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Chapter 1

The Circumcircle and the
Incircle

1.1 Preliminaries

1.1.1 Coordinatization of points on a line

Let B andC be two fixed points on a liné. Every pointX on £ can be coordinatized
in one of several ways:
(1) the ratio of divisiont = 2X,
(2) theabsolutebarycentric coordinates: an expressiorXofis aconvexcombina-
tion of B andC:
X=01-t)B+1tC,

which expresses for an arbitrary poiRtoutside the linel, the vecto®PX as a linear
combination of the vecto®B andPC:

PX = (1 - t)PB + tPC.

B X C

(3) thehomogeneousarycentric coordinates: the proportiarC' : BX, which are
masses a3 andC' so that the resulting system (of two particles) batance pointat
X.
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1.1.2 Centers of similitude of two circles

Consider two circle®)(R) andI(r), whose center® and[ are at a distanceé apart.

Animate a pointX on O(R) and construct a ray throughoppositelyparallel to the
ray OX to intersect the circlé(r) at a pointY”. You will find that the lineXY always

intersects the lin@®1 at the same poin®. This we call thénternal center of similitude
of the two circles. It divides the segme@tl in the ratioOP : PI = R : r. The

absolute barycentric coordinates@fwith respect taD ] are

R-I+7-0
P=—— "
R+r
Y
o P Q

vy’

If, on the other hand, we construct a ray througfirectly parallel to the rayO X
to intersect the circlé(r) atY”, the line XY’ always intersect®1 at another poing).
This is theexternal center of similitudef the two circles. It divides the segmenf in
the ratioOQ : QI = R : —r, and has absolute barycentric coordinates
R-I—-r-0O

@= R—r

1.1.3 Harmonic division
Two pointsX andY are said to divide two other poinfs andC harmonicallyif

BX BY

XC ~  YC
They areharmonic conjugatesf each other with respect to the segm#idt.

Exercises

1. If X, Y divide B, C harmonically, ther3, C divide X, Y harmonically.

2. Given a pointX on the lineBC, construct its harmonic associate with respect to
the segmenBC. Distinguish between two cases wh&ndivides BC internally
and externally?

3. Given two fixed pointsB and C, the locus of the point® for which |BP| :
|CP| = k (constant) is a circle.

IMake use of the notion of centers of similitude of two circles
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1.1.4 Menelaus and Ceva Theorems

Consider a trianglel BC' with points X, Y, Z on the side line83C, C A, AB respec-
tively.

Menelaus Theorem

The pointsX, Y, Z are collinear if and only if
BX CY AZ

A A
Y Z
Z \4
X B c B X

Ceva Theorem

c

The linesAX, BY, CZ are concurrent if and only if
BX CY AZ

o 55 = +1
Ruler construction of harmonic conjugate

Let X be a point on the lin€3C. To construct the harmonic conjugate &f with
respect to the segmeBtC', we proceed as follows.

A

B X C X’

(1) Take any poin#d outside the lineBC and construct the lined B and AC.

(2) Mark an arbitrary poinf> on the lineAX and construct the lineBP andC P
to intersect respectively the linésA andAB atY andZ.

(3) Construct the lin&@ Z to intersectBC at X”.

ThenX and X’ divide B andC' harmonically.
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1.1.5 The power of a point with respect to a circle

The powerof a point P with respect to a circl€ = O(R) is the quantityC(P) :=
OP? — R2. This is positive, zero, or negative accordingfass outside, on, or inside
the circleC. If it is positive, it is the square of the length of a tangenaini P to the
circle.

/ P
T’

Theorem (Intersecting chords)

If aline L throughP intersects a circl€ at two pointsX andY’, the productPX - PY
(of signed lengths) is equal to the power®fvith respect to the circle.
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1.2 The circumcircle and the incircle of a triangle

For a generic trianglel BC', we shall denote the lengths of the sideS, C'A, AB by
a, b, c respectively.

1.2.1 The circumcircle

Thecircumcircle of triangle ABC' is the unique circle passing through the three ver-
ticesA, B, C. Its center, theircumcenter O, is the intersection of the perpendicular
bisectors of the three sides. The circumradius given by the law of sines:

a b c
sinA  sinB  sinC’

2R =

1.2.2 The incircle

Theincircle is tangent to each of the three sidB€’, C A, AB (without extension).
Its center, thencenter I, is the intersection of the bisectors of the three angleg Th
inradiusr is related to the are@S by

S=(a+b+o)r
If the incircle is tangent to the sidd3C at X, C'A atY, andAB at Z, then

Ay:AZ:b‘LCT_a’ BZ:BX:C—F+_Z), CXZCYZ%H_
These expressions are usually simplified by introducingémiperimetes = %(a +

b+ c):
AY = AZ = s — a, BZ =BX =s—b, CX=CY=s—c
s

Also,r = .
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1.2.3 The centers of similitude of O) and (1)

Denote byl" andT” respectively the internal and external centers of sindbtof the

circumcircle and incircle of triangld BC.
M/

7

These are points dividing the segmént harmonically in the ratios

OT:TI=R:r, oT':T'I=R: —r.

Exercises

1. Use the Ceva theorem to show that the lide’s, BY, C'Z are concurrent. (The
intersection is called th&ergonne poinof the triangle).

2. Construct the three circles each passing through the Geegooint and tangent
to two sides of triangled BC. The 6 points of tangency lie on a circle.

3. Given three pointsA, B, C not on the same line, construct three circles, with
centers at4, B, C, mutually tangent to each othexternally

4. Two circles are orthogonal to each other if their tangentsnaintersection are
perpendicular to each other. Given three poitit$3, C' not on a line, construct
three circles with these as centers and orthogonal to eaen ot

5. The centerst and B of two circlesA(a) andB(b) are at a distancé apart. The
line AB intersect the circles i’ and B’ respectively, so that, B are between
A, B.

(1) Construct the tangents frod to the circleB(b), and the circle tangent to
these two lines and td (a) internally.

(2) Construct the tangents frofY to the circleA(a), and the circle tangent to
these two lines and t&(b) internally.

(3) The two circles in (1) and (2) are congruent.



Chapter 1: Circumcircle and Incircle 7

Al

6. Given a pointZ on a line segmen#i B, construct a right-angled triangkeBC
whose incircle touches the hypotenusB at 7. 2

7. (Paper Folding) The figure below shows a rectangular sheged@ér containing
a border of uniform width. The paper may be any size and stape¢he border
must be of such a width that the area of the inner rectangbeistly half that of
the sheet. You have no ruler or compasses, or even a penaimMst determine
the inner rectangle purely by paper foldirig.

8. Let ABC be a triangle with incentef.

(1a) Construct a tangent to the incircle at the point diaivedty opposite to its
point of contact with the sid&C'. Let this tangent intersect A atY; andAB

atz;.

(1b) Same in part (a), for the sideA, and let the tangent intersed¢B at 7, and
BC at Xs.

(1c) Same in part (a), for the sidéB, and let the tangent interseBiC' at X5
andCA atYs.

(2) Note thatdYs; = AZ,. Construct the circle tangent #C and AB atY3 and
Z5. How does this circle intersect the circumcircle of trianglBC?

9. The incircle ofAABC touches the sideBC, C A, AB atD, E, F respectively.
X is a point insideA ABC such that the incircle of\ X BC touchesBC' at D
also, and toucheS X and X B atY andZ respectively.

2P, Yiu, G. Leversha, and T. Seimiya, Problem 2415 and s@iu@oux Math. 25 (1999) 110; 26 (2000)
62 —64.
3Problem 2519Journal of Recreational Mathematic30 (1999-2000) 151 — 152.
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(1) The four pointsE, F, Z, Y are concyclic?
(2) What is thdocusof the center of the circl&F ZY 2°

1.2.4 The Heron formula

The area of trianglel BC' is given by

S
5= V(s —a)(s — b)(s — c).

This formula can be easily derived from a computation of tiradiusr and the radius
of one of thetritangent circles of the triangle. Consider thexcircle I,(r,) whose
center is the intersection of the bisector of angland the external bisectors of angles
B andC. If the incircleI(r) and this excircle are tangent to the lid€ atY andY”’
respectively, then

1o

(1) from the similarity of trianglesi/Y andAI,Y”,

r S—a
’

Ta S
(2) from the similarity of triangle€' 7Y andI,CY”,
rerg=(s—0b)(s—c).

It follows that

= [0

S

4International Mathematical Olympiad 1996.
5IMO 1996.
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From this we obtain the famous Heron formula for the area dbadgle:

E =rs= \/s(s —a)(s—0b)(s—c).

2
Exercises
1. R =4
2. 14 = bﬂ%

3. Suppose the incircle of triangld BC touches its side®&3C, CA, AB at the
pointsX, Y, Z respectively. LetX’, Y’, Z’ be the antipodal points of, Y, Z
on the incircle. Construct the raysX’, BY’, andCZ’.

Explain the concurrency of these rays by considering ale@tiints of contact
of the excircles of the triangle with the sides.

4. Construct theritangent circles of a triangleABC.

(1) Join each excenter to the midpoint of the correspondadwsf ABC'. These
three lines intersect at a poift (This is called theMittenpunktof the triangle).

(2) Join each excenter to the point of tangency of the ingivith the corre-
sponding side. These three lines are concurrent at anatirer.

(3) The linesAP and AQ are symmetric with respect to the bisector of andje
so are the line®8 P, BQ andC P, CQ (with respect to the bisectors of anglBs
andC).

5. Construct the excircles of a triangleBC.

(1) Let D, E, F be the midpoints of the sideBC, C A, AB. Construct the
incenterS of triangle DEF, ® and thetangents from S to each of the three
excircles.

(2) The 6 points of tangency are on a circle, whiclithogonalto each of the
excircles.

6This is called the Spieker point of triangleBC.
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1.3 Euler’s formula and Steiner’s porism

1.3.1 Euler’s formula

The distance between the circumcenter and the incenterisfrgle is given by
OI* = R* — 2Rr.

Construct thesircumcircle O(R) of triangle ABC'. BisectangleA andmark the
intersectionM of the bisector with the circumcircle. Construct the cirdlg B) to
intersect this bisector at a poiht This is the incenter since

ZIBC = %LIMC = %LAMC' = %AABC,

and for the same reasofi C'B = %4ACB. Note that
(1)IM = MB = MC = 2Rsin 4,
(2)IA= =, and
2
(3) by the theorem of intersecting chord® — OI? = thepowerof I with respect
to the circumcircle A - IM = 2Rr.

1.3.2 Steiner’s porism

 Construct the circumcircléO) and the incircle(I) of triangle ABC. Animate a
point A’ on the circumcircle, and construct tlengents from A’ to the incircle(I).
Extend these tangents to intersect the circumcircle agai andC’. The linesB’C’
is always tangent to the incircle. This is the famous theooenSteiner porismif
two given circles are the circumcircle and incircle of on@atgle, then they are the
circumcircle and incircle of a continuous family péristic triangles

7Also known as Poncelet’s porism.
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Exercises
1. r < 2R. When does equality hold?

2. Suppos&@ I = d. Show that there is a right-angled triangle whose sided are
andR — r. Which one of these is the hypotenuse?

3. Given a point! inside a circleO(R), construct a circld () so thatO(R) and
I(r) are the circumcircle and incircle of a (family of poristicngle(s).

4. Given the circumcenter, incenter, and one vertex of a tiggrapnstruct the tri-
angle.

5. Construct an animation picture of a triangle whose circunterdies on the in-
circle.®

8Hint: OI = r.
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1.4 Appendix: Mixtilinear incircles

A mixtilinear incircle of triangleA BC' is one that is tangent to two sides of the triangle
and to the circumcircle internally. Denote By the point of tangency of the mixtilin-
ear incircleK (p) in angle A with the circumcircle. The centek clearly lies on the
bisector of angled, andAK : KI = p: —(p—r). Interms of barycentric coordinates,

1
K = ;[—(p —r)A+ pI].
Also, since the circumcircl®(A’) and the mixtilinear incirclél (A’) touch each other
atA’, we haveOK : KA’ = R — p : p, whereR is the circumradius. From this,
1
R

Comparing these two equations, we obtain, by rearrangingste

K= —[p0 + (R - p)A'].

RI—rO R(p—r)A+r(R—pA
R—r p(R—7) '
We note some interesting consequences of this formulat &firall, it gives the

intersection of the lines joining A’ andO1. Note that the point on the lin@I repre-
sented by the left hand side7s.

A A’

M

This leads to a simple construction of the mixtilinear intr®

Given a triangleABC, let P be the external center of similitude of the
circumcircle(O) and incircle(I). ExtendAP to intersect the circumcircle
at A’. The intersection ofA] and A’O is the centelX 4 of the mixtilinear
incircle in angleA.

The other two mixtilinear incircles can be constructed Einhy.

9P.Yiu, Mixtilinear incircles,Amer. Math. Monthlyl06 (1999) 952 — 955.



Chapter 1: Circumcircle and Incircle 13

Exercises
1. Can any of the centers of similitude @) and(I) lie outside triangleABC?

2. There are three circles each tangent internally to the wioitcle at a vertex, and
externally to the incircle. It is known that the three lineijng the points of
tangency of each circle witfD) and(I) pass through the internal centErof
similitude of (O) and(I). Construct these three circlés.

3. LetT be the insimilicenter ofO) and(I), with pedalst” andZ onC A andAB
respectively. IfY” andZ’ are the pedals df andZ on BC, calculate the length
ofY'z' 11

10A.P. Hatzipolakis and P. Yiu, Triads of circles, preprint.
1A P. Hatzipolakis and P. Yiu, Pedal triangles and their shagForum Geom.1 (2001) 81 — 90.



Chapter 2

The Euler Line and the
Nine-point Circle

2.1 The Euler line
2.1.1 Homothety

The similarity transformatioh(T, ) which carries a poin¥X to the pointX’ which
dividesT X' : TX = r : 1 is called thenomothetyvith centerI” and ratior.

Al

2.1.2 The centroid

The three medians of a triangle intersect at the centroigsiwdiivides each median in
the ratio2 : 1. If D, E, F are the midpoints of the siddsC, C'A, AB of triangle
ABC, the centroidG divides the mediaml D in the ratiocAG : GD = 2 : 1. The
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medialtriangle DE'F is the image of triangled BC' under the homothetl(G, —%).
The circumcircle of the medial triangle has radi%xB. Its center is the poinlv =
h(G, —3)(O). This divides the segeme®G in the ratioOG : GN =2 : 1.

2.1.3 The orthocenter

Thedilated triangle A’ B’C’ is the image ofABC under the homothety(G, —2). *
Since the altitudes of triangld BC' are the perpendicular bisectors of the sides of
triangle A’ B’C’, they intersect at the homothetic image of the circumcedtei his
point is called theorthocenterof triangle ABC, and is usually denoted b4/. Note
that

OG:GH=1:2.

The line containing), G, H is called the Euler line of triangld BC. The Euler
line is undefined for the equilateral triangle, since thesiats coincide.

Exercises

1. A triangle is equilateral if and only if two of its circumcemf centroid, and
orthocenter coincide.

2. The circumcenteN of the medial triangle is the midpoint 61 H .

3. The Euler lines of triangle’ BC, HC'A, H AB intersect at a point on the Euler
line of triangleABC. What is this intersection?

4. The Euler lines of triangle$ BC, IC A, I AB also intersect at a point on the
Euler line of triangleABC. 2

5. (Gossard’s Theorem) Suppose the Euler line of triadg&”' intersects the side
lines BC, CA, AB at X, Y, Z respectively. The Euler lines of the triangles
AY Z, BZX andC XY bound a triangle homothetic tdBC' with ratio —1 and
with homothetic center on the Euler line aBC.

6. What is thdocusof the centroids of the poristic triangles with the sametaine
circle and incircle of triangled BC? How about the orthocenter?

7. Let A’B’'C’ be a poristic triangle with the same circumcircle and ireiraf
triangle ABC', and let the sides aB’C’, C' A’, A’ B’ touch the incircle aX, Y,
Z.

(i) What is thelocus of the centroid ofXY Z?
(i) What is thelocusof the orthocenter oK' Y Z?
(iii) What can you say about the Euler line of the trianglé” Z?

1t is also called the anticomplementary triangle.
2Problem 1018Crux Mathematicorum
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2.2 The nine-point circle

2.2.1 The Euler triangle as a midway triangle

The image ofABC under the homothetly(P, 1) is called themidwaytriangle of .
The midway triangle of the orthocent&ris called theEuler triangle The circumcen-
ter of the midway triangle oP is the midpoint ofOP. In particular, the circumcenter
of the Euler triangle is the midpoint a4, which is the same ad’. The medial
triangle and the Euler triangle have the same circumcircle

2.2.2 The orthic triangle as a pedal triangle

Thepedalsof a point are the intersections of the sidelines with theesponding per-
pendiculars througl?. They form thepedal triangleof P. The pedal triangle of the
orthocenteld is called theorthic triangleof ABC.

B X c B X D C

The pedalX of the orthocente# on the sideBC is also the pedal off on the
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same line, and can be regarded asr#ilectionof A in the line EF. It follows that
LEXF = /FAF = Z/EDF,

since AEDF is a parallelogram. From this, the poidt lies on the circleDEF;
similarly for the pedaly” andZ of H on the other two side§'A and AB.

2.2.3 The nine-point circle

From§2.2.1,2 above, the medial triangle, the Euler triangle thrarthic triangle have
the same circumcircle. This is called thime-point circleof triangle ABC. Its center
N, the midpoint ofO H, is called thenine-point centeof triangle ABC.

Exercises

1. On the Euler line,

OG:GN:NH=2:1:3.

2. Let P be a point on the circumcircle. What is theeus of the midpoint ofH P?
Can you give a proof?

3. Let ABC be a triangle an@ a point. The perpendiculars &tto PA, PB, PC
intersectBC, C A, AB respectively atd’, B/, C".
(1) A’, B', C" are collinear?

(2) The nine-point circles of the (right-angled) triangleglA’, PBB’, PCC’

are concurrenta® and another poinP’. Equivalently, their centers are collinear.
4

3B. Gibert, Hyacinthos 1158, 8/5/00.
4A.P. Hatzipolakis, Hyacinthos 3166, 6/27/01. The threepuidts of AA’, BB’, CC' are collinear.
The three nine-point circles intersectfatand its pedal on this line.
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4. If the midpoints ofAP, BP, C'P are all on the nine-point circle, mustbe the
orthocenter of trianglel BC?°

5. (Paper folding) LetV be the nine-point center of triangeBC.
(1) Fold the perpendicular td NV at N to intersecC A atY andAB at Z.
(2) Fold the reflectiom’ of A in the lineY Z.
(3) Fold the reflections oB in A’Z andC'in A’Y".
What do you observe about these reflections?

2.2.4 Triangles with nine-point center on the circumcircle

We begin with a circle, cent& and a pointV on it, and construct a family of triangles
with (O) as circumcircle andv as nine-point center.

(1) Construct the nine-point circle, which has cemdérand passes through the
midpointM of ON.

(2) Animate a pointD on the minor arc of the nine-point circlesidethe circum-
circle.

(3) Construct the chor8C of the circumcircle withD as midpoint. (This is simply
the perpendicular t& D at D).

(4) Let X be the point on the nine-point circle antipodalllo Complete the paral-
lelogramO D X A (by translating the vectoDO to X).

The pointA lies on the circumcircle and the triang#eBC has nine-point cente¥
on the circumcircle.

Here is an curious property of triangles constructed inwayg: letA’, B’, C’ be
the reflections o4, B, C in their own opposite sides. The reflection triangleB’C’
degenerates.e., the three pointst’, B/, C’ are collinear®

5Yes. See P. Yiu and J. Young, Problem 2437 and solu@onx Math.25 (1999) 173; 26 (2000) 192.
60. BottemaHoofdstukken uit de Elementaire Meetkun@aapter 16.
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2.3 Simson lines and reflections

2.3.1 Simson lines

Let P on the circumcircle of trianglel BC.

(1) Construct its pedals on the side lines. These pedalshaagscollinear. The
line containing them is called tf&imson lines(P) of P.

(2) Let P’ be the point on the cirucmcircle antipodal® Construct the Simson
line (P’') andtrace the intersection poirg(P)N (P’). Can you identify this locus?

(3) Let the Simson lines(P) intersect the side lineBC, CA, ABatX,Y, Z re-
spectively. The circumcenters of the trianges 7, BZ X, andC XY form a triangle
homothetic toABC' at P, with ratio % These circumcenters therefore lie on a circle
tangent to the circumcircle &?.

2.3.2 Line of reflections

Construct thereflections of the P in the side lines. These reflections are always
collinear, and the line containing them always passes tirdlie orthocentef, and
is parallel to the Simson ling(P).

2.3.3 Musselman’s Theorem: Point with given line of reflecbns

Let L be a line through the orthocentar.

(1) Choose an arbitrary poid} on the linel andreflect it in the side linesBC,
CA, AB to obtain the points(, Y, Z.

(2) Construct the circumcircles ofY Z, BZX andCXY. These circles have a
common pointP, which happens to lie on the circumcircle.

(3) Construct the reflections @? in the side lines of trianglel BC. These are on
the linel.
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2.3.4 Musselman’s Theorem: Point with given line of reflecons
(Alternative)

Animate a point) on the circumcircle. Let)’ be the second intersection of the line
HQ with the circumcircle.

(1) Thereflections X, Y, Z of @ on the side lineBC, C A, AB are collinear; so
are thoseX’,Y’, Z’ of O'.

(2) The linesX X', YY’, ZZ’ intersect at a poinP, which happens to be on the
circumcircle.

(3) Construct the reflections @? in the side lines of trianglel BC. These are on
the lineHQ.

2.3.5 Blanc’s Theorem

Animate a pointP on the circumcircle, together with its antipodal poifit

(1) Construct the line? P’ to intersect the side lineBC, CA, AB atX,Y, Z
respectively.

(2) Construct the circles with diametessX, BY, CZ. These three circles have
two common points. One of these is on the circumcircle. LétislpointP*, and the
other common poing).

(3) What is thdocusof Q?

(4) The line P*Q passes through the orthocenfér As such, it is the line of
reflection of a point on the circumcircle. What is this point?

(5) Construct the Simson lines &f and P’. They intersect at a point on the nine-
point circle. What is this point?

