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I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail.

1 Introduction

Stop practicing your bash. It gives you an unfair advantage.
–dragon96

This is intended to be an abridged version of the more thorough “Barycentric Coordinates in Olympiad
Geometry”. It contains three things: formula sheet, examples, and problems.

Most of the space, as one can see, is consumed by the example problems; after all, this is a bash technique,
and any real bash which is less than two pages long is considered very successful.

Enjoy!

1.1 Standard Formulas

Throughout this paper, 4ABC is a triangle with vertices in counterclockwise order. The lengths will be
abbreviated a = BC, b = CA, c = AB. These correspond with points in the vector plane ~A, ~B, ~C.

For arbitrary points P , Q, R, [PQR] will denote the signed area of 4PQR.1

Definition. Each point in the plane is assigned an ordered triple of real numbers P = (x, y, z) such that

~P = x ~A+ y ~B + z ~C and x+ y + z = 1

Theorem 1 (Line). The equation of a line is ux+ vy + wz = 0 where u, v, w are reals. (These u, v and w
are unique up to scaling.)

∗Mewto55555, Missouri. I can be contacted at igoroogenflagenstein@gmail.com.
†v Enhance, SFBA. I can be reached at chen.evan6@gmail.com.
1For ABC counterclockwise, this is positive when P , Q and R are in counterclockwise order, and negative otherwise. When

ABC is labeled clockwise the convention is reversed; that is, [PQR] is positive if and only if it is oriented in the same way as
ABC. In this article, ABC will always be labeled counterclockwise.
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Coordinates of Special Points

From this point on, the point (kx : ky : kz) will refer to the point (x, y, z) for k 6= 0. In fact, the equations
for the line and circle are still valid; hence, when one is simply intersecting lines and circles, it is permissible
to use these un-homogenized forms in place of their normal forms. Again, the coordinates here are not
homogenized!

Point Coordinates Sketch of Proof
Centroid G = (1 : 1 : 1) Trivial
Incenter I = (a : b : c) Angle bisector theorem

Symmedian point K = (a2 : b2 : c2) Similar to above
Excenter Ia = (−a : b : c), etc. Similar to above

Orthocenter H = (tanA : tanB : tanC) Use area definition
Circumcenter O = (sin 2A : sin 2B : sin 2C) Use area definition

If absolutely necessary, it is sometimes useful to convert the trigonometric forms of H and O into expres-
sions entirely in terms of the side lengths (cf. [3, 5]) by

O = (a2(b2 + c2 − a2) : b2(c2 + a2 − b2) : c2(a2 + b2 − c2))

and

H = ((a2 + b2 − c2)(c2 + a2 − b2) : (b2 + c2 − a2)(a2 + b2 − c2) : (c2 + a2 − b2)(b2 + c2 − a2))

Definition. The displacement vector of two (normalized) points P = (p1, p2, p3) and Q = (q1, q2, q3) is

denoted by
−−→
PQ and is equal to (p1 − q1, p2 − q2, p3 − q3).

A Note on Scaling Displacement Vectors

In EFFT, one can write a displacement vector (x, y, z) as (kx : ky : kz), and the theorem will still be true.
This is also true for Strong EFFT, but NOT for the distance formula.

Theorem 4 (Evan’s Favorite Forgotten Trick). Consider displacement vectors
−−→
MN = (x1, y1, z1) and

−−→
PQ =

(x2, y2, z2). Then MN ⊥ PQ if and only if

0 = a2(z1y2 + y1z2) + b2(x1z2 + z1x2) + c2(y1x2 + x1y2)

Corollary 5. Consider a displacement vector
−−→
PQ = (x1, y1, z1). Then PQ ⊥ BC if and only if

0 = a2(z1 − y1) + x1(c2 − b2)

Corollary 6. The perpendicular bisector of BC has equation

0 = a2(z − y) + x(c2 − b2)

Theorem 7 (Distance Formula). Consider a displacement vector
−−→
PQ = (x, y, z). Then

|PQ|2 = −a2yz − b2zx− c2xy

Theorem 8. The general equation of a circle is

−a2yz − b2zx− c2xy + (ux+ vy + wz)(x+ y + z) = 0

for reals u, v, w.

Corollary 9. The circumcircle has equation

a2yz + b2zx+ c2xy = 0
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Theorem 10 (Area Formula). The area of a triangle with vertices P = (x1, y1, z1), Q = (x2, y2, z2) and
R = (x3, y3, z3) is

[PQR] = [ABC] ·

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
Corollary 11 (First Collinearity Criteria). The points P = (x1 : y1 : z1), Q = (x2 : y2 : z2) and R = (x3 :
y3 : z3) are collinear if and only if ∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ = 0

Corollary 12 (Line Through 2 Points). The equation of a line through the points P = (x1 : y1 : z1) and
Q = (x2 : y2 : z2) is ∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x y z

∣∣∣∣∣∣ = 0

Corollary 13 (Second Collinearity Criteria). The points P = (x1, y1, z1), Q = (x2, y2, z2) and R =
(x3, y3, z3), are collinear if and only if ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0

Cyclic variations hold.

