

Leonhard Euler

15.1 SoME HARD QUESTIONS ABOUT PRIMES

Prime numbers have appeared several times in this book. Their study has long
held centre stage in number theory and their behaviour, at times seemingly
so undisciplined, can sometimes appear determined by an unknown, powerful
authority unwilling to disclose its design. The leading quotation makes evident
the great Euler’s frustration; Erdos, paraphrasing Einstein, said ‘God may not
play dice with the Universe, but there’s something strange going on with the
prime numbers!” and R. C. Vaughan spoke for many when he said, ‘It is evident
that the primes are randomly distributed but, unfortunately, we don’t know
what random means.” Three among so very many quotations made across the
centuries which together encapsulate the wonder in which the behaviour of
primes is held.

Of all the questions that can be asked, perhaps the three most fundamental
are the following.

(1) Is a given number prime?
(2) How many primes are there less than or equal to a given number x?
(3) What is the xth prime, py?

They are easily answered for small numbers: 101 is prime, the 50th prime
is 229 and there are 1229 primes less than 10000 but the going gets much
tougher as the numbers get bigger and, after all, we know that there is an infinity
of primes. Is 252097 800 623 prime? How many primes are there less than
100000 000 000 000 000 000? What is the 1 000 000 000 000 000 000th prime?
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These questions are not nearly so straightforward to answer—and these are still
‘small’ numbers.

We will not dwell on the first question, but the reader will need little con-
vincing that the methods to test for primeness of large numbers are far more
subtle than trying to divide the candidate by all primes less than its square
root. The question is linked to finding the largest known prime, a search that
is inevitably focused on Mersenne primes, mentioned on p. 116, named after
the 16th century monk Marin Mersenne and which are of the form 27 — 1 with
p prime, since for such candidates something called the Lucas—Lehmer test
is available. On 5 December 2001 the Great Internet Mersenne Prime Search
(GIMPS) initiative found the latest such monster: 213466917 _ 1 jg prime. The
number has 4 053 946 digits!

To approach the second question—and, it will turn out, the third too—we will
adopt the standard notation 7 (x) for the function which gives the number of
primes less than or equal to x, which is known as the ‘prime counting function’;
so, remembering that 2 is prime and 1 is not, 7(3) = 2, 7(17) = 7 and
m(22) = 8, etc. Clearly, w(x) is an increasing step-function of x and since
there is an infinite number of primes, we know that 7(x) — oo as x — 00,
but how quickly? The identification of the precise nature of 7 (x) has become
known as the Prime Number Theorem and through it we will see how intimately
the primes are linked to logarithms and how very remarkable that fact is. In the
words of L. J. Goldstein,

The history of the Prime Number Theorem provides a beautiful
example of the way in which great ideas develop and interrelate,
feeding upon one another ultimately to yield a coherent theory
which rather completely explains observed phenomena.

15.2 A MODEST START

A closer look at Euclid’s argument proving the infinity of primes allows us a
first (and very poor) lower bound on the size of 77 (x). Although we used the first
n primes in the original argument on p. 28, itis clearthat P, = 1+ p1p2--- py
can be constructed from any set of n primes and of course may or may not
itself be prime; whatever the case, let p,4+1 be the smallest prime dividing
Py, then p,41 < P, =14+ p1p2---pn < 2p1p2--- pn, a huge and costly
overestimate. Now suppose that we take p; = 2, then p» < 2p; =2 x2 =22,
3 <2p1pr =2x2x2%2=2% py <2p1pap3 =2x2x22x2* =28 andin
general p,41 < 22", which is an estimate for the size of the nth prime. Since for
allk =1,2,...,n, px < pp+1,itmustbethat py, p2, p3, ..., Pus Pnt1 < 22",
This means that 7(22") > n 4 1. Now write x = 2" and so n = log, log, x
to get w(x) > log, log, x + 1 > log, log, x. Clearly, this inequality will also
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hold for all x > 22" and we have the bound 7 (x) > log, log, x and a first, early
appearance of logarithms.

We can improve matters with a bit more work.

Factorials and the Floor function can be used to count the contribution to
n! of each of its prime factors, which in turn has deeper implications, as we
will see later. To get an idea of what is happening, consider, for example,
10! = 3628800 =28 x 3* x 52 x 7:2 appears 8 times, 3 appears 4 times, etc.,
and, of course, in theory we can factor specific higher factorials and answer the
same question, but it is neater and far more practical to consider the general
case. In the preliminaries to the co-prime proof in Chapter 8 we noted that there
are x = | N /r| numbers up to and including N which have r as a divisor. So, for
a given prime p < n, there are |n/p] integers up to and including n, which are
divisible by p and therefore p appears in n! precisely |n/p] times. Similarly,
p? appears in n! precisely [n/p? | times, p> appears [n/p> | times and so on to
p* appears [n/p*] times, where p**! > n. The total exponent of p in n! can
then be conveniently expressed as

=Y 2|

r=1

where the terms of the seemingly infinite series are zero for r > k + 1.
This means that

n! = 1_[ pep(n!) — 1_[ eroozltn/prJ’

psn psn

a result attributed to Legendre, whom we saw contribute to the theory of the
Gamma function and whom we will meet again later in the chapter.

Itis this expression that we will use to estimate 7 (x), but before we do we will
take a quick look at its contribution to the solution of a well-known problem,
since there is no added cost in doing so: how many zeros end a given factorial?
For example, we see from above that 10! ends with just two zeros. To answer
this in a systematic way we can use the above result to establish how many
times 2 and 5 each appear in 10! and then take the smaller of the two numbers
to give the number of ways that 10 = 2 x 5 appears and therefore in how many
zeros the number ends.

We have then that 2 appears

10 10 10
4|5 |+ =5+2+1=38
I MENEI R

times and 5 appears
10
5
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Table 15.1. A comparison of the estimates.

X 7 (x) log, logy x %logz n!
100 78498 432 18.49
107 664 579 454 21.8
108 5761455 473 25.1
109 50847534 4.90 28.5
1010 455052511 5.05 31.8
10!t 4118054813 5.20 35.1
1012 37607912018 5.32 38.4
1013 346065536839 5.43 41.7

times; 10 therefore appears 2 times and 10! must end with two zeros, as we can
see from the direct calculation above. Put to greater use, for 1000!, 2 appears

1000 n 1000 n 1000 T 1000
2 22 23 29
=500+250+125+62+31+15+7+3+1=9%4

times and 5 appears

1000 1000 1000 1000
=200 440 + 8 + 1 = 249
Il e M B B el R

times and so 1000! ends with 249 zeros. It is, of course, the number of times
that 5 appears that determines the number of zeros.
To apply Legendre’s result to estimate 7 (x) we do the following,

5] 3+ )

where the series eventually terminates. We can find an upper bound for e, (n!)
by removing the | | function and allowing the resulting geometric series to
extend to infinity to get

() n+n+n+ n<l+1+1+ ) n 1 n
e,(n!) < — _— JE— e — — i _— - e — N
g p P P\ " p p? pl=1/p p—1
which makes p¢r™) < p*/(P=D_ Since for any number n > 2, n < 2""1,
we have that p¢r™) < p/(P=1) < (2p=1yn/(P=1) = 2" and n! < 2™ =
277 Taking logs to the base 2 we have that nw(n) > log, n! and w(n) >
(1/n) log, n!, our new estimate. This takes a bit of calculating for large n, but
since we have Stirling’s approximation we can estimate well enough for our
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I I I
Pi Zk 2k+1:2x2k

Figure 15.1.

purposes by using only the first term of the approximation and taking base 2
logarithms of each side to get

log, n! ~ nlog, n—nlog, e—i—% log, 2mrn = nlog, E+% log, 27rn =~ nlog, z
e e
and we have the estimate
1 n
m(n) > —log, n! ~ log, —
n e

for large n.

We can now compile Table 15.1 to see just how bad these estimates really
are. On the bright side, at least they are valid bounds and through these ideas
we have exercised some small control over the distribution of primes.

‘We now have two lower bounds on 7 (x). The argument on p. 164 has already
provided an upper bound of the size of the nth prime, and this can be significantly
sharpened using the Bertrand Conjecture once more (mentioned on p. 25), since
if we write the primes in ascending order as pp, p2, ..., pn the conjecture
implies that p, < 2" (of course, p; = 2 = 2!, but the inequality is strict from
then on). The easiest way to see this is to use induction, referring to Figure 15.1:
suppose that for some k, px < 2%, then py_1 lies either in the interval (py, 25),
in which case py;1 < 25 < 2KF1 or it lies to the right of 2%, in which case it
must be the first prime that is guaranteed to be in the interval (2%, 2¥+1) and
again it must be that py,; < 25! and the induction is complete.

15.3 A SORT OF ANSWER

Of course, what we would like is to find an explicit expression for m(x) in
terms of x and if we are not too choosy, this is readily accomplished. In fact,
there are any number of such formulae and a large class of them relies on a
result of number theory known as Wilson’s Theorem. In 1770, the Cambridge
mathematician Edward Waring (1741-1793) published the work Meditationes
Algebraicae, in which he announced a number of new results of number the-
ory; foremost among them was the statement that if p is prime, then p divides
(p — D!+ 1. He attributed it to his former student (and Senior Wrangler), John
Wilson (1741-1793), who posited the result on the basis of empirical evidence.
No proof was provided. In the publication, Waring admitted to failure in sup-
plying the proof, adding in the text, “Theorems of this kind will be very hard to
prove, because of the absence of a notation to express prime numbers’, a com-
ment which failed to impress the great Gauss, who, on reading it, is said to have
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uttered ‘notationes versus notiones’, implying that it was the notion that really
mattered, not the notation. In fact, it took only until 1773 for Lagrange to provide
the proof of statement (and of its inverse), yet it has passed into mathematical
lore as Wilson’s Theorem; another example of mathematical serendipity. It is
even possible that it should carry the name of the mathematical giant Leibniz,
as in his unpublished posthumous papers there are calculations closely related
to the idea.

Assuming the truth of Wilson’s Theorem, we can give some sort of answers to
the last two questions and do so by referring to an article by C. P. Willans in the
December 1964 issue of the Mathematical Association’s journal Mathematical
Gazette, which caused a little flurry of conflicting correspondence over the
following three years and for that reason alone deserves our attention.

We have, as a direct consequence of Wilson’s Theorem, the function

F(n) =| cosm =D+ 1 2: L, n=1<.)rnprime,
n 0, otherwise,
and, consequently,

3 . (n—DI+1)
T(x) =—1 —i—Z Lcosn<f>J .

n=1

To answer the third question, define the function

An(a)z\‘” liaJ, n=12.... a=01.2,....

Since, fora < n, 1 < n/(1 +a) < n we have that | < /n/(1+a) <
Yn < 2andso 1 < Ay(a) < 1, which of course forces A, (a) = 1. Similarly,
fora > n,0 <n/(14a) < landso0 < A, (a) < 0, which forces A, (a) = 0.

In summary, then
1, a <n,
An(a) =
n(@) {O’ o

We can therefore construct the formula

N
pr=1+Y Adm(r),

r=1

where N is any sufficiently large integer. We could conveniently take N = 2*
since p, < 2* for all x. The final formula is a typesetter’s nightmare when
written in full,

2% r 2
—D!'+1
pe=1+3 |- Z(Wu> ’
S
r=1

s=1
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0 5 10 15 20 N 25

Figure 15.2. Early behaviour of 7 (x).

and it can be quite mysterious to see it at work. For example, Willans gives

ps =1+ As(@(1)) + As(@(2)) + As(w(3)) + - - - + As(w(32))
=14 As5(0) + As(1) + A5(2) + - + As(11)
=1+1+1+---+0=11.

There are other formulae like them, including another in the same article by
Willans not involving | |. The results are novel but it is hard not to feel that
this is not really answering the question in the proper spirit, and, anyway, the
formulae (and all others derived using the same sort of ideas) are in practice
useless for the job for which they are intended.

15.4 PICTURE THE PROBLEM

More realistically, the original question 2 is asking whether an approximation
to 77 (x) can be found in the form 77 (x) = f(x) + &, for some easily computable
function f(x) and absolute error term ¢, which we hope not to be too big, and
which diminishes asymptotically. To be more precise, we want of the relative

error
LT f@ e
im ——— = lim
xX—00 (x) x—>00 77(x)

=0.

So what is this f(x)? If we look at the graph of 7 (x) for small x, we see an
erratic step function that can do little to boost our confidence in finding it (see
Figure 15.2). If we increase the range to 0 < x < 100, the stepped effect is still
evident but so is some sort of trend (see Figure 15.3). And for 0 < x < 1000,
the trend becomes clearer (see Figure 15.4). Finally, for 0 < x < 5000, we get
what appears to the eye near to a straight line; itisn’t, of course (see Figure 15.5).

In fact, the curve which the eye superimposes on the graph is concave down-
wards since, although there is an infinite number of primes, they do become more
rare as x increases. The stepped effect is still there, it is simply hidden, and since
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Figure 15.3. A little further on.
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Figure 15.4. Further still. ..
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Figure 15.5. And still further. ..

there are arbitrary distances between primes the ‘run’ of the steps can be arbitrar-
ily large for a ‘rise’ of 1. The easiest way to convince oneself of this is to realize
that for any positive integer n, the sequence n! +2,n!+3,n! +4,... ., nl+n
contains no prime.
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In 1975, in his inaugural lecture at the university of Bonn, Don Zagier com-
mented:

There are two facts about the distribution of prime numbers of
which I hope to convince you so overwhelmingly that they will
be permanently engraved in your hearts. The first is that, despite
their simple definition and role as the building blocks of the natural
numbers, the prime numbers grow like weeds among the natural
numbers, seeming to obey no other law than that of chance, and
nobody can predict where the next one will sprout. The second fact
is even more astonishing, for it states just the opposite: that the
prime numbers exhibit stunning regularity, that there are laws gov-
erning their behaviour, and that they obey these laws with almost
military precision.

What are these laws that govern the primes’ behaviour? In particular, what is
that f(x)?

15.5 THE SIEVE OF ERATOSTHENES

The Greek scholar, Eratosthenes (276—-194 B.c.), was a renowned chronicler of
history. He was also chief librarian of the great library of Alexandria and mea-
sured the distance along the meridian from there to Assuan, which allowed the
size of the Earth to be calculated with remarkable precision. For the mathemati-
cian he is remembered more for a device that methodically isolates primes; a
device that has become known as his sieve, which allows the creation of a list of
primes up to x by knowing the primes up to /x, and without a single division.

To use it, we write down all of the integers up to x and then repeatedly cross
outevery second, third, fifth, etc., integer beyond the first appearance of each for
each prime <./x; the remaining uncrossed integers are the primes. Of course,
using this new set the whole process can be repeated to find the primes between
x and x2, x% and x*, etc. For example, with x = 50 and using the primes 2, 3,
5 and 7 we have Figure 15.6.

Since this isolates the primes, it is small surprise that it can be used to calculate
7 (x) and Daniel Meissel (1826—1895) used it (actually, a refinement of it) to
do just that. We mentioned him before on p. 64 and in 1870 he hugely increased
the contemporary knowledge by showing that 77(10%) = 5761 455. In 1885 he
increased this to 71(109) = 50847478, which was, unfortunately, 56 short of
the correct number.

It is interesting to see how the process can be formalized and so realistically
begin to deal with large numbers and once again we will use the Floor function
and the inclusion—exclusion principle.

Suppose that we fix on an integer x and that the list of primes up to /x is
2,3,5, ..., px. Now modify the process by crossing out the prime as well as
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I 2 3 A 5 X 7 8 % 4
111X 13 14 5 186 17 1X 19 24
2\ 27 23 2% 25 24 2% 28 29 3K
31 37 3% 34 35 3K 37 38 38 4f
41 4% 43 44 45 48 47 48 49 5S¢

Figure 15.6. Sieve of Eratosthenes.

its multiples. The first sieving by 2 then crosses out szj numbers and we are
left with x — L2xJ of them. The second sieving by 3 crosses out all multiples of
3, but it will come across multiples of 6, which have already been eliminated,
so we will have remaining x — [3x| — [1x] 4+ [x/(2 x 3)].

The reasoning continues for 5, where we have to compensate for multiples of
2 x 3 x 5 having been subtracted once too often; it is really a direct application
of inclusion—exclusion. This leaves

x_L%xJ_L%”_L%xHLz;JJ{zisJJﬂS;J_{2x§x5J

numbers.
And so it continues to the prime p,. We are left with the number 1 and all
primes between /x and x, that is, 7w (x) — 7 (y/x) + 1 numbers and so we have
7(x) —m(/x) + 1

=x — [3x) = L3x] = L3x]) =

s s s s )

with the dots indicating the extension described above.
It is instructive to apply the formula for, say, x = 100 to get 7(100) = 25.

15.6 HEURISTICS

We get further by being vaguer. Let’s not worry about the Floor function and the
duplication and say that about half of the numbers will be divisible by 2 and so
we are left with (1 — )x after the first round of crossmg out. About one-third
of those will be diVlSlble by 3, leaving (l 3)(1 — 2)x About one-fifth of
those will be divisible by 5, leaving (1 — )(1 — )(1 — )x etc. If we repeat
this for all of the primes <./x, we will have approx1mately

)
1——)x
Pgﬁ( P
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integers remaining, making

7(x) & ]_[ <1—%>x ...ish.