Exercises
1. Let P be a given point, andd’B’C’ the homothetic image oA BC under
h(P, —1) (so thatP is the common midpoint afl A’, BB’ andC(C").

(1) The circlesAB’C’, BC' A’ andC A’ B’ intersect at a poinf) on the circum-
circle;

(2) The circlesABC’, BCA’ andC AB’ intersect at a poinf’ such thatP is
the midpoint ofQQ’. ’

"MusselmanAmer. Math. Monthly47 (1940) 354 — 361. IP = (u : v : w), the intersection of the
three circles in (1) is the point

1
<b2(u+v—w)w—c2(w+u—v)v U )
on the circumcircle. This is the isogonal conjugate of tHmite point of the line
Z u(v—&—w—u)xzo.

4 a?
cyclic
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2.4 Appendix: Homothety

Two triangles are homothetic if the corresponding sidesparallel.

2.4.1 Three congruent circles with a common point and each ta
gent to two sides of a triangle

8 Given a triangled BC, to construct three congruent circles passing through amam
point P, each tangent to two sides of the triangle.

Lett be the common radius of these congruent circles. The ceoftérsse circles,
I, I, I3, lie on the bisectors A, IB, IC respectively. Note that the linds; and
BC are parallel; so are the paifgl,, CA, andl, I, AB. It follows thatA I I5 I3 and
ABC are similar. Indeed, they are omothetidrom their common incentef. The
ratio of homothety can be determined in two ways, by congidetheir circumcircles
and their incircles. Since the circumradii @rand R, and the inradii are — ¢ andr,

r—t _ r H _  Rr
we have~— = f. From this;t = T
A

B C

How does this help constructing the circles? Note that thejbining the circum-
centersP andO passes through the center of homothktsind indeed,

O[:IP=R:t=R: 2"
R+r
Rewriting this asOP : PI = R : r, we see thaf is indeed the internal center of
similitude of (O) and([).
Now the construction is easy.

=R+r:r.

2.4.2 Squares inscribed in a triangle and the Lucas circles

Given a triangleABC, to construct the inscribed square with a side aldi@ we
contract the square erected externally on the same side bynathety at vertex.
The ratio of the homothety i&, : h, + a, whereh, is the altitude onBC. Since
h, = 2, we have
he S
he+a S+a2

8Problem 2137Crux Mathematicorum
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The circumcircle is contracted into a circle of radius
S abe S abe

o=l @ =38 S48+

and this passes through the two vertices of the inscribedhersidesAB and AC.
Similarly, there are two other inscribed squares on thesgitlé and AB, and two cor-
responding circles, tangent to the circumcircl®andC respectively. Itis remarkable
that these three circles are mutually tangent to each oftierse are called the Lucas

circles of the triangle?

2.4.3 More on reflections
(1) The reflections of a liné in the side lines of trianglel BC' are concurrent if and
only if L passes through the orthocenter. In this case, the inteysésta point on the

circumcircle 10

9See A.P. Hatzipolakis and P. Yiu, The Lucas circlesier. Math. Monthly108 (2001) 444 — 446. After
the publication of this note, we recently learned that Eddidaicas (1842 — 1891) wrote about this triad
of circles, considered by an anonymous author, as the tindescmutually tangent to each other and each
tangent to the circumcircle at a vertex AfBC. The connection with the inscribed squares were found by
Victor Thébault (1883 — 1960).

105.N. Collings, Reflections on a triangle, partMath. Gazette57 (1973) 291 — 293; M.S. Longuet-

Higgins, Reflections on a triangle, part 2, ibid., 293 — 296.
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(2) Construcparallel lines L, L;, andL. through theD, E, F be the midpoints
of the sidesBC, CA, AB of triangle ABC. Reflectthe linesBC in L,, CA in Ly,
andAB in L.. These three reflection lines intersect at a point on the-paiet circle!?

(3) Constructparallel lines L, L, andL . through the pedals of the verticels
B, C on their opposite sides. Reflect these lines in the respesitile lines of triangle
ABC. The three reflection lines intersect at a point on the nimietgircle.*?

UThis was first discovered in May, 1999 by a high school studedam Bliss, in Atlanta, Georgia. A
proof can be found in F.M. van Lamoen, Morley related tri@sgbn the nine-point circleAmer. Math.
Monthly, 107 (2000) 941 — 945. See also, B. Shawyer, A remarkableucmmce,Forum Geom.1 (2001)
69 —74.

121hig.
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Homogeneous Barycentric
Coordinates

3.1 Barycentric coordinates with reference to atriangle

3.1.1 Homogeneous barycentric coordinates

The notion of barycentric coordinates dates back to Mdbiua given triangled BC,
every pointP is coordinatized by a triple of numbefs : v : w) in such a way that
the system of massasat A, v at B, andw at C' will have its balance pointat P.
These masses can be taken in the proportions of the areésnfieeP? BC, PC A and
P AB. Allowing the pointP to be outside the triangle, we usigned areasf oriented
triangles. Thhomogeneous barycentric coordinatédsP with reference tadBC'is a
triple of numbergz : y : z) such that

x:y:2=APBC: APCA: APAB.

Examples

1. ThecentroidG has homogeneous barycentric coordindétesl : 1). The areas
of the triangles? BC, GC A, andGAB are equal’

2. Theincenter has homogeneous barycentric coordinétesb : ¢). If r denotes
the inradius, the areas of triangléBC, ICA andIAB are respectivel;%m,
%rb, and%rc. 2

3. Thecircumcenter If R denotes the circumradius, the coordinates of the circum-
centerO are®

AOBC : AOCA : AOAB

1In Kimberling’s Encyclopedia of Triangle Centers, [ETC], the centroid appears &,.
2|n ETC, the incenter appears a8, .
3In ETC, the circumcenter appears A3.
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1 1 1

= ZR%sin2A4:=R?sin2B: ~R%sin2C
2 2 2

= sinAcos A :sin Bcos B : sin C cos C

b2+ 2 — g2 24 a?— b2 a2+ b2 — 2
a- b ic-
2be 2ca 2ab
= a*(b* +c —a?) : b3(P +a® —b?) : Pla® + b2 - ).

!
=

4. Points on the lin€BC have coordinates of the for(0 : y : z). Likewise, points
on CA and AB have coordinates of the form{g : 0 : z) and(z : y : 0)
respectively.

Exercise
1. Verify that the sum of the coordinates of the circumcenteegiabove istS?:
a?(0* + c® — a®) + b*(c® + a® — b?) + *(a® + b — c?) = 452,
whereS is twice the area of triangld BC.

2. Find the coordinates of the excentéts.

3.1.2 Absolute barycentric coordinates

Let P be a point with (homogeneous barycentric) coordinétesy : z). If z+y+2z #
0, we obtain theabsolutebarycentric coordinates by scaling the coefficients to lzave
unit sum:

z-A+y-B+z-C
TH+y+z '
If P andQ are given in absolute barycentric coordinates, the p@imthich divides

. . . . - P .
PQintheratioPX : X@Q = p : ¢ has absolute barycentric coordlnages—Fin.

. . . - . ptyq
It is, however, convenient to perform calculations avajdilenominators of fractions.

P =

o= (—a:b:c),Iy=(a:=b:c),Ic=(a:b:—c).
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We therefore adapt this formula in the following way:Rf= (u : v : w) and@ =
(u' : v : w') are the homogeneous barycentric coordinates satisyig + w =
u' +v" 4w, the pointX dividing PQ in the ratioPX : X@Q = p : ¢ has homogeneous
barycentric coordinates

(qu +pu' : qu+pv' : qu + pw').

Example: Internal center of similitudes of the circumcircle and the incircle

These points]” andT”, divide the segmer® ] harmonically in the ratio of the circum-
radiusk = %¢ and the inradius = 2. Note thatR : r = 2 : 2 = sabc : 52.
Since
O=@*W*+c*—a?):---:---)

with coordinates sumS? andI = (a : b : ¢) with coordinates surgs, we equalize
their sums and work with

0
1

(sa*(B* +c* —a?):---:---),
(25%a : 25%b : 25%¢).

The internal center of similitud&' dividesOI in the ratioOT : TI = R : r, the
a-component of its homogeneous barycentric coordinatebedaken as

S% . sa?(b* + ¢ — a?) + sabc - 25%a.
The simplification turns out to be easier than we would nolyredpect:

5% . 5a?(b? + ¢ — a®) + sabc - 25%a
= 55%a2(b? + c* — a® + 2bc)
5S%a*((b+¢)? — a?)
5S%a*(b+c+a)(b+c—a)
= 25%°5%.a*(b+c—a).

The other two components have similar expressions obtdipegclically permuting
a, b, c. Itis clear that2s2S? is a factor common to the three components. Thus, the
homogeneous barycentric coordinates of the internal cefgimilitude are®

(a*(b+c—a):b*(c+a—0):c(a+b—c)).

Exercises

1. The external center of similitude ¢©) and(I) has homogeneous barycentric
coordinate$

(a*(a+b—c)(c+a—Db):b*(b+c—a)(a+b—c):E(c+a—b)(b+c—a)),

5In ETC, the internal center of similitude of the circumcircle ahé incircle appears as the poikits.
6ln ETC, the external center of similitude of the circumcircle ane incircle appears as the poikite.
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which can be taken as

a? b? c?
<b—|—c—a : c—i—a—b:a—i—b—c)'

. The orthocentef lies on the Euler line and divides the segméxdt externally

in the ratioOH : HG = 3 : —2. 7 Show that its homogeneous barycentric
coordinates can be written as

H = (tan A : tan B : tan C),

or equivalently,

1 1 1
H = : : .
(b2+02a2 2+ a2 — b2 a2+b262)

. Make use of the fact that the nine-point cem&divides the segmeri?G in the

ratioON : NG = 3 : —1 to show that its barycentric coordinates can be written
as?®
N = (acos(B—C):bcos(C — A) : ccos(A — B)).

“In ETC, the orthocenter appears as the point
8|n ETC, the nine-point center appears as the paigt
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3.2 Cevians and traces

Because of the fundamental importance of the Ceva theorénangle geometry, we
shall follow traditions and call the three lines joining aiptaP to the vertices of the
reference triangled BC' the ceviansof P. The intersectionsip, Bp, Cp of these
cevians with the side lines are called thecesof P. The coordinates of the traces can
be very easily written down:

Ap=(0:y:2), Bp=(x:0:2), Cp=(z:y:0).

3.2.1 Ceva Theorem

Three pointsX, Y, Z on BC, CA, AB respectively are the traces of a point if and
only if they have coordinates of the form

X =0 : y : z
Y =z : 0 : z
Z = x : y : 0

for somexz, v, 2.

3.2.2 Examples
The Gergonne point

The points of tangency of the incircle with the side lines are

X = 0 i s—c : s—b,
Y = s—c : 0 s —a,
Z = s—b : s—a : 0.
These can be reorganized as
X = 0k
y = - . o :
Z = - : L : 866
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It follows that AX, BY, C'Z intersect at a point with coordinates

111
s—a s—b s—c)’

This is called théSergonne pointi.,, of triangle ABC. °

The Nagel point

The points of tangency of the excircles with the correspogdides have coordinates

X" = (0:s—b:s—c),
Y = (s—a:0:s—2¢),
Z' = (s—a:s—0:0).

These are the traces of the point with coordinates
(s—a:s—b:s—c).
This is theNagel pointN, of triangle ABC'. 10

Exercises

1. The Nagel pointV, lies on the line joining the incenter to the centroid; it des
IG intheratioIN, : N,G = 3 : —2.

9The Gergonne point appearsETC as the pointX7.
10The Nagel point appears ETC as the pointXs.
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3.3 Isotomic conjugates

The Gergonne and Nagel points are examples of isotomic gatga. Two pointd®
and@ (not on any of the side lines of the reference triangle) ai@ abe isotomic
conjugates if their respective traces are symmetric wispeet to the midpoints of the
corresponding sides. Thus,

BAp = AgC, CBp = BgA, ACp = CgB.
We shall denote the isotomic conjugatefoby P*. If P = (x : y : z), then
1 1 1
P*=(—:-:-
x z

;7

3.3.1 Equal-parallelian point

Given triangleABC, we want to construct a poir® the three lines through which
parallel to the sides cut out equal intercepts. Pet= A + yB + zC in absolute
barycentric coordinates. The parallelBd” cuts out an intercept of length — z)a. It
follows that the three intercepts parallel to the sides grakif and only if

1 1 1

l—z:1—-y:l—2=—:—-:-.

a b ¢
The right hand side clearly gives the homogeneous barjcemordinates of *, the
isotomic conjugate of the incentér!® This is a point we can easily construct. Now,
translating intaabsolutebarycentric coordinates:

. 1 1
I*=sl1-2)A+ (1 —-y)B+(1-2)C]=5(BG-P)
we obtainP = 3G — 2I°, and can be easily constructed as the point dividing the
segment/*G externally in the ratid®*P : PG = 3 : —2. The pointP is called the
equal-parallelian point of triangl@ BC'. 2
A

I°

B C

11The isotomic conjugate of the incenter appear&TC as the pointX7s.
121t gppears iIrETC as the pointX1gz.
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Exercises

1. Calculate the homogeneous barycentric coordinates ofjihel goarallelian point
and the length of the equal paralleliah.

2. Let A’ B’C’ be the midway triangle of a poidt. The lineB’C” intersectsC A
at
B,=B'C'nCA, C,=BCNAB,
C,=C'ANAB, A,=C'AnNBC,
A.=A'B'NnBC, B.=AB NCA.
DetermineP for which the three segments,C,, C, A, and A. B, have equal
lengths 14

3.3.2 Yiff’'s analogue of the Brocard points

Consider a poinP = (z : y : z) satisfyingBAp = CBp = ACp = w. This means

that
z x Y

a =
y+z z+x r+vy
Elimination ofz, y, z leads to

0 -w  a—w
0=|b—-w 0 —w | = (a—w)(b—w)(c—w)—w
—w c—w 0

Indeedw is the unique positive root of the cubic polynomial
(a—t)(b—t)(c—t)—1t>.
This gives the point

() (=) (=)

The isotomic conjugate
pe_ ((b—w)i : (c—w) : (a—w)%>
c—w a—w b—w
CAPZABPZBCPZU}.

These points are usually called t\é analogues of the Brocard point® They
were briefly considered by A.L. Crell&®

ol

satisfies

B(ca+ab—bc : ab+be—ca : be+ca—ab). The common length of the equal parallelianﬁ%.

14A P. Hatzipolakis, Hyacinthos, message 3190, 7/13/B1= (3bc — ca — ab : 3ca — ab — bc :
3ab — bc — ca). This point is not in the current edition &TC. It is the reflection of the equal-parallelian
pointin I®. In this case, the common length of the segmerﬁ%, as in the equal-parallelian case.
15p, Yff, An analogue of the Brocard pointamer. Math. Monthly70 (1963) 495 — 501.

16A L. Crelle, 1815.
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3.4 Conway’s formula

3.4.1 Notation

Let S denotetwicethe area of trianglel BC'. For a real numbet, denoteS - cot 6 by
Sp. In particular,

b2 4 o2 — g2 2+ a2 — B2 a2 4+ b2 — 2
Sa= Ty Se= T Se= Ty

For arbitraryd andyp, we shall simply writeSy,, for Sy - S,,.
We shall mainly make use of the following relations.

Lemma
(1) SB+SC:Q2,Sc+SA:b2,SA+SB:Cz.
(2) Sap + Spc + Sca = S

Proof. (1) is clear. For (2), sincd + B + C = 180°, cot(A + B + C) is infinite. Its
denominator

cot A-cotB+cotB-cotC +cotC-cotA—1=0.

From this,Sap+Spc+Sca = S?(cot A-cot B+cot B-cot C+cot C-cot A) = S2.

Examples

(1) The orthocenter has coordinates

1 1 1
(E : g . %) = (SBC . SCA . SAB)-

Note that in the last expression, the coordinate sufsis + Sca + Sap = S2.
(2) The circumcenter, on the other hand, is the point

O = (a®S4 : b*Sp : *Sc) = (Sa(Sp + Sc) : Sp(Sc + Sa) : So(Sa + Sg)).

Note that in this form, the coordinate sunRisSaz + Spc + Sca) = 252

Exercises
1. Calculate the coordinates of the nine-point center in tefis,, Sz, Sc. ¥’

2. Calculate the coordinates of the reflection of the orthagdntthe circumcenter,
i.e, the pointZ which divides the segme#{ O in the ratioHL : LO =2 : —1.
This is called thele Longchamps poirf triangle ABC'. 18

17N=(SQ+SBc:SQ+SCA:S2+SAB).
18L:(SCA+SAB—SBC:~~-:--~):(§+%—i:~~-:~-~). It appears ifETC as the
point Xog.
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3.4.2 Conway’s formula

If the swing angles of a poin® on the sideBC areZCBP = 6 andZBCP = y, the
coordinates o are
(—a2 : Se + Sgo :Sp+ Sg).
The swing angles are chosen in the ranglg < 0, < 7. The angle is pos-
itive or negative according as anglgg’BP and ZC B A have different or the same
orientation.

3.4.3 Examples
Squares erected on the sides of a triangle

Consider the squarBC X, X, erected externally on the sideC' of triangle ABC.
The swing angles ak; with respect to the sid8C are

/CBX; = g, /BCX, = g
Sincecot 7 = 1 andcot § =0,
X, =(—a?:Sc:Sp+9).
Similarly,
Xy = (—a®:Sc+S:Sg).
Exercises
1. Find the midpoint ofX; X5.

2. Find the vertices of the inscribed squares with a side aR6g*°.

19Recall that this can be obtained from applying the homothés, ﬁ) to the squareBC X1 Xo
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3.5 The Kiepert perspectors

3.5.1 The Fermat points

Consider the equilateral triangleC' X erected externally on the sideC' of triangle

ABC. The swing angles aréCBX = /BCX = %. Sincecot § = \/Lg

S S
X=(-a?:5+—:8 +—>,
(a ¢ \/§ B \/g

which can be rearranged in the form

j— _a2 . 1 . 1
(Sp+ Z5)(Sc+ 25) " Sp+ Z5  Sc+ 5

Similarly, we write down the coordinates of the apeXesZ of the equilateral triangles

CAY andABZ erected externally on the other two sides. These are

Y:(%:*****:%)
SA+\/—§ SC“”ﬁ

and

Z:( 1S: 13:*****>.
SA+E SB+E

Here we simply writex x % * x in places where the exact values of the coordinates are
not important. This is a particular case of the following gext situation.

3.5.2 Perspective triangles

SupposeX, Y, Z are points whose coordinates can be written in the form

X = sxxxx Y : z,
Y = z Dokokokokok o z,
7 = T : Y Tk ok ok kK,

The linesAX, BY, CZ are concurrent at the poift = (z : y : z).

Proof. The intersection oAX and BC is the trace ofX on the sideBC'. It is the
point(0 : y : z). Similarly, the intersection8Y N CA andCZ N AB are the points
(x:0:z)and(z : y : 0). These three points are in turn the trace®of (x : y : 2).
Q.E.D.

We say that triangleX'Y Z is perspectivewith ABC, and call the pointP the
perspectoof XY Z.

We conclude therefore thtte apexes of the equilateral triangles erected externally
on the sides of a triangld BC form a triangle perspective with BC' at the point

1 1 1
F, = : : .
* (ﬁSﬁs V3Sg + 8 \/§SC+S>
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This is called the (positivejermat pointof triangle ABC'. 2°

Exercises

1. If the equilateral triangles are erected “internally” oe gides, the apexes again
form a triangle with perspector

1 1 1
F_ = : : ,
<\/§SAS V3Sp — S \/§SCS>
the negative Fermat point of triangleBC. 2

2. GiventriangleA BC, extend the sidedC to B, andAB to C, suchthatU B, =
BC, = a. Similarly defineCy, Ay, A, andB..

(a) Write down the coordinates &, andC,, and the coordinates of the inter-
sectionA’ of BB, andCC,,.

(b) Similarly defineB’ andC”’, and show thatl’ B’C" is perspective wittA BC.
Calculate the coordinates of the perspecfor.

3.5.3 Isosceles triangles erected on the sides and Kieperrgpec-
tors

More generally, consider an isosceles triaig(€é A of base angleYCA = LY AC =
0. The vertextY has coordinates

(SC + Sy : —b?: Sa JrSg).

20The positive Fermat point is also known as the first isogoeiter. It appears iETC as the pointXi3.

21The negative Fermat point is also known as the second isogeniter. It appears iBTC as the point
X14.

22The Spieker point.
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If similar isosceles triangleX BC' andZ AB are erected on the other two sides (with
the same orientation), the linesX, BY, andC'Z are concurrent at the point

1 1 1
K = : : .
(9) (SA+S9 S+ Sy Sc+Se>

We call XY Z the Kiepert triangle and (0) theKiepert perspectoof parametef.

A
A
Y
Y
zZ
zZ
B c
BWO
X b

3.5.4 The Napoleon points

The famous Napoleon theorem states thatcenters of the equilateral triangles erected
externally on the sides of a triangle form an equilateradirijle These centers are the
apexes of similar isosceles triangles of base aB@ftecrected externally on the sides.
They give the Kiepert perspector

1 1 1
(SA+\/§S-SB+\/§S.SC+\/§S>.

This is called the (positive) Napoleon point of the triangfeAnalogous results hold
for equilateral triangles erected internally, leadingite hegative Napoleon poifit

1 1 1
(SA—ﬁs'SB—ﬁs'sc—ﬁS>'

Exercises

1. The centers of the three squares erected externally ondes &f triangled BC'
form a triangle perspective witA BC'. The perspector is called the (positive)

23The positive Napoleon point appearsafC as the pointX 7.
24The negative Napoleon point appear&iRC as the pointXis.
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Vecten point. Why is this a Kiepert perspector? ldentifydispert parameter,
and write down its coordinate$?

2. Let ABC be a given triangle. Construct a small semicircle wittas center and
a diameter perpendicular 8C, intersecting the sid&C. Animate a pointT
on this semicircle, antide the semicircle.

(a) Construct the raygT" and let it intersect the perpendicular bisectozdf' at
X.

(b) Reflectthe rayBT in the bisector of angle B, and construct the perpendic-
ular bisector ofA B to intersect this reflection &.