Theorem 14 (Strong EFFT). Suppose M , N , P and Q are points with
−−→
MN = x1

−→
AO + y1

−−→
BO + z1

−−→
CO

−−→
PQ = x2

−→
AO + y2

−−→
BO + z2

−−→
CO

If either x1 + y1 + z1 = 0 or x2 + y2 + z2 = 0, then MN ⊥ PQ if and only if

0 = a2(z1y2 + y1z2) + b2(x1z2 + z1x2) + c2(y1x2 + x1y2)

Corollary 15. The equation for the tangent to the circumcircle at A is b2z + c2y = 0.

Definition (Conway’s Notation). Let S be twice the area of the triangle. Define Sθ = S cot θ, and define
the shorthand notation Sθφ = SθSφ.

Fact. We have SA = −a2+b2+c2
2 = bc cosA and its cyclic variations. (We also have Sω = a2+b2+c2

2 , where ω
is the Brocard angle. This follows from cotω = cotA+ cotB + cotC.)

Fact. We have the identities
SB + SC = a2

and
SAB + SBC + SCA = S2

Fact. O = (a2SA : b2SB : c2SC) and H = (SBC : SCA : SAB) =
(

1
SA

: 1
SB

: 1
SC

)
.

Theorem 16 (Conway’s Formula). Given a point P with counter-clockwise directed angles ]PBC = θ and
]BCP = φ, we have P = (−a2 : SC + Sφ : SB + Sθ).

Lemma 17 (Parallelogram Lemma). The points ABCD form a parallelogram iff A+C = B +D (here the
points are normalized), where addition is done component-wise.

Lemma 18 (Concurrence Lemma). The three lines uix+ viy+wiz = 0, for i = 1, 2, 3 are concurrent if and
only if ∣∣∣∣∣∣

u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ = 0
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1.2 More Obscure Formulas

Here’s some miscellaneous formulas and the like. These were not included in the main text.

From [7],

Theorem 19 (Leibniz Theorem). Let Q be a point with homogeneous barycentric coordinates (u : v : w)
with respect to 4ABC. For any point P on the plane ABC the following relation holds:

uPA2 + vPB2 + wPC2 = (u+ v + w)PQ2 + uQA2 + vQB2 + wQC2

1.2.1 Other Special Points

Point Coordinates
Gregonne Point [3] Ge = ((s− b)(s− c) : (s− c)(s− a) : (s− a)(s− b))

Nagel Point [3] Na = (s− a : s− b : s− c)
Isogonal Conjugate [1] P ∗ =

(
a2

x : b
2

y : c
2

z

)
Isotomic Conjugate [1] P t =

(
1
x : 1

y : 1
z

)
Feuerbach Point [8] F =

(
(b+ c− a)(b− c)2 : (c+ a− b)(c− a)2 : (a+ b− c)(a− b)2

)
Nine-point Center N = (a cos(B − C) : b cos(C −A) : c cos(A−B))

1.2.2 Special Lines and Circles

Nine-point Circle −a2yz − b2xz − c2xy + 1
2 (x+ y + z)(SAx+ SBy + SCz) = 0

Incircle −a2yz − b2zx− c2xy + (x+ y + z)
(
(s− a)2x+ (s− b)2y + (s− c)2z

)
= 0

A-excircle [9] −a2yz − b2zx− c2xy + (x+ y + z)
(
s2x+ (s− c)2y + (s− b)2z

)
= 0

Euler Line [9] SA(SB − SC)x+ SB(SC − SA)y + SC(SA − SB)z = 0
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2 Example Problems

Graders received some elegant solutions, some not-so-elegant solutions, and some so not elegant
solutions.
– Delong Meng

Let us now demonstrate the power of the strategy on a few... victims.

2.1 USAMO 2001/2

We begin with a USAMO problem which literally (figuratively?) screams for an analytic solution.

2.1.1 Problem and Solution

Problem (USAMO 2001/2). Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the
points where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides BC
and AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the point of intersection of
segments AD2 and BE2. Circle ω intersects segment AD2 at two points, the closer of which to the vertex A
is denoted by Q. Prove that AQ = D2P .

A

B C

I

D1

E1

D2

E2

Q

P

Figure 1: USAMO 2001/2

Solution. (Evan Chen) So we use barycentric coordinates.

It’s obvious that un-normalized, D1 = (0 : s− c : s− b)⇒ D2 = (0 : s− b : s− c), so we get a normalized
D2 =

(
0, s−ba , s−ca

)
. Similarly, E2 =

(
s−a
b , 0, s−cb

)
.

Now we obtain the points P =
(
s−a
s , s−bs , s−cs

)
by intersecting the lines AD2 : (s − c)y = (s − b)z and

BE2 : (s− c)x = (s− a)z.
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Let Q′ be such that AQ′ = PD2. It’s obvious that Q′y+Py = Ay+D2y, so we find that Q′y = s−b
a −

s−b
s =

(s−a)(s−b)
sa . Also, since it lies on the line AD2, we get that Q′z = s−c

s−b ·Q
′
y = (s−a)(s−c)

sa . Hence,

Q′x = 1− ((s− b) + (s− c))(s− a)

sa
=
sa− a(s− a)

sa
=
a

s

Hence,

Q′ =

(
a

s
,

(s− a)(s− b)
sa

,
(s− a)(s− c)

sa

)
Let I =

(
a
2s ,

b
2s ,

c
2s

)
. We claim that, in fact, I is the midpoint of Q′D1. Indeed,

1

2

(
0 +

a

s

)
=

a

2s
1

2

(
(s− a)(s− b)

sa
+
s− c
a

)
=

(s− a)(s− b) + s(s− c)
2sa

=
ab

2sa

=
b

2s
1

2

(
(s− a)(s− c)

sa
+
s− b
a

)
=

c

2s

Implying that Q lies on the circle; in particular, diametrically opposite from D1, so it is the closer of the
two points. Hence, Q = Q′, so we’re done.