PV

The error is building and we could do more to keep track of its size, but that
would lead us away from the directions in which we wish to travel.
Along one road, recall one of the two Mertens product formulae from p. 109:

L I (1 1>—1 y
m — - — =e’.
n—oo Inn p<n p

We can avoid using the limit notation and reorganize the result to the form

1 e’
n(-3)~&

p<n
for large n. With n = /x this gives the estimate

erx _ Y

In/x Inx

and the all-important expression x/ In x has made its first appearance.
Choosing a second (even more bumpy) road, imagine 7 (x) being differ-

entiable for very large x, or approximated accurately by that smooth curve

suggested by Figure 15.5, which we will call by the same name, then from

above,
T~ ] <1—l>.

P<Vx P
Now let & be the average interval between primes around /x, then, by the
definition of tangent, 7’ (y/x) & 1/h. The expression (y/x + h)? is near to x
and we will use the approximation

7' (Wx + hY) ~ pljﬁ <1 - %) (1 - %) = (1 - %)N/(x),

where we are approximating the greatest prime less than (/x + h) by /x,
which isn’t so very terrible for large x.
Now use Taylor’s approximation to give

7' (VX +hY) = 7' (x + 2h/x + h?) ~ 7' (x) + 2h/xm” (x).
Equate these two and simplify to the horrendous differential equation:
7T”(x)

X
'(x)

T(x) =~

+ 7' (Jx) = 0.
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Fortunately, we have a hint already; let us try w(x) = x/Inx. The first term
becomes

2(2 —1Inx)

Inx(Inx — 1)

and the second

22—Inx)

(Inx)2

which differ in magnitude, with In x replacing (Inx — 1).

The arguments are hardly incapable of criticism but as heuristics they are
fine. They have done what is needed of them, which is to point in the right
direction for progress. That function x/ In x does seem to be intimately linked
with 7 (x).

15.7 A LETTER

On Christmas Eve 1849, the 72-year-old Gauss wrote a letter to his ‘distin-
guished friend’ and former student, the astronomer, Johann Encke (1791-1865).
The letter was in response to one from Encke, in which he had shown his own
interest in the frequency of the primes and had posited his own estimate for
7 (x), and began,

Your remarks concerning the frequency of primes were of interest
to me in more ways than one. You have reminded me of my own
endeavours in this field which began in the very distant past, in
1792 or 1793, after I had acquired the Lambert supplements to the
logarithmic tables.

In 1792 Gauss was 15 years old. The fortuitous gift of a table of logarithms
and a supplement which contained tables of prime numbers up to 1 million had
enabled the young boy to begin the assault on the nature of 7 (x) (compiled
by the German—Swiss mathematician Johann Lambert (1728—1777); his name
appeared on p. 93 in connection with the theory of continued fractions). Later
Gauss would have access to tables of primes up to 3 million. Table 15.2 shows
the initial information that the 15-year-old had to work with and on the basis of
this very limited evidence it occurred to him that the pattern that was emerging
was that for x = 10",
1 1

T(x) ~ XX = X X,
axn o x logox

where o seems to be a number just over 2—and well he knew that In 10 =
2.30.... The standard laws of logs then produce 7 (x) ~ x/Inx, in keeping
with those other heuristic pointers. This gives f(x) = G(x) = x/Inx and

X

T(x) = — 4+ & = G(x) + &.
In x
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Table 15.2.

X (x) Prime density
10 = 10! 4 1:25=1:2.5x 1)
100 = 102 25 1:4=1:2x2)
1000 = 103 168 1:5.96 = 1:(1.99 x 3)
10000 = 10* 1229 1:8.14 = 1:(2.04 x 4)
100000 = 10° 9592 1:10.43 = 1:(2.09 x 5)
1000000 = 10° 78498 1:12.74 = 1:(2.12 x 6)
150 4000
7[()C) 3000 ﬂ'(X) - G(x)
100
G() 2000
20 1000

0 200 400 600 800 1000 0 2 4 6 8 10(x109
X X

Figure 15.7. Gauss’s original estimate.

In Figure 15.7 we have two plots of the early comparison between 7 (x) and
G (x). His book of logarithms still survives and has written on its back cover in
a young hand ‘Primzahlen unter a(= oo)a/la’.

In the letter, Gauss referred only to his refined estimate, which came about
by localizing the count, considering the number of primes in blocks of 1000
consecutive integers. (There is use of some delightful classical language, with
hecatontades for 100, chiliad for 1000 and myriad used in its accurate sense of
10000.) He wrote that he ‘frequently spent an idle quarter of an hour to count
another chiliad here and there’, which enabled him to average over smaller
sub-intervals rather than across the whole interval itself and in the limit ‘add
up’ the primes by integration and so arrive at

f(x) =Li(x)=fxidu
2

Inu

to get the estimate

X

1

(x) :/ 1—du+ex = Li(x) + &.
2 nu

And this brings about an appearance of the logarithmic integral function Li (x),
which we mentioned on p. 106 and which has become central in the study of

the distribution of primes. Predictably, he had failed to publicly announce the
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Table 15.3.

X 7 (x) Li(x) Difference

500000 41556 41606.4 504
1000 000 78501 78627.5 126.5
1500000 114112 114263.1 151.1
2000000 148883 149054.8 171.8
2500000 183016 183245.0 229.0
3000000 216745 216970.6 225.6

175 300
150 Li(x) Li(x) — 7 (x)
125 igg
100

75 ) 150

50 100

25 50

0 200 400 600 800 1000 O 2 4 6 8 10 (x10°)
X X

Figure 15.8. Gauss’s refined estimate.

idea, which was finally published posthumously in 1863 and appears on p. 11,
Vol. 10, Part I of his Werke, although he did include Table 15.3 in the letter. In
every case the prime count is slightly wrong, with the error for the four largest
values in favour of the Li(x) estimate.

If we integrate Li(x) by parts twice, we have

X 1 X X 1
[l f e
2 Inu Inu |, 2 (nu)

X N X +/" 2 d

nx ' (nx)? ), (nu)? "

and a comparison between the two logarithmic estimates, which can be contin-
ued as far as we please.

Comparisons for the new estimate of m(x) are shown in Figure 15.8. By
introducing these estimates, Gauss had established a bridgehead in the battle to
harness the behaviour of the primes, but although he worked alone he was not
alone in the work. Part way through the letter he commented,

Li(x)

I was not aware that Legendre had worked on this subject; your
letter caused me to look in his Theorie des Nombres, and in the
second edition I found a few pages on the subject which I must
previously have overlooked (or, by now, forgotten).
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175

150

125 L(x) }%8

100 7T(x) 80
75 60
50 40
25 20

0
0" 200 400 600 800 1000 _pg 3 (x106)

Figure 15.9. Legendre’s estimate.

He was referring to Legendre’s Essai sur la Theorie des Nombres, which origi-
nally appeared in 1798 and in an improved second edition in 1808. The original
volume contained the proposal that

X

TN T B

for some constants A and B, which was refined in the second edition, using
tables up to 400 000, to the somewhat mysterious

X
= L = -
fx) (x) nx — A
and therefore that
x
= =L s
mx) = A0 +ex = L(x) + &
where A(x) =~ 1.083 66. A formula described by the Norwegian genius Niels
Abel (1802-1829), in a letter written in 1823, as the ‘most remarkable in the
whole of mathematics’. The comparisons are shown in Figure 15.9.

The mysterious 1.083 66 ... naturally attracted Gauss’s interest, as did the
fact that up to 3000000, L(x) was more accurate than his own Li(x), as we
can see from Figure 15.10.

In the letter he recorded the values which A (x) must take for L(x) and 7 (x)
to agree over intervals of length 500 000 to get values for A(x) of 1.09040,
1.076 82, 1.075 82, 1.075 29, 1.071 79, 1.072 97. He continued,

It appears that, with increasing x, the (average) value of A(x)
decreases; however, I dare not conjecture whether the limit as x
approaches infinity is 1 or a number different from 1. I cannot say
that there is any justification for expecting a very simple limiting
value.

If we look at the comparisons of 7 (x) with the case A(x) = 1, we can see why
Legendre would have preferred his strange 1.083 66, which must surely have
been the result of repeatedly fiddling with the expression. It would be 70 years
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Li(x) — 7 (x)
150
100
50
L(x) — m(x)
_ Il“ ‘_h.h“ * 3
0 Jiy 1 {0 2 3 (x100)
X

Figure 15.10. The two estimates compared.

3000
150 x/(Inx—-1) x/(Inx—1)—7(x)
100 2000
T (x)
50 1000
0 200 400 600 800 1000 0 2 4 6 8  10(x10
X X

Figure 15.11. The case of A(x) = 1.

after Legendre’s death before it was proved that, in the long term, Legendre
was misled and Gauss was too timid, when it was shown that 1 is in fact the
best value.

As to the superiority of L(x) to Li(x), Gauss commented, ‘These differences
(between L(x) and 7 (x)) are even smaller than those from the integral, but they
seem to grow faster with x so that it is quite possible they may surpass them’;
he was right, eventually they do and it took that same mathematician to prove
the fact—but more of that later.

Encke’s own estimate is not recorded in the letter but it is interesting to note
that Gauss recognized its asymptotic form with,

By the way, for large x, your formula could be considered to coin-

cide with
X

Inx — (1/2k)’

where k is the modulus of Briggs’s logarithms; that is, with Leg-
endre’s formula, if we put A(x) = 1/2k = 1.1513.

By which he seems to have meant k = log e.
In summary, we have the tabular comparison in Tables 15.4 and 15.5.
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Table 15.4. A table of comparisons.

by 7 (x) G(x) L(x) Li(x)
1000 168 145 172 178
10000 1229 1086 1231 1246
100000 9592 8686 9588 9630
1000 000 78498 72382 78543 78 628
10000 000 664579 620421 665140 664918

100000000 5761455 5428681 5768004 5762209
1000 000 000 50847534 48254942 50917519 50849235
10000000000 455052511 434294482 455743004 455055614

Table 15.5. Percentage differences compared with 7 (x).

by %G (x) Y%L(x)  Li(x)

1000 —13.8305 2.2027 5.9524

10000 —11.6569 0.1232 1.3832
100000 —9.4465 —0.0375 0.3962

1000 000 —7.7908 0.0576 0.1656
10000 000 —6.6446 0.0844 0.0510
100 000 000 —5.7759 0.1137 0.0131

1 000 000 000 —5.0988 0.1376 0.0033
10000 000 000 —4.5617 0.1517 0.0007

15.8 THE HARMONIC APPROXIMATION

One last alternative expression can be extracted from the definition of the har-
monic mean of the first x integers. Recall that this has the form

X
S U

and that using the connection between this, In and y we have that, for large x,
H =~ x/(Inx — y) and another Legendre-type estimate of w (x). This means
that the number of primes up to x can be approximated by the harmonic mean
of the integers up to x and Figure 15.12 shows this comparison.

The inequality between the harmonic and geometric means established on
p- 119 for two numbers can easily be extended to give H < G for any set of
numbers. If we consider the set to be the first x integers, this means that

H =

<(Ix2x3x-xx)/*=@un~*

X
S/
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1200 200

1000 ﬂ:(x) 150 ﬂ:(x) - H()C)
800

600 H(x) 100

400 50

200

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
X X

Figure 15.12. The harmonic estimate.

35 250
30 200 T
20 I'x) 150 7(x)
15 (%) 100
10
5 50

0 20 40 60 80 100 0 200 400 600 800 1000

X X

Figure 15.13. An upper bound on 7 (x).

and, once again using the logarithmic approximation to the harmonic series and
Stirling’s approximation from p. 87 to the factorial, we have

T (fmrrtenyln = GO
1

Inx — e

Finally, if we allow ourselves the (considerable) luxury of using the Gamma
estimate to approximate 7 (x), we have an upper bound on its size, with

(zn)l/Zxxl+l/2x
T < 2
e

for large x.
The graphs in Figure 15.13 show the early and slightly later stages of this
(again poor) comparison.

15.9 DIFFERENT—AND YET THE SAME

The expression 7w (x) = f(x) + &x, when rewritten as

w(x) _ Ex

=1
o T T
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allows us to concentrate on the asymptotic comparison of 7 (x) and its approx-
imations and of course we hope for the relative error to diminish to O and
therefore
7(x)
im =
x—o00 f(x)

It is usual to represent such behaviour by the notation m (x) ~ f(x).
It is perfectly clear that, if the limit exists,

T(x) . (x)

x—oox/Inx x—oox/(Inx —a)

for any constant a, which makes

() ~ = ) =
T(x) ~ —, Tx) ~ ——————————,
Inx Inx — 1.083 66
x
() Inx -1’ () Inx —y
equivalent statements in this sense.
That
X 1
w(x) ~— and mw(x)~ —du
In x 5 Inu

are also equivalent takes a bit more work, and we need the help of L'Hopital’s
Rule.
One way around, if we assume that

. m(x)
hm =1
x—o0 x/Inx
then
. 7 (x) . 7 (x) x/Inx
llm X o 1 . = 1m STx
x=oco [F(1/Inu)ydu  x—oox/Inx [7(1/Inu)du
1 x/Inx

Cdim —Y———
xX—00 fzx(l/ Inu)du
and using L’Hopital’s Rule this becomes

. (Inx —x.(1/x))/(nx)? _ <lnx—] )
m = Jim, !

li .Inx
x—>00 1/Inx (Inx)?2
Inx —1 _

=1. (15.1)

= lim
x—o00 Inx

The reverse argument is the same. With this established, we can state the cele-
brated Prime Number Theorem.
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Prime Number Theorem

m(x) ~ G(x) or equivalently (x) ~ L(x) or w(x) ~ Li(x).

We could, of course, add in w(x) ~ x/(Inx — a) for a = 1 or otherwise.

15.10 THERE ARE REALLY Two QUESTIONS, NOT THREE

A little work shows that the Prime Number Theorem is equivalent to estimating
the xth prime.

If the Prime Number Theorem is true and if the xth prime is written p,, then
clearly 7 (py) = x, which intimately associates the growth of 7 (x) with x and
px With x, and we have

. 7 (x) ) 7 (x)

lim =1=In lim =Inl1=0
x—>oox/lnx x—>oox/lnx
= fim In =)

= lim (In7(x) —Inx +Inlnx) =0
X—> 00

| Inl
o Jim (o BEW | Inine Y
X—00 Inx Inx
Since In x is unbounded,

. In7(x) Inlnx
lim + —1)]=0

X—00 Inx In x

and, since also

. Inlnx
lim =
x—00 Inx
we have that
. Inm(x)
lim =1
x—oo Inx
So,
. 7 (x) . Inm(x) . rm(x)Inm(x)
lim x lim = lim — =1.
xX—00 x/ Inx x—o0o Inx xX—00 X

Now replace x by the xth prime py, then, as we have already said, 7 (py) = x
and the equation becomes

. xlnx
lim =1
X—>00 px

and so py ~ xInx.
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To show the equivalence we now assume that p, ~ nlnn and define n by
Pn <X < ppy1-Then p, ~nlnn and p,p1 ~ (n+ 1) In(n + 1) ~ nlnn for
n large. This means that x ~ nInn. Also, w(x) = n, so that x ~ 7w (x) In 7 (x).
Therefore,

. 7 (x) . m(x)Inx
lim = lim ——
X—00 x/ Inx X— 00 X
. nm(x)Inx X
= lim
x—00 X w(x)Inm(x)
. Inx
= lim =

x—ooInm(x)

A more delicate argument establishes that p, ~ x(Inx +Inlnx — 1) and there
are improvements to this too. For example, these formulae predict that the one-
millionth prime is about 13 800000 and 15400 000, respectively; in fact, the
one-millionth prime is 15485 863. In a 1967 paper Rosser and Schoenfeld also
showed that

x(Inx +Inlnx — 1.5) < pxy < x(Inx +Inlnx — 0.5)

for x > 20.

15.11 ENTER CHEBYCHEV WITH SOME GOOD IDEAS

So, we have several empirical formulae, essentially identical, but producing
different errors in approximating w (x)—and we have a ‘theorem’ without a
proof. The first major step forward towards achieving a proof was brought
about by Chebychev, who used Legendre’s result (mentioned on p. 165) and
Euler’s identity; he also added two functions to his mathematical toolkit.

We can think of the prime counting function being defined by

Tx)= Y 1

p<x
p prime

that is, a step function which increases by 1 whenever a prime is reached.
Chebychev generalized this to a weighted prime counting function

Yx)= Y Inp,
prsx
p prime

which increases by In p whenever a power of a prime is reached; the sum is
interpreted to mean the sum over all primes p such that some positive power of
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Table 15.6. Some values of ¥ (x).

X 100 200 300 400 500 600 700 800 900 1000
Y(x) 94.04 206.1 299.2 397.8 501.7 593.9 699.0 792.7 897.2 996.7

the prime is less than or equal to x. For example,

w(20) = (n2+1n3+In5+7+In1l+1n13+1n17 +1n19)
4+ (In2+1n3) + (In2) + (In2) = 19.2656. . .

and

¥ (30)
=(n2+mn3+mS54+mn7+Inll+1In13+In17+1In19 + 1In23 4 1n29)
4+ (In2+4+1In3+1n5) + (An2 +1In3) + (In2) = 28.4765...,

where the terms are bracketed so that p < xVrforr =1,2,3,.... (A little
thought shows that, in fact, ¥ (x) = In(l.em.{1,2,3, ..., [x]}).) Chebychev
also defined the function 8 (x) = Y p<x In p and using this and the above brack-
eting we can easily see that ¥/ (x) can be written as the finite series (6 (y) must
be zero for y < 2)

Yx) =0x)+ 0" +0x") +oxH +. ..