(c) Reflect AZ in the bisector of angle A, andreflect C X in the bisector of
angleC. Label the intersection of these two reflectidns

(d) Construct the perspectsYof the triangleXY Z.
(e) What is thdocusof P asT traverses the semicircle?

3. Calculate the coordinates of the midpoint of the segnienf_ . 26

4. Inside triangleA BC', consider two congruent circldg, (r1) andl,.(r1) tangent
to each other (externally), both to the siB€’, and toC A and A B respectively.
Note that the center§,;, and I,., together with their pedals oBC, form a

rectangle of sideg : 1. This rectangle can be constructed as the image under the

homothetyh(Z, i—f) of a similar rectangle erected externally on the ditig.

A
Iag \\Iac
/ N
s / N ~ D\
B 4 \ c
/ \
/ \
/ \
\
// N
\
/ \

(a) Make use of these to construct the two circles.

(b) Calculate the homogeneous barycentric coordinatdsegboint of tangency
of the two circles?’

ZThis is K (%), the positive Vecten point. It appearsETC as X4ss.

28((b% — ¢2)2 : (c® — a?)? : (a® — b?)?). This points appears IBTC asX115. It lies on the nine-point
circle.

21This dividesI D (D = midpoint of BC) in the ratio2r : a and has coordinates? : ab+ S : ac+ S).
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(c) Similarly, there are two other pairs of congruent cisaba the sideg’A and
AB. The points of tangency of the three pairs have a persp&ttor

11
bc+S ca+S ab+S)’

(d) Show that the pedals of the points of tangency on the otispeside lines of
ABC are the traces of

1 1 1
(bc+S+SA “ca+ S+ S’ ab+S+SC)'
3.5.5 Nagel's Theorem
SupposeX, Y, Z are such that

LCAY = /BAZ =0,
/ABZ = /OBX = o,
/BCX = ZACY = .

The linesAX, BY, CZ are concurrent at the point

( 11 )
Sa+Se Sg+S, Sc+Sy)°
A
“
Z ’\
\/
B P

1. LetX’,Y"’, Z’' be respectively the pedals &fon BC, Y onC A, andZ on AB.
Show thatX'Y’ Z’ is a cevian triangle®®

/A

Exercises

28This point is not in the current edition &TC.
29This point is not in the current edition &TC.
30F|oor van Lamoen.
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2. Fori = 1,2, let X,Y; Z,; be the triangle formed with given anglés ; and;.
Show that the intersections

X=X1XoNBC, Y=Y1YanCA, Z=21Z-NAB

form a cevian triangle’!

3lFloor van LamoenX = (0 : Sy, — Syy : S — Sps)-
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Straight Lines

4.1 The equation of a line

4.1.1 Two-point form

The equation of the line joining two points with coordinates : y1 : z1) and(xz :
Y2t 22) 1S

1T Y1 2
X9 Y2 22| = 0,
r Yy =z

or
(y122 — y2z1)x + (2122 — 2221)y + (Z1Y2 — @291)2 = 0.
4.1.2 Examples

1. The equations of the side lind3C, C A, AB are respectivelgy = 0, y = 0,
z=0.

2. The perpendicular bisector d8C is the line joining the circumcentep =
(a®S4 : b*Sp : 2Sc) to the midpoint ofBC, which has coordinate® : 1 : 1).
By the two point form, it has equation

(bZSB - c2SC)m —a?Say+a®Saz =0,

Sinceb?Sp — ?Sc = -+ = Sa(Sp — Sc) = —Sa(b? — ¢?), this equation can
be rewritten as
(b — Az +a*(y —2) = 0.

3. The equation of the Euler line, as the line joining the ceadtfa : 1 : 1) to the
orthocentefSpc : Sca : Sap)is

(Sap — Sca)x+ (Spc — Sap)y + (Sca — Spc)z =0,
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or
> Sa(Sp - Sc)z =0.

cyclic

4. The equation of th€I-line joining the circumcentef@®S, : b>Sp : c2Sc) to
and the incentefa : b : ¢) is

0= > (V*Spc—cScb)z =Y be(bSp — cSc).

cyclic cyclic
SincebSp — ¢Sc = --- = —2(b — ¢)s(s — a) (exercise), this equation can be
rewritten as
Z be(b — ¢)s(s —a)x = 0.
cyclic
or )
Z ( *C)(S*a)mzo‘
a
cyclic

5. The line joining the two Fermat points

1 1 1
= = (\/gSAiS:\/gSBiS : ﬁSCis)
(V3Sp £ 8)(V3Sc£S) i)

has equation

1 1
0= Z ((\/§SB+S)(\/§SCS) - (\/5535)(\/550+S))L

cyclic

B Z (v3Sp — S)(vV/3Sc + S) — (vV3Ss + S)(V/3Sc — S)
- (3555 — 52)(35cc — 52) v

cyclic

_ 2v3(Sp — Sc)S
= X ((3533 —5%)(35cc - 52)> v

cyclic

Clearing denominators, we obtain

Z (Sp — Sc)(3Saa — S?)z = 0.

cyclic

4.1.3 Intercept form: tripole and tripolar

If the intersections of a liné& with the side lines are

X=0:v:—w), Y=(—u:0:w), Z=(u:-v:0),

the equation of the ling is

X z
)
u v w

We shall call the poinP = (u : v : w) thetripole of £, and the linel thetripolar of

P.
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Construction of tripole

Given a linel intersectingBC, CA, AB at X, Y, Z respectively, let
A =BYncCz, B'=CZnAX, C'= AX NBY.
The linesAA’, BB’ andC'C’ intersect at the tripol@ of L.

Construction of tripolar
Given P with tracesAp, Bp, andCp on the side lines, let
X = BpCp N BC, Y =CpApNCA, Z =ApBpNAB.

These pointsY, Y, Z lie on the tripolar ofP.

Exercises

1. Find the equation of the line joining the centroid to a givempP = (u : v : w).
1

2. Find the equations of the cevians of a pafhts (u : v : w).

3. Find the equations of the angle bisectors.

1Equation:(v — w)x + (w — uw)y + (u — v)z = 0.
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4.2 Infinite points and parallel lines

4.2.1 The infinite point of a line

The infinite point of a linel has homogeneous coordinates given by the difference of
the absolutebarycentric coordinates of two distinct points on the lifes such, the
coordinate sum of an infinite point is zero. We think of all iitié points constituting
the line at infinity,L ., which has equatiom + y + z = 0.

Examples

1. The infinite points of the side lineBC, CA, ABare(0: —1:1),(1:0: —1),
(—1:1:0) respectively.

2. The infinite point of thed—altitude has homogeneous coordinates

(0:Sc:8p)—a*(1:0:0) = (—a®: Sc : Sp).

3. More generally, the infinite point of the line: + qy + rz =0 is

(g—r:r—p:p—q).

4. The infinite point of the Euler line is the point

3(Spc: Sca:Sap)—SS(1:1:1)~ (3Sgc—55:35c4—5S5 :3S45—S585).

5. The infinite point of theDI-line is

(ca(c—a)(s—b) —abla—Db)(s—¢) -1
~ (a(a®*(b+c)—2abc— (b+c)(b—c)?):---:---).

4.2.2 Parallellines

Parallel lines have the same infinite point. The line throfigk (v : v : w) parallel to
L : px + qy + rz = 0 has equation

g—r r—p p—g¢
u v w
T Y z

=0.
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Exercises

1. Find the equations of the lines througth= (u : v : w) parallel to the side lines.

2. Let DEF be the medial triangle oA BC', and P a point with cevian triangle
XY Z (with respect toABC. Find P such that the lineD X, FY, FZ are
parallel to the internal bisectors of anglésB, C respectively?

2The Nagel pointP = (b+c—a: c+a—b:a+b— c). N. Dergiades, Hyacinthos, message 3677,
8/31/01.
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4.3 Intersection of two lines
The intersection of the two lines

pir+qy+rz=0,
P2x + g2y + 122 =0
is the point
((117“2 — @271t T1P2 — r2P1 f P1G2 *P2Q1)~

The infinite point of a linel can be regarded as the intersectiorfofvith the line at
infinity Lo : x+y + 2 = 0.
Theorem

Three linep;x + ¢;y + r;2 = 0,4 = 1,2, 3, are concurrent if and only if

P1 @1 M
P2 q2 T2
P33 g3 T3

=0.

4.3.1 Intersection of the Euler and Fermat lines

Recall that these lines have equations

Z SA(SB — Sc)l‘ = O,

cyclic

and
Z (SB - Sc)(3SAA — 52)l‘ =0.

cyclic

The A-coordinate of their intersection

= SB(Sc —Sa)(Sa— SB)(3Scc — S?)

*SC(SA - SB)(SC - SA)(3SBB — S2)
= (S¢ —S4)(Sa—SB)(SB(3Scc — 8?) — Sc(3Spp — S?))
= (S¢ —S4)(Sa —SB)(3Spc(Sc — Sp) — S*(Sp — Sc))
—(8p — Sc)(Sc — Sa)(Sa — SB)(3SBc + S?).

This intersection is the point
(3Spc + 5% :3Sca + S :3Sap + S?).

Since(3Spc : 3Sca : 3Sap) and(S? : S? : S?) representd and G, with equal
coordinate sums, this point is the midpoint@f7. 3

3This point appears iETC asX3g1 .
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Remark

Lester has discovered that there is a circle passing the énodt points, the circum-
center, and the nine-point centérThe circle withGH as diameter, whose center is
the intersection of the Fermat and Euler line as we have slatewe, is orthogonal to
the Lester circle® It is also interesting to note that the midpoint between taerfat
points is a point on the nine-point circle. It has coordisdfé® — c2)? : (c? — a?)? :
(az _ b2)2). 6

4.3.2 Triangle bounded by the outer side lines of the squaresected
externally

Consider the squarBC X, X, erected externally oBC. SinceX; = (—a? : S¢ :
Sp + 5), and the lineX; X, being parallel taBC, has infinite poin{0 : —1 : 1), this
line has equation

(Sc + Sp + S)x + a*y +a*z = 0.

SinceSp + S = a?, this can be rewritten as
a*(x+y+2z)+ Sz =0.

Similarly, if CAY,Y,; andABZ, Z, are squares erected externally on the other two
sides, the line1 Y, andZ; Z; have equations

V(+y+2)+Sy=0

and
Alx+y+2)+82=0

4J.A. Lester, Triangles, lll: complex centre functions areV/&s theoremAequationes Math53 (1997)
4-35.

5P. Yiu, Hyacinthos, message 1258, August 21, 2000.

6This point appears a&115 in ETC.
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A*

Ba

B* Ay A. c*

respectively. These two latter lines intersect at the point

X =(—(b*+c*+9):b*:2).
Similarly, the linesZ; Z, and X, X, intersect at

Y = (a®: —(c* +a*>+85) : %),
and the linesX; X, andY; Y5 intersect at

Z = (a®:b*: —(a® + >+ 9)).
The triangleX'Y Z is perspective witd BC, at the point

K = (a®:0%: ).

This is called thesymmedian pointf triangle ABC. ’

Exercises
1. The symmedian point lies on the line joining the Fermat point

2. The line joining the two Kiepert perspectdk§+6) has equation

> (SB = Sc)(Saa — §%cot® )z = 0.
cyclic
Show that this line passes through a fixed pdint.
3. Show that trianglel? B C? has the same centroid as triangi&C.

4. Construct the parallels to the side lines through the synienegoint. The 6
intersections on the side lines lie on a circle. The symnreplant is the unique
point with this property?

“It is also known as the Grebe point, and appeaiSTi€ as the pointXe.
8The symmedian point.
9This was first discovered by Lemoine in 1883.
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5. Let DEF be the medial triangle o BC. Find the equation of the line joining
D to the excentef, = (—a : b : ¢). Similarly write down the equation of the
lines joining toE' to I, and F' to I.. Show that these three lines are concurrent
by working out the coordinates of their common poffit.

6. The perpendiculars from the excenters to the corresporsides are concur-
rent. Find the coordinates of the intersection by noting litow related to the
circumcenter and the incentét.

7. Let D, E, F be the midpoints of the sidd3C, C A, AB of triangle ABC'. For
a point P with tracesAp, Bp, Cp, let X, Y, Z be the midpoints oBpCp,
CpAp, Ap Bp respectively. Find the equations of the linex(, EY, F'Z, and
show that they are concurrent. What are the coordinatesofititersection??

8. Let D, E, F be the midpoints of the sides &fC, C A, AB of triangle ABC,
andX, Y, Z the midpoints of the altitudes from, B, C respeectively. Find the
equations of the line® X, EY, F'Z, and show that they are concurrent. What
are the coordinates of their intersectidd?

9. GiventriangleABC, extend the sidedC to B, andAB to C, suchthat B, =
BC, = a. Similarly defineCy, A, A., andB.. The linesB,C,, CyAs, and
A.B. bound a triangle perspective withBC'. Calculate the coordinate of the

perspectort*
0This is the Mittenpunk{a(s — a) : --- : ---); it appears irETC as Xg.
UThis is the reflection of in O. As such, it is the poinr2O — I, and has coordinates
(a(a® +a?(b+c)—alb+e)2—(b+c)(b—c)?):---:---).

This point appears a¥ 4o in ETC.
12The intersection is the point dividing the segmét® in the ratio3 : 1.
13This intersection is the symmedian poiiit= (a? : b2 : ¢?).

14(‘;<+l’c—+fi ;.. :...). This appears iETC as Xg5.
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4.4 Pedal triangle

The pedals of a poinP = (u : v : w) are the intersections of the side lines with the
corresponding perpendiculars throughThe A—altitude has infinite pointly — A =
(0:8c:8p)—(Sp+Sc:0:0)=(—a?: Sc : Sg). The perpendicular through

to BC is the line

7&2 SC SB
U v w | =0,
T Y z

or
—(Spv — Scw)x + (Spu + a*w)y — (Scu + a*v)z = 0.

A

Bip

This intersectBC at the point
App = (0: Scu+ a*v: Spu+ d’w).

Similarly the coordinates of the pedals 6M and AB can be written down. The
triangle A p; B|p)C|p) is called thepedal triangleof triangle ABC"

Alpy 0 Scu+a’v  Spu+ a’w
B[p] = | Scv+ b?u 0 Sav + 2w
C’[p] Spw + 2u  Saw + v 0
4.4.1 Examples

1. The pedal triangle of the circumcenter is clearly the metdiahgle.

2. The pedal triangle of the orthocenter is called dhthic triangle. Its vertices are
clearly the traces off, namely, the point$0 : S¢ : Sg), (Sc : 0 : S4), and
(SB 5S4 0).

3. Let L be the reflection of the orthocent&rin the circumcente®. This is called
the de Longchamps point> Show that the pedal triangle df is the cevian
triangle of some poinP. What are the coordinates &f? 16

15The de Longchamps point appearsXs in ETC.
16p = (S, : Sp : Sc) is the isotomic conjugate of the orthocenter. It appeaTi@ as the pointXgg.
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4. Let L be the de Longchamps point again, with homogeneous banjceoabrdi-
nates

(Sca+Sap — Spc : Sap +Spc —Sca : Spc + Sca— Sas).

Find the equations of the perpendiculars to the side lingseatorresponding
traces of L. Show that these are concurrent, and find the coordinatdseof t

intersection.
The perpendiculart®C atAr = (0: Sap+Spc—Sca : Spc+Sca—Sap)
is the line
0 Sap+SBc —Sca Sec+Sca—Sap | =0.
x Y z
This is

S2(Sp — Sc)x —a*(Spc + Sca — Sap)y + a*(Spc — Sca + Sap)z = 0.

Similarly, we write down the equations of the perpendicsilatr the other two
traces. The three perpendiculars intersect at the point

(a2(S2S2 + S22 — S282) -1 ---).

Exercises

1. Let D, E, F be the midpoints of the sideBC, CA, AB, andA’, B’, C' the
pedals ofA, B, C on their opposite sides. Show th&t= FC' N FB',Y =
FA'NDC’',andZ = DB’ N EC" are collinear!®

2. Let X be the pedal ofi on the sideBC of triangle ABC. Complete the squares
AX X, A, andAX X, A, with X;, and X, on the lineBC. *°

1"This point appears iETC asX197s. Conway calls this point thiegarithm of the de Longchamps paint

18These are all on the Euler line. See G. Leversha, Problem @#%8olutionCrux Mathematicorum24
(1998) 303; 25 (1999) 371 -372.

19A.P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.
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(a) Calculate the coordinates df, and A,.. 2°

(b) Calculate the coordinates df = BA. N CA,. %

(c) Similarly defineB’ andC’. Triangle A’B’C" is perspective wittABC.
What is the perspectof?

(d) Let A” be the pedal oA’ on the sideBC'. Similarly defineB” andC".
Show thatA” B”C"" is perspective withA BC' by calculating the coordi-
nates of the perspecté?.

204, = (a?:—-S:S)andA. = (a®>: S : —9).

1A = (a? : S : S).
22The centroid.
23( sA1+s : sBl+s : scl+s)' This is called the first Vecten point; it appears¥sss in ETC.
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4.5 Perpendicular lines

Givenalinel : px+qy+rz = 0, we determine the infinite point of lines perpendicular
to it. 24 The lineL intersects the side linesA and AB at the pointy” = (—r: 0 : p)
andZ = (¢ : —p: 0). Tofind the perpendicular from to L, we first find the equations
of the perpendiculars fromi to AB and fromZ to C'A. These are

Sg Sa —c? S —b%> Sy
—-r 0 p =0 and q —-p 0 |=0
T Y z T Y z
These are
Sapxr + (c2r — Spp)y+ Sarz = 0,
Sapx + Saqy + (b*°q— Sep)z = 0.

These two perpendiculars intersect at the orthocenteiapigle AY 7, which is the
point

X' = (xxxx%:8ap(Sar —b*q+ Scp) : Sap(Saq+ Spp — *r)
~ (xxxxn:So(p—q) = Salg—r): Salg —r) = Sp(r —p)).

The perpendicular froml to L is the lineAX’, which has equation

1 0 0
wx% So(p—q)—Salg—r) —Salg—r)+Sp(r—p) | =0,
x Y z

or
—(Salg—r)—=Sp(r—p)y+ (Sc(p —q) —Salg—1))z =0.
This has infinite point
(Sp(r—p) —=Sc(p—q): Sc(p—q) — Salqg—r1) : Salqg—7r) — Sp(r —p)).

Note that the infinite pointof is (¢ — r : » — p : p — ¢). We summarize this in the
following theorem.

241 learned of this method from Floor van Lamoen.
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Theorem
If aline £ has infinite point f : g : h), the lines perpendicular © have infinite points
(f':g : W)= (Sgg— Sch:Sch—Saf:Saf— Sgg).

Equivalently, two lines with infinite point§f : g : h) and(f’ : ¢’ : h’) are perpendic-
ular to each other if and only if

Saff' + Spgg’ + Schh' = 0.

4.5.1 The tangential triangle

Consider the tangents to the circumcircle at the verticdge radiusO A has infinite
point

(a®S4 : b*Sp : 2Sc) — (252 :0:0) = (—(b2Sp + 2S¢) : b2Sp : 2S¢).
The infinite point of the tangent at is
(b*SpE — *Scc : ?Scc + Sa(b*Sp + *Sc) : —=Sa(b?Sp + *Sc) — b*SEp).
Consider theB-coordinate:

ASoc+Sa(b?Sp+c2Sc) = S (S +Sa) +02Sap = b3 (2 S+ Sap) = 0252

Similarly, theC-coordinate =¢252. It follows that this infinite point ig — (b —
c?) : b% : —c?), and the tangent at is the line

1 0 0
(=) b —c?

T Y z

207
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or simplyc?y+b%z = 0. The other two tangents at&z + a2z = 0, andb?z+a’y = 0.
These three tangents bound a triangle with vertices

A/:(—a2:b2:c2), B/:(a2:—b2:c2), C/:(O/2Zb21—c2).

This is called theangential triangleof ABC. It is perspective wittA BC at the point
(a? : b2 : ¢?), the symmedian point.

4.5.2 Line of ortho-intercepts
25

Let P = (u: v : w). We consider the line perpendicularAd® at P. Since the line
AP has equatiomwy — vz = 0 and infinite poinf{ — (v +w) : v : w), the perpendicular
has infinite point(Spv — Scw : Scw + Sa(v + w) : —Sa(v + w) — Spv) ~
(Spv — Scw : Sav + b*w : —Saw — c®v). Itis the line

U v w
Spv — Scw  Sav+b*w —Siw—cv | =0.
T y z

This perpendicular line intersects the side IIR€' at the point

(0 : u(Sav + b*w) — v(Spv — Scw) : —u(Saw + *v) — w(Spv — Scw))
~ (0:(Sau— Spv+ Scw)v + b*wu : —((Sau+ Spv — Scw)w + *uv)).

A

BN

Similarly, the perpendicular tB P at P intersects” A at

(—=((=Sau+ Spv + Scw)u + a*vw) : 0 : (Sau + Spv — Scw)w + c2uw)

25B. Gibert, Hyacinthos, message 1158, August 5, 2000.



56 YIU: Introduction to Triangle Geometry

and the perpendicular 0P at P intersectsA B at
((=Sau+ Spv + Scw)u + a*vw : —((Sau — Spv + Scw)v + b*wu) : 0).

These three points are collinear. The line containing thasdyuation

x
Z (=Sau+ Spv + Scw)u + a2vw 0

cyclic

Exercises

1. If triangle ABC' is acute-angled, the symmedian point is the Gergonne pbint o
the tangential triangle.

2. Given a lineL, construct the two points each havidgas its line of ortho-
intercepts 28

3. The tripole of the line of ortho-intercepts of the incentethie poin{
L) 27

s—cC

a . _b .
s—a ° s—b "

4. Calculate the coordinates of the tripole of the line of ofitiercepts of the nine-
point center?®

5. Consideralinél : px + qy + rz = 0.
(1) Calculate the coordinates of the pedalsiof3, C on the linel. Label these
pointsX, Y, Z.
(2) Find the equations of the perpendiculars frdmY’, Z to the corresponding
side lines.

(3) Show that these three perpendiculars are concurrethtjetermine the coor-
dinates of the common point.

This is called therthopoleof L.

6. Animate a pointP on the circumcircle. Contruct the orthopole of the diameter
OP. This orthopole lies on the nine-point circle.

