Fourier series — an example

Recall that the Fourier series for a 2m-periodic function f has the complex form
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The convergence theorem states that if f : R — R is continuous, 27-periodic, and piecewise C!, then the
series converges uniformly on R, and S(z) = f(z) for all 2 € R. Taking the limit N — oo in the generalized
Pythagorean theorem (14) and using the formula in the line before (15), we get
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This result is called Parseval’s identity.

Ezample. We can define f(x) so that f(z) = 22 for € [-7, 7] (note f(—n) = f(n)), and f(z + 27) = f(x)
for all . Then
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Since z2 cosnx is even and x?sinnz is odd in z, the 2?sinnz term integrates to zero and we find, after

repeated integrations by parts, that for n # 0,
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hence ¢,, = 2(—1)"/n? for n # 0. The case n = 0 we have to treat separately:
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Therefore, since ¢, = ¢_,, by the convergence theorem we have that for all z € [—m, 7],
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Furthermore, Parseval’s identity says that
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which means

Therefore (1)