We can also see that in the two numeric cases detailed above and in Table 15.6,
Y (x) is pretty near to x. Is this a coincidence? Not if the Prime Number Theorem
is true, since the statement ¥ (x) ~ x is equivalent to it; in fact, we have the

Crucial Equivalence

7 (x) 0x) Yx)

x/Inx’ x x

have the same asymptotic limit

and to prove that Chebychev argued in the following way, which we have taken
from A. E. Ingham’s treatise, The Distribution of Prime Numbers and which
we will mention again on p. 188.

First, if p” < x, then r is the maximum value such that » < Inx/In p, that
is, ¥ = [Inx/1In p]. This means that

I
v =Y B—;J In p.

p<x
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Now write the three (possibly infinite) limits as L, L, and L3, respectively.
Then we have the double inequality

Inx In x
O(x) < ¥(x) = Z {EJ Inp < Z Elnp
P<X

P<x
=Inx Z 1 =Inxm(x),

PSX

which means that
0(x) < Y (x) < 7 (x)
X X x/Inx

and this means, taking the limit as x — 0o, Lo < L3 < L.
Now suppose that 0 < o < 1 and that x > 1. Then

O(x)> Y Ip

x¥<p<x

> Inx“ Z 1 =Inx%@@(x) — 7 (x%)).

x%<p<x
Since 7 (x¥) < x* we have 6(x) > Inx“(wr (x) — x%) and

60(x) S a(@x)Inx —x%Inx)

X X

w(x) In x

=a| — - ——).

x/Inx xl-o
As x — 00, In x/xl_“ — 0, which leaves us with L, > « L and since this is
true for « arbitrarily close to 1, Ly > L. Combine this with the first inequality

and we have the result.

By this means, the search for a proof that w (x) ~ x can be altered to a search

for a proof that ¥ (x) ~ x. Using such ideas in 1852, in the first of two important
papers, Chebychev showed that for arbitrarily large x

— - —— <7< -

/X du ox * du ox
o Inu In"x 2 Inu In"x

for any positive integer n and arbitrarily small « > 0, a result which, with
n = 1, he developed into

x/Inx x/Inx x/Inx

f5 (1/1Inu) du " - (x) <f2 (1/Inu)du
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and so

y(1/1Inu)d
x—oo  x/Ilnx x—oc0 x/Inx

< lm f>(1/Inu)du
x—>00 x/Inx

or, using the equivalence (15.1) on p. 181,

T (x)

Il —a < lim <l+a,
x—o0 x/Inx
which means that if
. ow(x)
lim
x—o0 x/Inx

does exist, then it must be 1. In the same paper he also showed that the relative
error in the approximation of 7 (x) by Li(x) is less than 11% for large x but his
further attempts to show that it was asymptotically O failed.

In his second paper on the subject, dated 1854, he began to close in on the
result in that he showed for large x,

T(x)

Al < < Ay,

x/Inx
where 0.922--- < A; < land 1 < Ay < 1.105---. These were major
steps forward and they formed a firm base from which to launch attacks on the
problem, but the pathway to the ultimate goal seemed irrevocably blocked.

Others tried. None succeeded. Not for another 100 years would a proof be
found which is based on ‘real’ numbers.

A new direction was taken by Dirichlet, whom we have mentioned already
on p. 112. In essence, he generalized the definition of the Zeta functions and
thereby brought to the mathematical world the L functions, which are a linch-
pin of modern number theory. We will steer past this elegant and important
initiative, but not before mentioning that in 1837 Dirichlet used it to lay to rest
the conjecture of Legendre that every arithmetic sequence of integers (with first
term co-prime to the common difference) contains an infinite number of primes,
and so produce one of the greatest achievements of 19th-century mathematics.

Euler had originally brought analysis into number theory with his identity,
Chebychev and Dirichlet had developed the initiative—and then came Riemann
with a single idea announced in a single paper.

15.12 ENTER RIEMANN, FOLLOWED BY PROOF(S)

Encke was one of Gauss’s distinguished students, Bernhard Riemann (1826—
1866) was another. His name has already appeared in these pages but here he

186



PROBLEMS WITH PRIMES

plays his most significant role in our story. Shy and introspective, his health
never strong, he died of tuberculosis in Italy on the shores of Lake Maggiore;
he was 40 years old and mathematically active until the end: the year of his death
was also the year in which he was elected to The Royal Society as a Foreign
Member. His ‘Habilitation’ lecture (the final requirement for his acceptance
as a lecturer at Gottingen university) had the title ‘On the hypotheses that
lie at the foundations of geometry’, and was delivered on 10 June 1854. It
was the third of three titles from which the aged Gauss was to choose and
quite the most surprising—and fortunate. Building on Gauss’s own ideas, it
brought to the mathematical world the clear idea of the intrinsic geometry of
space and paved the way for Einstein to formulate his theories of relativity
and was to become a classic of mathematics, even though few (other than
Gauss) were able to appreciate its profundity at the time. Our interest lies in
another paper and the only one that he ever published on number theory. ‘On
the number of prime numbers less than a given quantity’ was submitted to the
Berlin Academy of Sciences in 1859 as evidence of his latest research and
just as his paper on geometry revolutionized the current views of space, finally
freeing it from the Euclidean constraints, so his paper on number theory showed
an entirely new and incredibly fruitful direction in which to head in pursuit of
those unpredictable primes. It was not meant to be an attack on the Prime
Number Theorem but to provide an entirely new way of counting primes and
therefore of approximating r (x) and did so by utilizing complex numbers and
in particular the techniques of the new discipline of complex function theory.
His approach was not rigorous but it scattered about the most fertile ideas as it
rushed headlong through its eight pages and, using and refining these initiatives,
two later mathematicians met with eventual success and finally provided the
proof that had eluded so many for so long.

Legendre and Gauss had raised the issue of the nature of the prime count-
ing function and with Gauss’s involvement there is an inescapable feeling of
déja vu. It was he who had looked into the asymptotic statistical behaviour of
almost all continued fractions and proposed a logarithmic solution involving a
diminishing error term. The problem was not solved by him and it took a cen-
tury before it was solved and then by two mathematicians, independently and
nearly simultaneously, a result that brought some sort of order into a seemingly
chaotic world. All of this is true of the Prime Number Theorem. Building on
Riemann’s ideas, the Belgian de la Vallée Poussin (whom we met on p. 113)
and the Frenchman Jacques Hadamard (1865-1963) finally justified the word
‘theorem’ being used when in 1896 they showed that the relative error term in
the approximation of 7 (x) by Li(x) was asymptotically zero. With all this pro-
found mathematics around it is amusing to note that the proofs relied in part on
the elementary trigonometric identity 344 cos 8 +cos 26 = 2(14cos#)> > 0!

We will look more closely at Riemann’s initiative in the final chapter but
whatever the detail and with all the joy of success, it seemed unnatural that

187



CHAPTER 15

complex numbers were needed to prove a result about primes. Had a real-
number proof escaped the scrutiny of the many mathematicians who had tried
to find one? It seemed not as recently as 1932, since in that year the distinguished
number theorist A. E. Ingham’s much respected tract The Distribution of Prime
Numbers was published, from which we gleaned that earlier proof of the ‘Crucial
Equivalence’ of p. 184, and in the introduction he expressed the view:

The solution (of the Prime Number Theorem) just outlined (that
of de la Vallée Poussin and Hadamard) may be held to be unsat-
isfactory in that it introduces ideas very remote from the original
problem, and it is natural to ask for a proof of the Prime Number
Theorem not depending on the theory of functions of a complex
variable. To this we must reply that at present no such proof is
known. We can indeed go further and say that it seems unlikely
that a genuinely ‘real variable’ proof will be discovered, at any
rate so long as the theory is founded on Euler’s identity. For every
known proof of the Prime Number Theorem is based on a certain
property of the complex zeros of ¢(s), and this conversely is a
simple consequence of the Prime Number Theorem itself. It seems
clear therefore that this property must be used (explicitly or implic-
itly) in any proof based on ¢(s), and it is not easy to see how this
is to be done if we take account only of real values of s.

It was no small matter, then, that in 1949 Atle Selberg (born 1917) published
such a proof; indeed, it led to his award of the Fields Medal, which has played
the role of the Nobel Prize in mathematics. Since that time other real-variable
proofs have emerged, all termed ‘elementary’ and all fantastically difficult!

De la Vallée Poussin was particularly interested in the size of the error term
involved in the approximations of w(x) and in an 1899 paper forever put to
rest any doubts regarding primacy (!) among them. Confounding Legendre,
and plenty of numeric evidence, he proved that 1 is asymptotically the optimal
choice for a in the expression

T(x) = + &x.

Inx —a
(In 1962, Rosser and Schoenfeld showed that x/(Inx — 0.5) < #w(x) <
x/(Inx — 1.5) for x > 67.) In the same paper he sounded the death knell
for such estimates of 7 (x) in that he proved, for large values of x, Li(x) is
better than any of them.

What has complex function theory to do with prime numbers? Just how accu-
rate is the approximation of Li(x) to 7 (x)? Simple enough question perhaps,
but ones with very, very complicated answers.

188



CHAPTER SIXTEEN

The Riemann Initiative

The Zeta function is probably the most challenging and mysterious object of
modern mathematics, in spite of its utter simplicity. .. The main interest comes
from trying to improve the Prime Number Theorem, i.e. getting better estimates
for the distribution of the prime numbers. The secret to the success is assumed to
lie in proving a conjecture which Riemann stated in 1859 without much fanfare,
and whose proof has since then become the single most desirable achievement
for a mathematician.

M. C. Gutzwiller

16.1 COUNTING PRIMES THE RIEMANN WAY

In his paper Riemann considered another weighted prime counting function,
which we will write as I7(x), related to the harmonic series and defined by

nw= Y

pr<x,
p prime

which again reveals a bit more about itself if we look at a couple of examples:

I1(20) = Z %

p" <20,
p prime

1 1 1 1
=<I+z+§+z>
1
2

(102) () (0)+(6) () +(0) ()
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where the bracketing is by the primes 2, 3,5, ..., 19, and

1(30) = Z ;

p" <30,
p prime

(1o bede (i
(1) +()+(5) 5() ()+ )+ (3)

where the bracketing is by the primes 2, 3,
These can be rewritten as
1 1 1 1 1 1 1

1
TO0) = (=4~ d o ad et
(20) (1+1+1+1+1+1+1+1>

+11+1+11+11
2\1 1) 3\1 4\1

I1(30) = ]+1+1+1+1+1+1+]+1+]
"\ 1 1 1 1 1 1 1 1 1

+1 l+1+1 +1 1+1 +11
2\1 1 1 3\1 1 4\1)"

The first bracket just counts the primes less than the number, the second those
less than its square root, etc., to suggest in general that

and

e¢]

Mx) = Z}n(x‘/’),

r=1

where, of course, there is in fact a finite number of terms.

The next step involved another of Gauss’s students, August Mobius (1790-
1868), who is most famously known for his one-sided band. He also produced
a sophisticated ‘changing the subject of a formula’ technique known as Mobius
Inversion to allow Riemann to arrive at the formula

(x) = Z M(”)H( 1/ry.

r=1
where () is the Mobius function, which is somewhat esoterically defined by
u(1) =1 and
0, r has a repeated factor,
nr) =141, r has an even number of prime factors,

—1, r has an odd number of prime factors.
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Taken out of context, this seems strange but the move is a standard number-
theoretic one and not nearly as bizarre as a first impression suggests.

This is all very well, but all of this is of no use unless I7(x) can be found
by other means, and that other means was something of a favourite technique
of Riemann’s, and of a growing number of other contemporaries: the use of
complex numbers and particularly complex function theory.

16.2 A NEwW MATHEMATICAL TooL

Two parts of the unique Parisian postal system are the 7th and 15th Arrondisse-
ments, and they are connected by more than adjacency: the 7th, apart from
anything else, is home to Gustave Eiffel’s tower, built as part of the World’s
Fair of 1889; the 15th to the Rue Cauchy. Each commemorates in its own way
the contribution of Augustin Louis Cauchy (1789-1857), whose name appears
on a plaque on the first stage of the tower, along with 71 other prominent French
scientists. Whether one subscribes to the view that ‘Cauchy was an admirable
type of the true Catholic savant’ or that he was possessed of ‘self-righteous
obstinacy and aggressive religious bigotry’, he was a great mathematician and
comparable to Euler in the volume of his mathematical output, which was as
varied as it was profound, but unlike the mathematically flamboyant Euler,
Cauchy was a rigorist and his contributions to the 19th century search for a
firm foundation for mathematics were second to none. We are interested in his
involvement in the development of complex function theory and many famous
names appear in the list of those who advanced this important area of mathemat-
ics: Euler, Gauss, Riemann, d’ Alembert, Laplace, Poisson, etc., but his stands
above them all, although we will have need of only a small (but significant)
part of the vast subject that it has become. In fact, to understand the impact of
it on the study of prime numbers we will need three basic ideas from it: how
to differentiate, how to integrate and the concept of analytic continuation. Dif-
ferentiation is a very reasonable extension of the real case, with ‘differentiable’
equivalent to ‘analytic’. Integration is more difficult (it always is) and requires
the concept of integrating along a curve, or ‘contour’. Analytic continuation
is initially unbelievable. The technical details of complex differentiation and
integration are approached in Appendix D; here we will simply put them to use,
but first we need to define and appreciate analytic continuation.

16.3 ANALYTIC CONTINUATION

The replacement of ‘differentiable’ by ‘analytic’ is more than semantic pedantry.
Differentiation is essentially a limiting process and for a real function the limit
can be approached from just two directions and must be independent of the
direction chosen (which is why f(x) = |x| is not differentiable at the origin).
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Figure 16.1. The problem of real continuation.

In the complex case there is an infinite number of possible directions, and
again the answer must not depend on which of them is chosen. This makes
great demands on the function and brings about strong results—one of which
is analytic continuation. The process is probably best approached from the real
case. For example, consider the functions

fix)y=14+x +x24+x>+.-- and Hx) = ﬁ for |x]| < 1.
The theory of geometric series tells us that the first function converges only in
the domain |x| < 1 and that the two functions are the same inside it. Plotting
f1(x) to some number of terms and f>(x) on the same axes emphasizes that
fact, and the difference between the two outside the interval (see Figure 16.1).
There is not much sense in saying that the two are the same for |x| > 1, or that
any of the infinite number of approximations to fi(x) will ever approach f>(x)
in this region. Perhaps this all seems obvious, but replacing x € Rby z € C
changes everything since we have the following uniqueness theorem.

If, in some complex domain A, two analytic functions are defined
and are equal at all points on a curve C lying inside A, they are
equal throughout A.

Let us pause to reflect on the enormity of what is being said. For example,
suppose that two analytic functions are defined on the whole of C and are known

to coincide just over the interval [0, 1] on the real axis; then they must be equal
everywhere else. Referring back to our example,

1
fl(z)z1+Z+Z2+Z3+,..:f2(z)=: only for |z] < 1
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and is defined only in that circular region. Yet f>(z) is defined in all of C, apart
from z = 1, and so by the uniqueness theorem is the extension of f1(z). It is
like a sleight-of-hand trick.

16.4 RIEMANN’S EXTENSION OF THE ZETA FUNCTION

Riemann’s approach to the continuation of the Zeta function was to use contour
integration and we deal with the details in Appendix E, but the result is that

_Ir'(1-2) uel
(=5

extends the definition of Zeta to all z # 1, for a particular contour z~. We can
see evidence of the Beautiful Relationship which we established on p. 60, with
the real integral replaced by a particular contour integral.

16.5 ZETA’S FUNCTIONAL EQUATION

In a paper read in 1749 but not published until 1761, Euler suggested that the
(real) Zeta functions satisfied the exotic functional relationship,

(1 —x) = x(x)¢(x),

where
x(x) =2Q2m) ¥ cos(mwx/2) " (x).

He gave no proof but had verified the relationship to a point that, in his view, put
the result beyond doubt. In the end the proof had to wait for Riemann and his
complex generalization. By integrating around a second variable contour, which
in the limit is the same as the original used to extend Zeta, the contour integral
can be eliminated between two equations, leaving the above result, with real x
generalized to complex z, and a form which conveniently reveals the important
properties of the generalized Zeta function. Once again, the reader may wish
to believe this or go to Appendix E for a proof.

16.6 THE ZEROS OF ZETA

If we look at a plot of the real, extended Zeta function (Figure 16.2), we can
examine its behaviour for x < 1. The vertical asymptote at x = 1 is clear
enough but on this scale the behaviour along the negative real axis is obscure
and we need to zoom in a little, and doing so suggests that the function is zero
at every negative, even integer.
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46y

Figure 16.2. The real, extended Zeta function.
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Figure 16.3. Behaviour for x < 0.