7. Consider triangled BC' with its incircle I(r).

(a) Construct a circleX,,(p,) tangent toBC' at B, and also externally to the
incircle.
. . . —sb)?
(b) Show that the radius of the cirdl&},) is p, = =52

(c) Let X.(p.) be the circle tangent t&C at C, and also externally to the
incircle. Calculate the coordinates of the pedabf the intersectioBX.N
CX, on the lineBC. 2°

260ne of these points lies on the circumcircle, and the othehemine-point circle.

2TThis is a point on the) I-line of triangle ABC.. It appears irETC as X57. This point dividesOT in
the ratioOXs7 : O =2R+r : 2R —r.

28(a2(35% — S44) : -+ :---). This pointis not in the current edition &TC.

20 : (s —c)?: (s —b)2).
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(d) DefineB’ andC’. Show thatA’ B’C" is perspective withA BC' and find
the perspectof?

30( 1 . 1 . 1
s—a)2 " (s=b)2 ' (s—c)2

3359, 8/6/01.

). This point appears iETC as X279. See P. Yiu, Hyacinthos, message
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4.6 Appendices

4.6.1 The excentral triangle

The vertices of the excentral triangle 4BC are the excenter,, I, I..

(1) Identify the following elements of the excentral tridgaan terms of the elements

of triangle ABC'.
Excentral triangld,I,I. Triangle ABC
Orthocenter I
Orthic triangle TriangleABC
Nine-point circle Circumcircle
Euler line OlI-line
Circumradius 2R
Circumcenter I’ = Reflection ofl in O
Centroid dividesDI in the ratio—1 : 4.

The centroid of the excentral triangle is also the centrdifl bV,,. 3!

(2) LetY be the intersection of the circumcirql®) with the linel.I, (other than
B). Note thatY is the midpoint of/.1,. The lineY O intersects” A at its midpointE
and the circumcircle again at its antipodé SinceFE is the common midpoint of the
segments).Q, andQQy,

() YE = %(rc +74);

(i) EY' = 3(rq — ).

SinceYY’ = 2R, we obtain the relation

e+ 7o +7r.=4R+ 1.

31problem 10763 and solutioAmer. Math. Monthlyl08 (2001) 671.
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4.6.2 Centroid of pedal triangle

We determine the centroid of the pedal triangldoby first equalizing the coordinate
sums of the pedals:

Aipp = (0:Scu+ a*v : Spu + a*w) ~ (0 : B2 (Scu + a®v) : b2 2(SBu + a’w))
Bipp = (Scv+ bu:0: Sav + b2w) ~ (2a®(Scv + b%u) : 0: c2a?(Sav + b*w))
Cipp = (Spw+cu:Saw+c®v:0) ~ (a®b*(Spw + *u) : azbz(SAw + c?v) : 0).

The centroid is the point
(2a2b202u+a2c2ch+a2bQSBw b2 Scu+t2a?b i v+a?b?Saw b2c253u+caa2SAv+2a2b2c2w).

This is the same point & if and only if

2a0°0%c2u  + a?c2Scv + @?b2Spw = ku,
B2c2Scu  + 2ab v+ a?bPSaw = kv,
b2c2Spu  +  2a?Sav + 2002w = kw

for somek. Adding these equations, we obtain
3a*0*P (u + v+ w) = k(u+ v + w).

If P = (u:v: w)is a finite point, we must have = 3a?b?c*>. The system of
equations becomes

a?b’Cu + a C2SCU + a?’Spw = 0,
b2 AScu  —  a?b?? + a?’Saw = 0,
b2c2Sgu  + c2a25AU — a®b*tw = 0.
Now it it easy to see that
- S S, S Sc  —b?
22 .22 . 22 _ A e A | c
b“c’u: c®a®v : a*b*w = ‘SA 2 ‘SB 2 ‘SB Sa
= 0% — San:*Sc + Sap : Sca +b°Sp
— S2 S2 S2
= 1:1:1.

It follows thatw : v : w = a? : b? : ¢, andP is the symmedian point.

Theorem (Lemoine)

The symmedian point is the only point which is the centroid®bwn pedal triangle.

4.6.3 Perspectors associated with inscribed squares

Consider the squaté, A, A, A; inscribed in triangleA BC', with A4, A. on BC. These
have coordinates

Ap=(0:Sc+S5:Sp), Ac.=(0:S¢c:Sp+595),

Aj = (a?:5:0), Al =(a%:0:5).
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Similarly, there are inscribed squar8s B, B, B.. and C,C;,C;C", on the other two

sides.

Here is a number of perspective triangles associated wétbetsquares? In each
case, we give the definition of,, only.

n A, Perspector of A, B,,C),

1 BB.NCGC orthocenter

2 BA.NCA, circumcenter

3 BC/,NCB, symmedian point

4 B!B;NC;Cy symmedian point

) B{:BQOCZC{} X493:(#1'”1”~)

6 CrAy,NA.B. Kiepert perspector K (arctan2)

7T Co,A.NApB, Kiepert perspector K (arctan2)

8 C.,A.N B,A, (Sg—js)

9 C(IIA;7 N B(;AL X394 = (a2SAA : b2SBB : Czscc)

ForA,, BCA! A}, CAB]! B! andABC}/ C/ are the squares constructed externally

on the sides of triangld BC'.

32K .R. Dean, Hyacinthos, message 3247, July 18, 2001.
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Circles |

5.1 Isogonal conjugates

Let P be a point with homogeneous barycentric coordinatesy : z).
(1) The reflection of the ceviad P in the bisector of anglel intersects the line

2

BC atthe pointX’ = (0 : % D).
Proof. Let X be theA-trace of P, with ZBAP = 6. This is the pointX = (0 : y :
2) = (0: 54— Sp : —c?)in Conway’s notation. It follows that s — Sy : —c®> =y : 2.
If the reflection ofA X (in the bisector of angldl) intersectsBC at X', we haveX’ =

2

(0:—=b%: Sa—Sp) = (0: —b%c®: *(Sa — 8p)) = (0: b2z : Py) = (0: &+ ©),

B X x/ C
(2) Similarly, the reflections of the ceviardsP” and C'P in the respective angle
bisectors interseet'A atY”’ = (% 10 é) andAB atZ' = (‘;—,2 : % :0).
(3) These points(’, Y’, Z’ are the traces of
2 b2 2
P = (a_ = C—> = (a®yz : b2z : Pay).
r Yy =z

The pointP* is called theisogonal conjugatef P. Clearly, P is the isogonal
conjugate ofP*.
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5.1.1 Examples

1.

The isogonal conjugate of the centraids the symmedian poink = (a2 : b? :
c?).

. The incenter is its own isogonal conjugate; so are the egcegnt

1

. The isogonal conjugate of the orthocentér= (g~ : 5~ : g-)is (a®Sa :

b2Sp : c2Sc), the circumcenter.

. The isogonal conjugate of the Gergonne pdigt= (= : & : 1) is the

s—a s—cC
point(a?(s — a) : b*(s — b) : ¢3(s — c)), the internal center of similitude of the
circumcircle and the incircle.

. The isogonal conjugate of the Nagel point is the externaleresf similitude of

(O) and(I).

Exercises

1.

Let A’, B, C' be the circumcenters of the trianglesBC, OCA, OAB. The
triangle A’ B’C’ has perspector the isogonal conjugate of the nine-poinécén

. Let P be a given point. Construct the circumcircles of the pedahgles of P

and of P*. What can you say about these circles and their centers?

. Theisodynamic pointare the isogonal conjugates of the Fermat pofts.

(@) Construct the positive isodynamic poifit. This is a point on the line joining
O andK. How does this point divide the segmeni ?

(b) Construct the pedal triangle &f. What can you say about this triangle?

1

. Show that the isogonal conjugate of the Kiepert perspei@®) = (5. :

m : m) is always on the line@DK. How does this point divide the

segmentDK?

. The perpendiculars from the vertices4BC to the corresponding sides of the

pedal triangle of a poinP concur at the isogonal conjugate Bf

1This is also known as the Kosnita point, and appeafSTi€ as the pointXs,.
2These appear iETC as the pointsX5 and X15.
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5.2 The circumcircle as the isogonal conjugate of the
line at infinity
Let P be a point on the circumcircle.

(1) If AX and AP are symmetric with respect to the bisector of anglendBY,
B P symmetric with respect to the bisector of angdlethenAX andBY are parallel.

Proof. Suppose/ PAB = 6 and/PBA = ¢. Note that? + ¢ = C. Since/ X AB =
A+ 6andZYBA = B + ¢, we have/ X AB + /Y BA = 180° andAX, BY are
parallel.

(2) Similarly, if CZ andC P are symmetric with respect to the bisector of angle
thenCZ is parallel toAX andBY .

It follows that the isogonal conjugate of a point on the amaircle is an infinite
point, and conversely. We may therefore regard the circratechs the isogonal conju-
gate of the line at infinity. As such, the circumcircle hasatén

a’yz + b2zx + ay = 0.

Exercises
1. Animate a pointP on the circumcircle.
(1) Construct théocusof isogonal conjugate®f points on the line) P.
(2) Construct the isogonal conjugdapeof the infinite point of the line) P.
The point lies on the locus in (1).

2. Animatea pointP on the circumcircle. Find thiecusof theisotomic conjugate
pe.3

3The linea2x + b2y + c2z = 0.
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3. Let P and@ be antipodal points on the circumcircle. The linfe@°® and@QP*

joining each of these points to theotomic conjugateof the other intersect
orthogonally on the circumcircle.

. Let P and@ be antipodal points on the circumcircle. What is the locuthef

intersection ofPP* andQQ*?

. LetP = (u:v:w). ThelinesAP, BP, C'P intersect the circumcircle again at

the points
AP —a?vw o w
- v+ b2w ’
32
BP — (w2 L),
a?w + cu
2
cP  — AL L
wev b2u + a?v

These form the vertices of th@&rcumcevian trianglef P.
(a) The circumcevian triangle d@? is always similar to the pedal triangle.

(b) The circumcevian triangle of the incenter is perspectiith the intouch
triangle. What is the perspectof?

(c) The circumcevian triangle d? is always perspective with the tangential tri-
angle. What is the perspectoy?

4The external center of similitude of the circumcircle and ittcircle.
4 4 4
M@ (Gt gr) )

v
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5.3 Simson lines

Consider the pedals of a poift= (u : v : w):

Aipp = (0:Scu+ a*v : Spu + a*w),
Bipp = (Scv+b%u:0:Sav+bw),
Cpp = (Spw + u : Sqw + v : 0).

These pedals aP are collinear if and only ifP lies on the circumcircle, since

0 Scu+a?v  Spu+ a?w
Scv + b*u 0 Sav + b2w
Spw+ 2u Saw + v 0
a®> Scu+a*v Spu+ a’w
b2 0 Sav + b*w
2 Saw+ v 0

(u+v+ w)

= (u+v+w)(Sap + Spc + Sca)(a*vw + b*wu + Puv).

If P lies on the circumcircle, the line containing the pedalsited theSimson line
s(P) of P. If we write the coordinates oP in the form(? : % : %) = (a%gh :
b2hf : ¢ fg) for an infinite point(f : g : k), then

Ap = (0:a®Scgh+a®b°hf : a®Spgh + ac fg)
~ (0:=h(Sch—Saf):g(Saf —SBg)).

This becomesip) = (0 : —hg’ : gh') if we write (f' : ¢’ : h') = (Spg — Sch :
Sch —Saf: Saf — Spg) for the infinite point of lines in the direction perpendicula
to (f : g:h). Similarly, Bjp) = (hf': 0: —fh') andCip; = (—gf" : fg’' : 0). The
equation of the Simson line is

f g

h
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Itis easy to determine the infinite point of the Simson line:

Bp—Cipp = cz(cherZu :0: SAv+b2w) - bz(SBquczu s Saw + v 0)
(k%% : —b2(Saw + c*v) : *(Sav + b*w))

(xx%:Sch—Saf:Saf —SBg)
= (f :g:h).

The Simson lines(P) is therefore perpendicular to the line definify It passes
through, as we have noted, the midpoint betwéEmand P, which lies on the nine-
point circle.

5.3.1 Simson lines of antipodal points

Let P and@ be antipodal points on the circumcircle. They are isogooajugates of
the infinite points of perpendicular lines.

Therefore, the Simson lineg P) ands(Q) are perpendicular to each other. Since
the midpoints ofH P and H( are antipodal on the nine-point circle, the two Simson
lines intersect on the nine-point circle.
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Exercises

1. Animate a point P on the circumcircle of trianglel BC' andtrace its Simson
line.

2. Let H be the orthocenter of trianglé BC, and P a point on the circumcircle.
Show that the midpoint off P lies on the Simson ling(P) and on the nine-point
circle of triangleABC.

3. Let £ be the lineZ 4 £ 4 = = 0, intersecting the side lineBC, C A, AB of
triangle ABC atU, V, W respectively.

(a) Find the equation of the perpendiculars?6’, CA, AB atU, V, W re-
spectively®

(b) Find the coordinates of the vertices of the triangle ltmehby these three
perpendiculars’

(c) Show that this triangle is perspective witBC' at a pointP on the cir-
cumcircle ®

(d) Show that the Simson line of the poiRtis parallel toL.

8(Spv 4+ Scw)x 4+ a’wy + avz = 0, etc.
7(=82u? 4S5 puv+Spcvw+Scawu : b2 (Puv—S 4uw—Spvw) : 2 (bPuw—S uv—Scvw),
etc.

8 2
P = a S e
(—a2vw+53uv+scuw : : )
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5.4 Equation of the nine-point circle

To find the equation of the nine-point circle, we make use efftttt that it is obtained
from the circumcircle by applying the homothétyG, —1). If P = (z : y : ) is a
point on the nine-point circle, then the point
Q=3G-2P=(z+y+2)(1:1:1)-2x:y:2)=(y+z—z: 24—y :x+y—=2)
is on the circumcircle. From the equation of the circumeirgbe obtain
(zta—y)ety—2)+@+y—2)y+z—)+Ay+z—a)(z+z—y) =0,
Simplifying this equation, we have

0= Z a?(x? —y* 4+ 2yz — 2°%) = Z (a® — & — b*)a? + 2d%yz,

cyclic cyclic

or
Z Saz? —a’yz =0.

cyclic
Exercises

1. Verify that the midpoint between the Fermat points, nantbly point with coor-
dinates
((b2 o 62)2 . (02 o (L2)2 . ((L2 o b2)2),

lies on the nine-point circle.
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5.5 Equation of a general circle

Every circleC is homothetic to the circumcircle by a homothety, $4¥', k), where
T = uA+vB + wC (in absolute barycentric coordinate) is a center of siorlé ofC
and the circumcircle. This means thafifz : y : z) is a point on the circl€, then
h(T,k)(P) = kP+(1—K)T ~ (z+tu(z+y+z) : y+tv(z+y+z) : z+tw(z+y+2)),

wheret = 1%’“ lies on the circumcircle. In other words,

0

> aP(ty+v(@+y+2)(tz+w@+y+2)

cyclic

= Z a’(yz + t(wy +v2)(z +y + 2) + tPow(z + y + 2)?)
cyclic

= (aPyz + b%zx + Pay) + 1 Z a*(wy +vz2))(x +y + 2)
cyclic

+t2(a?vw + b*wu + Fuv)(z + y + 2)?
Note that the last two terms factor as the product efy + z and anothelinear form
It follows that every circle can be represented by an eqgnatfdghe form
a’yz +b%zx + ay + (x +y + 2)(pr + qy +rz) = 0.
The linepz + qy + rz = 0 is theradical axisof € and the circumcircle.
Exercises
1. The radical axis of the circumcircle and the nine-pointleiiis the line

Saz + Sy + Scz = 0.

2. The circle through the excenters has center at the refleatidin O, and radius
2R. Find its equation’

9a2yz + b2zx + 2xy + (x + y + 2)(bex + cay + abz) = 0.
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5.6 Appendix: Miquel Theory

5.6.1 Miquel Theorem

Let X, Y, Z be points on the line8C, C A, and AB respectively. The three circles
AY Z,BZX,andCXY pass through a common point.

5.6.2 Miquel associate

SupposeX, Y, Z are the traces aP = (u : v : w). We determine the equation of the
circle AY Z. 10 Writing it in the form

a’yz +b%zx + Ay + (z+y+2)(pr+qy+rz) =0

we note thap = 0 since it passes through = (1 : 0 : 0). Also, with (z : y : z) =
(u:0:w), we obtainr = —u’jz—Jr“u. Similarly, with (z : y : z) = (v : v : 0), we obtain
q= —5%. The equation of the circle

Cayz: a’yz +b%zx + oy — (v +y+ 2) (%y—i— %z) =0.
Likewise, the equations of the other two circles are

Cpzx : a2y2+b22w+62my7(w+y+z)(5ﬁjw+;iz)z):o,

and the one througt, X, andY has equation

Coxy : a’yz + b2z + cay — (ac—l—y—i—z)(f}z—ﬁx—i— ;iﬁy) =0.

By Miquel's Theorem, the three circles intersect at a péthtwhich we call the
Miquel associat®f P. The coordinates aP’ satisfy the equations

Au b%u o)) a’v b2w a’w

Y x z = T+ Y.
u—+v w4+ u u+v v+ w w+u v+ w

10For the case whelX, Y, Z are the intercepts of a line, see J.P. Ehrma@mmijner’s theorems on the
complete quadrilateralForum Geometricorum, forthcoming.
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Solving these equations, we have

[ ( a? ( a’vw N b2wu N c2uv>

v+ w _erw w+u u-+v

b? (asz b2wu Auv >
+ )

:w—i—u v+ w w4+ u U+ v

) 2 a?vw . b2wu Auv
"ut+v\v+w wHu utv '

Examples
P Miquel associate P’
centroid circumcenter
orthocenter orthocenter
Gergonne point incenter
incenter (a2(a3+a2(b+c)—a(b2b+bc+c2)—(b+c)(b2+c2)) )
( . : :
Nagel Point  (a(a® +a?(b+¢c) —a(b+c)®> —(b+c)(b—c)?):-:--+)

5.6.3 Cevian circumcircle

The cevian circumcircle aP is the circle through its traces. This has equation
(a®yz +b%z2 + Pay) — (x+y +2)(pr +qy+7r2) = 0,

where

a?ow b2wu cuv

up + wr =

vq + wr =

v4w’ w+u’ u+v

Solving these equations, we have

1 ( aZow b2wu czuv)
- )

@ v+ w w4+ u U+ v
1 a?vw b2wu Auv

q = 2_ - + 9
v \v+w w4+ u U+ v
1 a®vw b2wu cuv

r = — — .
2w \v+w wH+u u4v

5.6.4 Cyclocevian conjugate

The cevian circumcircle intersects the liB&€" at the points given by
a’yz — (y + 2)(qy +12) = 0.
This can be rearranged as

qy® + (q+r—a2)yz—|—r22 =0.
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The product of the two roots af : z is 5 Since one of the rootg : z = v : w, the
other root is%. The second intersection is therefore the point

1 1
X =0:rw:qu=0: —: —.
qu  rw

Similarly, the “second” intersections of the circ}eY Z with the other two sides can
be found. The ceviand X', BY”, andCZ" intersect at the poirt; : & : ;). We

qu

denote this by (P) and call it thecyclocevian conjugatef P. Explicitly,

w+u u+v

p 1 1 1
C( )_ _a?vw + b2wu + ccuv T avw b2wu + ccuv T a?vw + b2wu ccuv |-

v+w w+u u+v vfw | wtu u+v v+w

Examples

1. The centroid and the orthocenter are cyclocevian conjgg#ieir common ce-
vian circumcircle being the nine-point circle.

2. The cyclocevian conjugate of the incenter is the point

1
<a3+a2(b+6)—a(b2+bc+c2)—(b+C)(b2+cz) >

Theorem

Given a pointP, let P’ be its Miquel associate ar@ its cyclocevian conjugate, with
Miquel associateé)’.

[ ===
/7/”'

(a) P’ and(Q’ are isogonal conjugates.

(b) The linesPQ andP’'Q’ are parallel.

(c) The “second intersections” of the pairs of circks 7, AY'Z’; BZX, BZ'X’;
andC XY, CX'Y’ form atriangleA’ B'C’ perspective withrABC.

(d) The “Miquel perspector” in (c) is the intersection of ttnéinear polars ofP
and@ with respect to trianglel BC.
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Exercises
1. For a real number, we consider the triad of points
Xe=(0:1-t:1), Yi=(:0:1-1), Zy=(1-t:t:0)
on the sides of the reference triangle.

(a) The circletAY; Z;, BZ; X; andC X,Y; intersect at the point

M; = (a®(=ad®t(1 —t) + %> + 321 - t)?)
(b2 (a®(1 — 1) = b2(1 — t) + 2t?)
(A (@ +02(1—1)? — At(1 —1))).

(b) Writing M; = (z : y : z), eliminatet to obtain the following equation im,
Y, 2.

b 22 + Pa’y? + a®b%2% — oy — blzr — alyz = 0.
(c) Show that the locus af/; is a circle.

(d) Verify that this circle contains the circumcenter, tlyensnedian point, and
the twoBrocard points

and
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6.1 Equation of the incircle

Write the equation of the incircle in the form
a*yz + b2z + Cay — (x+y+2)(pr+qy+rz) =0

for some undetermined coefficienisq, r. Since the incircle touches the sid&” at
the point(0 : s —c:s—0),y:2=s—c:s—bisthe only root of the quadratic
equationn®yz + (y + 2)(qy + rz) = 0. This means that

ay® + (a+r —a’)yz +r2° = k((s = by — (s — )2)*

for some scalak.

Comparison of coefficients givés= 1 andg = (s—b)?,r = (s—c)?. Similarly, by
considering the tangency with the lid&A, we obtainp = (s — a)? and (consistently)
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r = (s — ¢)2. It follows that the equation of the incircle is
a’yz +b%zx + oy — (x+y+2)((s — a)’z + (s — b)*y + (s — ¢)?2) = 0.
The radical axis with the circumcircle is the line
(s —a)’x+ (s —b)*y+ (s —c)*2 =0.