2.1.2 Commentary

The unusual points D2, and E2 make this problem ripe for barycentric coordinates, since they can be written
as ratios on the appropriate sides. The point Q′ is also easy to construct because of lengths.

Now it turns out that it’s well known that AD2 passes through the point directly above D1, so it is
merely a matter of length chasing to construct Q′ and subsequently use midpoints.

2.2 USAMO 2008/2

We follow this with another problem, made possible by EFFT (theorem 4). As we shall see, EFFT is
particularly useful for constructing perpendiculars to the sides of the triangle.

2.2.1 Problem and Solution

Problem (USAMO 2008/2). Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints
of BC, CA, and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM in points
D and E respectively, and let lines BD and CE intersect in point F , inside of triangle ABC. Prove that
points A, N , F , and P all lie on one circle.

Solution. (Evan Chen) Set A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1). Evidently P = ( 1
2 ,

1
2 , 0), etc. Check

that the equation of the line AM is y = z.
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A

B CM

E
N

D

P

F

Figure 2: USAMO 2008/2

We will now compute the coordinates of the point D. Write D = (1− 2t, t, t) as it lies on the line AM .
Applying EFFT to DP ⊥ AB,((

t− 1

2

)
−
(

1

2
− 2t

))(
−c2/2

)
+ t
(
a2 − b2/2

)
= 0

⇒ (3t− 1)(−c2) + t(a2 − b2) = 0

⇒ (a2 − b2 − 3c2)t = −c2

⇒ t =
c2

3c2 + b2 − a2

Call this value j. Then D = (1− 2j, j, j). Similarly, E = (1− 2k, k, k) where k = b2

3b2+c2−a2 .

Now the line BD has equation z
x = j

1−2j , whilst the line CE has equation y
x = k

1−2k . So if F = (p, q, r),

then p+ q + r = 1, r
p = j

1−2j , and q
p = k

1−2k .

In fact, r
p = c2

(3c2+b2−a2)−2c2 = c2

c2+b2−a2 , and q
p = b2

b2+c2−a2 . Evidently 1
p = 1 + r

p + q
p = 1 + b2+c2

c2+b2−a2 =
2S+a2

S = 2 + a2

S . Let S = c2 + b2 − a2 for convenience.

Dilate F to F ′ = 2F − A = (2p − 1, 2q, 2r). It suffices to show this lies on the circumcircle of triangle
ABC (since this will send P and N to B and C, respectively), which has equation a2yz + b2zx+ c2xy = 0.
Hence it suffices to show that

0 = a2(2q)(2r) + b2(2r)(2p− 1) + c2(2p− 1)(2q)

⇔ 0 = 4a2
q

p

r

p
+ (2 +

1

p
)(2b2

r

p
+ 2c2

q

p
)

⇔ −(2− (2 +
a2

S
))(2b2

c2

S
+ 2c2

b2

S
) = 4a2

b2c2

S2

⇔ a2(2b2c2 + 2c2b2) = 4a2b2c2

⇔ 4a2b2c2 = 4a2b2c2

which is true.
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2.2.2 Commentary

EFFT provides a method for constructing the perpendicular bisectors (in actuality this is just corollary 6),
from which it is not hard at all to intersect lines. The final conclusion involves a circle, so we dilate the
points such that this circle is simply the circumcircle, which has a very simple form.

2.3 ISL 2001 G1

We now present an application of Conway’s Formula to an ISL G1.

2.3.1 Problem and Solution

Problem (ISL 2001/G1). Let A1 be the center of the square inscribed in acute triangle ABC with two
vertices of the square on side BC. Thus one of the two remaining vertices of the square is on side AB and
the other is on AC. Points B1, C1 are defined in a similar way for inscribed squares with two vertices on
sides AC and AB, respectively. Prove that lines AA1, BB1, CC1 are concurrent.

M NB C

M ′ N ′

LK

A

A1

A2

Figure 3: ISL 2001 G1

Solution. (Max Schindler) There is an obvious homothety centered on A that maps the inscribed square
with center A1 to one with center A2, which is constructed externally off side BC. B2 and C2 can be defined
similarly. It then suffices to show that AA2, BB2, CC2 concur.

By Conway’s formula, A2 = (−a2 : SC + S cot 45 : SB + S cot 45) = (−a2 : SC + S : SB + S). It can
be very easily verified that AA2, and similarly BB2 and CC2, all go through the point ((SB + S)(SC + S) :
(SA + S)(SC + S) : (SB + S)(SA + S)) and are thus concurrent (this point is called the Outer Vecten
Point).