On p. 41 we saw that Euler had established Zeta’s behaviour at positive, even
integers in that

2x
1 2m) _
c(2x) = E = - 2001 By, forx=1,2,3,...,

where the B, are the Bernoulli Numbers, but that the form of the Zeta function
evaluated at odd positive integers (greater than 1, of course) remains a mystery
to this day. In fact, the extended Zeta function is a little more compliant in that
its exact form for all negative integers is known to be

1
x)=(-1D)*——B forx =0,1,2,...,
¢(=x) = (=1 g1 Do
which means that ¢(0) = —5 and, since the other odd Bernoulli Numbers are
all zero, it must be that the extended Zeta function is zero at negative even
integers: these are called the trivial zeros—but there are others, which are not
nearly so trivial.
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0 172 1 Re z

Figure 16.4. The symmetry of Zeta’s non-trivial zeros.

The functional equation echoes this fact and also reveals a great deal more
about the ‘non-trivial’ zeros of the Zeta function. If z € {—2, —4, —6, ...},
cos(mz/2) # Obut I'(z) and therefore x (z) is infinite, whereas ¢ (1 —z) is finite;
the only reconciliation is that ¢ (z) = 0 and we have those trivial zeros again. The
Euler product form of ¢ (z) (as shown on p. 62), valid only for Re(z) > 1, clearly
cannot be zero. For any zeros that do exist, the functional relationship tells us that
if £(z) = 0and y (z) is finite, then ¢ (1 —z) = 0. Therefore, there can be no other
zeros forRe(z) < 0, as such a zero would necessarily spawn another with its real
part greater than 1. Riemann argued that there is an infinite number of these non-
trivial zeros, which have a strong symmetry. In the interval 0 < Re(z) < 1,¢(2)
is a single-valued analytic function which is real when z is real; this is enough to
mean that (£(z))* = ¢(z*) (which is called the Schwarz Reflection Principle),
and this means that £(z) = 0 & (£(2))* = 0 & ¢(z*) = 0 (where z* is
the complex conjugate of z) and the symmetry becomes fourfold. It is hardly
obvious, but no zeros lie on the line Re(z) = 1 and using the functional equation
none can lie on Re(z) = 0. This seemingly minor detail is what de la Vallée
Poussin and Hadamard each established as an essential step in proving the Prime
Number Theorem. In 1932 the eclectic, attractively eccentric American genius
Norbert Wiener (1894-1964) showed that this result and the Prime Number
Theorem are in fact entirely equivalent.

All non-trivial zeros of the Riemann Zeta function lie, then, symmetrically
in the interval 0 < Re(z) < 1, which is known as the ‘critical strip’; the shaded
region in Figure 16.4, where ¢(z) = 0.

I list the first few of these non-trivial zeros (with positive imaginary part
providing a natural order) in Table 16.1. The most striking feature is that the
real parts of each of the complex numbers is always 0.5: is this a representative
selection? No one knows, but all available evidence suggests so and we will
be addressing that critical matter soon; no one knows what those trailing dots
suggest either—irrational, transcendental, etc.?

195



CHAPTER 16

Table 16.1. Zeta’s early non-trivial zeros.

0.5 + 14.134725 141734693 790457 251 983 562 470270784 257 115699243 . ..
0.5 +21.022039 638 771 554 992 628 479 593 896 902 777 334 340 524902781 . . .
0.5 425.010857 580 145 688 763 213 790 992 562 821 818 659 549 672 557996 . ..
0.5+ 30.424 876 125859513210311 897 530584 091 320 181 560023 715440.. ..
0.5 +32.935061 587 739 189 690 662 368 964 074 903 488 812715603 517039. ..

16.7 THE EVALUATION OF I1(x) AND 7 (x)

With the Zeta function analytically continued and with the symmetry of its zeros
established, Riemann used contour integration again to develop a very striking
expression for /7 (x) involving a very important infinite series,

H(x)=Li(x)—ZLi(x"’)—ln2~l—/xoou(d—u x> 1. (16.1)

u? — Dlnu
0

The main things to notice about the formula are that Li(x) appears together
with a simple constant and another of those awkward integrals, which can be
approximated to any accuracy for any given x; we also see an arresting series,
which is summed over the infinity of zeros of the extended Zeta function. His
argument was not fully rigorous and we will not attempt to repeat it here, but
if we accept this mathematical alchemy for the moment, we can sum over any
finite number of the zeros to arrive at an approximation of I7(x'/") for any x
and the appropriate range of r, then use the expression

o0

N u(r) 1/r
w(x)=) —Ix"")
to approximate m(x); it seems a very tortuous route, but the diagrams in Fig-
ure 16.5 suggest that it is a very fruitful one
To make the mathematics sensible, it is necessary to define the step function
7 (x) at the vertical step at each prime to be the midpoint of the rise; with this
we can see that this process is able to take into account the local fluctuations
in the behaviour of 7 (x). In fact, if we look more closely at the contribution
made by each of the Zeta function’s non-trivial zeros we see that the kth zero
contributes
Li(xP/"y + Li(xP/™)

to the sum and therefore

o0

r *
Te(x) =) B0 (i emniry + LixE7)
r
r=1
to (x). Some of the first few of these component functions are shown in Fig-
ure 16.6; notice the vertical scales—the early zeros contribute more significantly
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Figure 16.5. The Riemann approximation of the prime step function
with (a) 10 terms and (b) 200 terms.

than those further on. The whole process is reminiscent of Fourier analysis and
indeed the connection is profound: we are looking at the ‘music of the primes’.

16.8 MISLEADING EVIDENCE

Looking back at Figure 15.8 on p. 176 shows that, at least up to 107, Li(x) >
7 (x). This continues to be the case far, far beyond this value, in fact even today
all available numeric evidence continues to point to Li (x) being an overestimate
of (x). Gauss always thought it to be true, so did Riemann, who at the end of
his paper wrote,

Indeed, in the comparison of Li (x) with the number of prime num-
bers less than x, undertaken by Gauss and Goldschmidt and carried
through up to x equals three million, this number has shown itself
out to be, in the first hundred thousand, always less than Li(x); in
fact the difference grows, with many fluctuations, gradually with x.

Li(x) seemed too big and Riemann suggested that it is in fact a closer approx-
imation to a weighted sum of the 7 (x) than it is to 7 (x) alone; explicitly, that

in his expression
(0.¢]

My =Yy }n(xl/’),
r=1

the IT(x) might reasonably be replaced by Li(x) itself to give
Lix) ~ 7 () + 3m () + g+
and by Mobius Inversion

m(x) ~ Li(x) — $Li(x"?) = ALix"Py — -

197



CHAPTER 16

0.3
0.2
0.1
0.1
oL AL )
T
15 4 60/ 80 \ 100
-0.1 01
-0.2 '
_0'3 _0.2
0.2 Ty 0.2
0.1 Ln 0.1
0

il AN
o I VARS-

0.075
0.050
0.025

-0.025
—-0.050
-0.075

Figure 16.6.

an expression with dominant term Li(x), but including an infinite series of
refinements. And so we have a final approximating function

R(x) = Z@Li(x‘/’).

r=1

Figure 16.7 shows plots of this final approximation R(x) with 7 (x) and the
difference between them fosters the hope that we do have an improvement for
all x and for this to be true we clearly need that Li(x) > m(x); unfortunately,
it is not always so.

The leading quotation at the beginning of Chapter 7 was from the pen of God-
frey Harold Hardy, a complicated, modest, deeply gifted and influential number
theorist, whom we have mentioned several times already. He is remembered for
his own significant and individual contributions to mathematics but also those
brought about by his collaboration with his great contemporary, John Edensor
Littlewood (1885—-1977). An incisive and elegant thumbnail picture of Little-
wood appeared in a 1971/2 issue of the magazine, Mathematical Spectrum:
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Figure 16.7. The Riemann estimate.

Fellow and Copley medallist of The Royal Society, honorary doctor
or member of many universities and academies, is the outstanding
mathematical analyst of his generation. Born in 1885, he has been
a Fellow of Trinity College Cambridge since 1908 and Rouse Ball
Professor of Mathematics from 1928 to 1950. Littlewood’s papers
in analysis and Number Theory, of which over 100 were written
in collaboration with the late G. H. Hardy, have a striking power
which to mere mortals seems nothing short of miraculous.

Hardy agreed with °...knew of no one else who could command such a com-
bination of insight, technique and power... .

More romantically, Hardy and Littlewood are forever linked with the name
of the Indian genius Srinivasa Ramanujan (1887-1920), with the story of this
remarkable association told in The Man Who Knew Infinity. An example of
a typically extraordinary result of Ramanujan’s is an exact formula for the
derivative of 7 (x), with which we argued intuitively earlier. He proved that

dr(x) 1 iu(r)xl/,
r 9

dx  xlnx

r=

where the derivative of the step function is defined in terms of the usual limit.
All three took a profound interest in Number Theory in general and the Prime
Number Theorem in particular and it was Littlewood who, in 1914, proved that
eventually 7 (x) will overtake Li (x) and more, that the two functions will swap
in magnitude infinitely often from that point. Of course, this means that at these
values, R(x) will not be the accurate approximation we would expect it to be. In
The Distribution of Prime Numbers, Ingham commented, ‘This function (R(x))
approximates 77 (x) with astonishing accuracy for all values of x for which 7 (x)
has been calculated’. But he continues by remarking that, with Littlewood’s
result, ‘its superiority over the function Li(x) is illusory’ and that ‘for special
values of x (as large as we please) the one approximation (Li(x)) will deviate
as widely as the other (R(x)) from the true value. On the bright side, he also
admits that ‘on average’ the first part of R(x), Li(x) — %Li(xl/z), will be a
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better approximation to 7 (x) than Li(x) alone—at least, if something called
the Riemann Hypothesis is true. The obvious question to ask is, what is the
smallest value of x at which r(x) > Li(x)? To that question there remains no
definite answer. In that same paper, Littlewood also proved that the asymptotic
oscillations of the difference between the two functions are of the order of at
least Li(y/x) InlnIn x, but he gave no explicit estimate of the whereabouts of
that first sign change. Later, his student Stanley Skewes showed that it occurred
before

010"
which has become known as the ‘Skewes Number’, and which at the time was
the biggest ‘useful’ number ever defined (‘Graham’s Number’, from the world
of combinatorics, now dwarfs it). As of 2000, Carter Bays and Richard Hudson
have improved the bound by showing that the first change of sign occurs before
a mere 1.39822 x 10316, a number still far beyond present-day computational
reach.

16.9 THE VoN MANGOLDT ExpPLICIT FORMULA —AND How It Is USED TO
PROVE THE PRIME NUMBER THEOREM

It was left to others to recast Riemann’s thoughts with the severity that math-
ematics ultimately demands and in this case the most notable contributor was
Von Mangoldt, who provided a rigorous proof of Riemann’s Equation (16.1) but
who also established a similar expression for the ¥ function described on p. 183,
and which has overtaken I7(x) in the study of the Prime Number Theorem. It
is this form that we will look at in some detail.

‘We have that the complex form of the Euler identity is

1
{(2) = 1_[ 1——]ﬂ’
p prime

and is valid for Re(z) > 1, and so

In¢(z) =1In 1_[ pz_— Z In(1—p
p prime p prime
== > In(l—eMP),
p prime

Differentiating with respect to z then gives

. e 2P 1np p“lnp . lnp 162
__Z l_ezlnp__ l_pfz__z pre - ( )
p prime p prime p prime
r=I1
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The last equality uses the sum of an infinite geometric series. We will use the
¥(x) ~ x form of the Prime Number Theorem and recalling the definition
vx) =) pr<x In p, we will naturally seek to extract the logarithmic part
from the sum on the right-hand side of Equation (16.2), which can be done
using the contour integral device

| c—ico .z 0, 0<y<l,
— y_dzz Loy=1
270 Je—ico 2 2’ ’
I, y>1,

where ¢ is a convenient real number. Once again for those who are aware of
them, the techniques of Fourier analysis are familiar.
Multiplying both sides of the expression (16.2) by x*/z and rearranging gives

D SV S (i)zhl_fﬂ__ﬂz)ﬁ
< p prime P’ p prime P’ < (@) 2

r=1 r=1

and so integrating both sides along the contour gives

1 c—ioo i (x )Zlnp q 1 c—ioo {l(Z) xZ

271 Je—ioo

p}’

—dz = —

_d27

» prime z 27l Je—ico $(2) 2z

r=1

1 c—ioo X Zl 1 c—ioo C’(Z) xZ
Z Inp— <—r>—dz=—, — —dz
» prime 270 Je—ico \P"/ 2 27 Jeio (@) Z
r=1
Now take y = x/p" to get
. . .
1 C—100 |,Z 1 c—100 / Z
Z Inp— y—dz:—, —;(Z)x—d
270 Je—ico 2 210 Jemico $(2) 2

p prime
r=1

and

o :
1 c—100 / z .XZ
yo=Ymp=—— [ L&
- 270 Je—ioo t(@@) z
pr<x
since p” > x would mean y < 1 and the integral contribution 0; x must not
be the power of a prime. The remaining contour integral is evaluated using the
theory of residues, all of which have to be added together to arrive at the answer.
The integral is best thought of divided into four different categories of residue,
as in Table 16.2.
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Table 16.2. The four types of residue.

Singularity Cause Residue
4 / 0
0 A £ O =In27
z (0
1
1 Pole of ¢ _xT =—x
-2, —4,—6,-8, ... Trivial zeros of ¢ %xfz, %x74, %x76, %xfg, .
xP
P Non-trivial zeros of ¢ —
Yet again the Taylor series for In appears, this time as
%x_z + %x_“ + %x_é + %x_g + = %ln(l —x7?

and we therefore have

_ xP
Iﬁ(x)=X—ln(27r)—%1n(1_x 2y Xz ?’
¢(p)=0

where the sum is over the non-trivial zeros, which is the equivalent of Riemann’s
expression for I7(x). It is known as the Von Mangoldt explicit formula and has
to be the most important in the whole of analytic number theory. At first it
looks contradictory to have a real function on the left in part made up from
an infinite sum of complex numbers, but the roots do occur in conjugate pairs,
which makes the terms, taken in such pairs, real.

Now we can see the connection between the Prime Number Theorem and ¢’s
zeros. If we write p = u + iv, then |x?| = x* and u < 1 would mean that, as
X — 00, each error term in the series is of order less than x and this would mean
(with a bit more mathematical rigour) that ¢ (x)/x — 1, as required. That is,
the real part of the non-trivial zeros of the extended Zeta function being less
than 1 would imply the Prime Number Theorem and, as we have said, it was
this fact that de la Vallée Poussin and Hadamard independently established.

16.10 THE RIEMANN HYPOTHESIS
In his paper, Riemann defined a function &, related to ¢, by
Ew) =7z — DI (Gz+ D),

where z = % + iw. Why? Really, because it is easier to handle than ¢ (z). The
(z — 1) eliminates the problem with ¢(z) at z = 1 (recall from p. 41 that
(z—=1)¢(z) = lasz — 1) and so & is analytic in the whole complex plane, it
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Figure 16.8. The location of &’s early zeros.

is also not hard to check that £(z) = &£(1 — z) and from the definition it’s clear
that the set of zeros of & is the same as the set of zeros of ¢. What is more, the
fact that all of the non-trivial zeros of ¢ lie in 0 < Re(z) < 1 means that if we
write £(w) = E(u+iv) = 0,then ¢(z) = 0, where z = (% — v) + iu and so we

must have that 0 < % — v < 1 and so —% <v< %; that is, the zeros of & must

have imaginary parts lying between —% and % Using the symmetry of the zeros
of ¢ we need only consider those which have a positive imaginary part, making
u > 0 and therefore Re(w) > 0. This results in the region in Figure 16.8.

Riemann argued (again vaguely) that about

T T T

Z ln— - —

27 2w 2m
of the zeros lie in such arectangle and as a test he calculated the real zeros, to find
that the number closely agreed with the counting function, which left little space
for any others. In his own words, ‘One now finds indeed approximately this
number of real roots within these limits, and it is very probable that all roots are
real’. If this is the case, the real part of the zeros of ¢ must be % Continuing, he
remarked, ‘Certainly one would wish for a stricter proof here; [ have meanwhile
temporarily put aside the search for this after some fleeting futile attempts, as it
appears unnecessary for the next objective of my investigation.” Which brings
us to the vaunted

Riemann Hypothesis

The non-trivial zeros of the Riemann Zeta function
all have real part one-half
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Figure 16.9. The behaviour of Zeta on and near the critical line.
@z=1+xii(0)z=1+xi

In terms of Figure 16.4 on p. 195, the zeros all lie on the line of symmetry rather
than in any other part of the critical region.

The two plots in Figure 16.9 show the early behaviour of the function [¢(z)|
for points on the critical line z = 2 + xi and for points on the parallel line
7= 3 + xi. They also show that ¢(z) has plenty of zeros at the start of the
vertical line Re(z) = 2 but none such on Re(z) = 3, although it can come
perilously close, as can be seen near the point 3 L+ 14

Plotting 1/|¢(z)| in Figure 16.10 gives another revealing glimpse of the non-
trivial zeros, which appear as spikes along the line Re(z) = % The trivial zeros
bring about the ‘mountain’ on the left.

In passing, Hadamard established the very satisfying form

— _e Az 1_£> z/p
E(w) = —e ]‘[( > )e

¢(p)=0
where A = —%y -1+ %ln4n.
16.11 WHY Is THE RIEMANN HYPOTHESIS IMPORTANT?