6.1.1 The excircles

The same method gives the equations of the excircles:

a’yz + Vzx + ry — (v +y+ 2) (2 + (s — o) >y + (s — b)%2) = 0,
a’yz +b%zx + oy — (x+y+ 2)((s — ¢)?x + 52y + (s —a)?2) =0,
a’yz +b%zx + oy — (x+y+2)((s — b))%z + (s —a)*y + 5%2) =0

Exercises

1. Show that the Nagel point of triangiéBC' lies onits incircle if and only if one
of its sides is equal t§. Make use of this to design an animation picture showing
a triangle with its Nagel point on the incircle.

2. (a) Show that the centroid of triangléBC lies on the incircle if and only if
5(a% + b2 + %) = 6(ab + be + ca).
(b) Let ABC be anequilateraltriangle with cente©, and@ the circle, cente©,
radius half that of the incirle o BC. Show that the distances from an arbitrary
point P on C to the sidelines oA BC' are the lengths of the sides of a triangle
whose centroid is on the incircle.
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6.2 Intersection of the incircle and the nine-point circle

We consider how the incircle and the nine-point circle is¢et. The intersections of
the two circles can be found by solving their equations siamdously:

a®yz 4+ b2zx + oy — (x+y+ 2)((s — a)?z + (s — b)*y + (s — ¢)?2) = 0,
1
a’yz + bza + ay — i(x +y+2)(Sax+ Spy + Scz) = 0.

6.2.1 Radical axis of(7) and (V)
Note that

(s—a)2—%s,4 _ i((b+c—a)2—(b2+c2—a2)) - %(az—a(b—i—c)—i—bc) - %(a—b)(a—c).

Subtracting the two equations we obtain the equation of dldécal axis of the two
circles:

L (a—b)a—c)z+(b—a)b—c)y+ (c—a)(c—0b)z=0.
We rewrite this as

x n Y .

b—¢c c¢c—a a—b

There are two points with simple coordinates on this line:

0.

P=((b-c:(c—a)’:(a—0)?),

and
Q= (a(b—c)? :b(c —a)? : cla —b)?).

Making use of these points we obtain a very simple paranadioiz of points on the
radical axisC, exceptP:

(z:y:2)=(a+t)(b—c)?:(b+t)(c—a)®:(c+t)(a—0b)?

for somet.

6.2.2 The line joining the incenter and the nine-point cente

We find the intersection of the radical axisand the line joining the centefsand V.
It is convenient to write the coordinates of the nine-poieiter in terms ofi, b, c.
Thus,

N = (a2(b2—|—02) _ (b2 _02)2 . b2(02+a2) _ (02 _a2)2 . 02(a2+b2)— (a2 —b2)2)

with coordinate sungS2.1

Istart withNV = (S2 + Sgc : -+ - : - -+ ) (with coordinate sur.S2) and rewriteS? + Spo = --- =
(@2 4+ c?) — (b — c?)?).
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We seek a real numbérfor which the point

(a®(b* + ) — (b* — *)* + ka
b (c? +a?) — (2 —a*)? + kb
A(a® +b?) — (a® — b*)? + ke)

on the linel N also lies on the radical axis. With £ = —2abc, we have

a?(b* + ) — (b* — ¢*)? — 2a°be
— a2(b _ 6)2 _ (b2 _ 62)2
= (b 0Pa® — (b+0))

4s(a — s)(b—c)?,

and two analogous expressions by cyclic permutations bdfc. These give the coor-
dinates of a point ol with t = —s, and we conclude that the two lines intersect at the
Feuerbach point

F=(s—a)(b—c)?:(s=b)(c—a)*:(s—c)(a—Db)?).

We proceed to determine the ratio of divisibR : F'N. From the choice ok, we
have

F ~882.-N—2abc-2s-1=28S5%- N —4dsabc- I.

This means that

R
NF :FI = —4sabc: 85% = —8sRS : 852 = —sR:S=R:—2r = 3 DT
The pointF is the external center of similitude of the nine-point @rahd the incircle.
However, if a center of similitude of two circles lies on theddical axis, the circles
must be tangent to each other (at that center).

2Proof: Consider two circles of radji and g, centers at a distanag apart. Suppose the intersection
of the radical axis and the center line is at a distanciom the center of the circle of radiys, then
22 —p? = (d - ) — g% From this,e = £42°=¢ ‘andd — z = ©=2°+4" The division ratio is
z:d—x = d>+p?—q? : d>—p?+¢>. Ifthisis equal tg : —q, thenp(d? —p?+¢2)+q(d?>+p*—q?) = 0,
(p+ q)(d? — (p — q)?) = 0. From thisd = |p — q|, and the circles are tangent internally.
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Feuerbach’s Theorem

The nine-point circle and the incircle are tangent intdyni@ each other at the point
F, the common tangent being the line
x Yy z

=0.
b—c+c—a+a—b

The nine-point circle is tangent to each of the excirclegmdlly. The points of
tangency form a triangle perspective wHBC' at the point

F— ((b+c)2 (c+a)? (a+b)2>'

s—a s—b = s—c

Exercises
1. Show thatF’ and F’ divide I and N harmonically.

2. Find the equations of the common tangent of the nine-poiokecand the excir-
cles.®

3. Apart from their common tangent &t,, the nine-point circle and thé-excircle
have another pair of common tangents, intersecting at thearnal center of

3 irola- y _
Tangent to thed-excircle: ;% + P aib =0.
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similitude A’. Similarly defineB’ andC’. The triangleA’ B’C" is perspective
with ABC. What is the perspectof?

4. Let/ be a diameter of the circumcircle of triangl3C. Animate a pointP on¢
and construct itpedal circle the circle through the pedals £fon the side lines.
The pedal circle always passes through a fixed point on treemaint circle.

What is this fixed point if the diameter passes through theriter?

4The Feuerbach point.
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6.3 The excircles

Consider the radical axes of the excircles with the circuohei These are the lines

sr+(s—c)y+(s—b*: = 0,
(s —c)x+s%y+(s—a)’z = 0,
(s = b2z +(s—a)y+s2 = 0.

These three lines bound a triangle with vertices

A= (- (b+c)(a +(b+c)) b(a +0% - ) (e +a® — b?)),
B = (a(a +b2 ) —(c+a)(b? +(c+a)) c(b? + 2 —d?)),
' = (a(P+a® b)) :b(b? 4+ c? —a?): —(a+b)(P+ (a+D)?)).

The triangleA’ B'C" is perspective witd BC' at the Clawson poirit

a b c
5. 55 50 )
Exercises

1. Let Ay be the pedal ofA on the opposite sid8C of triangle ABC. Construct
circle B(Ag) to intersectAB at Cj, andC} (so thatC; in on the extension of
AB), and circleC'(Ap) to intersectAC at andB. and B/, (so thatB_, in on the
extension ofAC).

5This point appears iETC as the pointX;o.



82 YIU: Introduction to Triangle Geometry

(a) Let A; be the intersection of the lind3.C; andCy B,.. Similarly defineB;
andC,. Show thatd, B, C; is perspective witld BC at the Clawson poinf.

(b) LetAy = BB.NCCy, By = CC,NAA., andCy = AA,NBB,. Show that
Ay BoCs is perspective wittd BC. Calculate the coordinates of the perspector.
7

(c) LetAs = BB.NCC;, By = CC, NAA,, andCs = AA; N BB,,. Show that
A3 B3Cs is perspective wittA BC. Calculate the coordinates of the perspector.
8

2. Consider theB- andC-excircles of triangleABC. Three of their common tan-
gents are the side lines of triangleBC. The fourth common tangent is the
reflection of the lineBC in the line joining the excenteirlg and /..

(a) Find the equation of this fourth common tangent, andend@wn the equa-
tions of the fourth common tangents of the other two pairsxofreles.

(b) Show that the triangle bounded by these 3 fourth commugetats is homo-
thetic to the orthic triangle, and determine the homothetiater®

8A.P.Hatzipolakis, Hyacinthos, message 1663, October @3) 2
"Xors =(m teeerees)

BXog1 = (552 :-vvt-00)
Sa
9The Clawson point. See R. Lyness and G.R. Veldkamp, Prob&hasd solutionCrux Math.9 (1983)

23 -24.
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6.4 The Brocard points

Consider the circle through the verticdsand B and tangent to the sidaC' at the
vertexA. Since the circle passes throughand B, its equation is of the form

a’yz +b%zx + oy —rz(z +y+2) =0

for some constant. Since it is tangent telC at A, when we sety = 0, the equation
should reduce te? = 0. This means that = b2 and the circle is

Caap: a’yz + b2zx + Aoy — b2 z(x +y +2) = 0.

Similarly, we consider the analogous circles

Ceae : a’yz 4+ bzx + oy — Cx(z +y+2) = 0.
and

) 2 2 22 _
Cocoa : a“yz + b°zax + c*xy —a‘y(x +y + 2) = 0.

These three circles intersect at foeward Brocard point

1 1 1

This point has the property that
/ABQ_, = /BCQ_, = ZCAQ_,.

In reverse orientations there are three cir€les s, Czcc, andCe 44 intersecting
at thebackward Brocard point

1 1 1

/ZBAQ. = /ZCBQ_ = ZLACQ .

satisfying
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Note from their coordinates that the two Brocard points aogonal conjugates.
This means that the 6 angles listed above are all equal. Wateléme common value
by w and call this theBrocard angleof triangle ABC'. By writing the coordinates of
Q_. in Conway’s notation, it is easy to see that

1
cotw = §(SA+SB + Se).

The linesBQ2._ andCf)_, intersect atd_,,. Similarly, we haveB_,, = CQ. N
AQ_,,andC_, = AQ._ N BQ_,. Clearly the triangled_,B_,C_,, is perspective to
ABC at the point

ko= (s e (i),

which is the isotomic conjugate of the symmedian pdiht.

Exercises
1. The midpoint of the segmefit ). is theBrocard midpoint*
(a®(b? + c2) : B*(c* 4 a?) : P (a® + b?)).
Show that this is a point on the lif@K .

2. The Brocard circle is the circle through the three poifts,, B_,,, andC_,,. It
has equation
a?bc?

a? + b2+ c2

2 2,0 4 2 v rT Y LA\
a“yz + b zx + c“xy — (L+y+z)(a_2+b_2+c_2>70'

Show that this circle also contains the two Brocard p6éint and2._, the cir-
cumcenter, and the symmedian point.

10This is also known as thiiaird Brocard point It appears as the poiti¢ in ETC.
11The Brocard midpoint appears ETC as the pointXsg.
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3. Let XY Z be the pedal triangle ¢2_, and X'Y’Z’ be that ofQ.__.
A

B XXx’ c

(a) Find the coordinates of these pedals.
(b) Show thatt”’ 7 is parallel toBC.

(c) The triangle bounded by the three lifésZ, Z’ X andX'Y is homothetic to
triangle ABC. What is the homothetic centet?

(d) The trianglesXY Z andY’Z’ X’ are congruent.

12The symmedian point.
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6.5 Appendix: The circle triad (A(a), B(b), C(c))

Consider the circled(a). This circle intersects the lind B at the two pointgc + a :
—a:0),(c—a:a:0),andAC at(a+b:0: —a)and(b—a:0:a). It has equation

Cou: aPyz+b%2x+ Pay+ (x4 y+2)(ax + (a® — Ay + (a® —b*)z) = 0.
Similarly, the circlesB(b) andC(c) have equations

Cyp: a’yz+bizadCay+ (x+y+2)((0* - A)r + b2y + (b* —a?)z) =0,
and

Co: d’yz+bzx+ay+ (x+y+2)((2—b)a+ (¢ —a)y+c2) = 0.

These are called the de Longchamps circles of triaddghe’. The radical centef, of
the circles is the pointz : y : z) given by

a’z+(a® =) y+(a®>—b*)z = (¥ =)z +b2y+(b*—a?)z = (2 —b?)az+(c* —a?)y+c2z.
Forming the pairwise sums of these expressions we obtain
Saly+2) = Sp(z +1) = Sc(z +1).

From these,

1 1 1
y+z:z+x:r+y=—

SA:Q:%:SBCISCAISA&

and

z:y:z=>Sca+Sap—Spc :SaB+ Spc —Sca:Spc+Sca— Sas.
This is called thede Longchamps poirdf the triangle.r® It is the reflection of the
orthocenter in the circumcentee., L =2-0 — H.

Exercises

1. Show that the intersections 6f andC,. are the reflections oft
(i) in the midpoint of BC, and
(ii) in the perpendicular bisector @&C.
What are the coordinates of these poirits?

2. The circleC, intersects the circumcircle &’ andC’.

3. The de Longchamps poitit is the orthocenter of the anticomplementary trian-
gle, and triangled’ B’C” is the orthic triangle.

13The de Longchamps point appears as the paigg in ETC.
W(—1:1:1)andA’ = (—a? : b% — c2 : 2 — b?).
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6.5.1 The Steiner point

The radical axis of the circumcircle and the cir€gis the line
a*z 4 (a® — Ay + (a® = %)z = 0.

This line intersects the side lineC' at point

1 1
A’:(O:czazzazbz).

Similarly, the radical axis o€, hasb-intercept

1 1
/ . .

and that of©. hasc-intercept

1 1
C/:<—b2c2:7c2a2 :O).

These three pointd’, B’, C’ are the traces of the point with coordinates

11
b2—¢c2  c2—a2?2 a2-02)"

This is a point on the circumcircle, called tBéeiner point®

Exercises

1. The antipode of the Steiner point on the circumcircle isezhtheTarry point
Calculate its coordinate¥

2. Reflect the verticesl, B, C in the centroidG to form the pointsd’, B, C’

respectively. Use thive-point conic command to construct the conic through

A, B,C, A’, B',C”. This is theSteiner circum-ellipseApart from the vertices,
it intersects the circumcircle at the Steiner point.

3. Use thefive-point conic command to construct the conic through the vertices

of triangle ABC, its centroid, and orthocenter. This is a rectangular hypler

called theKiepert hyperbolawhich intersect the circumcircle, apart from the

vertices, at the Tarry point.

15Thls point appears aKgg in ETC.

(W -+). The Tarry point appears the poiitys in ETC.
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7.1 The distance formula

LetP = uA+vB +wC andQ = v’ A +v'B + w’C be given in absolute barycentric
coordinates. The distance between them is given by

PQ* = Ss(u—u')?+ Sp(v—v")2 + Sc(w —w')?

B C
Proof. ThroughP and(@ draw lines parallel toA B and AC respectively, intersecting
atR. The barycentric coordinates &fcan be determined in two wayR. = P+h(B—
C) = Q+k(A-C)for someh andk. Itfollows thatR = uA+(v+h)B+(w—h)C =
(W +k)A+4' B+ (v —k)C, fromwhichh = — (v —v') andk = u — u’. Applying
the law of cosines to trianglBQ R, we have
PQ?* = (ha)?®+ (kb)*> — 2(ha)(kb) cos C

= h%a® + k*b* — 2hkSc

= (Sp+Sc)(v—1)+(Sc+ Sa)(u—u)?+2(u—u)(v—10)Sc

= Sa(u—u)?+ Sp(v—1')?

+Sc(u —u')? +2(u —u') (v — ") + (v —v')?].

The result follows since

(u—u)+@w—-v)=@u+v)— W +v)=1-w)—(1-w)=—(w-—u).
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The distance formula in homogeneous coordinates

If P=(xz:y:z2)and@ = (u: v : w), the distance betwedh and( is given by

|PQP =

5 D Sallw+w) —uly+2))°,

cyclic

(utvtw?(z+y+2)

Exercises

1. The distance fronP = (x : y : z) to the vertices of trianglel BC' are given by

2y? 4+ 2S4yz + 1222

2

AP (z+y+2)?

Bp? — a?z%2 + 2Sgzx + 22
(x+y+2)2 ’

op? — b2x2+2Scxy+a2y2.
(z+y+2)?

2. The distance betweeR = (x : y : z) andQ@ = (u : v : w) can be written as

‘PQ\Q = # Z 02U2+25Avw+b2w2w 7a2yz+622w+62my
rhy+e (u+v+w)? (z+y+2)2

cyclic

3. Compute the distance between the incenter and the nine-qeiterN = (52 +
Sa: 8%+ Sp: 5%+ Sc). Deduce Feuerbach’s theorem by showing that this is
% — r. Find the coordinates of the Feuerbach pdirais the point dividingV I
externally in the ratidR : —2r.
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7.2 Circle equations

7.2.1 Equation of circle with center(u : v : w) and radius p:

2v? + 250w + b2w? 2 )eco
(u+ v+ w)? P ’

a*yz + b*zx + Pry — (v +y + 2) Z

cyclic

7.2.2 The power of a point with respect to a circle

Consider a circl® := O(p) and a pointP. By the theorem on intersecting chords, for
any line throughP intersectingC at two pointsX andY’, the produc{PX||PY| of
signedlengths is constant. We call this product fhewverof P with respect ta2. By
considering the diameter through we obtain|OP|? — p? for the power of a poinf
with respect ta(p).

7.2.3 Proposition

Letp, q, r be the powers ofi, B, C with respect to a circl€.
(1) The equation of the circle is

a’yz +b%zx + ay — (v +y + 2)(pr + qy +rz) = 0.
(2) The center of the circle is the point
(a*Sa+Sp(r—p)—=Sc(p—q) : 0> Sp+Sc(p—q)—=Sa(r—p) : *So+Sa(qg—r)—Sp(r—p).
(3) The radiug of the circle is given by

> a?b?c? — 2(a?Sap + b2Spq + 2Scr) + Salq —1)* + Sp(r — p)? + Sc(p — q)*
B 452 '

Exercises

1. Let X, Y, Z be the pedals ofl, B, C on their opposite sides. The pedals)of
onCA andAB, Y on AB, BC, andZ onCA, BC are on a circle. Show that
the equation of the circle i$

1
a’yz + bz + oy — W(w +y+2)(Saaz+ Sppy + Sccz) =0.

2. Let P = (u : v : w) with cevian triangleXY Z.

(a) Find the equations of the circlesBY and ACZ, and the coordinates of
their second intersectiad’.

(b) Similarly defineB’ andC’. Show that triangled’ B’C" is perspective with
ABC. dentify the perspectof.

1This is called theTraylor circle of triangle ABC. Its center is the poinksse in ETC. This point is also
the intersection of the three lines through the midpointaifteside of theorthic triangle perpendicular to
the corresponding side ofBC.

-+ :--+). See Tatiana Emelyanov, Hyacinthos, message 3309, 7/27/01

2(_a .
(v+w'
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7.3 Radical circle of a triad of circles
Consider three circles with equations
a’yz + b2z + oy — (v +y + 2)(pix + gy +1iz) =0, 1=1,2,3.

7.3.1 Radical center

Theradical centerP is the point with equal powers with respect to the three egcl
Its coordinates are given by the solutions of the system oéggns.

P1T + 1y + 112 = P2 + g2y + 12z = p3T + g3y + 132,

Explicitly, if we write

Pr @1 ™M
M=|p2 g r2],
b3 Qg3 T3
then,P = (u: v : w) with 3
I o m pr 1 o oqa 1
u=|1 g 712, v=|p2 1 mf, w=|p2 ¢
1 g3 73 p3 1 73 p3 q3 1

7.3.2 Radical circle

There is a circle orthogonal to each of the circtgsi = 1,2,3. The center is the
radical center” above, and its square radius is thegativeof the common power of
P with respect to the circlesge.,

a?vw + b*wu + uv det M
(u+ v+ w)? utv+w

This circle, which we call theadical circle of the given triad, has equation
Z (v 4 b*w)x? + 28 auyz — det(M)(z +y + 2)* = 0.
cyclic

In standard form, it is

1

alyz + b%zx + oy — ————
u+v+w

(r4y+2)( Z (v + b*w — det(M))x) = 0.

cyclic
The radical circle is real if and only if
(u+ v+ w)(piu + gv + riw) — (a®vw + b*wu + Cuv) >0

foranyi =1,2,3.

3Pr00f:p1u + q1v + riw = pau + q2v + row = p3u + q3v + r3w = det M.
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7.3.3 The excircles
The radical center of the excircles is the paiht (u : v : w) given by
1 (s—¢)? (s—b)? 1 (s—¢)? (s—a)?
u = 1 52 (s—a)? | = 0 cla+b) —cla—0b)
1 (s—a)? 52 0 blc—a) blc+a)
= be(a+b)(c+a)+ be(a—b)(c—a) =2abe(b+ c),

and, likewisep = 2abc(c+ a) andw = 2abc(a + b). Thisis the poin{fb+c:c+a:
a + b), called theSpieker centerit is the incenter of the medial triangle.

I,
Since, with(u, v, w) = (b + ¢,c + a,a + b),

(u+v+w)(s*u+ (s — ¢)%v + (s — b)*w) — (a*vw + b*wu + Puv)

= (a+b+c)(2abc+2a3 —I—Zaz(b—i—c)) - (a—i—b—i—c)(abc—i—Za?’)
= (a+b+c)(abc+ Zaz(bJr ),
the square radius of the orthogonal circle is
abe + > a?(b+c)
a+b+c

The equation of the radical circle can be written as

Z (s —b)(s — c)x* + asyz = 0.

cyclic

1
:...:Z(r2+52).
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7.3.4 The de Longchamps circle

The radical centeL of the circle triad(A(a), B(b), C(c)) is the point(x : y : z) given
by

a*z+(a?—c)y+(a* =)z = (VP =) ax+b2y+(b*—a?)z = (2 —b?)z+(* —a?)y+c2.
Forming the pairwise sums of these expressions we obtain
Saly+z)=5Sp(z+x)=Sc(z+y).

From these,

1 1 1

—:5—:5—=5Bc:8a:8
S: 55 So BC 1 OCA I OAB,

yt+ziz+r:r+y=
and

z:y:z=_Sca+Sap—Spc:Sap+ Spc — Sca:Spc+ Sca— Sas-

This is called thede Longchamps poirtdf the triangle.* It is the reflection of the
orthocenter in the circumcentée., L = 2- O — H. The de Longchamps circle is the
radical circle of the triadd(a), B(b) andC(c). It has equation

a*yz + b*zx + Fry — (x +y + 2)(az + b2y + 2) = 0.

This circle is real if and only if trianglel BC' is obtuse - angled.
It is also orthogonal to the triad of circlé®(A), E(B), F(C)).°

Exercises

1. The radical center of the triad of circle§ R,,), B(Ry), andC(R,) is the point

25%.0 — a*R*(A — Ay) — V*R}(B — By) — ¢*R*(C — Ch).