2.3.2 Commentary

Homothety (similar to that in problem 2.2) allowed us to create a convenient expression for S by Conway’s
Formula, at which point Conway’s Formula cleared the problem.
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2.4 2012 WOOT PO4/7

We now exhibit yet another problem in which perpendicular bisectors can be constructed via EFFT, which
are then used to determine a circumcenter. The method was used by v Enhance during the actual test and
received 7/.7. See [6].

2.4.1 Problem and Solution

Problem (2012 WOOT PO4/7). Let ω be the circumcircle of acute triangle ABC. The tangents to ω at B
and C intersect at P , and AP and BC intersect at D. Points E, F are on AC and AB, respectively, such
that DE ‖ BA and DF ‖ CA.

(a) Prove that points F , B, C, and E are concyclic.

(b) Let A1 denote the circumcenter of cyclic quadrilateral FBCE. Points B1 and C1 are defined similarly.
Prove that AA1, BB1, and CC1 are concurrent.

A

B
C

P

D

E

F

Figure 4: WOOT Practice Olympiad 4, Problem 7

Solution. (Evan Chen) Let A = (1, 0, 0), etc. Since the symmedian point has K = (a2 : b2 : c2), we find that

D =
(

0, b2

b2+c2 ,
c2

b2+c2

)
. Then, it’s obvious that E =

(
b2

b2+c2 , 0,
c2

b2+c2

)
and F =

(
c2

b2+c2 ,
b2

b2+c2 , 0
)

. In that

case, notice that since the general form of a circle is a2yz + b2zx + c2xy + (ux + vy + wz)(x + y + z) = 0,
the circle passing through

ω : a2yz + b2zx+ c2xy − b2c2

b2 + c2
· x(x+ y + z) = 0

passes through BFEC, so it’s cyclic.

Suppose A1 = (x0, y0, z0). Let M1 = B+F
2 =

(
1
2

c2

b2+c2 ,
1
2 + 1

2
b2

b2+c2 , 0
)

. Then A1M1 ⊥ AB, applying

EFFT and rearranging yields

x0 − y0 +
a2 − b2

c2
z0 =

c2

b2 + c2
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Doing a similar thing, we find that A1 is given by

x0 + y0 + z0 = 1

x0 − y0 +
a2 − b2

c2
z0 =

c2

b2 + c2

x0 +
a2 − c2

b2
y0 − z0 =

b2

b2 + c2

Then by Cramer’s rule, we can bash and get y0
z0

= a2+b2−c2
a2−b2+c2 . Then it’s easy to get the desired conclusion

by Ceva.

2.4.2 Commentary

Once we realize that AD is a symmedian, the symmedian point immediately gives us a nice form for D,
and hence E and F by similar triangles. The condition that FBCE is cyclic is made easier since two of
the points are vertices of the triangle, making both v and w vanish; hence the end computation is no longer
hard.

For the second part, EFFT allows us to use perpendicular bisectors to construct the circumcenter; we
can then compute the ratio that the cevian AA1 divides BC into. Ceva’s Theorem guarantees that these
will cancel cyclically, so we just compute the proper determinants, knowing that they will cancel cyclically
at the end.

The part about Ceva is worth remembering: any time you are trying to prove three cevians are concurrent,
barycentric coordinates may provide an easy way to compute the ratios in Ceva’s Theorem.

2.5 ISL 2005 G5

We now present a solution to an ISL problem involving Strong EFFT (theorem 1.1). This problem was
proposed by Romania, and is relatively difficult to approach synthetically.

2.5.1 Problem and Solution

Problem (ISL 2005/G5). Let4ABC be an acute-angled triangle with AB 6= AC. Let H be the orthocenter
of triangle ABC, and let M be the midpoint of the side BC. Let D be a point on the side AB and E a point
on the side AC such that AE = AD and the points D, H, E are on the same line. Prove that the line HM
is perpendicular to the common chord of the circumscribed circles of triangle 4ABC and triangle 4ADE.

Solution. (Max Schindler) We use barycentric co-ordinates.

Let the length AD = AE = `.

Then, D = (c− ` : ` : 0), E = (b− ` : 0 : `), and, using Conway’s Notation, H =
(

1
SA

: 1
SB

: 1
SC

)
.

Since they are collinear,

det

 c− ` ` 0
b− ` 0 `

1
SA

1
SB

1
SC

 = 0

⇒ −`(c− `)
SB

− `
(
b− `
SC

− `

SA

)
= 0

⇒ cSC − bSB
SBSC

= `

[
1

SA
+

1

SB
+

1

SC

]
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A

B C

H
D

E

M

F 90◦

Figure 5: ISL 2005 G5

Thus, ` = SA(cSC−bSB)
SBSC+SASC+SASB

.

Substituting in SA = b2+c2−a2
2 and similar, remembering that SBSC + SASC + SASB = S2 gives:

` =
(b2 + c2 − a2)[c(a2 + b2 − c2) + b(a2 − b2 + c2)]

(a+ b+ c)(a+ b− c)(b+ c− a)(c+ b− a)

It can easily be seen that c = −b is a root of the bracketed part of the numerator; factoring it out leaves
a2 + 2bc− b2 − c2 = a2 − (b− c)2 = (a− b+ c)(a+ b− c).