The Riemann Hypothesis states that all non-trivial roots of the Zeta function
have real part %, afar stronger condition than the one required for the proof of the
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Figure 16.10. A three-dimensional view of Zeta’s early zeros.
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Figure 16.11. The difference the Riemann Hypothesis makes.

Prime Number Theorem, which merely requires that none have real part 1. The
immediate importance of the conjecture is in the measurement of the size of the
error involved in the approximation of 7 (x) by Li (x), but it strikes much deeper
and into the greatest depths of mathematics, with the error involved in many
important asymptotic formulae also governed by it: for example, the weaker
form of the Goldbach Conjecture, which states that every odd number is the sum
of three primes, is implied by it. Fields Medallist, Enrico Bombieri, has said that
‘The failure of the Riemann Hypothesis would create havoc in the distribution
of prime numbers’. Since the Riemann Hypothesis is involved with the size of
the error in approximating ¥ (x) by x, it therefore is involved with the error in
approximating  (x) by Li(x). To be exact, in 1901 von Koch proved that, if the
Riemann Hypothesis is true, the known estimate 7 (x) = Li(x) + O (xe™¢ Vinx )
would become 7 (x) = Li(x) + O(4/x Inx), which Bombieri has commented
would be hard to significantly improve on, given Littlewood’s result that the
degree of oscillation of 7 (x) — Li(x) is asymptotically of the order Li (4/x) x
Inlnlnx. Figure 16.11 gives some sort of idea of the difference between the
size of the errors with and without the Riemann Hypothesis.

Proving the Riemann Hypothesis has subsequently become the greatest prob-
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lem in mathematics but has largely resisted attempts by some of the best math-
ematicians of the 20th century to gain significant headway with it.

16.12 REAL ALTERNATIVES

The uniqueness theorem allows us the freedom to extend Zeta’s definition in
any way we please and various methods have been used to do just that, includ-
ing the use of Euler—-Maclaurin summation; of course, Riemann used contour
integration, which reveals a great deal about the nature of the extended func-
tion. Another approach uses the generalized alternating harmonic series, the
‘alternating Zeta function’, defined by

o]

L@ =) (_ri)r,

r=1

which converges in the bigger region Re(z) > 0.
We can write this as
1 1 1 1

ga(Z)=1—§+3—Z—E+5—Z+"'

1 1 1 1 1 ’ 1 1 1
= +§+3—Z+4?+5—Z+"'— §+47+§+
1 1 1 1 1 2 | 1 1
= +§+§+47+§+"‘—? +?+§+"'
and so .
a(2) = £@) = 74 (),

which makes

o]

L@ (=1
(= =T (16.3)

r=

defined for Re(z) > 0.
The extension is made complete using yet another technique of Euler’s,
‘Euler’s series transformation’, and this results in

R T - T N .
(@) =15 ;W l;)( 1 <k)(k+ 1

forz # 1.
It seems light years away from the contour integral form, but remember that
uniqueness theorem for analytic extension! We can use the extension (16.3) to
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give a tantalizingly simple reformulation of the Riemann Hypothesis without
complex numbers appearing at all. Using standard methods,

P = patib = papib — paibinr — pa(cog(hInr) + i sin(bInr))
and so 1 {
— = —(cos(bInr) —isin(bInr)),
re ra
which means that

o0 —lr
tw=0e> L o

re

r=1

< Z (_ri) (cos(bInr) —isin(bIlnr)) =0.
r=I1

Equating real and imaginary parts brings us to the very tempting reformulation:

rd r¢

o (=1)" o (=1)"
If Z cos(bInr) =0 and Z sin(blnr) =0
r=1 r=1

for some pair of real numbers a and b, then a = %

The reader may wish to check this using the early zeros given in Table 16.1
on p. 196. It seems extraordinary that the most famous unsolved problem in
the whole of mathematics can be phrased so that it involves the simplest of
mathematical ideas: summation, trigonometry, logarithms and of course, if the
conjecture is true, Christof Rudolff’s ,/ sign. It all sounds so easy to become
the most famous name in the mathematical world!

There are other, equivalent real formulations of the Riemann Hypothesis. For
example, asymptotically the exact values of the integers | Li (x) | and 7 (x) must
agree on ‘about’ half of their digits. Also, with o (n) the sum of the divisors of
n, that o(n) < e¥nlnlnn for n > 5041 or that o (n) < H, + e¢f» In H, for
n > 1, with equality only for n = 1. We will content ourselves with a detailed
look at one more celebrated reformulation.

16.13 A BACK ROUTE TO IMMORTALITY —PARTLY CLOSED

Any integer can be written as the product of a square and a square-free compo-
nent and in Chapter 3 we saw this simple fact put to significant use by Erdos. Of
course, any particular integer might be factored as a combination of square and
square-free, for example, 23 x 3° x 7 x 112 = (2 x 32 x 11)2(2 x 3 x 7), or it
could be a perfect square, 3% x 5* x 132 = (33 x 52 x 13)?, or it could be entirely
square free, with the primes appearing just once, for example, 2 x 5 x 13 x 17.
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M(x)
20

Figure 16.12. Mertens function.

The Mobius function i, mentioned earlier, is used to discriminate between the
types of factorization that are possible. Recall its definition:

0, r has a repeated factor,
ur)y=11, r has an even number of prime factors,
—1, r has an odd number of prime factors.

Now suppose that we consider all square-free integers. It is reasonable to sup-
pose that the Almighty has divided them pretty equally so that u will take its
values of +1 and —1 equally often (in fact, it can be shown that P(u(r) = 1) =
P(u(r) = —1) = 3/x2, and therefore P(u(r) = 0) = 1 — 6/72, giving a
final appearance of that ubiquitous number). Having said this, we would expect
some fluctuation in the count as we move along the list of integers—just as
we have expected fluctuations in the accuracy of Li(x) approximating m(x)
or any other asymptotic approximation. But how big would we expect those
fluctuations to be? The size of them is measured by the absolute value of the
Mertens function M (x) = ngx u(r), shown in Figure 16.12.

It is clearly erratic but even so, in 1885 Thomas Stieltjes (1856—1894), ‘the
father of the analytic theory of continued fractions’, claimed in a letter to his
frequent correspondent Charles Hermite (1822-1901) that M (x)x~1/2 stays
within two fixed bounds, no matter how large x may be; he added (in parenthesis)
that the bounds could probably be taken to be +1 and —1. In saying this, he was
suggesting that |[M (x)| < +/x.1In 1897, Mertens published a paper containing a
table 50 pages long giving values of () and M (r) for r up to 10 000 and based
on this evidence claimed that Stieltjes stronger estimate was ‘very probable’ and
so |M(x)| < 4/x,x > 1, passed into mathematics as the ‘Mertens Conjecture’.
In a series of papers over the turn of the century, von Sterneck published values
of M(r) for r up to 1000000 and on that evidence conjectured the stronger
M (x)| < 0.54/x, x > 200.

Stieltjes’s proof never appeared because the assertion is wrong, which means
that the von Sterneck assertion is wrong too, and even the weaker forms, with
larger bounds, might be doomed to failure also. It took until 1963 to disprove the
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stronger form, when Gerhard Neubauer found that with x = 7725 038 629, the
0.5 but not the 1 boundary is broken. Not until 1985 was the original conjecture
dispatched, when A. M. Odlyzko and H. J. J. te Riele proved that eventually
the positive and the negative barriers are broken. (With that erratic behaviour,
it is hardly surprising that they formulated their result in terms of the ideas
on p. 113; to be exact, they showed that lim sup, _, o, M(x)x~'/2 > 1.06 and
liminfy_ oo M(x)x~ Y2 < —1.009.) Their proof was one of existence and as
such provided no estimate, let alone value, for such an x; in the same year Janos
Pintz proved that the first counterexample must be less than 3.21 x 10%*—big,
but bear in mind the Skewes and Graham numbers!

This all seems a shame, with numeric evidence once again leading intuition
astray; a few million, a few billion, a few trillion. .. do not mean much here; in
number theory, big really can mean BIG!

What has it to do with the Riemann Hypothesis? Its truth would have implied
it. In fact, the truth of |M (x)| < C+/x for any constant C would imply it—and
that remains an open question; small wonder that the conjecture has attracted
the attention that has led to two of its forms being disproved.

The Zeta function is intimately related to the Mobius function in that

Z 20 for Re(z) > 1.

§(z) ré

r=1

We will not prove this fact, but it is another standard result of number theory.
With one last look at complex function theory and with this result at our disposal,
we can see that tantalizing connection, given that we define M (0) = 0:

! ziw) ziM(’)‘M("”

7z

M) °°M(r—1) M(r) S M(r)
0 1 1 o r+1
ZZM(F){?Z_@H)Z}:;M(”/r

r+1 00
:sz M) dx =z M(x)d

xztl

r=1

since M (x) is constant on each interval [r, r + 1).
If the Mertens conjecture is true, then

_|Cvx
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M(x)
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Figure 16.13. Early evidence for Stieltjes conjecture.

The last mtegral would converge provided that Re(z) + > 1, which means
that Re(z) > 5. If this is so, it would define a function analytlc in Re(z) > —,
which would glve an analytlc continuation of 1/¢(z) from Re(z) > 1 in the
original formula to Re(z) > § (that sleight of hand again). This would mean
that 1/¢(z) is defined for Re(z) > 5 L (and therefore that £ () can have no zeros
there); by symmetry, none could exist in Re(z) < 7, so they all must lie on
Re(z) = é and that of course is the Riemann Hypothesis!

16.14 INCENTIVES, OLD AND NEW

Mathematical Problems

Lecture delivered before the International Congress of
Mathematicians at Paris in 1900

By Professor David Hilbert

Who of us would not be glad to lift the veil behind which the future
lies hidden; to cast a glance at the next advances of our science and
at the secrets of its development during future centuries? What
particular goals will there be toward which the leading mathemat-
ical spirits of coming generations will strive? What new methods
and new facts in the wide and rich field of mathematical thought
will the new centuries disclose? History teaches the continuity of
the development of science. We know that every age has its own
problems, which the following age either solves or casts aside as
profitless and replaces by new ones. If we would obtain an idea
of the probable development of mathematical knowledge in the
immediate future, we must let the unsettled questions pass before
our minds and look over the problems which the science of today
sets and whose solution we expect from the future. To such areview
of problems the present day, lying at the meeting of the centuries,
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seems to me well adapted. For the close of a great epoch not only
invites us to look back into the past but also directs our thoughts to
the unknown future. The deep significance of certain problems for
the advance of mathematical science in general and the important
role which they play in the work of the individual investigator are
not to be denied. As long as a branch of science offers an abundance
of problems, so long is it alive; a lack of problems foreshadows
extinction or the cessation of independent development. Just as
every human undertaking pursues certain objects, so also mathe-
matical research requires its problems. It is by the solution of prob-
lems that the investigator tests the temper of his steel; he finds new
methods and new outlooks, and gains a wider and freer horizon.
It is difficult and often impossible to judge the value of a problem
correctly in advance; for the final award depends upon the gain
which science obtains from the problem. Nevertheless we can ask
whether there are general criteria which mark a good mathemati-
cal problem. An old French mathematician said: ‘A mathematical
theory is not to be considered complete until you have made it so
clear that you can explain it to the first man whom you meet on the
street.” This clearness and ease of comprehension, here insisted
on for a mathematical theory, I should still more demand for a
mathematical problem if it is to be perfect; for what is clear and
easily comprehended attracts, the complicated repels us. Moreover
amathematical problem should be difficult in order to entice us, yet
not completely inaccessible, lest it mock at our efforts. It should be
to us a guide post on the mazy paths to hidden truths, and ultimately
a reminder of our pleasure in the successful solution.

On 8 August 1900 David Hilbert (1862—1943) rose to a lecturn in the Sor-
bonne to give what is probably the most famous lecture ever delivered by a
mathematician (although Andrew Wiles’s series of lectures, in which he estab-
lished a form of the Tanayama—Shimura conjecture and in particular Fermat’s
Last Theorem—admittedly with a later corrected error—might vie for equal
renown). Hilbert, even with the formidable competition of the likes of Felix
Klein and Henri Poincaré, was the most acclaimed mathematician of his day,
described by one of his students (a future Nobel Laureate) by the words, ‘. . . lives
in my memory as perhaps the greatest genius I ever laid eyes on.” He had been
invited to give one of the major addresses at the second International Congress
of Mathematicians and he chose to use the opportunity to chart a course for
20th-century mathematics, in part by posing a series of 23 problems, the inves-
tigation or solution of which would in his view lead the way to mathematical
progress. The address opened with the lines above and continued by focusing
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on 10 of the problems; there was no apparent order to his list but on it, and one
discussed in the address, was problem number eight.

8. Problems of prime numbers

Essential progress in the theory of the distribution of prime num-
bers has lately been made by Hadamard, de la Vallée Poussin,
Von Mangoldt and others. For the complete solution, however, of
the problems set us by Riemann’s paper ‘Ueber die Anzahl der
Primzahlen unter einer gegebenen Grosse’, it still remains to prove
the correctness of an exceedingly important statement of Riemann,
viz., that the zero points of the function ¢ (s) defined by the series

1 1 1
{(s)=1+;+§+47+"‘

all have the real part 1/2, except the well-known negative integral
real zeros. As soon as this proof has been successfully established,
the next problem would consist in testing more exactly Riemann’s
infinite series for the number of primes below a given number and,
especially, to decide whether the difference between the number
of primes below a number x and the integral logarithm of x does in
fact become infinite of an order not greater than % In x. Further, we
should determine whether the occasional condensation of prime
numbers which has been noticed in counting primes is really due
to those terms of Riemann’s formula which depend upon the first
complex zeros of the function ¢ (s).

Hilbert’s gigantic standing gave huge impetus in the mathematical world to
address the problems in the list—a reputation could be made by success in any
of them. Those who did meet with success, or who contributed significantly
to success were to become known as members of the ‘honours class’ of math-
ematicians. Of the 23 problems, 8 were of a purely investigative nature and
12 of the remaining 15 have been completely resolved. Only problem number
8 preserves its mystery almost completely and a century later it remains, in a
practical sense, untouched.

In 1998 the Fields Medallist, Steven Smale, put forward his own list of 18
problems in the same spirit as Hilbert and on 13 February 2002 the solution of
the 14th on the list was published by W. Tucker. So far this is the only one of
them to be solved, and number one on the list is the Riemann Hypothesis.

With the dawn of another millennium, a new incentive has been provided
by the Clay Mathematics Institute in that they have offered one million dollars
each for the solution of seven open questions, one of which is the Riemann
Hypothesis.
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16.15 PROGRESS

There has, of course, been progress. In 1914 Hardy wrote the paper ‘Sur les
zeros de la fonction ¢ (z) de Riemann’ in which he showed that an infinite num-
ber of the non-trivial zeros lie on the critical line Re(z) = % In 1921, he and
Littlewood together proved the far stronger result that, for some positive con-
stant A, ;(% + iy) has atleast AY zeros in each interval —Y < y < Y. Selberg,
in 1942, improved Hardy’s original result to show that a positive proportion of
all the non-trivial zeros lie on the critical line. (This is a subtle but important
distinction. For example, Z is infinite but the precise ‘measure’ of its size com-
pared with R is 0.) Conrey improved this in 1989, showing that at least 40%
of the zeros lie on the line. The width of the critical region has been squeezed,
but not to zero, which you may think is pretty convincing evidence, but recall
the two conjectures mentioned earlier; Littlewood was far from convinced: he
conjectured that the Riemann Hypothesis is false!

Since there is known to be an infinite number of non-trivial zeros with no
discernible pattern to them, enumerating them is not an option—other than to
hope to find one not on the critical line. To this end, in 1903 J.-P. Gram used
Euler—-Maclaurin summation to prove that the conjecture is true for a height
of 50, that is, for Im(z) < 50, but Euler—Maclaurin summation has long been
superseded by a clever technique on which we will touch lightly.

Recall that £(z) = £(1 — z) and also that the function is analytic and real for
real z. This means that we can use the Schwarz reflection formula again and, in
particular, we have

CER+iny =G +inH =G —in =60 G +it) =& +ir)

and the only complex numbers equal to their own conjugates are real. We have
that £ is real on the critical line and so to look for a zero on the line is to look
for a change in sign of the & function. (The precise method for achieving this
is technical and uses something known as Gram’s Law.) Now all we need to
do is to provide an accurate count of how many zeros exist up to a certain
height and compare that number with the count of the number of zeros on the
critical line: any discrepancy proves the hypothesis false. And this takes us
to our final genius. Recall that Ada Lovelace thought an appropriate task for
Babbage’s Calculating Engine was the evaluation of the Bernoulli Numbers;
the eccentric and pitifully treated British genius Alan Turing (1912-1954) felt
that locating zeros of the Riemann Zeta function was an appropriate task for
the Calculating Engine’s successor—the electronic computer—the intellectual
form of which he conceived. Turing is most generally remembered for his
immense contributions to the breaking of the German military Enigma Code
at Bletchley Park, England, in World War II; the gripping story of ‘Ultra’ has
been told by many now that it is not shrouded by the Official Secrets Act, the
intellectual ‘cream of the cream’ acting in unison to achieve what was thought
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Figure 16.14. Proof without words: the Riemann Hypothesis.

to be impossible. Even in that most rarefied atmosphere Turing, the ‘Prof’,
was special; his own story has been told in Andrew Hodges’s Alan Turing; the
Enigma and Jon Agar’s Turing and the Universal Machine (among others), and
we will merely give fleeting mention of one of his many brilliant ideas.