4The de Longchamps point appears as the p&isg in ETC.
5G. de Longchamps, Sur un nouveau cercle remarquable du fiantriangle, Journal de Math.
Spéciales1886, pp. 57 — 60, 85 — 87, 100 — 104, 126 — 134.
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7.4 The Lucas circles

6

Consider the squard, A. A/, A inscribed in triangleA BC, with A;, A. on BC.
Since this square can be obtained from the square erectexhaky on BC via the
honjothe_tyh(A, ﬁ), the equation of the circl€4 throughA, A; and A, can be
easily written down:

2

a
Ca: a’yz + b2z + oy — ———
A Y ) 2 +S

Likewise if we construct inscribed squar8s B, B, B, andC,,C;C;C?, on the other
two sides, the corresponding Lucas circles are

(z+y+ z)(c2y + b2z) =0.

b2
Cp: a’yz + b2z + Aoy — m-(x+y+z)(czx+a2z) =0,
and
2 2 2 c? 2 2
Cco: ayz+bzx—i—cwy—m.(a@—f—y—i—z)(bx—i—ay):O.

The coordinates of the radical center satisfy the equations
a?(cty + b2) B b2 (a%z + c2x) B A(b%x + a?y)
a2+S b +SsS 24+ S
Since this can be rewritten as

Y z Z r T Yy 2 12 L2
it follows that
r Yy =z 2 2 2 2 2 2 2 2 2
iy =bt—a+ S5 +a” b+ 50" +b" -+,
a2 b2 ¢?

and the radical center is the point
(a®(2S4 + 8) : B*(2S5 + S5) : 2(2S¢ + 9)).

The three Lucas circles are mutually tangent to each othempasints of tangency
being

A = (a®Sa:V*(Sp+8):c2(Sc +9)),
B = (a*(Sa+9):b°Sp:c*(Sc+9)),
C' = (a*(Sa+5S):b*(Sp+S):c2S¢c).

Exercises

1. These point of tangency form a triangle perspective witBC'. Calculate the
coordinates of the perspectér.

8A.P. Hatzipolakis and P. Yiu, The Lucas circlésner. Math. Monthly108 (2001) 444 — 446.
“(a?2(Sa +5) : b2(Sp + S) : ¢2(Sc + 9)). This point appears i&ETC as X371, and is called the
Kenmotu point. It is the isogonal conjugate of the VectempcisA1+S :

1 . 1 )
Sp+S * Sg+S/°
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7.5 Appendix: More triads of circles

1.

2.

(a) Construct the circle tangent to the circumciiicliernally at A and also to
the sideBC.

(b) Find the coordinates of the point of tangency with the $d”.
(c) Find the equation of the circl@.

(d) Similarly, construct the two other circles, each tarigaternally to the
circumcircle at a vertex and also to the opposite side.

(e) Find the coordinates of the radical center of the thresas.®
Construct the three circles each tangent to the circuneasdkernallyat a vertex

and also to the opposite side. Identify the radical centbichvis a point on the
circumcircle.X°

. Let X, Y, Z be the traces of a poift on the side line&3C, C A, AB of triangle

ABC.
(a) Construct the three circles, each passing through aweftABC and
tangent to opposite side at the tracerof
(b) Find the equations of these three circles.

(c) The radical center of these three circles is a point ieddpnt ofP. What
is this point?

. Find the equations of the three circles each through a vartdxhe traces of the

incenter and the Gergonne point on the opposite side. Whia¢ isadical center
of the triad of circles?!

. Let P = (u : v : w). Find the equations of the three circles with the cevian

segmentsiAp, BBp, CCp as diameters. What is the radical center of the triad
? 12

. Given a pointP. The perpendicular fron® to BC intersectsC'A at Y, and

AB at Z,. Similarly defineZ,, X;, andX., Y.. Show that the circledY, Z 4,
BZ, X, andCX_Y, intersect at a point on the circumcircle 4BC. 13

8q

a2

2yz + b2z + oy — 2 (x4 y + 2)(Py + b%2) = 0.

(b+e)?

9a2(a? +a(b+¢) —bc): ---:---). This point appears aks95 in ETC.

10

o 8 . ) This point appears a&11 in ETC.

b—c " c—a " a—b)"

11The external center of similitude of the circumcircle andiricle.
12F|oor van Lamoen, Hyacinthos, message 214, 1/24/00.

BIf P = (u: v : w), this intersection i$

a? . b2 . c? )
B—wSc " wSc—uSs T uSp—vSp

; itis the infinite point

of the line perpendicular té/ P. A.P. Hatzipolakis and P. Yiu, Hyacinthos, messages 1223411215,
8/17/00.



98 YIU: Introduction to Triangle Geometry

Exercises

Consider triangleABC' with three circlesA(R,), B(Ry), andC(R.). The circle
B(Ry) intersectsAB atZ,, = (Rp : c— Ry : 0)andZ,_ = (—Ryp : ¢+ Ry : 0). Sim-
ilarly, C(R.) intersectsAC atY,+ = (R, : 0: b—R.)andY,_ = (—R.: 0: b+ R.).
14

1. Show that the centers of the circld¥, . 7, andAY,_Z,_ are symmetric with
respect to the circumcenter.

2. Find the equations of the circletY, , Z,, andAY,_Z,_.1°
3. Show that these two circles intersect at
—a? b —c
bRb — CRC Rb Rc
on the circumcircle.

4. Find the equations of the circlesY,, Z,_ and AY,_Z,, and show that they

intersect at
o-(——< _.b.c
bRb +CRC ’ Rb ' Rc

on the circumcirclet®
5. Show that the lin€)Q’ passes through the poirtsa? : b% : ¢?) and 17
P = (a*(—a’R2 + V’R} + *R?):---: ).
6. If W is the radical center of the three circld$R,), B(Rs), andC(R.), then
P=(1-t)O+t-W for
. 2a2b%c?
a R3a2SA + besz + R%C2SC.

7. FindPif R, = a, Ry = b, andR, = ¢. 18
8. FindPif R, =s—a,R,=s—b,andR, = s —¢. 1°
9. Ifthe three circlesA(R,), B(Ry), andC(R.) intersectal?V = (u : v : w), then
P = (a*(b*c*u® — a®Spvw + b2Spwu + > Scuw) : - o).
10. Find P if W is the incenter®
11. f W = (u : v : w) is on the circumcircle, theR = Q = Q' = W.

14A.P. Hatzipolakis, Hyacinthos, message 3408, 8/10/01.

Ba2yz + 222 + oy —e(x +y + 2)(c- Rpyy + b+ Rez) = 0fore = £1.

1802y2 + b2z + oy —e(x +y + 2)(c- Ryy — b+ Rez) = 0fore = £1.

YQQ": (b®RE — *R2)x + a®(R2y — R22) = 0.

Ba2(b* + c* —a?) : b2 (c*t + a* — b*) : 2(a* 4+ b* — ¢)). This point appears a¥ss in ETC.
19(a2(a272a(b+c)+(b2+c2)) :

s—a

-+ :---). This point does not appear in the current editiofed1C.

200 a? . b2 . 2
(sfa Ts—b sfc)'
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Some Basic Constructions

8.1 Barycentric product

Let X, X5 be two points on the linBC, distinct from the vertice®, C, with homoge-
neous coordinatg® : y; : z1) and(0 : ya : z2). Fori = 1,2, complete parallelograms
AK; X;H; with K; on AB andH; on AC. The coordinates of the poinf$;, K; are

A
Hy
K,
Hy
Ko
B X, X X C
Hy=(y1:0:21), Ky = (21 :91:0);
Hy = (y2:0: 29), Ky =(2:92:0)
From these,
BH NCKy; = (y122:y1Y2 : 2122),
BHsNCKy = (y221:y1y2 : z2122).

Both of these points havé-trace(0 : y1y2 : z122). This means that the line joining
these intersections passes through

Given two pointsP = (z : y : z) and@ = (u : v : w), the above construction
(applied to the traces on each side line) gives the tracdsegbdint with coordinates
(zu : yv : zw). We shall call this point thbarycentric producbf P and@, and denote
ithy P- Q.
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In particular, thebarycentric squaref a pointP = (u : v : w), with coordinates
(u? : v? : w?) can be constructed as follows:

(1) Complete a parallelograchB, ApC, with B, onC A andC, on AB.

(2) ConstructBB, N CC,, and join it to A to intersectBC at X .

(3) Repeat the same constructions using the traces4mand AB respectively to
obtainY onC'A andZ on AB.

Then, X, Y, Z are the traces of the barycentric squaré’of

8.1.1 Examples

(1) The Clawson poin(cﬁ : % : i) can be constructed as the barycentric product

of the incenter and the orthocenter.

(2) The symmedian point can be constructed as the barycequiare of the incen-
ter.

(3) If P = (v + v + w) is an infinite point, its barycentric square can also be
constructed as the barycentric producfbéand its inferior(v + w : w + u : u + v):

P2 = (u?:0?:w?)
= (—uw+4w):—v(w+u): —wlu+wv))
= (u:v:w) - (v+w:wtu:uto).

8.1.2 Barycentric square root

Let P = (u: v : w) be a point in the interior of triangld BC, the barycentric square
root /P is the pointQ in the interior such thaf)?> = P. This can be constructed as
follows.

(1) Construct the circle witlBC' as diameter.

(2) Construct the perpendicular BC at the traced p to intersect the circle at. !
Bisect angleB X C to intersectBC at X”.

(3) Similarly obtainY” onC A andZ’ on AB.

The pointsX’, Y’, Z’ are the traces of the barycentric square roa?of

11t does not matter which of the two intersections is chosen.
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The square root of the orthocenter

Let ABC be an acute angled triangle so that the orthocefiter an interior point. Let
X be theA-trace ofv/H. The circle through the pedal$y ), Cj) and X is tangent
to the sideBC.

8.1.3 Exercises

1. Construct a point whose distances from the side lines aggptional to the radii
of the excircles?

2. Find the equation of the circle throughandC, tangent (internally) to incircle.
Show that the point of tangency has coordinates

( ‘1_2 :(S:Cb)z : (S_b)2>‘

Construct this circle by making use of the barycentric ‘ipower” of the Ger-
gonne point.

3. Construct the square of an infinite point.

4. A circle is tangent to the sidBC of triangle ABC' at the A—trace of a point
P = (u:v:w) andinternally to the circumcircle at’. Show that the lined A’
passes through the poifitu : bv : vw).

Make use of this to construct the three circles each tangésnally to the cir-
cumcircle and to the side lines at the traceg’of

5. Two circles each passing through the incertare tangent ta3C' at B andC
respectively. A circlgJ,) is tangent externally to each of these, and30 at
X. Similarly defineY andZ. Show thatXY Z is perspective withA BC, and
find the perspecto?.

6. LetP, = (f1: g1 : h1) andP, = (fs : g2 : ha) be two given points. Denote by
X;,Y;, Z; the traces of these points on the sides of the referencgleiddBC.

(a) Find the coordinates of the intersectiokis = BY1 N CZ; and X_ =
BY>NCZ. *

(b) Find the equation of the lin& . X _.°

(c) Similarly define points’y, Y_, Z, and Z_. Show that the three lines
X, X_,Y, Y_,andZ,Z_ intersect at the point

(f1f2(91h2 + hlgz) : 9192(h1f2 + flhz) : h1h2(flg2 + 91f2))~

2This has coordindate§_“_ : --- : ---) and can be constructed as the barycentric product of the
incenter and the Gergonne point.

3The barycentric square root o : Sﬁb : 72-)- See Hyacinthos, message 3394, 8/9/01.

AXp=fife: frge i hife; X— = fif2 i 91f2 : frho.

5(f2g2h2 — fZg1h)z — fife(fihe — hif2)y + fi1f2(91f2 — fig2)z = 0..
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8.2 Harmonic associates
Theharmonic associatesf a pointP = (u : v : w) are the points
AP = (—u:v:w), BY = (u: —v:w), CP =(u:v:—w).

The pointA” is the harmonic conjugate & with respect to the cevian segmetti p,
ie.,
AP : PAp = —AAT . AP Ap;

similarly for B and C*. The triangleA”CTCT is called theprecevian triangle
of P. This terminology is justified by the fact thatBC' is the cevian trianglé’ in
AP BPCP ltis also convenient to regaid, A”, B”, CT as a harmonic quadruple in
the sense that any three of the points constitute the haoassociates of the remaining
point.

BP

AP

Examples

(1) The harmonic associates of the centroid, can be conettas the intersection of
the parallels to the side lines through their opposite gesti They form theuperior
triangle of ABC.

(2) The harmonic associates of the incenter are the exaenter

(3) If P is an interior point with square rod). The harmonic associates @fcan
also be regarded as square roots of the same point.

8.2.1 Superior and inferior triangles

The precevian triangle of the centroid is called superiortriangle of ABC. If P =
(u:v:w), thepoint(—u+v+w:u—v+w:u+v—w), which dividesPG in the
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ratio3 : —2, has coordinateg: : v : w) relative to the superior triangle, and is called
the superiorof P.

Along with the superior triangle, we also consider the ceviéangle ofG as the
inferior triangle. The poinfv + w : w 4+ u : u + v), which dividesPG in the ratio
3 : —1, has coordinateg : v : w) relative to the inferior triangle, and is called the
inferior of P.

Exercises

1. If P isthe centroid of its precevian triangle, show ttrais the centroid of trian-
gle ABC.

2. The incenter and the excenters form the only harmonic qyé&mhich is also
orthocentricj.e., each one of them is the orthocenter of the triangle formed by
the remaining three points.
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8.3 Cevian quotient

Theorem

For any two pointd”? and@ not on the side lines ol BC', the cevian triangle oP and
precevian triangl€) are perspective. IP = (v : v : w) and@ = (z : y : 2), the
perspector is the point

P/Q:(w(—%+%+i>:y

w

Proposition

P/(P/Q) = Q.

Proof. Direct verification.

This means that iP/Q = Q’, thenP/Q’ = Q.

Exercises

1. Show thatP/(P - P) = P - (G/P).

2. ldentify the following cevian quotients.
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P Q P/Q
incenter centroid

incenter symmedian point
incenter Feuerbach point

centroid circumcenter

centroid symmedian point
centroid Feuerbach point
orthocenter symmedian point
orthocenter (ab—c) i vie0v)

Gergonne point  incenter
3. LetP=(u:v:w)and@ = (v : v : w') be two given points. If
X:BPCPQAAQ, Y:CPAPQBBQ, Z:APBPOCCQ,

show thatAp X, BpY andCpZ are concurrent. Calculate the coordinates of
the intersectior®

8(un’ (vw’ 4+ wo’) : -+ 1 ---); see J. H. Tummers, Points remarquables, associés sngl&jNieuw
Archief voor WiskundéV 4 (1956) 132 — 139. O. Bottema, Une construction par rapparn triangle,
ibid., IV 5 (1957) 68 — 70, has subsequently shown that thteespole of the linePQ with respect to the
circumconic throughP andQ.
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8.4 The Brocardians

The Brocardians of a poirf® = (u : v : w) are the points

Pﬂ—<l:l:1> and PH—(lzl:l>.
wou v vow u

Construction of Brocardian points

Examples

(1) The Brocard point§)_. andf2._ are the Brocardians of the symmedian pdint

(2) The Brocardians of the incenter are calledibebek points

1 1 1 1 1 1
I.=(-:=-:- I.=(=-:=-:—].
(c a b) and (b c a)

Theorientedparallels througti_, to BC', C A, AB intersect the sideS§'A, AB, BC at
Y,Z,Xsuchthatl .Y =1 .7 = I_,X. Likewise, the parallels through_ to BC,
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CA, AB intersectthe sided B, BC,C A atZ, X Ysuch that._Z =1_X=1_Y.
These 6 segments have Ien@&atrsfylngé = + + =, one half of the length of the
equal parallelians drawn througha +1 + = :

(3) If oriented parallels are drawn through the forward Bwaiian point of the (pos-
itive) Fermat pointt’,, and intersect the sid€sA, AB, BC at X, Y, Z respectively,
then the triangleX'Y Z is equilateral’

’S. Bier, Equilateral triangles formed by oriented parites, Forum Geometricoruml (2001) 25 — 32.
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Circumconics

9.1 Circumconics as isogonal transforms of lines

A circumconic is one that passes through the vertices ofgfegence triangle. As such
it is represented by an equation of the form

C: pyz + qzx +rxy =0,

and can be regarded as the isogonal transform of the line

. D 4q T _

The circumcircle is the isogonal transform of the line atriit§i. Therefore, a cir-
cumconic is an ellipse, a parabola, or a hyperbola accomkrits isogonal transform
intersects the circumcircle at 0, 1, or 2 real points.

Apart from the three vertices, the circumconic intersehts dircumcircle at the

isogonal conjugate of the infinite point of the lide

1
b2r —c2q ~ c2p—a?r " a?2q—b%p )’

We call this the fourth intersection of the circumconic witie circumcircle.

Examples

(1) The Lemoine axis is the tripolar of the Lemoine (symmajljaoint, the line with

equation

x oy oz
a—2+b—2+c—2:0.

Its isogonal transform is the Steiner circum-ellipse

Yz +zx +xy = 0.
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The fourth intersection with the circumcircle at the Steipeint *

111
2 _2 2_aq2 aZ_p2)

(2) The Euler liney_ (b? — c®)S 42 = 0 transforms into thderabek hyperbola

cyclic

Z a?(b* — ¢*)Sayz = 0.

cyclic

Since the Euler infinity poiniz (SS — 35}30 : S8 — 3SCA 1SS — 35,43) = (SCA +

Sap —2Spc :---:--+), the fourth intersection with the circumcircle is the pdint
(resim )
Sca+Sap —2Spc '
A
O
B c

1The Steiner point appears &%9 in ETC.
2This is the pointXr4 in ETC.
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(3) The Brocard axi®) K has equation
V22 (0% — )z + 2a?(c? — a?)y + a*b*(a® — b*)z = 0.
Its isogonal transform is thigiepert hyperbola
(b — Ayz + (® — a®)zx + (a* — b2y = 0.

The fourth intersection with the circumcircle is tharry point 3

1 1 1
(SBC —Saa  Sca— S  Sam SCC)-

This is antipodal to the Steiner point, since the Euler lind the Lemoine axis are
perpendicular to each othér.
(4) Recall that the tangent to the nine-point circle at thaedfbach pointF =
(b—c)?)(b+c—a):(c—a)?(c+a—>b):(a—0b)2(a+b-rc))istheline
x Y z

+ +

b—c c—a a—b:O'

Applying the homothety (G, —2), we obtain the line
(b—c)?x+ (c—a)’y+(a—b)2*2=0

tangent to the point;2- : b_ . _<)atthe circumcircle.

c—a ' a—b

The isogonal transform of this line is the parabola

a*(b—¢)*yz + b*(c — a)?zx + *(a — b)*xy = 0.

Exercises

1. Let P be a point. The first trisection point of the cevia® is the pointA’
dividing AAp in the ratiol : 2,i.e, AA’ : A’/Ap = 1 : 2. Find the locus of
P for which the first trisection points of the three cevians@tinear. For each
such P, the line containing the first trisection points always pasthrough the
centroid.

2. Show that the Tarry point as a Kiepert perspectdis- (5 — w)).

3. Show that the circumconjeyz + gzz + ray = 0 is a parabola if and only if

p2+q2+r2—2qr—27“p—2pq20.

3The Tarry point appears as the poiigg in ETC.

4The Lemoine axis is the radical axis of the circumcircle amal nine-point; it is perpendicular to the
Euler line joining the centers of the two circles.

5This point appears aX1qg in ETC.
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4. Animate a pointP on the circumcircle of trianglel BC and draw the lin€ P.
(a) Construct the poin® on the circumcircle which is the isogonal conjugate
of the infinite point ofOP.
(b) Construct the tangent .

(c) Choosea point X on the tangent line af), and construct thésogonal
conjugate X * of X.

(d) Find thelocusof X *.
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9.2 The infinite points of a circum-hyperbola

Consider a linel intersecting the circumcircle at two poinisand(@. The isogonal
transform ofL is a circum-hyperbol&. The directions of the asymptotes of the hyper-
bola are given by its two infinite points, which are the isoglaonjugates of and(Q.
The angle between them is one half of that of the/a€g.

These asymptotes are perpendicular to each other if andifoilyand@ are an-
tipodal. In other words, the circum-hyperbola is rectaaguf and only if its isogonal
transform is a diameter of the circumcircle. This is alsoiejent to saying that the
circum-hyperbola is rectangular if and only if it contaife torthocenter of triangle
ABC.

Theorem

Let P and@ be antipodal points on the circumcircle. The asymptotekeféctangular
circum-hyperbolawhich is the isogonal transformRap are the Simson lines @? and

Q.
It follows that the center of the circum-hyperbolais thesection of these Simson
lines, and is a point on the nine-point circle.

Exercises

1. Let P = (u : v : w) be a point other than the orthocenter and the vertices of
triangle ABC. The rectangular circum-hyperbola througtas equation

Z u(Spv — Scw)yz = 0.

cyclic
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9.3 The perspector and center of a circumconic

The tangents at the vertices of the circumconic
pyz +qzx +rxy =0
are the lines
ry + gz =0, re+pz=0, qr +py = 0.
These bound the triangle with vertices
(=p:q:r), (p:—q:r), (p:q:—r).
This is perspective wittd BC' at the pointP = (p : ¢ : r), which we shall call the
perspector of the circumconic.

We shall show in a later section that the center of the cirammucis the cevian
guotient

Q=G/P=wv+w—u):vw+u—ov):wlu+v—w)).

Here we consider some interesting examples based on thth&adt = G/Q if Q =
G/ P. This means that the circumconics with centBrand(@ have perspectors at the
other point. The two circumconics intersect at

w v w
v—w w—u u—v/’

Circumconic with center K

9.3.1 Examples

Since the circumcircle (with centé?) has perspector at the symmedian pdihtthe
circumconic with centeK hasO as perspector. This intersects the circumcircle at the

point®
a? _ b2 ) 2
b2—¢c2 2 —a2 a2-02)"

This point can be constructed as the antipode of the isogmmgligate of the Euler
infinity point.

Circumconic with incenter as perspector
The circumconic with incenter as perspector has equation
ayz + bzxr 4+ cry = 0.