Thus,

` =
(b2 + c2 − a2)(b+ c)(a− b+ c)(a+ b− c)
(a+ b+ c)(a+ b− c)(b+ c− a)(c+ b− a)

⇒ ` =
(b2 + c2 − a2)(b+ c)

(a+ b+ c)(b+ c− a)

Meanwhile, the circumcircle of ADE has equation given by−a2yz−b2zx−c2xy+(x+y+z)(ux+vy+wz) =
0, as usual, so upon substituting the points A, D and E we find that

u = 0

−c2(c− `)(`) + c ((c− `)u+ `v) = 0

−b2(b− `)(`) + b ((b− `)u+ `w) = 0

Conveniently enough, the first equation immediately gives u = 0, and we can easily solve for v and w to
get v = c(c− `) and w = b(b− `).
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Now we need the common chord of the two circles

−a2yz − b2zx− c2xy = 0

−a2yz − b2zx− c2xy + (x+ y + z)(c(c− `)y + b(b− `)z) = 0

But this is easy: subtract the two equations. We find that the common chord has equation

c(c− `)y + b(b− `)z = 0

Now, we have everything we need to finish this problem off.

Consider two points on this chord, A = (1, 0, 0) and P = (0 : b(b− `) : −c(c− `)).

Then, the (scaled) displacement vector
−→
PA is (b(b− `)− c(c− `) : −b(b− `) : c(c− `)).

Let the circumcenter be the null vector. Then, the displacement vector
−−→
MH is ~A+ ~B+ ~C− ~B+~C

2 =
(
1, 12 ,

1
2

)
which can be scaled as (2 : 1 : 1)

Since PA has coefficient-sum 0, we can apply Strong EFFT:

MH ⊥ PA⇔ a2[c(c− `)− b(b− `)] + b2[c(c− `) + b(b− `)] + c2[−b(b− `)− c(c− `)] = 0

which becomes
b(a2 − b2 + c2)(b− `) = c(a2 + b2 − c2)(c− `)

But we have

b− ` =
b(a+ b+ c)(b+ c− a)− (b2 + c2 − a2)(b+ c)

(a+ b+ c)(b+ c− a)
=

c(a2 + b2 − c2)

(a+ b+ c)(b+ c− a)

Similarly,

c− ` =
b(a2 − b2 + c2)

(a+ b+ c)(b+ c− a)

Thus,

b(a2 − b2 + c2)(b− `) = b(a2 − b2 + c2)
c(a2 + b2 − c2)

(a+ b+ c)(b+ c− a)

= c(a2 + b2 − c2)(c− `)
⇒MH ⊥ PA

2.5.2 Commentary

While we eventually did have to use the somewhat messy form of H, Strong EFFT permits us to avoid doing
so when finding the condition for perpendicular chords. The other useful insight was computing the radical
axis by simply subtracting the two equations: keep this in mind!

By the way, it is true in general (as the diagram implies) that M , H and F are collinear. To my best
knowledge, the easiest way to prove this is to first prove the original problem.

12



2.6 USA TSTST 2011/4

The solution to this problem involves a synthetic observation, followed by an application of Vieta. Normally,
solving for P involves an incredibly painful quadratic. However, by first computing the other intersection,
we can actually use Vieta to deduce the coordinate of the point we care about.

2.6.1 Problem and Solution

Problem (TSTST Problem 4). Acute triangle ABC is inscribed in circle ω. Let H and O denote its
orthocenter and circumcenter, respectively. Let M and N be the midpoints of sides AB and AC, respectively.
Rays MH and NH meet ω at P and Q, respectively. Lines MN and PQ meet at R. Prove that OA ⊥ RA.

A

B C

H O

M N

P

Q

R

Figure 6: 2011 TSTST, Problem 4

Solution. (Evan Chen) We use barycentric coordinates. Set A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1). Let
TA = 1

SA
in Conway’s Notation, so that H = (TA : TB : TC).

First we will compute the point R′ = (x : y : z) on MN with R′A ⊥ OA. Setting ~O = 0, and applying
Strong EFFT, we find that the point satisfies equations c2y + b2z = 0 (per EFFT) and x = y + z (per

midline). Thus, we may write R′ = (b2 − c2 : b2 : −c2) .

Next, we will compute the coordinates of P . Check that we have the line

HM : x− y +
TB − TA
TC

z = 0

Furthermore, the circumcircle has equation z[a2y + b2x] + c2xy = 0. WLOG, homogenize so that z = −TC ;
then the first equation becomes y = x+ TA − TB . Substituting in the second equation, this becomes simply

c2x(x+ (TA − TB)) + a2(−TC)(x+ TA − TB) + b2(−TC)(x) = 0

13



Expanding, and collecting coefficients of x, this reduces to

c2x2 + [c2(TA − TB)− a2TC − b2TC ]x+ a2(−TC)(TA − TB) = 0

Now here’s the trick: it’s well known that the reflection of H across M lies on the circle. So the other
solution to this equation is ~H ′ = ~A+ ~B− ~H (since H ′AHB is a parallelogram). We can thus quickly deduce
that, in barycentric coordinates, H ′ = (TB +TC : TA+TC : −TC). So by Vieta’s Formulas, the x-coordinate
we seek is just

