Fourier series - an example

Recall that the Fourier series for a 2π-periodic function f has the complex form

$$
\begin{equation*}
S(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\left(f, e_{n}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \tag{1}
\end{equation*}
$$

The convergence theorem states that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, 2π-periodic, and piecewise C^{1}, then the series converges uniformly on \mathbb{R}, and $S(x)=f(x)$ for all $x \in \mathbb{R}$. Taking the limit $N \rightarrow \infty$ in the generalized Pythagorean theorem (14) and using the formula in the line before (15), we get

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x \tag{2}
\end{equation*}
$$

This result is called Parseval's identity.
Example. We can define $f(x)$ so that $f(x)=x^{2}$ for $x \in[-\pi, \pi]$ (note $f(-\pi)=f(\pi)$), and $f(x+2 \pi)=f(x)$ for all x. Then

$$
c_{n}=\left(f, e_{n}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2}(\cos n x-i \sin n x) d x .
$$

Since $x^{2} \cos n x$ is even and $x^{2} \sin n x$ is odd in x, the $x^{2} \sin n x$ term integrates to zero and we find, after repeated integrations by parts, that for $n \neq 0$,

$$
2 \pi c_{n}=2 \int_{0}^{\pi} x^{2} \cos n x d x=\left.2\left(x^{2} \frac{\sin n x}{n}-2 x \frac{-\cos n x}{n^{2}}+2 \frac{-\sin n x}{n^{3}}\right)\right|_{0} ^{\pi}=\frac{4 \pi \cos n \pi}{n^{2}}
$$

hence $c_{n}=2(-1)^{n} / n^{2}$ for $n \neq 0$. The case $n=0$ we have to treat separately:

$$
c_{0}=\left(f, e_{0}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{1}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{\pi^{2}}{3}
$$

Therefore, since $c_{n}=c_{-n}$, by the convergence theorem we have that for all $x \in[-\pi, \pi]$,

$$
x^{2}=c_{0}+\sum_{n=1}^{\infty} c_{n}\left(e^{i n x}+e^{-i n x}\right)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x
$$

Furthermore, Parseval's identity says that

$$
\left|c_{0}\right|^{2}+\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}+\left|c_{-n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|x^{2}\right|^{2} d x
$$

which means

$$
\frac{\pi^{4}}{9}+2 \sum_{n=1}^{\infty} \frac{4}{n^{4}}=\frac{1}{\pi} \int_{0}^{\pi} x^{4} d x=\frac{1}{\pi} \frac{\pi^{5}}{5}=\frac{\pi^{4}}{5} .
$$

Therefore (!)

$$
\zeta(4)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\pi^{4}\left(\frac{1}{5}-\frac{1}{9}\right) \frac{1}{8}=\frac{\pi^{4}}{90} .
$$