This has cente@ /T = (a(b+c—a) : b(c+ a —b) : ¢(a + b — ¢)), the Mittenpunkt.
The circumconic with the incenter as center has equation

a(s —a)yz +b(s —b)zz + c(s — c)zy = 0.

The two intersect at the pohﬁtﬁ b, e ) which is a point on the circumcirclé.

c—a " a—b

6This point appears a&11¢ in ETC.
"This point appears a&1og in ETC.
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Exercises
1. Let P be the Spieker center, with coordinatést c¢: ¢+ a : a + b).
(a) Show that the circumconic with perspeciors an ellipse.
(b) Find the cente€) of the conic?®
(c) Show that the circumconic with centé& (and perspectof)) is also an
ellipse.
(d) Find the intersection of the two coniés.

2. If P is the midpoint of the Brocard poinf3_, and{2._, what is the point) =
G/P? What is the common point of the two circumconics with centamd
perspectors aP andQ?1°

3. Let P and(@ be the center and perspector of the Kiepert hyperbola. Wtheis
circumconic with centef) and perspectaP a parabola? What is the intersection
of the two conics?!

4. Animate a pointP on the circumcircle and construct teegcumconic with P
as center. What can you say about the type of the coniP aaries on the
circumcircle?

5. Animate a pointP on the circumcircle and construct tkegcumconic with P
as perspector. What can you say about the type of the corftt\vasies on the
circumcircle?

8Q = (a(b+¢) : b(c + a) : c(a +b)). This point appears iIETC asX37.

%(

p=¢ . &4 a=b) This point does not appear in the current editioETL.

10Q = symmedian point of medial triangle; common poin(%—% : -+« :---). This point does not
appear in the current edition &TC.

ll(

bzfcz;j;z :---:--+). This point does not appear in the current editiofedLC.
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9.4 Appendix: Ruler construction of tangent atA

(1) P = ACN BD;
2)Q =ADNCE;
(3) R=PQnN BE.
ThenAR is the tangent atl.




Chapter 10

General Conics

10.1 Equation of conics

10.1.1 Carnot’s Theorem

Suppose a coni€ intersect the side lineBC at X, X/, CA atY,Y’, andAB at Z,
7', then
BX BX' CY cCY' AZ AZ _

XC X'C YA Y'A ZB Z'B
Proof. Write the equation of the conic as

fx? + gy* + h2? + 2pyz + 2qzx + 2ray = 0.

The intersections with the linBC' are the two point$0 : y; : z1) and(0 : ya : 22)
satisfying
gy? + hz? + 2pyz = 0.

From this,
BX BX' ziz g

XC X'C yiya  h
Similarly, for the other two pairs of intersections, we have

cy cy' h AZ AZ
YA YA 0 ZB ZB ¢

The product of these division ratios is clearly 1.
The converse of Carnot’s theoremis also trueXifX’, Y, Y’, Z, Z’ are points on
the side lines such that

BX BX' CY CY' AZ AZ' _
XC X'C YA Y'A ZB Z'B

then the 6 points are on a conic.
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Corollary

If X,Y, Z are the traces of a poii?, thenX’, Y’, Z’ are the traces of another point
Q.

10.1.2 Conic through the traces of” and )

LetP = (u:v:w)and@ = (v : v' : w'). By Carnot’s theorem, there is a conic
through the 6 points. The equation of the conic is

x2 1 1
Z — = + yz = 0.
uu/ vw'  v'w

cyclic

Exercises

1. Show that the points of tangency of tHeexcircle withAB, AC, the B-excircle
with BC, AB, and theC-excircle withC' A, C'B lie on a conic. Find the equation
of the conicl!

2. Let P = (u : v : w) be a point not on the side lines of trianglBC.

(a) Find the equation of the conic through the traceB aihd the midpoints of
the three sideg.

(b) Show that this conic passes through the midpointé Bf BP andC P.

(c) For which points is the conic an ellipse, a hyperbola?

3. GivenapointP = (u: v :w)andalinel : % + % + = = 0, find the locus of
the pole ofC with respect to the circumconics through 3

s2+(s—a)?

1zcyclic 12 + Wyz =0.

2chclic —’U’LUZ‘Q + U(U + w)yz =0.

3The conic through the traces 8fandQ = (u’ : v/ : w'); Jean-Pierre Ehrmann, Hyacinthos, message
1326, 9/1/00.
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10.2 Inscribed conics

An inscribedconic is one tangent to the three side lines of triantyieC'. By Carnot’s
theorem, the points of tangency must either be the tracepoifd P (Ceva Theorem)
or the intercepts of a line (Menelaus Theorem). Indeedgfdbnic is non-degenerate,
the former is always the case. If the conic is tangerm@&at (0 : ¢ : ) and toC' A at

(p:0:7), thenits equation must be
22 y? 22 2yz 2z 2xy
A 6

fore = £1. If e = —1, then the equation becomes

2
x z
p q T

and the conic is degenerate. The inscribed conic thereiseguation

2 2 2
x z 2uz 2zx 2x
—2+y—2+—2*i*—*—y20
p q r qr rp pq

and toucheBC at(0 : ¢ : r). The points of tangency form a triangle perspective with
ABC at(p : q : r), which we call the perspector of the inscribed conic.

10.2.1 The Steiner in-ellipse
The Steiner in-ellipse is the inscribed conic with perspe€t It has equation

22 49?2+ 2% — 2yz — 222 — 2xy = 0.

Exercises
1. The locus of the squares of infinite points is the Steinedlipse

22 +y? + 2% — 2yz — 220 — 2xy = 0.
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2. Let € be the inscribed conic
22 2yz
> =0,
p qr

cyclic

tangent to the sidelinesaf = (0: ¢:7),Y =(p:0:r),andZ = (p: ¢ : 0)
respectively. Consider an arbitrary po@t= (v : v : w).
(a) Find the coordinates of the second intersectibof C with X Q. *

(b) Similarly defineB’ andC’. Show that triangled’ B’C" is perspective with
ABC, and find the perspector.
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10.3 The adjoint of a matrix
Theadjoint of a matrix (not necessarily symmetric)
ailr a2 a3
M= a1 a2 a3
az1 asz2 as3

is thetransposeof the matrix formed by the cofactors o1

22433 — 23432 —a12033 + 013032 12423 — 22013
M# = —a21033 + A23031 11433 — 13431 —a110G23 + A21G13
a210a32 — A31G22 —a11632 + a31a12 11022 — A12G21

Proposition

(1) MM# = M#M = det(M)I.
(2) M## = (det M) M.

Proposition

Let (4, j, k) be a permutation of the indices 1, 2, 3.

(2) If the rows of a matrix\/ are the coordinates of three points, the line joinihg
andP; has coordinates given by tlieth column of M/ #.

(2) If the columns of a matrid/ are the coordinates of three lines, the intersection
of L; andL; is given by thek-row of M#.
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10.4 Conics parametrized by quadratic functions
Suppose
Ty z=ag+ art + ast® : by + bit + bot? : co 4 1t + cot?
Elimination oft gives
(P12 + @1y +712)> = (Do + qoy + 102) (P2 + @2y + 122) = 0,

where the coefficients are given by the entries of the adg@itiie matrix

ap a1 a2
M = b() bl b2 ]
Co C1 C2

Po qo To
M#*=|p @ mn |.
P2 g2 T2

This conic is nondegenerate providée (M) # 0.

namely,

10.4.1 Locus of Kiepert perspectors

Recall that the apexes of similar isosceles triangles of bagles constructed on the
sides of triangleA BC form a triangle4? B? C? with perspector

1 1 1
K(0) = : : .
( ) (SA+S¢9 Sp + S Sc+59>
Writing ¢t = Sy, and clearing denominators, we may take

(x:y:z):(SBc+a2t+t2:SCA+b2t+t2:SAB+02t+t2).

Spce a® 1
M = Sca b 1 ,
Sap 2 1

b% — 2 —a? a? —b?
M#* = ( —Sa(b? — ) —Sp(c?—a?) —Sc(a®—b?) )

With

we have

Saa(®> —c?)  Spp(c? —a?) Scc(a® —b?)
Writing u = (b? — ¢)z, v = (¢? — a?)y, andw = (a® — b?)z, we have

(SAU+SBU+SCw)2 — (u—l—v—i—w)(SAAu—i—SBBv—i—Sccw) =0,
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which simplifies into

0= Z (QSBC — S — Sco)vw = — Z (b2 . 62)21)11;.

cyclic cyclic
In terms ofz, y, z, we have, after deleting a common factefa? — b2)(b? — ¢?)(c® —

a?),
Z (b — *)yz = 0.

cyclic

This is the circum-hyperbola which is the isogonal transfof the line

Z b2 (b? — *)z = 0.

cyclic
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10.5 The matrix of a conic

10.5.1 Line coordinates

In working with conics, we shall find it convenient to use matrotations. We shall
identify the homogeneous coordinates of a pdint (x : y : z) with the row matrix
(z y =z ),anddenote it by the sanfe A line L with equatiorpz + qy +7rz =0
is represented by thelumn matrix

p
L= q
r
(so thatPL = 0). We shall callL theline coordinatef L.

10.5.2 The matrix of a conic

A conic given by a quadratic equation
fa? + gy® + h2? + 2pyz + 2qzx + 2ray = 0

can be represented by in matrix fod/ P! = 0, with

for
M = r g .
q p

We shall denote the conic [8(M).
Let P be a point on the coni€. Thetangentat P is the lineM Pt.

W R

10.5.3 Tangent at a point
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10.6 The dual conic

10.6.1 Pole and polar

Thepolar of a pointP (with respect to the coni€(1)) is the lineM P, and thepole
of a line L is the pointL!*M#. Conversely, ifL intersects a coni€ at two pointsP
andQ, thepoleof L with respect t& is the intersection of the tangentsfand@.

Exercises

1. A conic is self-polar if each vertex is the pole of its oppeside. Show that the
matrix of a self-polar conic is a diagonal matrix.

2. If P lies on the polar of, then(@ lies on the polar of°.

10.6.2 Condition for a line to be tangent to a conic

Aline L : pz + qy +rz = 0 is tangent to the coni€(M) if and only if L* M# L = 0.
If this condition is satisfied, the point of tangencylisM #.

10.6.3 The dual conic

Let M be the symmetric matrix

)

Thedual conicof € = (M) is the conic represented by the adjoint matrix

gh—p*> pg—rh rp—ygq
M# =\ pg—hr hf—q* aqr—fp |.

rp—gq qr—fp fg—r?

QI
TR

r
g
p

Therefore, a linel : px + qy + rz = 0 is tangent toC (M) if and only if the point
L' = (p:q:r)isonthe dual coni€(M#).

10.6.4 The dual conic of a circumconic
The dual conic of the circumconigz + gzx + rxy = 0 (with perspectol® = (p : ¢ :
r)) is the inscribed conic

Z —p?a? 4+ 2qryz =0

cyclic

with perspectoP® = (1 : L : 1) The centeris the poirity +r : 7 +p: p+ q).
p q T
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Exercises

1. The polar of(u : v : w) with respect to the circumconjgyz + gzz + ray = 0
is the line
p(wy +vz) + q(uz + wz) + r(ve + uy) = 0.

2. Find the equation of the dual conic of the incircle. Deducedfbach’s theorem
by showing that the radical axis of the nine-point circle #mglincircle, namely,
the line

is tangent to the incirclé.

3. Show that the common tangent to the incircle and the ninatpiicle is also
tangent to the Steiner in-ellipse. Find the coordinatek@fiint of tangency’

4. LetP = (u:v:w)and@ = (v : v : w') be two given points. If
X:BPCPQAAQ, Y:CPAPQBBQ, Z:APBPOCCQ,

show thatAp X, BpY andCpZ are concurrent at the pole &fQ with respect
to the circumconic througPR andQ. 8

5. The tangents at the vertices to the circumcircle of triangleC' intersect the
side linesBC, CA, AB atA’, B’, C' respectively. Theecondagents fromA’,
B’, C' to the circumcircle have points of tangenky Y, Z respectively. Show
that XY Z is perspective wittd BC' and find the perspectct.

Gzcyclic(s - a)yz =0.

“((b—=¢)?: (¢ —a)? : (a — b)?). This point appears ak10s¢ in ETC.

80. Bottema, Une construction par rapport a un trianflisuw Archief voor WiskunddV 5 (1957)
68-70.

9a?(b* + ¢* —a*) : --- : ---). This is a point on the Euler line. It appears Xs, in ETC. See
D.J. Smeenk and C.J. Bradley, Problem 2096 and soluiamx Mathematicorum21 (1995) 344; 22(1996)
374 - 375.
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10.7 The type, center and perspector of a conic

10.7.1 The type of a conic

The conic®(M) is an ellipse, a parabola, or a hyperbola according astthmcteristic
GM#*@ is positive, zero, or negative.
Proof. Settingz = —(z + y), we reduce the equation of the conic into

(h+f—2q)2* +2(h—p—q+7r)zy + (9+h—2p)y* = 0.
This has discriminant

(h—p—q+71)?—(9+h—2p)(h+ f —2q)

h? —(g+h)(h+f)—2h(p+q—r1)

+2(h+ flp+2(g+ Mg+ (p+q—1)° + dpg
—(fg+gh—+hf)+2(fp+gq+hr) + (p° + ¢* + 1% — 2pq — 2qr — 2rp)

which is the negative of the sum of the entries\éf*. From this the result follows.

10.7.2 The center of a conic

The center of a conic is the pole of the line at infinity. As suble center o€(M) has
coordinates; M #, formed by the column sums o/ #:

(p(g+r—p)—(qg+rh)+gh : q(r+p—q)—(rh+pf)+hf : r(p+q—r)—(pf+q9)+fg)-

10.7.3 The perspector of a conic
Theorem (Conway)

Let @ = @(M) be a nondegenerate, non-self-polar conic. The triangtaddrby the

polars of the vertices is perspective wHIBC', and has perspect@p : g : r).

Proof. Since the polars are represented by the columng #f their intersections are

represented by the rows 81 ## = (det M) M. The result follows sincdet M # 0.
The point(p : ¢ : r) is called theperspectoiof the conicC(M).

Proposition

The center of the inscribed conic with perspedtois the inferior of P°.
Proof. The inscribed conic with perspectfrhas equation

2 2z
> 5-E=0
p qr

cyclic
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Exercises

1. Let(f : g : h) be an infinite point. What type of conic does the equation

represent?°
2. Find the perspector of the conic through the traceB ahd(.

3. Find the perspector of the conic through the 6 points of tangef the excircles
with the side lines!!

4. Acircumconicis an ellipse, a parabola or a hyperbola adngraks the perspector
is inside, on, or outside the Steiner in-ellipse.

5. Let € be a conic tangent to the side lind®3 and AC' at B andC respectively.

(a) Show that the equation 6fis of the formz? — kyz = 0 for somek.
(b) Show that the center of the conic lies on twenedian.

(c) Construct the parabola in this family as a five-point coHi

(d) Design an animation of the conic as its center travetsed tmedian 13

6. Prove that the locus of the centers of circumconics thrad@ggthe conic through
the traces of? and the midpoints of the side¥.

10parabola.

2 2
11(“1;:(%2) :---:---). This points appears IBTC as X3ss.

12The parabola has equatiaf? — 4yz = 0.

13)f the center igt : 1 : 1), then the conic containg : —2 : t).

14F|oor van Lamoen and Paul Yiu, Conics loci associated wittiasyForum Geometricorurrforthcom-
ing.
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Some Special Conics

11.1 Inscribed conic with prescribed foci

11.1.1 Theorem

The foci of an inscribed central conic are isogonal conjegat

Proof. Let I and F; be the foci of a conic, andy, 75 the points of tangency from a
point P. Then/F, PT, = /F>PT». Indeed, ifQ,, Q- are the pedals of}, F» on
the tangents, the product of the distanégg§); and F>(Q- to the tangents is constant,
being the square of the semi-minor axis.

A

AN
| (N

B C

Given a pair of isogonal conjugates, there is an inscribadtaeith foci at the two
points. The center of the conic is the midpoint of the segment

11.1.2 The Brocard ellipse

Z biete? — 2a'?Pyz =0

cyclic
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The Brocard ellipse is the inscribed ellipse with foci at Brecard points

Q. = (a®b?: %% : Pad?),
Q. = (c?a®:a®b? : b*c?).

Its center is the Brocard midpoint
(a®(b + c2) : B*(c* + a®) : P (a® + b?)),

which is the inferior of(b%c? : c2a? : a®b?), the isotomic conjugate of the symmedian
point. It follows that the perspector is the symmedian point

Exercises

1. Show that the equation of the Brocard ellipse is as given@bov

2. The minor auxiliary circle is tangent to the nine-point tér¢ What is the point
of tangency?

11.1.3 The de Longchamps ellipse
3
Z b2 (b + ¢ — a)az® — 2a3beyz = 0,
cyclic
The de Longchamps ellipse is the conic through the traceseoinicenter!, and
has center af.

Exercises

1. Given that the equation of the conic is show that it is alwayslépse.

2. By Carnot’s theorem, the “second” intersections of thee#iwith the side lines
are the traces of a poiit. What is this point?

3. The minor axis is the ellipse is along the liogd. What are the lengths of the
semi-major and semi-minor axes of the ellip8e?

11.1.4 The Lemoine ellipse

Construct the inscribed conic with fo6l and K.

Find the coordinates of the center and the perspector.

The points of tangency with the side lines are the tracesef#symmedians of
trianglesGBC, GCA, andGAB.

1V. Thébault, Problem 385American Mathematical MonthlyAPH,205.
2Jean-Pierre Ehrmann, Hyacinthos, message 209, 1/22/00.
3E. Catalan, Note sur I'ellipse de Longchamfsyrnal Math. SpécialgdV 2 (1893) 28-30.
4 ._b .
(sza T s—b " sic)'
S andr
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11.1.5 The inscribed conic with centerV

This has fociO and H. The perspector is the isotomic conjugate of the circunazent
It is the envelope of the perpendicular bisectors of the sssjoiningH to a point
on the circumcircle. The major auxiliary circle is the nipeint circle.

Exercises
1. Show that the equation of the Lemoine ellipse is
Z mez? — 2mimiyz =0
cyclic

wherem,, m;, m. are the lengths of the medians of triangl&C'.
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11.2 Inscribed parabola

Consider the inscribed parabola tangent to a given linechwvie regard as the tripolar
ofapointP = (u:v:w). Thus/: £+2 4 2 = (. The dual conic is the circumconic
passes through the centrdid: 1: 1) andP® = (1 : 1 : 1) Itis the circumconic

e# v —w + w—u u—v

+ =0.
T Y z

The inscribed parabola, being the dualdf, is
Z —(v—w)?2? +2(w — u)(u — v)yz = 0.
cyclic

The perspector is the isotomic conjugate of that of its diis is the point

11
v—w w—u UuU—0

on the Steiner circum-ellipse.

The center of the parabola is the infinite paint— w : w — u : w — v). This gives
the direction of the axis of the parabola. It can also be gghthe infinite focus of the
parabola. The other focus is the isogonal conjugate

a® b2 c?

v—w w—u UuU—0

on the circumcircle.
The axis is the line through this point parallekto+vy+wz = 0. The intersection
of the axis with the parabola is the vertex
((SB(W—U)—SC(U—U))2 L )

v —w

The directrix, being the polar of the focus, is the line
Sa(v—w)zr + Sp(w —uw)y + Sc(u—v)z =0.
This passes through the orthocenter, and is perpendicutaetine
ux + vy +wz = 0.

Itis in fact the line of reflections of the focus. The tangetrthe vertex is the Simson
line of the focus.
Where does the parabola touch the given line?

(u? (v —w) : v (w — ) : w(u —v)),
the barycentric product aP and the infinite point of its tripolar, the given tangent, or
equivalently the barycentric product of the infinite poiftlte tangent and its tripole.
Exercises

1. Animate a pointP on the Steiner circum-ellipse and construct the inscribed
parabola with perspectadr.



Chapter 11: Some Special Conics 133

11.3 Some special conics

11.3.1 The Steiner circum-ellipsery + yz + zx =0

Construct the Steiner circum-ellipse which has centerexténtroidz.
The fourth intersection with the circumcircle is the Steipeint, which has coor-

dinates
11
b2 —¢2 ¢2—qa2 a2-02)"

Construct this point as the isotomic conjugate of an infipaant.

The axes of the ellipse are the bisectors of the akgl&s. ® Construct these axes,
and the vertices of the ellipse.

Construct the foci of the ellipsé.

These foci are called the Bickart points. Each of them haptbperty that three
cevian segments are equal in lengdth.

11.3.2 The Steiner in-ellips&__ . 22 —2yz =0

Exercises

cyclic

1. Let € be a circumconic through the centr@itd The tangents al, B, C intersect
the sidelineBC, CA, AB atA’, B/, C' respectively. Show that the lin€ B'C’
is tangent to the Steiner in-ellipse at the centet.of

11.3.3 The Kiepert hyperbola}”_ . (b* — *)yz =0

The asymptotes are the Simson lines of the intersectiorieedBtocard axi$) K with
the circumcircle!® These intersect at the center which is on the nine-poinlecisn
easy way to construct the center as the intersection of the-mdint circle with the
pedal circle of the centroidhearer to the orthocentet!

cyclic

Exercises

1. Find the fourth intersection of the Kiepert hyperbola witle tircumcircle, and
show that it is antipodal to the Steiner poit.

6J.H. Conway, Hyacinthos, message 1237, 8/18/00.

"The principal axis of the Steiner circum-ellipse containthe foci is thdeast square lindor the three
vertices of the triangle. See F. Gremmen, Hyacinthos, nges2a0, 2/1/00.

80. Bottema, On some remarkable points of a trianjieuw Archief voor Wiskungdd9 (1971) 46 — 57;
J.R. Pounder, Equal ceviarStux Mathematicorum6 (1980) 98 — 104; postscriphid. 239 — 240.

9J.H. Tummers, Problem 3®yiskundige Opgaven met de Oplossing21 (1955) 31-32.

10These asymptotes are also parallel to the axes of the Swllipses. See, J.H. Conway, Hyacinthos,
message 1237, 8/18/00.

HThe other intersection is the center of the Jerabek hyperbihis is based on the following theorem:
Let P be a point on a rectangular circum-hyperb@laThe pedal circle of? intersects the nine-point circle
at the centers o€ and of (the rectangular circum- hyperbola which is) the @@ conjugate of the line
OP. See A.P. Hatzipolakis and P. Yiu, Hyacinthos, message3 4@d 1249, 8/19/00.