x = −c
2(TA − TB)− a2TC − b2TC

c2
− (TB + TC) =

a2 + b2 − c2

c2
TC − TA

Hence,

y =
a2 + b2 − c2

c2
TC − TB

So finally, we obtain

P =

(
a2 + b2 − c2

c2
TC − TA :

a2 + b2 − c2

c2
TC − TB : −TC

)
Similarly,

Q =

(
a2 + c2 − b2

b2
TB − TA : −TB :

a2 + c2 − b2

b2
TB − TC

)
It remains to show that P , Q and R′ are collinear. This occurs if and only if

0 = det

 a2+b2−c2
c2 TC − TA a2+b2−c2

c2 TC − TB −TC
a2+c2−b2

c2 TB − TA −TB a2+c2−b2
b2 TB − TC

b2 − c2 b2 −c2


Subtracting the second and third column from the first, this is equivalent to

0 = det

 TC + TB − TA a2+b2−c2
c2 TC − TB −TC

TC + TB − TA −TB a2+c2−b2
b2 TB − TC

0 b2 −c2


Expanding the determinant, and factoring out the term TC + TB − TA, we see that it suffices to show

that

0 = c2TB − b2TC −
[
−(c2)

(
a2 + b2 − c2

c2
TC − TB

)
+ (b2)

(
a2 + c2 − b2

b2
TB − TC

)]
Expanding, this is just

−(a2 − b2 + c2)TB + (a2 + b2 − c2)TC

But TB = 1
SB

= 2
a2−b2+c2 and TC = 2

a2+b2−c2 . Since −2 + 2 = 0, we conclude that the three points are
collinear.

2.6.2 Commentary

The application of Vieta played a critical role in this problem. BTW, during the actual TSTST, only one
person successfully bashed this problem (via complex numbers). Had I known about this technique at the
time, I think I could have gotten a positive score on Day 2.

14



2.7 USA TSTST 2011/2

Finally, to complete the section, we present an example of a bash which is possibly not feasible by hand.
Incidentally, this is the only problem in the section that was not done by hand. Max Schindler claims this
is doable if you have the computational fortitude.

The problem has been inverted around the point A, and the constant c has been replaced by 1/c.

2.7.1 Problem and Solution

Problem (TSTST Problem 2, Inverted). Let APQ be an obtuse triangle with ∠A > 90◦. The tangents at
P and Q to the circumcircle of APQ meet at the point B. Points X and Y are selected on segments PB
and QS, respectively, such that PX = c ·QA, and QY = c · PA. Then, PA and QA are extended through
A to R and S, so that AR = AS = c · PA·QAPQ . O is the point such that AROS is a parallelogram. Given
that AXOY is cyclic, prove that ∠PXA = ∠QY A.

A

P Q

Center of APQ

B

X

Y

R

S

O

Figure 7: 2011 TSTST, Problem 2

Solution. The reference triangle is APQ, with A = (1, 0, 0), P = (0, 1, 0) and Q = (0, 0, 1). To avoid
confusion, let a = PQ, q = AP and p = AQ.

It is not hard at all to compute R and S. Since AR = AS = cpq
a , and A = (1, 0, 0), P = (0, 1, 0) and

Q = (0, 0, 1), a quick application of ratios of lengths yields

R =

(
cq

a
+ 1,

−cq
a
, 0

)
and

S =

(
cp

a
+ 1, 0,

−cp
a

)
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Next we want to compute X = (x, y, z). Since X lies on the tangent PB, it satisfies 0 = b2y + c2z
(see the earlier problem, 2.6). Letting x + y + z = 1, and invoking the distance formula, we find that
(cq)2 = a2(y − 1)z + b2zx + c2x(y − 1). Solving this system by writing everything in z, and taking the

negative root, gives X =
(
ac
p ,
−a2c+ap+cq2

ap ,− cq
2

ap

)
.

Similarly, Y =
(
ac
q ,−

cp2

aq ,
a2(−c)+aq+cp2

aq

)
. We then obtain that O =

(
1 + cp

a + cq
a ,−

cp
a ,−

cq
a

)
We’d like to find criteria for when ∠PXA = ∠QY A. Noting the equal angles ∠BPQ = ∠BQP , we

extend XA and Y A through A to points X ′ and Y ′ respectively. Then X ′ = (0 : pa+ q2c− a2c : −q2c) and
Y ′ = (0 : −p2c : qa+ p2c− a2c) (aren’t cevians wonderful?). In that case, we obtain the lengths

PX ′ =
−q2c

pa− a2c
a =

−q2c
p− ac

and similarly,

QY ′ =
−p2c
q − ac

Now ∠PXA = ∠QY A if and only if the triangles XPX ′ and Y QY ′ are similar! Recall that PX = cq
and QY = cp; by SAS, this occurs if and only if

−q2c
p−ac
cq

=

−p2c
q−ac
cp
⇔ q(q − ac) = p(p− ac)⇔ c =

p+ q

a

So we just need to show that if AROS is cyclic, then c = p+q
a .