In 1948 he was at Manchester university, belatedly joining the team who
constructed the first electronic, stored-program computer and it was from here
that he put forward his seminal ideas on machine intelligence. By 1951 the
machine had graduated to the ‘Blue Pig’ or MUC, the Manchester University
Computer, a massive collection of wiring and valves (concealed in metal cup-
boards) which was set to many tasks from singing and producing doggerel to
testing for the zeros of £(z). At night, when it had no other work, Turing would
set it to work widening the search and using a formula devised by him (and still
used) to provide an accurate count of the number of zeros up to a given height.
The search was futile and the evidence continues to build far beyond the reach
of the Blue Pig that the two counts match; now it is known that 59 974 310 000
zeros lie on the line—and of course none have been found off it!

We have mentioned G. H. Hardy several times before and he was one of the
outstanding mathematicians of his time, making many significant contributions
to number theory. In his immensely impressive mathematical trophy cabinet
there was a vast gap waiting to be filled by a proof of the Riemann Hypothesis,
a gap that remained empty, of course, and we can gain some small insight into
the man and his view of the Riemann Hypothesis with these three anecdotes.

e A list of his four most ardent desires (in order) was
(1) to prove the Riemann Hypothesis;
(2) to score a century at Lords in a test match;

(3) to prove the non-existence of God;

(4) to assassinate Benito Mussolini.

The list could vary slightly, but at its top was always the Riemann Hypoth-
esis.
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e On each of his regular visits to his Danish mathematical friend Har-
ald Bohr (younger brother of Niels and the one mentioned before on
p- 56), the unswerving routine was to arrive and sit down to construct an
agenda for the visit; the first point on it was always ‘prove the Riemann
Hypothesis’.

e On the return from one such visit, facing a stormy sea passage, he scrib-
bled a postcard and posted it to Littlewood, which read, ‘Have proved the
Riemann Hypothesis’; Hardy, the atheist, reasoned that if God did exist,
He would not allow him to die with the unjustified super-reputation that
would have resulted in him proving this most sought after of results.
Hardy arrived safely in England before the postcard arrived.

When he was asked which mathematical problem was the most important,
Hilbert answered, ‘The problem of the zeros of the Zeta function, not only
in mathematics, but absolutely most important!’. Alternatively, one could take
M. Kline’s view, when he said in an interview for ‘Mathematical People’ in
1985:

If I could come back after five hundred years and find that the Rie-
mann Hypothesis or Fermat’s last ‘theorem’ was proved, I would be
disappointed, because I would be pretty sure, in view of the history
of attempts to prove these conjectures, that an enormous amount
of time had been spent on proving theorems that are unimportant
to the life of man.

With Andrew Wiles’s contribution to Fermat’s Last Theorem, he must already
be unhappy and there are any number of current professional and amateur
mathematicians who would like to make him unhappier still!

Mathematicians do not like producing ‘conditional’ proofs and if they do so
it shows the considerable esteem in which an unproven result is held; with this
said, there are many, many results that begin: ‘Assuming the truth of the Riemann
Hypothesis. .. . An observation by Freeman Dyson has brought about important
connections with quantum theory; who knows, the greatest problem of abstract
pure mathematics might be solved by a physicist—and perhaps experimentally?
Certainly, fame (and now fortune) await the solver; as the advertising slogan of
the British National Lottery would have it, ‘It could be you’, although Jonathan
P. Dowling’s poem (overleaf) may serve as a cautionary warning.
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CHAPTER 16
The Riemann Conjecture

Mein lieber Herr Riemann

All night I will dream on,

"bout how you deserve a lecture.

But of course I allude

To your famous and shrewd
Outstanding and unsolved conjecture.

Oh, I owe you my life,

My 3 kids and my wife,

For the proof of the Prime Number Theorem.
Your Zeta function trick

Made the proof really slick,

And those primes—no more do I fear ’em.

But I just stop to think,

How I’ve taken to drink,

And evolved this hysterical laugh-
Because still I don’t know

If ¢’s roots will all go

On the line real z is a half!

So I don’t sleep at night,

And I’'m losing my sight

In search of this darn thing’s solution.
As my mind starts to go

My calculations grow

In a flood of ‘complex’ confusion.

I bought a computer;

Not any astuter,

It ran for nearly 10 years—no jive!
But still it doesn’t know

If Zeta’s roots all go

On that line real z is .5

Now I sit in my room—

I feel doomed in the gloom—

And entombed by mountains of paper.
Still, I pray that some night

My ‘ol’ lightbulb’ will light

With the clue that could wrap up this paper.
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The Greek Alphabet

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota i
kappa k
lambda 1
m
n

>N 0O QU T &

© e
=

mu
nu

xi ks
omikron o
pi P
rho r
sigma S
tau t
upsilon u
phi f
chi ch
psi ps
omega 0

VeXe<AMTIO0OWZZI>AR"TOINTD 1T P
EREXSTCTAQD JOMCSTTE >¥A T DI NN B ™K

217



This page intentionally left blank



APPENDIX B

Big Oh Notation

Introduced in 1894 by one Paul Bachmann, later embraced by number theorists
in general and later still by computer scientists to measure the complexity of
algorithms, this notation exposes the size of an expression while suppressing
unnecessary detail.

For example, 21> +7n +6 — oo as n — oo but not really any more quickly
that n? itself, since as n becomes bigger the 7n + 6 term becomes increasingly
less relevant and could be any other linear expression in n; put another way,
(2n2 +7n+6)/ n? — 2 asn — oo. If the 2 has no relevance, other than it
being a constant, we write 212 +7Tn 4+ 6 = O(n?) and in general for positive
functions, g(n) = O(f(n)) if g(n) is asymptotically no bigger than a constant
times f(n); thatis, f(n) is the dominant asymptotic term of g(n).

This means that O (1) represents a constant and, for example, Inn+Inlnn =
O(Inn).

The use of the O for ‘order’ brings about the appropriate name of ‘big oh’
notation.
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APPENDIX C

Taylor Expansions

The simplest functions are polynomials, since they are generally very suscep-
tible to standard mathematical processes. If a function is not a polynomial,
we can look for the best polynomial approximation to it, at least over some
interval, but we must expect global difficulties; for example, the function may
have a vertical asymptote or be periodic or possess any other non-polynomial
behaviour. We naturally proceed by the degree of the polynomial, that is, the
highest power of x.

C.1 DEGREE 1

It is intuitively clear that the best straight line that approximates a given curve
at a given point is the tangent to the curve at that point (see Figure C.1). If P is
the point (a, f(a)), the gradient of the curve at P is f/(a) and the equation of
the tangent is y — f(a) = f’(a)(x — a) and so we have the approximation

f)~ fl@)+ & —a) f(a),

which is Taylor’s first approximation.

C.2 DEGREE 2

Above we have simply used our intuition as to what the best approximating
straight line would be, but we could have been more rigorous. The general
straight line has two independent parameters, which together uniquely specify
it: inits standard form y = mx+-c they are m and c. Two independent parameters
means that we can impose two independent conditions on the line if we are
to judge it to be the best one to achieve our approximation, and what better
conditions than that the line passes through P and has the same gradient as
f(x) at P? In other words, the line is indeed the tangent to the curve at P.
With a degree 2 approximation, we are approximating the function near P by a
parabola, which in its general form y = Ax? 4 Bx + C has three independent
parameters A, B, C. It is perfectly natural to impose the same two conditions
as before, but what of the third?
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f @)
P
Figure C.1.
fx)
P
Figure C.2.

If we look at Figure C.2, we will see two parabolas being used as approx-
imations. They both pass through P and both have the same gradient as f(x)
at P but we would surely prefer the upper one to the lower since it bends in
the right direction. This third condition ought to distinguish between the two
possibilities and since concavity is measured by the second derivative we will
insist that the second derivatives of the function and of the quadratic approxi-
mation are equal at P. If we agree to write the quadratic in the more useful way
ofy =A(x — a)’>+ B(x —a) + C, we can easily evaluate the three parameters
as follows: q 2

y y
i 2A(x —a)+ B, ol
Putting x = a in the expressions for y, dy/dx and d®y/dx? and imposing our
conditions then gives C = f(a), B = f/'(a), A = % f"(a) and the approxima-
tion as

2A.

fO)~ fl@)+ & —a)f' @)+ 3(x —a)? f(a).

In general, we can continue the process by approximating by a cubic, quartic,
etc., insisting that each higher derivative at P is equal to that derivative of the
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TAYLOR EXPANSIONS

function at P to get

(x

F@) & f@ 46—y f @+ S >+(

f//( )+

noting that the denominators are factorials because of the repeated bringing
down of the powers in the differentiation process.

C.3 EXAMPLES

2 3
X X
(1+x)“%1+otx+a(a—l)§ +a(a—1)(a—2)§+---,

x2 X

X,\, - -
Thx+ o+t

x3 x5

smx%x—§+§—~-~,
are easily computed, taking a = 0 and with this value of a the name Taylor
is often replaced by the name Maclaurin. An important case where we cannot
approximate taking a = 0 is with the function In x, since it simply is not defined
there. Rather than take another value for a, it is more convenient to shift the
function sideways by 1 to get In(1 + x) =~ x — %xz + %x3 - %xa' + -

C.4 CONVERGENCE

It is clear that, provided the function is infinitely differentiable, the Taylor pro-
cess can be continued indefinitely (although even then there can be problems,
as we will mention later) to give an infinite series rather than a polynomial and
although it is designed to approximate at a point we would expect a decent
approximation in some neighbourhood of the point; just how big that neigh-
bourhood is is determined by the size of the error term involved for any degree
of approximation and in particular by its asymptotic size. We will not consider
this and therefore avoid Taylor’s Theorem, but amazingly for a number of the
important functions, the error term is asymptotically zero for all x and so the
infinite series equals the function. Putting o = —1 in the first example above
resultsin 1/(1 4+ x) &~ 1 —x +x? — x> + - - -, which we know from the theory
of geometric series is exact for |x| < 1 and S0 approximating 1 / 1+ x) at
the point (0, 1) results in an exact alternative of 1 — x + x2—x34 - in
|x] < 1. The news is better still with, for example, e* and sin x since the 1nﬁn1te
series equal the function for all x, in fact, the series can be used to define such
functions—and of course the series can make sense with x € R replaced by
zeC.
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APPENDIX D

Complex Function Theory

D.1 CoMPLEX DIFFERENTIATION

With a real-valued function of a real variable, the standard definition of the
derivative is
fx+68x) — fx)

Sx

/ — 1
fixy = jm,

given that the limit exists. It was Cauchy who provided this rigorous definition,
which has great geometric appeal, as a variable chord ever more accurately
approximates a given tangent; zooming in as the chord shortens forces the eye
to accept that the function, the chord and the tangent are all blending into one
another, making it that bit easier to believe that the final limit is indeed the
gradient of the tangent to the curve at the point and, in fact, defines that tangent.
It is in the direction in which §x — O that the greatest subtlety lies, as the
definition of derivative relies on that limit being the same no matter from which
direction x — 0; f(x) = |x| is not differentiable at the origin because of this.
If we replace x € R by z € C, we can formally write

/ . fz+68z) — f(z)

R

The comfortable geometric interpretation has deserted us, leaving a gap filled
only by cold analysis and, as with the real case, the formula is taken as the
definition of the derivative of the function at the point z. Again, if we think
carefully about the §z — 0, we now have an infinite number of directions from
which to choose, rather than just the two, and if we insist that the limit does
not depend on the direction, we are surely asking a great deal more than in the
real case; and so it turns out. If we recall that C includes R, there are three
cases to consider, the first two of which we can dispose of quickly—but not the
third.
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D.1.1 A real-valued function of a complex variable

As an example, consider the simple function f(z) = x, where z = x + iy. If
we approach the limit along the real axis, we get §z = §x and
fz+8)— f@) x+8x —x

") = lim ———— = — |im ——~ =1,
/@ 3zlglo 87 5;210 ox

whereas, along the imaginary axis, z = i§y and
fz+682) — fl@) x—x

'(z) = lim = lim —— =
F@ 8z—0 8z isy—>0 18y

So, this seemingly most simple function has no derivative. If we look at things
more closely, we can identify the root of the problem: approaching the limit
along real values must mean that if the limit exists it is real, whereas, approach-
ing it along imaginary values must mean that if it exists it is imaginary, since
the denominator is imaginary and the numerator is real. The only possible rec-
onciliation is if the imaginary limit is 0, in which case, if the function is to be
differentiable, the real limit must be 0 also. In summary, if such a function is
differentiable, its derivative must be identically O.

D.1.2 A complex-valued function of a real variable

If we write f(x) = u(x) +iv(x), then

(u(x 4+ 6x) +ivix +6x)) — (u(x) +iv(x))

b
f(x)_8£n_1)10

5x

I u(x +6x) —u(x) +ivix +6x) —iv(x)

T sx—0 8x
oou(x+éx)—ulx) ... vx+dx)—vx)

=lim — =+ lm ——M—

5x—0 Sx 5x—0 Sx

ou n Lov
= — 11—

ox dx

provided that the derivatives exist. The matter is therefore reduced to the two
real cases.

D.1.3 A complex-valued function of a complex variable

We can write that if z = x 4+ iy, then f(z) = u(x, y) + iv(x, y). This third
and final case has deep-lying consequences and lives at the heart of complex
calculus—and it has its surprises. First of all, a name. Any such function, which
has a meaningful derivative wherever it is defined in a region, is called analytic
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in that region (another term used is holomorphic) and if the region happens to
be the whole of the complex plane it is said to be entire.

Suppose that we once again approach 0 along the real axis and then along
the imaginary axis:

fz+6x)— f(2)

b
f(Z)_(sEI—}}o

ox
. u(x +98x,y) —ulx,y)  vlx+68x,y) —v(x,y)
= lim +1i
sx—0 Sx 5x
ou  0dv
= —_— 1 —
0x 0x
and
5y) —
#(z) = lim f(z+l-y) f@)
i8y—0 i8y
. u(x,y+38y) —u(x,y) .vx,y+8y) —vx,y)
= lim - +1 -
8x—0 idy idy
ou n v
= —1— -,
dy 9y
and for these to be the same we must have that
u v u ov
— =—a —_— = -
dx  dy dy dx

This is, of course, simply a necessary condition for the derivative to be properly
defined. It turns out not quite to be sufficient, for that we need all four partial
derivatives to be continuous as well. These are called the Cauchy—Riemann
equations, and using them we have four equivalent ways of writing the derivative
of an analytic function; in particular,

df odu  dv
= — 4.
dz 0x 0x

It is not difficult to see that the standard rules of differentiation carry across
to the complex case—linearity, product rule, quotient rule and chain rule—as
do a number of reasonable general results, in particular, if f(z) = z", then
f'(z) = nz"~! for n € R. More general results can carry across too, for
example:

fl@)=

if f'(z) = 0 for all z, then f(z) = c, provided the domain is connected.

The qualification that the domain should be connected is needed even in the
real case, since if
x <1,

0,
fx) =

1, x>2,
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its derivative is clearly zero; the analogous complex case is

0, Izl <1,

f@= L 2l >2.

and again, clearly, f’(z) = 0.
Now suppose that the domain is connected.
If f'(z) =0,
du  Jv ov ou
—+i—=——-i—=0,
ax dx  Jdy ay

which of course means that
ou ov ov ou

ax  9x dy Oy

Since du/dx = 0, u(x, y) is constant along horizontal line segments; similarly,
since du/dy = 0, u(x, y) is constant along vertical line segments. The same
argument holds for v(x, y). Therefore, f(z) = u(x, y) + iv(x, y) is constant
along each horizontal and vertical line segment in the domain. But the domain
is connected and so any two points, z1, z3, in it can be joined by a series of
horizontal and vertical line segments, which lie entirely in the domain and the
function is constant along all of them, consequently f(z1) = f(z2). Since z;
and z; are arbitrary, f(z) must be constant in the whole domain.

As a second reasonable general result we have that if | f(z)| = ¢, then f(z)
is constant. To establish this, use the definition of | - | to get | f(z)] = ¢ &
u? + v? = ¢?. Partial differentiation with respect to x and then y gives

ou v ou av
2u— 4+2v— =0 and 2u—+2v—:0
ox ox dy ay
Cancelling the 2 and using the Cauchy—Riemann equations gives
d a 0 0
L v®—0 and u—u—i—v—u:O
ax dy ay ax

Treat these as two equations in two unknowns to get

28u

2
(u +v) o

=0,

so either c = 0 and f(z) = O identically or du/dx = 0. Similarly,

8u_8v_8v
dy  dax  dy

Therefore, f/(z) = 0 and from above f (z) is constant. Actually, the result holds
if we have Re f(z) = corIm f(z) = c.
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It is hardly surprising that the function f(z) = z is differentiable—we have
u = x and v = y, making

ou ov ou ov

= = nd — =
dx  dy ay ax
—but hardly believable that f(z) = z is not (here, u = x and v = —y, which
cause the first Cauchy—Riemann equation to fail): intuition has no place in the
study of the behaviour of complex functions!
If we use the ideas of Taylor expansions to extend the standard elementary
functions we can formally give meaning to

Z3 5

. Z

sz=z—§+§—---,
1 2?2

cosz = —5+Z—-~-,
=14 +i+£+---
I TR ’

and others like them, all of which can be shown to converge for all z € C.
Notice that term-by-term differentiation yields the expected results

. . z
—sinz = cosz — oSz = —sinzg —et = e
dz ’ dz ’ dz
Furthermore, we have that
iz —iz iz —iz
iz L. X _et—e e +e
e =cosz+isinz, sing = ———, coOsSz = ————,
2i 2
. e —e L efte .
sinhz = — = —isiniz, coshz = — =cosiz, etc.