12The Tarry point.
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2. Show that the Kiepert hyperbola is the locus of points whagelars are per-
pendicular to the Euler liné?

3. Let A’ B’C” be the orthic triangle. The Brocard axes (the line joiningthicum-
center and the symmedian point) of the triangieB’C’, A’BC’, andA'B’C
intersect at the Kiepert centéf.

11.3.4 The superior Kiepert hyperbola}” _ . (b* — c*)z? =0

Consider the locus of point8 for which the three point#®, P* (isotomic conjugate)
and P* (isogonal conjugate) are collinear./f= (z : y : z), then we require

cyclic

T Y z
0 = Yz ZT Ty
a’yz blzx Cay
= (12;L'yz(y2 - 22) + bzzmy(z2 - 12) + cz;L'yz(;L'2 - y2)
= —xyz((b? = ) + (2 — a®)y? + (a® — b?)2P).

Excluding points on the side lines, the locustofs the conic
(b2 — A2 + (2 — a®)y? + (a®> — 122 = 0.
We note some interesting properties of this conic:

e It passes through the centroid and the vertices of the supteiangle, namely,
the four pointg+1 : £1: £+1).

e |t passes through the four incenters, namely, the four pdihts : +b : +c).
Since these four points form an orthocentric quadruplegtiméc is a rectangular
hyperbola.

e Since the matrix representing the conic is diagonal, theecef the conic has
coordinateg ;1 : 1 : 1), which is the Steiner point.

2_a2

Exercises

1. All conics passing through the four incenters are tangefiouo fixed straight
lines. What are these line$?

2. Let P be a given point other than the incenters. Show that the cehtiee conic
through P and the four incenters is the fourth intersection of theusircircle
and the circumconic with perspectBr- P (barycentric square ap). 16

130, Bottema and M.C. van Hoorn, Problem 6BHeuw Archief voor WiskunddV 1 (1983) 79. See also
R.H. Eddy and R. Fritsch, On a problem of Bottema and van Habiah, IV 13 (1995) 165 — 172.

14Floor van Lamoen, Hyacinthos, message 1251, 8/19/00.

15The conic@ is self-polar. Its dual conic passes through the four irersntThis means that the cortic
are tangent to the 4 linekax + +by + tcz = 0.

18F|gor van Lamoen, Hyacinthos, message 1401, 9/11/00.
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3. Let X be the pedal ofd on the sideBC of triangle ABC'. For a real numbe,
let A; be the point on the altitude throughsuch thatX A; = ¢ - X A. Complete
the squares!, X X, A, and A, X X.A. with X, and X, on the lineBC. '’ Let
A, = BA. N CA,, andA} be the pedal ofi; on the sideBC. Similarly define
By andC}’. Show that as varies, triangled} B;'C}’ is perspective witdBC,
and the perspector traverses the Kiepert hyperbdla.

11.3.5 The Feuerbach hyperbola
Z alb—c)(s—a)yz=0

cyclic

This is the isogonal transform of th@/-line. The rectangular hyperbola through
the incenter. Its center is the Feuerbach point.

11.3.6 The Jerabek hyperbola

The Jerabek hyperbola
Z a?(b?> — c*)Sa _o

‘ x
cyclic

is the isogonal transform of the Euler line. Its center isghint
(0* — )84 : (c* —a*)?Sp : (a® — b*)?S0)

on the nine-point circle®

Exercises

1. Find the coordinates of the fourth intersection of the Feaeh hyperbola with
the circumcircle?°

2. Animate a pointP on the Feuerbach hyperbola, and construct its pedal circle.
This pedal circle always passes through the Feuerbach point

3. Three patrticles are moving at equal speeds along the pdaguens from! to
the side lines. They form a triangle perspective witlBC'. The locus of the
perspector is the Feuerbach hyperbola.

4. The Feuerbach hyperbola is the locus of pdtor which the cevian quotient
I/P lies on theOI-line. %

5. Find the fourth intersection of the Jerabek hyperbola withdircumcircle??

17A.P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.

187 P. Hatzipolakis, Hyacinthos, message 3370, 8/7/01.

19The Jerabek center appears¥gs in ETC.

20( T e 2abe(bTey—oz | ++)- This point appears ak1o4 in ETC.
21p, Yiu, Hyacinthos, message 1013, 6/13/00.

2 :---:---). This point appears a&74 in ETC.

22 a
(2a47a2(b2+62)7(b2762)2
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6. Let ¢ be a line througtD. The tangent atf to the rectangular hyperbola which
is the isogonal conjugate éfintersectd at a point on the Jerabek hyperbdfa.

23B, Gibert, Hyacinthos, message 4247, 10/30/01.
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11.4 Envelopes
The envelope of the parametrized family of lines

(ap + ait + ast?)x + (bo + bit + bat®)y + (co + c1t + cat?)z = 0
is the conié*

(a1 + b1y + 012)2 — 4(apx + boy + coz)(agx + bay + c22) = 0,
provided that the determinant

ag ai a2
bo b1 by #£0.
Co C1 C2

Proof. This is the dual conic of the conic parametrized by

Ty z=ag+ ait+ ast® : by + bit + bat? : co + 1t + cot?.

11.4.1 The Artzt parabolas

Consider similar isosceles trianglé8 BC, ABYC andABC? constructed on the sides
of triangle ABC'. The equation of the lin&?C? is

(82 — 284t — %)z + (S? +2(Sa + Sp)t +t2)y + (5% +2(Sc + Sa)t +12)z =0,
wheret = Sy = S - cot 0. As 0 varies, this envelopes the conic

(=Saz+ Py +022)? —S*(x+y+2)(—x+y+2)=0

11.4.2 Envelope of area-bisecting lines

Let Y be a point on the linedC. There is a unique poinf on AB such that the
signed area ofAZY is half of triangleABC. We callY Z an area-bisecting line. If
Y=(1-t:0:t),thenZ =(1—5 :4:0)=(2t—1:1:0. ThelineYZ has

equation

1—t 0 t
0=[2t—1 1 0 |=—to+(—t+2)y+(1—1t)z.
x Yy z

This envelopes the conic
(x+y+2)? —8yz = 0.

This conic has representing matrix

24This can be rewritten 85 (4dagaz — a?)x? + 2(2(bocz + baco) — bic1)yz = 0.
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with adjoint matrix

This is ahyperbolawith center at the vertexA.

To construct this as a 5-point conic, we need only find 3 pantshe hyperbola.
Here are three obvious points: the centr6id(1 : —1 : 0) and(1 : 0 : —1). Unfor-
tunately the latter two are infinite point: they give the Bn&B and AC as asymptotes
of the hyperbola. This means that the axes of the hyperbeltharbisectors of angle
A. Thus images of7 in these axes give three more points on the hyperbola. To find a
fifth point, we setr = 0 and obtainly + z)?> — 8yz =0, ...,y —3z: 2z = £2V/2: 1,

y:z=3+2v/2:1=(V2+1)?:1=v2+1:V2F1.

11.4.3 Envelope of perimeter-bisecting lines

Let Y be a point on the linedC. There is a unique poinf on AB such that the
(signed) lengths of the segmem%” and AZ add up to the semiperimeter of triangle
ABC. We callY Z a perimeter-bisecting line. IlY = ¢, thenAZ = s —t¢. The
coordinates of the pointsaté = (b—¢t:0:¢)andZ = (¢ —s+t:s—t:0). The
line Y Z has equation
(t* —st)x + (1 — (s —)t)yy + (2 — (s + D)t + bs)z = 0.
These lines envelopes the conic
(st + (s —c)y+ (s +b)2)? —dbsz(x+y+2)=0
with representing matrix
52 s(s—c¢) s(s—b)
s(s—c¢) (s —c)? (s =b)(s—c¢)
s(s=b) (s—=0b)(s—c) (s —b)?

with adjoint matrix

2(s—a) s—=b s—c
M# = —8bcs s—b 0 -8 .
s—c¢ —5 0

This conic is a parabola tangent to the liféd and AB at the point§—(s — b) :
0:s)and(—(s —c):s:0).%

25These are the points of tangency of theexcircle with the side lines.
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11.4.4 The tripolars of points on the Euler line
A typical point on the Euler line

> Sa(Sp—Sc)z=0

cyclic
has coordinate§Sgc +t: Sca +t: Sap + t), with tripolar

1
2 Sporit "

cyclic

or
0= W+tw+t)z= > (Spc +aSat + t*)z.

cyclic cyclic

The envelope is the conic
(azSAm +b2Spy + 02302)2 —4Sapc(z+y+ 2)(Sax + Spy + Scz) = 0.
This can be rewritten as

Z SAA(SB — Sc)zl‘z — QSBc(SC — SA)(SA — SB)yz =0.
cyclic

This can be rewritten as
> SaalSp — So)a® —29pc(Sc — Sa)(Sa — Sp)yz = 0.

cyclic

It is represented by the matrix

Saa(Sp — Sc)? —SaB(Sp — Sc)(Sc —Sa) —Sca(Sa—SB)(S—Sc)
M= | —Sap(Sp—Sc)(Sc —Sa) SpB(Sc — Sa) —Spc(Sc —Sa)(Sa — SB)
Sca(Sa—SB)(Se—5Sc) —SBc(Sc—Sa)(Sa—SB) Scc(Sa —SB)

This is clearly an inscribed conic, tangent to the side lineshe points(0 :
Sc(SA — SB) : SB(SC — SA)), (Sc(SA — SB) :0: SA(SB — Sc)), and(SB(SC —
Sa):8Sa(Sp — Sc) : 0). The perspector is the poifft

( 1 . 1 ‘ 1 )
Sa(Sp —Sc) Sp(Sc —Sa) Sc(Sa—Sp))’

The isotomic conjugate of this perspector being an infirgia the conic is a parabol.

26This point appears a&g4s in ETC.
2'The focus is the poinK12 in ETC:

a? b2 c?
(SA(SB —Sc)  Sp(Sc —Sa)  Sc(Sa— SB)) '
Its directrix is the line of reflection of the focuise.,

> Saa(Ss - Sc)z =0.

cyclic
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Exercises
1. Animate a point P on the circumcircle, and construct a cirééP), centerP,
and radius half of the inradius. Find the envelope of thecaldixis ofC(P) and
the incircle.
2. Animate a pointP on the circumcircle. Construct the isotomic conjugate ®f it
isogonal conjugate,e., the pointQ = (P*)*. What is the envelope of the line
joining PQ? %8

28The Steiner point.
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Some More Conics

12.1 Conics associated with parallel intercepts

12.1.1 Lemoine’s thorem

Let P = (u : v : w) be a given point. Construct parallels througHo the side lines,
intersecting the side lines at the points

Yo=(u:0:v+4+w), Zg=(u:v+w:0);
Zy=(w+u:v:0), Xo=0:v:w+u);
Xe=0:u+v:w), Ye=(u+v:0:w).
A
Zy
ZuM
B X. Xp C

Theses points lie on a coni€ p, with equation

Z vw(v + w)z® — u(vw + (w +u)(u +v))yz = 0.

cyclic
This equation can be rewritten as

- (u+v+w)?(uyz +vzx + wry)
+ (z4+y+2)(vwlv+w)z+ wu(w+ uw)y + vo(u+v)z) = 0.

From this we obtain
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Theorem (Lemoine)

The conic through the 6 parallel intercepts Bfis a circle if and only if P is the
symmedian point.

Exercises

1. Show that the coni€p through the 6 parallel intercepts througtis an ellipse,
a parabola, or a hyperbola according/ass inside, on, or outside the Steiner
in-ellipse, and that its center is the midpoint of tReand the cevian quotient
G/pP.1

2. Show that the Lemoine circle is concentric with the Brocarde. 2

12.1.2 A conic inscribed in the hexagomV/ (P)

While Cp is a conic circumscribing the hexagdWi(P) = Y,Y.Z,Z, X . X}, there is
another conic inscribed in the same hexagon. The sides tiegtkeegon have equations

YoYe: y=0; YZy: —vwzr 4+ w(w+uw)y + v(u+v)z = 0;
IyZg: z=0; ZoXc: wv+w)r —wuy +ulu+v)z = 0;
X Xp: =0 XpY,: v(v+w)x +u(w+ u)y —uvz =0.

These correspond to the following points on the dual cohie:vertices and

1‘w—|—u‘u+v v—l—w. 1.u+v U—i—w‘w—i—u‘ 1
S S , o — , Py : .

It is easy to note that these six points lie on the circumconic

v+ w w+u u+v
+ +
x Y z

=0.

It follows that the 6 lines are tangent to the incribed conic

Z (v +w)?2? — 2(w + u)(u + v)yz = 0,

cyclic

with center(2u 4+ v+ w : u + 2v + w : u + v + 2w) and perspector
11 1
v+w wHu utv)’

1The center has coordinatés(2vw+u(v+w—u)) : v(2wut+v(w+u—v)) : wuv+w(ut+v—w)).
2The center of the Lemoine circle is the midpoint betw@mandG/K = O.
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Zy

Exercises

1. Find the coordinates of the points of tangency of this ifmticonic with the
Y.Z,, Z,X. and X,Y,, and show that they form a triangle perspective with

ABC at®
w0t w?
v+w w4u u+v/)’

12.1.3 Centers of inscribed rectangles

Let P = (x : y : z) be a given point. Construct the inscribed rectangle whgsedge
is the parallel taBC throughP. The vertices of the rectangle on the sid&s andAB
are the point$z : y+ z:0)and(z : 0: y + 2).

The center of the rectangle is the point

A = (a®z:ad*(x+y+2)— Spr:a*(x +y+2)— Sox).

Similarly, consider the two other rectangles with top edipesugh P parallel to
C A and AB respectively, with centerB’ andC’. The triangled’ B'C’ is perspective
with ABC if and only if

(a®*(x+y+2)— Spx)(b*(x +y+2) — Scy)(P(x+y+ 2) — Saz)
= (®(x+y+2)—Scx)(V*(z+y+2) — Say)((z +y+z) — Sp2).

The first terms of these expressions cancel one another, geedast terms. Further
cancelling a common factar+ y + z, we obtain the quadratic equation

ZaZSA(SB —Sc)yz+ (r+y+2) Z bzcz(SB —Sc)x = 0.

cyclic

3 I W Cw? W? W2
(v+w.w+u.u+v),(v+w.w+u.u+v),and(v+w.w+u.u+v).
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This means that the locus @t for which the centers of the inscribed rectangles
form a perspective triangle is a hyperbola in the pencil gateel by the Jerabek hyper-
bola

ZG2SA(SB — Sc)yz =0
and the Brocard axi®@ K

Z b?c?(Sp — Sc)x = 0.

cyclic

Since the Jerabek hyperbola is the isogonal transform dEther line, it contains the
point H* = O andG* = K. The conic therefore passes througrand K. It also

contains the de Longchamps poiit= (—Spc + Sca + Sap : -+ : ---) and the
point(SB +Sc—8S4:85c+854—S:54+SB —Sc).4

P Perspector
circumcenter (2327155 : ZSZESCA : 2sgjs B)
symmedian point (3a® + b +c?ia?+ 30+ 2 a2 +b% +3c?)
de Longchamps point (Spc(S?+2844) v i--)
(Ba> —0?— i) (g )
Exercises

1. Show that the three inscribed rectangles are similar if argib P is the point

a2 ) b2 ) 2
t4+a?2 t4+b2 t+c2)’

wheret is the unique positive root of the cubic equatfon

t3 — (a®b® 4 b2 + 2a®)t? — 2a*b*c® = 0.

4None of these perspectors appears in the current editiT 6f
5Corrected by Peter Moses, 11/10/04.
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12.2 Lines simultaneously bisecting perimeter and area

Recall from§11.4.2 that thed-area-bisecting lines envelope the conic whose dual is
represented by the matrix
Moo (

On the other hand, tha-perimeter-bisecting lines envelope another conic whosé d
is represented by
2(s—a) s=b s—c
My = s—b 0 —5
s—c -5 0

To find a line simultaneously bisecting the area and perimeteseek an intersection
of of the two dual conics represented bf; andM,. In the pencil of conics generated
by these two, namely, the conics represented by matricégedbtmt M, + M, there
is at least one member which degenerates into a union of hes.liThe intersections
of the conics are the same as those of these lines with anyfahern. Now, for any
real parametet,

2t+s—a) t+s—b t+s—c

t+s—b 0 —(t+s)

t+s—c —(t+s) 0

= 20t+s)(t+s—b)(t+s—c)—2(t+s)2(t+s—a)
=2+ s)[t+s=b)(t+s—c)+ ({t+s)(t+s—a)
= —2(t+s)[2(t+s)* — 2s(t + 5) + be]

det(tMl + Mg)

By choosing = —s, we obtain

—2a —-b —c
—8M1 + M2 = *b 0 0
—c 0 0

which represents the degenerate conic
2ax? + 2bxy + 2cxy = 2x(ax + by + cz) = 0.
In other words, the intersections of the two dual conics lagesame as those
P4 ry+rz—yz=0
(represented by/;) and the lines = 0 andax + by + cz = 0.

With z = 0 we obtainyz = 0, and hence the point® : 0 : 1) and(0 : 1 : 0) on
the dual conic. These correspond to the lige$ and AB. These clearly are not area
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bisecting lines. This means that such a line must pass thrihegincenter, and with
corresponding satisfying

2bt* — (a+b+c)t +c=0.

From this,

4b 2b

(a+b+c)+t/(a+b+c)?—8bc  s++/s2—2bc

The division points orAC' are

(1—t:0:t):(2b—s:|: 52—2bc:O:si\/52—2bC).
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12.3 Parabolas with vertices of a triangle as foci
and sides as directrices

Given triangleA BC, consider the three parabolas each with one vertex as focitba
opposite side as directrix, and call thesedhe b—, andc—parabolas respectively. The
vertices are clearly the midpoints of the altitudes. No tithese parabolas intersect.
Each pair of them, however, has a unique common tangenthvidibe perpendicular
bisector of a side of the triangle. The three common tangbetefore intersect at the
circumcenter.

The points of tangency of the perpendicular bise&6rwith theb— andc—parabolas
are inverse with respect to the circumcircle, for they ar(-iisattamce%2 and % from
the circumcente©. These points of tangency can be easily constructed asvi&llo
Let H be the orthocenter of triangléBC', H, its reflection in the sid&BC. It is well
known thatH, lies on the circumcircle. The intersections®f, andC H, with the
perpendicular bisector a8C are the points of tangency with thhe- andc—parabolas
respectively.

Exercises

1. Find the equation of the-parabola®

65222 1 a2(c2y? 4 2S4yz + b%22) = 0.
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12.4 The Soddy hyperbolas and Soddy circles

12.4.1 The Soddy hyperbolas

Given triangleABC, consider the hyperbola passing throughand with foci atB
andC. We shall call this the-Soddy hyperbola of the triangle, since this and related
hyperbolas lead to the construction of the famous Soddjecifithe reflections ofd in

the sideBC and its perpendicular bisector are clearly points on theedayperbola, so

is the symmetric ofi with respect to the midpoint @ C'. The vertices of the hyperbola
on the transverse axBC are the point§0 : s —b: s —c¢),and(0: s —c: s — b), the
points of tangency of the sidBC' with the incircle and thel-excircle.

Likewise, we speak of thé- and C-Soddy hyperbolas of the same triangle, and
locate obvious points on these hyperbolas.

12.4.2 The Soddy circles

Given triangleABC, there are three circles centered at the vertices and nhtaat
gent to each other externally. These are the cirdies— a), B(s — b), andC(s — ¢).

The Soddy circleof triangle ABC' are the two circles each tangent to these three cir-
cles, all externally or all internally. The centers of thed8yp circles clearly are the
intersections of the three Soddy hyperbolas.
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Exercises

1. Show that the equation of-Soddy hyperbola is

F, = (c+a-0b)a+b—c)(y*+2?)
—2(a* + (b — ¢)?)yz — 4b(b — ¢)zx + 4(b — c)cay = 0.
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12.5 Appendix: Constructions with conics

Given 5 points4, B, C, D, E, no three of which are collinear, and no four concyclic,
the conicC. Through these 5 points is either an ellipse, a parabolahgparbola.

12.5.1 The tangent at a point ort

Q) P:= ACNnBD;
2)Q :=ADNCE,
B)R:=PQ N BE.
AR is the tangent afl.

12.5.2 The second intersection df and a line ¢ through A

(1) P:= ACN BE;
2)Q :=¢Nn BD;
B)R:=PQNCD;
4)A" :=¢NER.
A’ is the second intersection 6fand/.

12.5.3 The center of®

(1) B’ :=the second intersection 6fwith the parallel througiB to AC;
(2) ¢, := the line joining the midpoints aBB’ and AC;
(3) ¢’ :=the second intersection &fwith the parallel througld’ to AB;
(4) . := the line joining the midpoints af'C’ and A B;
(5) O := £, N ¢, is the center of the coniE.

12.5.4 Principal axes of®

(1) K(O) := any circle through the centér of the conicC.
(2) Let M be the midpoint ofAB. Construct (i)\OM and (ii) the parallel through
O to AB each to intersect the circle at a point. Join these two ptinfisrm a line.
(3) Repeat (2) for another chor{”, to form a line?’.
@ P:=int.
(5) Let K P intersect the circlé( (O) at X andY'.
Then the line® X andOY are the principal axes of the cortic

12.5.5 \Vertices of©

(1) Construct the tangent dtto intersect to the axe3.X andOY at P and(@ respec-
tively.

(2) Construct the perpendicular feet and@’ of A on the axe®© X andOY'.

(3) Construct a tangem®T" to the circle with diametePP’. The intersections of
the lineOX with the circleO(T') are the vertices on this axis.

(4) Repeat (3) for the circle with diamet@Q’.
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12.5.6 Intersection ofC with a line £

Let F' be a focus/ a directrix, anck = the eccentricity.

(1) LetH = LN

(2) Take an arbitrary poin® with pedal@ on the directrix.

(3) Construct a circle, centé?, radiuse - PQ.

(4) ThroughP construct the parallel t8, intersecting the directrix ab.

(5) ThroughO construct the parallel t6'H, intersecting the circle above i§ and
Y.

(6) The parallels through' to PX andPY intersect the given liné at two points
on the conic.