Unfortunately, this is where the calculations get heavy.2

Putting A,X, Y into the circle formula and solving for u, v, w yields

u = 0

v = (c2pq2(−a2c+ aq + cp(p+ q)))/(−a3c2 + a2c(p+ q)− c(p3 + q3) + a(−pq + c2(p2 + q2)))

w = (c2p2q(−a2c+ ap+ cq(p+ q)))/(−a3c2 + a2c(p+ q)− c(p3 + q3) + a(−pq + c2(p2 + q2)))

Substituting the point O into the equation and simplifying, we get that

−(cpq(a5c3−2a4c2(p+q)−c2(p+q)3(p2−pq+q2)+a3c((1−2c2)p2+3pq+(1−2c2)q2)+ac(p+q)2((−1+c2)p2−c2pq+(−1+c2)q2)+a2(p+q)(−pq+3c2(p2+q2))))

(a2(a3c2−a2c(p+q)+c(p3+q3)−a(−pq+c2(p2+q2))))
=0

Clearing the denominator, this is just

0 =− cpq(a5c3 − 2a4c2(p+ q)

− c2(p+ q)3(p2 − pq + q2)

+ a3c((1− 2c2)p2 + 3pq + (1− 2c2)q2)

+ ac(p+ q)2((−1 + c2)p2 − c2pq + (−1 + c2)q2)

+ a2(p+ q)(−pq + 3c2(p2 + q2)))

Noting that c = 0 and c = p+q
a are solutions (the latter “by inspection”) we can divide this out and

collect terms in c to get

c2
(
−a4 − p4 − p3q − pq3 − q4 + 2a2

(
p2 + q2

))
+ c

(
a3(p+ q)− a

(
p3 + p2q + pq2 + q3

))
− a2pq = 0

2I wonder if there’s any synthetic interpretation that would lead directly to this expression for c. That would be nice too.
Tell me if you find one!
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We need to show that there are no positive reals c satisfying this. A quick glance at the constant term
tells us that we should probably use the discriminant; our only hope is that there are no real roots at all.
Computing, we get

∆ =a6p2 − 2a4p4 + a2p6 − 2a6pq + 4a4p3q − 2a2p5q

+ a6q2 − 4a4p2q2 − a2p4q2 + 4a4pq3 + 4a2p3q3

− 2a4q4 − a2p2q4 − 2a2pq5 + a2q6

which factors as
∆ = −a2(−a+ p+ q)(p− q)2(a+ p− q)(a− p+ q)(a+ p+ q)

Since a, p and q are the sides of a triangle, this is always negative.

2.7.2 Commentary

The calculations are relatively easy up until incorporating the condition that AROS is cyclic. Despite the
fact that the “cyclic” condition was fairly brutal, it illustrates a few points worth making: (i) similar triangles
are your friends in barycentrics too, because they can yield equal angles, (ii) inversion can provide a way to
eliminate awkward circle conditions, (iii) unusual side length conditions related to the sides of the triangles
is not a problem, and (iv) cyclic quadrilaterals suck.

Please let us know if you find a cyclic criteria which completes a reasonable solution! We’d like to have
a human to attribute the solution to...
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3 Problems

There is light at the end of the tunnel, but it is moving away at speed c.

Here, we provide some problems for the reader to attempt. Some are easier than others. Infinity [1]
has a longer list than is included here; see http://www.bmoc.maths.org/home/areals.pdf for the relevant
excerpt.

For practice “in real life”, i.e. determining when barycentric coordinates are feasible for a problem (here,
they are), you can often simply take an arbitrary geometry problem that begins with the words “triangle
ABC”, and see if it’s possible to get a barycentric solution. Some will, of course, take much longer than
others, but a good portion will have a reasonable solution.

3.1 Problems

1. Prove Stewart’s Theorem.

2. Prove Routh’s Theorem.

3. (USA TST 2003/2) Let ABC be a triangle and let P be a point in its interior. Lines PA, PB, PC
intersect sides BC, CA, AB at D, E, F , respectively. Prove that

[PAF ] + [PBD] + [PCE] =
1

2
[ABC]

if and only if P lies on at least one of the medians of triangle ABC. (Here [XY Z] denotes the area of
triangle XY Z.)

4. (Mongolia TST 2000/6) In a triangle ABC, the angle bisector at A,B,C meet the opposite sides at
A1,B1,C1, respectively. Prove that if the quadrilateral BA1B1C1 is cyclic, then

AC

AB +BC
=

AB

AC +BC
+

BC

BA+AC

5. (ISL 2005/G1) Given a triangle ABC satisfying AC + BC = 3 · AB. The incircle of triangle ABC
has center I and touches the sides BC and CA at the points D and E, respectively. Let K and L be
the reflections of the points D and E with respect to I. Prove that the points A, B, K, L lie on one
circle.

6. (APMO 2005/5) In a triangle ABC, points M and N are on sides AB and AC, respectively, such
that MB = BC = CN . Let R and r denote the circumradius and the inradius of the triangle ABC,
respectively. Express the ratio MN/BC in terms of R and r.