All of these (and many more such expressions) are no more than their real
counterparts with z replacing x, which begins to bring about a cosy familiarity—
soon broken by the equation cos z = 2 having solutions. That it does must mean
that

e "‘29712 —2 67 eIt — 4, QX7 1 = 4ei7,
. 4+ 416—-4 4+£12
et = 5 =— =243

If we allow the usual taking of logs, we are forced to write iz = In(z & +/3) and
z=—iIn(1 :I:\/§), which gives a solutionof 7 = —i 1n(z+\/§), uncomfortable
because cosz = 2 has a solution at all, and less comfortable still because
z=—iln(1 — \/3) is another and we recall the ‘fact’ that we cannot have the
log of a negative number. This ‘sophistry’ will be explained later.
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1.00
0.75
0.50
0.25 ’ .
£(x) 041l ‘t l | |
-0.25 1
-0.50
-0.75

Figure D.1. a =0.5,b = 30.

D.2 WEIERSTRASS FUNCTION

With our current knowledge of fractals, the idea of a real function existing which
is everywhere continuous but nowhere differentiable is not novel but back in
1861 none was known, although their existence was suspected and in particular
by Riemann, who suggested the idea to some of his students and even provided
a candidate—but no proof. It took until 1872 when Weierstrass provided his
own function to do the job—one of those events that helped to force more rigour
into mathematics. In fact, he proved that for b an odd integer greater than 1 and
forO0 <a < 1,thenifab > 1 + %n, the function f(x) = Y oo, a” cos(b"x) is
indeed everywhere continuous but nowhere differentiable; Hardy later extended
the result to ab > 1 (see Figure D.1).

In the complex case we do not have to look nearly so hard to find such a
monster, as the simple modulus function will do the job. We have seen that
in the real case, the function causes a difficulty in that it is not differentiable
at the origin, although it is obviously everywhere continuous; in the complex
case, matters are much worse: f(z) = |z| is a continuous, real-valued function
of a complex variable and we have seen that if its derivative exists, it must be
0, which seems suspicious. In fact, its derivative exists nowhere and we can
prove that using the Cauchy—Riemann equations since u(x, y) = /x2 4+ y2
and v(x, y) = 0, therefore

du 2x ou 2y dv  Jv

ox  JxZyyr 9y JSxZ4yr o ox Ay

and, as long as not both x and y are 0, the Cauchy—Riemann equations are
clearly not satisfied; the case x = y = 0 gives the indeterminate form 0/0 and
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we have to go back to first principles to get

ou . u(h,0) —u,0)
— = lim ——
0x (0,0) h—0 h
. Vh? . |h| 1, h— 0T,
= lim — = lim — =
h—0 h h—0 h -1, h—07,
just as with f(x) = |x|. The same argument shows that
ou
10,0

does not exist.

The function f(z) = |z| is clearly complicated, but it is not as bad as its
companion f(z) = argz, which is not even properly defined, as it is only
determined up to integer multiples of 277; when it is restricted to [—m, ], it is
usually written with a capital ‘A’, and then f(z) = Argz = tan"!(y/x). Once
again, itis areal-valued function of a complex variable and so we know that if its
derivative exists anywhere, it must be zero and if we apply the Cauchy—Riemann
equations once more we get

u(x,y) = tan™' <X> v(x,y) =0,
X
ou -y ou x v dv

a:x2+y2’ 5=x2+y2’ ax  dy

)

and once again we have that, as long as not both x and y are 0, the Cauchy—

Riemann equations are not satisfied; since the function is not defined at x =

y = 0, it is nowhere differentiable.

D.3 CoMPLEX LOGARITHMS

We can define the complex logarithm by its formal power series
ln(1+z)=z—%zz+%z3—-~- ,lzl <1

and, just as in the real case,

1+z
ln<1 )=2(z+%z3+%25+-~-), lz] <1,
-z

if we want to reach complex numbers outside the unit circle, but that disguises
the important subtlety brought about by the ambiguous nature of the argument
of a complex number. If we take the definition of the logarithm as the inverse
of the exponential function, the matter is much more clear. So, write w = Inz

231



APPENDIX D

if z=¢e". Ifw =u+ivand z = r(cosf + isinf), we have that 7 =
e = MtV = elelV = e (cosv + isinv) = r(cosf + isin@), giving two
expressions for z and, in particular, |z| to give ¢ = r and hence u = Inr, a
genuine real logarithm. Also, cosv 4 i sinv = cos6 + i sin#, which means
that cos v = cos 6 and sin v = sin @ must both be satisfied and sov = 60 +2nm,
where n € Z. All of this means that Inz = Inr 4 i (6 4 2nm) is a multivalued
function. Restricting to the principal arg function Arg makes n = 0 and the
principal logarithm function is written Inz = Inr 4+ i6 for —7 < 6 < &, or
Inz = In|z] +i Arg z. In the series above, the lowercase ‘I’ should be replaced
by its capital. The earlier solution z = —i In(1 — +/3) of cosz = 2 is then
z=i(ln2+i(—3m) = 37 +iln2.
Now we can differentiate In z in the usual way:

Inz =In\/x2+ y2 +itan~! <X>
X

sou(x,y) = Lin(x2 + y2), v(x, y) = tan~ ' (y/x) and

ou X ou y
TR By
v -y av X
TRy oy A

The Cauchy—Riemann equations are satisfied and

| X .Y
—Inz = —i
Az Ty gy

1
Tz
as we might have hoped.

The mixture of surprise and familiarity is an inevitable part of the demand-
ing definition of complex differentiability and it would be reasonable to think
that, with its lesser demand of continuity, complex integration would be more
predictable in its behaviour—but once again intuition fails us.

D.4 CoMPLEX INTEGRATION
D.4.1 The definite integral

Before we can properly discuss complex integration we need to understand the
topological idea of a region being ‘simply connected’, which really means that
it has no holes. Put more mathematically, we will say that a region is simply
connected if any closed curve drawn in it can be continuously deformed to any
other closed curve in it, without leaving the region; we have already met this
idea on p. 227. Geometrically, see Figure D.2.
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curves curves

disc @Q

Disc Annulus

Figure D.2.

Figure D.3.

Clearly, any two closed curves drawn inside the disc can be continuously
deformed into one another without leaving the disc, but the two drawn in the
annulus cannot be. Another way of saying the same thing is that in a simply
connected region, while staying inside the region, any closed curve can be
shrunk to a point. Two other definitions will also be useful to us: a curve is said
to be simple if it does not touch itself or self-intersect and it is said to be smooth
if it has a well-defined tangent at every point. Now to the theory.

As with differentiation, the definition of the complex definite integral relies
heavily on its real counterpart and so it is sensible if we look at that first.
Suppose that f(x) is a continuous real-valued function of a real variable,
defined for a < x < b, divide the interval [a, b] by introducing the points
a = xg,X1,X2,...,%X, =b.

Then we define

Su=Y_ fENx —x1) =) f(E)dx,,

r=1 r=1

where &, is any point in the interval [x,_1, x,], as the sum of areas of rectangles
approximating the area under the curve; §,, — fab f(x)dx in the limit as n —
0.

Now suppose that we have a smooth curve C defined in the complex plane,
which starts at the point @ and continues to the point b, and is divided by points
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b
¢
21 %
&
Z3
a
Figure D.4.
a = z0,21,22, --.,2n = b. Introduce the interior points &, to get Figure D.4

and

n n
Su=Y fE) @ —z-1) =D f(ESz.
r=1 r=I1
Now take the limit as n — oo to get

&»ﬁf@m
C

The geometric interpretation of areas of rectangles ever better approximating
the area under a curve is lost, but we have a formal and natural extension of the
idea.

If we represent C in the parametrized form z(t) = x(¢) + iy(¢), where
z(a) = a and z(B) = b and rewrite the expression in a slightly different way,
we get

D fEO)GE A+ —z0) =) ﬂz(mw&

d
20 4.
dr

B
m’/ﬂ fz@)

which makes it clear why the curve needs to be smooth. In short, we have

d—/ﬁ dz
fcf(z) e= | rog

The standard rules of linearity are inherited from the )_ to give

fﬁ@+ﬁ@@=¢ﬁ@@+¢ﬁ@@
C C C

and

f Cf(z)dz=§f f()dz for¢ € C,;
c c

for the same reason, if C is made up from two smooth curves, C; and C3,

ff(z)dz=?§ f(z)dz+¢‘ f(z)dz
C Cy Cr

234



COMPLEX FUNCTION THEORY

and further that

}& f(z)dz=—§£ f(z)dz,
c c

where the arrows indicate the direction in which C is traversed.

D.5 A USEFUL INEQUALITY

Suppose that | f(z)| < M for all z € C and that C has length L, then

> FED8z

r=1

ISnl =

<Y IFEDNSz |l < MY 157, 1.
r=1

r=1

Since |z, | is the length of the chord joining z, and z,_1, as n — o0,

n
Y 8zl —> L,
r=1

by definition of the length of a curve, and we have the result that

'}ﬁc f@)dz

D.6 THE INDEFINITE INTEGRAL

<ML.

With real-valued functions of areal variable, integration is, of course, the process
of finding the (signed) area under the graph of a function, but is also the process
of anti-differentiation and the two are linked by the Fundamental Theorem of
Analysis, which states that

b
/ f(x)dx = [F(x)1% = F(b) — F(a),

where F'(x) is defined as any function such that dF (x)/dx = f(x), in which
case, F(x) is called the ‘indefinite integral’ of f(x) and is written F(x) =

J f(x)dx.
With this result in place, we know that finding the area under a curve becomes
a matter of anti-differentiation; for example,

/1 |:X2]1 12 02 1
xdv= |2 == -2 =2
0 2], 2 272

It would be nice if we could do the same in the complex case to get, for example,

/]+i |:Z2]1+i a1+ 1)2 02 '
zdz=|— = - — =1
0 2 |, 2 2
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Figure D.5.

Inthereal case, there is never any choice about how the upper limit is approached
from the lower, the crucial point here is that the result would have no regard
for the infinite number of paths that could be taken to get from O to 1 4. If we
have a Fundamental Theorem of Calculus in the complex case, the path has to
be irrelevant, which seems an overly optimistic hope—but consider the trivial
function f(z) = I integrated over any path connecting the points a and b:

jg 1dz =nlingo((Z1 —a)l+ (@ —z)l+(@m—z22)1 4+ 4+ (@ —z20-1)])
C —
= lim (z, —z9) = b — a.
n—0oo

The path is indeed irrelevant and we could write

b
fldzzf ldz=[zl,=b—a.
C a

A promising start, but things soon go wrong.
For example, if f(z) = Re(z) = x and we integrate froma = 0tob = x+iy
along C1 and C, as shown in Figure D.5 we get

Ci: z(t)y=xt+iyt, 0<r<l1,
to give z(t) = x + iy and
1
/ Re(z)dz = / xt(x +iy)dr = %x(x +iy) = %xz + i%xy;
Cy 0
Cy: zi(t)=t, 0<t<x, n@®)=x+it, 0<t<y,
and so z1(#) = 1 and z3(¢) =i to give
x y
/ Re(z)dz:/ t.ldt+/ xidt = Ix? +ixy,
Cy 0 0
which is hardly the same answer!
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Now consider, f(z) = 1/z, which we can consider in two separate ways: it
is defined and analytic in any annular region centred on the origin, or it is not
defined at the origin and therefore not analytic in any disc centred on the origin.
Suppose that we allow the annular region and the disc to contain the unit circle
C, defined by |z| = 1, then we have

z(t) = cost +isint, z(t) = —sint 4+ i cost

and

1 m 1
j&—dz:/ ——(—sint +icost)dr
cz 0 Cost+1isint

2 i
=/ ——————(cost +isint)dt = 2mi,
o cost+isint

perhaps not at first surprising, but this is closed contour and if the answer simply
depended on the end points, it should be zero.

D.7 THE SEMINAL RESULT

We will not prove the result, but the reconciliation is found in a consequence
of Cauchy’s Integral Theorem:

If f(z) is analytic inside a simply connected domain A, then

yg f(z) dz is constant for any contour C lying inside A.
c

From this is follows that, if the contour joins a and b,

b
ff(z)dz=/ f()dz = F(b) — F(a),
C a

where F(z) = f ‘ f(¢) d¢ is the indefinite integral.

Notice also that this implies that if C is a closed contour, gfc f(z)dz =0and
the example with f(z) = 1/z above demonstrates that the analytic and simply
connected conditions are both necessary.

From this we can see that

% f(z)dz = f(z)dz
C Cq

if Cj is any path continuously deformed from C, with its ends fixed; this is
called the Principle of Deformation of Path.
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Figure D.6.

D.8 AN ASTONISHING CONSEQUENCE

Cauchy’s Integral Formula

If f(z) is analytic inside a simply connected domain A, then
for any point z € A and any simple closed contour C € A,

1
£ AY)

T 2miJet—z

de.

This means that at every point of the domain the function is determined by its
values on any simple, closed contour in the domain and enclosing the point; a
result that has a most peculiar feel to it. To prove it, draw a circle C,, of radius
p around z, then by the deformation of path principle (see Figure D.6),

jg 1©) 4o _ § T,
C

{—z c, {2

We now evaluate the right-hand side of the above expression:

f(s“)d§= f(g)_f(z)dg—k% f(z)dg
c, $—z2 c, ¢t—z c, $—z2
_ f@) - f@) d§+f(z)f 1 dc.
c, ¢—z c, &~z

By a simple translation, we know from before that

1
d¢ = 2mi.
?gcpé“—z ¢ l

Now note that (f(¢) — f(z))/(¢ — z) is bounded for all ¢ # z inside and on

C and that
! &) —f@
im ——————~

>z {—z

= f'(2).
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which is finite since f(z) is analytic. Therefore,

’M < M for all ¢ inside and on C.
Consequently,

‘ f @) - f@ d(‘ gf f@) - f@ dz

c, ¢—z C, {—z

< Md¢ =2npM — 0.
c, p—0

&dg =2mif(z) and f(z) = L ALY de,
cf—z 2ri Je ¢ -z

as required.

In a sense, this means that any analytic function f(z) can be expressed
in terms of a simple reciprocal function 1/({ — z), which has far-reaching
implications. For example, an analytic function has derivatives of all orders.

Again, this contrasts starkly with the real case, in which the differentiability
of a function can easily come to an end; for example, f(x) = x|x| differentiates
to f/(x) = 2x|.

The proof is trivial, if we allow repeated differentiation under the integral
sign (which is not hard to justify). Pick any closed contour C in which f(z) is
analytic and write

1
f@ =5 f(§) dc
i -z
to give

L f©
FO=0i -2

" 1 f©)
@)= i . —(C — 8 d¢,  etc.

With this result, we can develop a part of the theory of expansions of analytic
functions.

D.9 TAYLOR EXPANSIONS—AND AN IMPORTANT CONSEQUENCE

If we define the infinitely differentiable real function,

e_l/"z, x #0,
X) =
e {Q o
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Figure D.7.

and evaluate f(0), f/(0), f”(0), ... by taking the limit each term will be 0,
with the exponential components dominating the powers of x. As a result, even
though the function is infinitely differentiable, it is impossible to represent it as
a Taylor series centred on x = 0 but once again in the complex case, the severe
restriction of analyticity brings with it a stronger result. In this short section we
establish the Taylor expansion and several times build on results to arrive at a
result of huge significance.

Assume that f(z) is analytic inside and on a circle C, centred at z = a; let z
lie inside the circle and ¢ on it (see Figure D.7). Since { —z = (¢ —a) — (z —a),

1 1

(-2 (C—-a)—(z—a)
R 1

¢-—al-(Gz-a)/—a)
_ 1 (1_z—a>_l.
{—a {—a

Clearly, |z — a| < |¢ —alandso|(z—a)/(¢ —a)| < 1 and the infinite binomial
expansion is valid to give

1 1( Z—a (z—a>2
= 1+ +
{—z ¢—a {—a {—a
(o) v (5) )
{—a {—a
and

2
f(z)=L. f((){1+z—a+(z—a>
2mi

c§—a {—a {—a

_ 3 _ n
(Y o () e
{—a {—a
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1 f©) (z—a) f©)

f(z)=% c —ad§+ 2mi C({—a)zdc
(z —a)? £ @) (z—a)" (@)
t o C@_a)3d;+...+ 2i jgc(;—a)nﬂd;
—f(a)+(z—a)f(a)~|—( f”()
+(Z )f///( )+ ( :l') f(n)(a).”
=Z Ar(z—a)
r=0
where
1 f©) ac.

" 27i Jo (€ —ay T

Again, the term-by-term integration can be easily justified and we have a guar-
anteed (and unique) convergent Taylor expansion of the function in the disc.
The formal series definitions of some of the standard functions we mentioned
earlier can be made rigorous in this way.