7. (ISL 2008/G4) In an acute triangle ABC segments BE and CF are altitudes. Two circles passing
through the point A and F and tangent to the line BC at the points P and Q so that B lies between
C and Q. Prove that lines PE and QF intersect on the circumcircle of triangle AEF .

8. (ISL 2001/G6) Let ABC be a triangle and P an exterior point in the plane of the triangle. Suppose
the lines AP , BP , CP meet the sides BC, CA, AB (or extensions thereof) in D, E, F , respectively.
Suppose further that the areas of triangles PBD, PCE, PAF are all equal. Prove that each of these
areas is equal to the area of triangle ABC itself.

9. (IMO 2007/2) Consider five points A, B, C, D and E such that ABCD is a parallelogram and BCED
is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that ` intersects the interior of
the segment DC at F and intersects line BC at G. Suppose also that EF = EG = EC. Prove that `
is the bisector of angle DAB.
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3.2 Hints

Hints have been obfuscated by ROT13.

1. ABG UNEQ

2. FGENVTUGSBEJNEQ

3. HFR NERN SBEZ

4. PVEPYR SBEZ FBYIR HIJ

5. PVEPF GURA J VF ZVAHF N O

6. QVFG SNPGBE GURA TRB VQ

7. CBJRE CBVAG FUBJF NRCD PLPYVP GURA NATYR PUNFR

8. PNERSHY FVTARQ NERNF

9. ERS OPQ... SVAQ S T FLF RDA RYVZ P M SNPGBE
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4 Additional Problems from MOP 2012

If our solution has at table of contents, how should we number the pages?
– Evan Chen, MOP 2012

Here’s a more recent collection of geometry problems solvable using barycentric coordinates. These are
all problems which appeared at MOP 2012,3 along with an IMO question from that year.

These are in very roughly order, based both on the amount of computation and the difficulty of setup

1. (IMO 2012) Given triangle ABC the point J is the center of the excircle opposite the vertex A. This
excircle is tangent to the side BC at M , and to the lines AB and AC at K and L, respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of intersection
of the lines AF and BC, and let T be the point of intersection of the lines AG and BC. Prove that M
is the midpoint of ST.

2. (USA TST 2012) In acute triangle ABC, ∠A < ∠B and ∠A < ∠C. Let P be a variable point on
side BC. Points D and E lie on sides AB and AC, respectively, such that BP = PD and CP = PE.
Prove that if P moves along side BC, the circumcircle of triangle ADE passes through a fixed point
other than A.

3. (ELMO4 2012/5) Let ABC be an acute triangle with AB < AC, and let D and E be points on side
BC such that BD = CE and D lies between B and E. Suppose there exists a point P inside ABC
such that PD ‖ AE and ∠PAB = ∠EAC. Prove that ∠PBA = ∠PCA.

4. (Saudi Arabia TST 2012) Let ABCD be a convex quadrilateral such that AB = AC = BD. The lines
AC and BD meet at point O, the circles ABC and ADO meet again at point P , and the lines AP
and BC meet at point Q. Show that ∠COQ = ∠DOQ.

5. (ISL 2011/G2) Let A1A2A3A4 be a non-cyclic quadrilateral. For 1 ≤ i ≤ 4, let Oi and ri be the
circumcenter and the circumradius of triangle Ai+1Ai+2Ai+3 (where Ai+4 = Ai). Prove that

1

O1A2
1 − r21

+
1

O2A2
2 − r22

+
1

O3A2
3 − r23

+
1

O4A2
4 − r24

= 0

6. (USA TSTST 2012) Triangle ABC is inscribed in circle Ω. The interior angle bisector of angle A
intersects side BC and Ω at D and L (other than A), respectively. Let M be the midpoint of side
BC. The circumcircle of triangle ADM intersects sides AB and AC again at Q and P (other than A),
respectively. Let N be the midpoint of segment PQ, and let H be the foot of the perpendicular from
L to line ND. Prove that line ML is tangent to the circumcircle of triangle HMN .

7. (ISL 2011/G4) Acute triangle ABC is inscribed in circle Ω. Let B0, C0, D lie on sides AC, AB, BC,
respectively, such that AB0 = CB0, AC0 = BC0, and AD ⊥ BC. Let G denote the centroid of triangle
ABC, and let ω be a circle through B0 and C0 that is tangent to Ω at a point X other than A. Prove
that D, G, X are collinear.

8. Let ABC be a triangle with circumcenter O and let the angle bisector of ∠BAC intersect BC at D.
The point M is such that MC ⊥ BC and MA ⊥ AD. Lines BM and OA intersect at the point P .
Show that the circle centered at P and passing through A is tangent to segment BC.

9. (USA TSTST 2012) Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at
P . Let ω1 and O1 denote the circumcircle and circumcenter of triangle ABP . Let ω2 and O2 denote
the circumcircle and circumcenter of triangle CDP . Segment BC meets ω1 and ω2 again at S and T
(other than B and C), respectively. Let M and N be the midpoints of minor arcs SP (not including
B) and TP (not including C). Prove that MN ‖ O1O2.

3MOP, occasionally called MOSP, stands for Mathematical Olympiad Program; it is the USA training program for the IMO.
4This year’s test was called “Every Little Mistake ⇒ 0”.
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