Combine this with the ‘ML’ result on p. 235 and we see that the coefficients
A, satisfy the inequality

1 M M
—fL§’ 2,0=—r,
c o

27i Jo (¢ —a)t! 27 prtl

where | f(¢)| < M on C, which has radius p.

The very reasonable earlier result that | f(z)| = ¢ = f(z) = k extends to a
very surprising one that again simply is not true in the real case; the function
f(x) = 1/(1 + x?), for example, is infinitely differentiable and bounded by
1, but it certainly isn’t constant, whereas in the complex case we have that a
bounded entire function is constant (this is Liouville’s Theorem), which is now
easy to prove.

Since the function is entire, we can expand it as a Taylor series about O to
get f(z) = Zf’;o A,7". Since f(z) is bounded in C, | f(z)| < M on any disc
centred on 0 and of radius p and so |A,| < M/p" forr > 1. Since we may take
p arbitrarily small, [A,| = A, =0forr > 1 and f(z) = Ao, a constant.

And having proved that it is but a small step to one of the cornerstones of the
whole of mathematics:

A =

The Fundamental Theorem of Algebra

Any polynomial with coefficients in C has a root in C.
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Write the polynomial as P(z) = ag + a1z + @z? + -+ a,7". If P(z) has
no roots, f(z) = 1/P(z) is an entire function and for |z| sufficiently big (say,
|z] > R), |P(z)] > 1 and so | f(z)| < 1. In the disc |z] < R, | f(z2)] is clearly
continuous and it is a standard topological result that it is therefore bounded,
consequently, f(z) is bounded in the whole of C and using Liouville’s Theorem
it is constant. Having established one root in C we can reduce the degree of the
polynomial by 1 by factorization and repeat the process to get the result that
any polynomial of degree n with coefficients in C has precisely » roots in C.

Seeing this result so neatly and easily proved belies the difficulty that was
encountered initially to establish it, a task not made the easier by the mathemati-
cians who attempted it having the deepest suspicions about complex numbers. In
one of the most significant PhD theses ever, Gauss gave a first satisfactory proof
of the result in 1799, albeit for real coefficients, following incomplete attempts
by Descartes, Euler, d’Alembert and Lagrange; in fact, over the course of his
lifetime he produced four different proofs, the last one finally dealing with the
case of complex coefficients.

D.10 LAURENT EXPANSIONS—AND ANOTHER IMPORTANT CONSEQUENCE

Taylor expansion crucially needed analyticity in a simply connected region, but
suppose that the region was not simply connected or that the function was not
everywhere analytic? For more than 20 years from 1821 Cauchy had developed
complex function theory virtually alone, until at last some of his fellow coun-
tryman began to mine the many rich ideas that he had exposed and in 1843
Pierre-Alphonse Laurent (1813-1854) answered this question by extending the
idea of Taylor series to what has become appropriately known as Laurent series
(Weierstrass had known about this in 1841 but had failed to publish his find-
ings). As with the function f(z) = 1/z, the result can either be looked at as a
series expansion of an analytic function in a region comprising a disc with a
hole in it or of a function defined on a disc but having an isolated singularity—in
which case we can ‘cut it out’ by surrounding it with a removable circle (see
Figure D.8).

Suppose that the singular point z¢ is surrounded by an inner circle C, and
that we perform a radial cut from C to C,,, thereby constructing a contour which
takes us all around C, radially inwards to C,, all around that (in the opposite
direction) and back along the radial line and then along to the start on C. This
results in a simply connected region in which f(z) is analytic and so we can
apply Cauchy’s integral formula to get
1 f© 1 f(©)

=5 d¢ — >—
2ri Je ¢ —z 2ni Je, § —z

f@

dz,

the two equal and opposite contributions from the radial parts having cancelled
out.
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Figure D.8.

For ¢ € C, |z — zo| < |¢ — zo| and the same reasoning as was given for the
Taylor expansion gives

1 f(©)

2mi ct—z

L f©
“ T 2w 7§c Gy &

The problem with the second integral is that { € Cp, and so |z — zg| > [{ — 20|
and the geometric series that was developed will diverge—so we turn things
upside down, since we can also write

d¢ =) az—z0)",
r=0

where

¢ —z=1( —z0) — (z— z0),
and therefore

1 1

{—z (€ —-20—-G—20
1 ~1

Cz—z201— (¢ —20)/(z— 20)
—1 (]_{—Zo)]
Z—20 7 —20
2
_ <1+§—Z0+<C—Zo>
7 —20 7 —20 7—20
_ 3 _ n
+<§ Z°)+...+<§ zo) +>
7—20 7—20
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-1 [ f@

2mi Cﬂ{—Z

2
:L. (9] <1+§—Zo+<§—20>
2mi c, 2= 20 Z—20 =20
_ 3 _ n
+<§ ZO)+...+<C ZO) +...>d§
Z—20 2—20

1 1
f f(C)d§+—27§ (¢ —z0)f()dS +---
=20 Jc, — 20)

dg

7{ € — 20" () de + - }

(z— zo)”

where

1
br==—® -2z f(0)de.

2mi C,

All of this makes

)= Zar(z —20) +Z

the promised Laurent series of the function.

It is important to note that, just as the Taylor expansion for a given function
is unique in its disc of convergence, so the Laurent expansion is unique in its
annulus of convergence, although it can vary over concentric annuli. There are
any number of examples of this phenomenon, for example,

(z— Zo)’

! 1(1 +22 -3+
B T BT
z1+2) z

1 2

:Z_1+Z_Z -, O<zl <1,

1 . 1 1 <1 1 n 1 1 )
(142 22(1+1/z) 22 z 2 BT
1 1 1
:Z—Z—Z—3+Z—4_"', 1 <lz] <2,
where the right-hand boundary of 2 is arbitrary. Laurent series have their uses,
just as Taylor series have their uses, but in pole position among them is their
application to the calculation of what are known as residues and through that
to the evaluation of real and complex definite integrals.
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D.11 THE CALCULUS OF RESIDUES

Consider a function f(z) defined and analytic in a domain A apart from a
singularity at z = z¢ (called a pole, which explains the earlier pun). Construct a
circle with zg as its centre, then if C is any closed contour in A surrounding that
circle, f(z) has a Laurent expansion as above in the annulus and the coefficient
of the first negative power term is

1
by = Tf £ de
Tl C

and so
fcf(s“)di =2miby;

consequently, if we can find the value of b|, we can evaluate the integral. It
is customary to call by the residue of f(z) at z = zo and write it as b; =
Res;—;, f(z) and so we have that

?g f(¢)d¢ = 2mi Res f(z).
C =20

By constructing circles around each singularity individually, the idea easily
generalizes to n singularities to give

fc F©)de =2mi ) Res f(2),
r=1

which is known as Cauchy’s Residue Theorem. Now all we need are methods to
calculate the residues, of which there are many, and we will be able to evaluate
the integral.

We will assume that we have a simple pole, that is, one for which the Laurent
expansion has just one negative-power term and look at two related methods.
1. The Laurent series is

by 2
f@)= . +ao+ai(z —z0) +ax(z—z0)"+--- .
— 20

Multiplying both sides by (z — zo) gives
(2 =20)f(@) = b1 + (z — z0){a0 + a1(z — 20) + a2(z — 20)* +---).
And so
Res f(z) = b1 = lim (z — z0) f (2).
=20 =20
As an example, if f(z) = sinz/(z> + 1),

sin z sin i 1.
= — = §smh1

R —lim(s — py SN2
Zfisf(Z) Z1_r>r§(z 1)22+1 >
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and
Res £(2) lim (z 4+ 1) sin z sin(—i) LG 1
es = lim i = = 5sinh 1.
W= AT T Ty T

If we integrate around a contour that does not contain z = =i, the function
is analytic and the integral must therefore be 0, but if we integrate around
C=A{z:lzl =2}

SN2, — 2i(Lsinh 1 + Lsinh 1) = (27 sinh 1)i
Cm z =2mi(3sinh 1 + 3sinh 1) = (27 sinh 1)i.

2. In the first example, the denominator of the fraction was easily factorized;
suppose now that we have a rational function of z in which this is not the case.
Write f(z) = p(z)/q(z), where p(z) and g (z) are analytic. Suppose that f(z)
has a simple pole at z = zg, so that p(zg) # 0 and z¢ is a simple zero of g (z).
Expand g (z) as a Taylor series about z = z to give

q(2) = q(z0) + (z — 20)q(z0) + (Z_z—,m)zq”(zo) + -
= (z—z20)q'(z0) + (Z_Z—'ZO)ZC]”(ZO) +--
=@- zo){q’(zo) + & ;,ZO)q”(zo) TR }
So,
Res f(z) = b1 = lim (z — z0) f(2)
=20 Z—20
o)
- zlglzlo(Z Z0) 2)
. p(2)
=1 (=)
% Tl (z0) + (2 — 200/20¢" o) + -}
_ p(z0)
q'(z0)
For example, if f(z) = (z2 + 1)/sinz,
0> +1
l}fgf(z) - cos0 =1
and, more generally,
Ckm? 41 [k 41, k even,
R T = sk~ | =)+ 1), kodd.

246



COMPLEX FUNCTION THEORY

Figure D.9.

D.12 ANALYTIC CONTINUATION

Recall that the result is as follows.

If, in some complex domain A, two analytic functions are defined
and are equal at all points on a curve C lying inside A, they are
equal throughout A.

We can now prove it as follows.

Let the two analytic functions be f1(z) and f>(z) defined in some region A
of C and write their difference as ¢(z) = f1(z) — f2(2). Then ¢(z) is analytic
throughout A and identically O on C. Now suppose that there is a point zg € A
at which ¢(zg) # 0; clearly, zo ¢ C. Now extend C inside A by a curve D,
heading towards zg, and let ¢ be the last point on D for which ¢(z) # 0, then
¢ # zo and on the segment of the curve D beyond ¢, ¢(z) # 0, by definition of
¢. If we differentiate ¢ (z) at points on the curve up to ¢ by taking the limit along
the curve, we must have ¢(z) = ¢'(z) = ¢”(z) = --- = 0 and, in particular,
0(&) =¢' () =¢" () =--- = 0. Now expand ¢(z) as a Taylor series about
the point z = ¢, then all of the coefficients are 0 and so ¢(z) = 0 in some circle
centred at z = ¢ and consequently on some of the curve beyond ¢, which is a
contradiction and the result is established (see Figure D.9).

In general, how a given function achieves its continuation (if indeed it has
one) depends on the function, and there can be any number of equivalent ways,
leading to expressions that look different but must in fact be the same.
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Application to the Zeta Function

E.1 ZETA ANALYTICALLY CONTINUED

In the first part of his paper, Riemann performed the analytic continuation of
the Euler Zeta function
o
1
((x) = Z r_x’
r=1

which we already know requires x > 1 for convergence and so the function is
defined as in Figure E.1. If we simply replace x € R with z € C, we have a

continuation to
1
(D=3
r=1

acomplex-valued function of a complex variable. We would expect the complex
form to inherit a similar restriction and so it does, as we can see from

1
=2 |

- 1
- Z eRe(@)+iIm()) In7

\
Il
—

1

eRe(@) Inr pi Im(z) Inr

M

\
I
-

1
eRe(@) Inr

M

\
I
—

1
rRe(@)’

M

I
-

r

which we know converges only for Re(z) > 1. So ¢(z) makes sense in this
domain; pictorially, the shaded region in Figure E.2.
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A
v

1
¢(x)
Figure E.1.

Imz

0 1 Re z

Figure E.2.

Euler’s product formula remains valid for complex numbers and makes clear
that this extended function still has no zeros; so far, this is pretty straightforward
stuff. Now for that analytic continuation, which Riemann realized using contour
integration.

The complex extension

C()(2) = / T du
0o €

of the formula we derived on p. 60, which is valid for Re(z) > 1, suggests a
contour integral

1 us!
I1(z) = — —du, R 1,
2 2wi Jy- e —1 ! o2 >

for some contour u~. A useful choice is a path coming from —oo just below and
parallel to the real axis, (semi)circling the origin anticlockwise and returning
to —oo parallel and just above the real axis.

Integrate around Cy, C3, C3 separately, therefore putting

respectively, since on C3 we are going out to minus infinity (effectively) along
the negative imaginary axis, making the argument 7; on C; we are returning,
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(=)

>

Gy

Figure E.3.

making the argument —; on C, we are traversing a circle of radius p. Then

00 pz—lo=miz wi p—mi T i1 izf =it i
27tiI(z)=—/ 1 dr+/ p ° P ap
)

e’ — - efpem —1

00 rz—lemze—mem
+ | ——dr
e’
p

1
— _efmz/
0
n

0o ,.z—1 T z,0i70 ;
d dr—i—/ L)
P

el — - e_peﬂ -1
zz9
wl(z) = sin(nz)f dr + —/ —_— d@.
14 T € —pet —

So,

Taking each integral separately,

z b4 eiz@ iz9
L / Tde)‘ = ————df
2 )y ere? — 1 nel’e—l
Re(z) ele
< / i0 ‘ do
e—pe? _ 1
Re(z) —Im(z)&A
< / do
0
Rfl(z) ez ,Oeie
= / efpeie _1 ,Oei@
Re(z) peie eizG
= / —pei‘) 1 peie
Re(z) pem e—Im(z)B
ey w
e -1 P
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Figure E.4.
But .
P el 0 B u
e_peie — 1 - e U — 1
is bounded for bounded u, let us say by the constant A.
Therefore,

z pm eiz9 Re(z) pm P Im(z)6
r / m de‘ <? / A do
2 J ge Pt —1 2 -7 P

Re(z)—1
LA
2

2z m@I — nApRe(z)—leﬂllm(z)l

and if Re(z) > 1,
z 14 iz0
p—/ — 40 —>0
2 _gp e’ 1

as p — 0 and

rz—l

er—l

dr

wl(z) = hm0 sin(mz) /00

= sin(mz) f

{(z) =

dr =sin(rz)I'(2)¢(2)
and so
wl(z)
sin(wz) I (z)
and since I"(z)I' (1 — z) = m/sin(;rz) we have that

ra-
¢@ = (2711' 2 f_

which is defined and finite for all z # 1.
The domain of definition is now as in Figure E.4.
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Poles

N
a

(
L

Figure E.5. Outer radius R = 2N + 1)7.

E.2 ZETA’S FUNCTIONAL RELATIONSHIP

We are going to ‘trap’ I (z), evaluating it by integrating around a second contour,
which in the limit is the same as the one above.

Consider the contour integral

1 Mz—l
InGE) = 5— ——du,
2mwi Jeo, e — 1

where Re(z) < 0 with the contour shown in Figure E.5 for N a positive integer.

On the outer circle we have u = Re!?, —7 < 9 < 7, and

7—1 i0yz—1
u _ (Re )
e —1| |eu—1
R 1,10 (Re(x)+i Im(2)) ,—if
o et —1
RRe(@—1 RiIm(z) ,i0 Re(z) ,—0 Im(2))
_ i |
_ efﬂlm(z)RRe(z)fl ;
e 4 —1

< RRe(z)flen Im(z)A < RRe(z)en Im(z)A

since

1
e " —1 ‘
is bounded in the region.

So,as N, R — oo the contribution to the integral from this part of the contour
— 0 and therefore Iy (z) — 1(2).

The function f(u) = u*~'/(e™* — 1) has poles where e ™ — 1 = 0 and so
u = 2kmifork =1,2,...,N and for k = —1, =2, ..., —N (which is why
the outer radius is taken to be (2N + 1)). If we are to use Cauchy’s Residue

u
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Theorem to evaluate Iy (z), we will need the residues at each of these poles and
so we will use the theory of residues to find them:

pw)  pQkmi)  (2kmi)*!

R - _ _ P
u=2€;<§-r,' f(u) u:;;jri q(u) q/(ani) 1 ki)
So,
1 Mz—l
1 = — d
N(2) i cy P u
N
= — > (ki)™ + (=2kmi)y )
k=1
N
= — Z (znk)Zfl(eﬂ(Z*I)i/z + 6777(2*1)1'/2)
k=1

N
—— Z Qrr)¥ 2 cos(m(z — 1)/2)

r=1

N
= —2Q2m)* sin(rz/2) Y rh

r=1

Now we recognize that we have integrated around the contour in the opposite
direction for 7 (z) = limy_. o0 In(2), SO we have that

I(z) = — ]\}iinw In(2) = 227)* 'sin(rrz/2) Zrz—l

r=1

=22n)* sin(rz/2)¢(1 - 2)

with the convergence guaranteed, as Re(1 — z) = 1 — Re(z) > 1.

Each form of 1 (z) was established using a different assumption about Re(z)
but the uniqueness of analytic continuation allows this to be disregarded and,
combining these two forms for 7 (z), we get

. 2 (27)* sin(rz/2)¢ (1 — 2) _ @2m)*sin(rz/2)¢(1 - 2)
o sin(wz) I (2) B sin(rrz)I"(z)
and we have the promised functional relationship ¢ (1 — z) = x(z)¢(z), where

sin(wz)M(2)¢(z) = 2m)*sin(wrz/2)¢(1 — z) for all z # 1, which becomes
(1 —2) =2Q2m) *cos(mz/2)I'(2)¢(2).

¢(2)
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