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1 Barycentric Coordinates: Definition

1.1 Definition

Consider placing masses of 2, 3, and 7 at vertices A, B, and C of a non-degenerate triangle. Letting D be the point

of BC so that BD/DC = 7/3, we see that lever BC balances at fulcrum D, meaning the triangle ABC balances

along cevian AD. Likewise, it balances along cevians BE and CF where CE/EA = 2/7 and AF/FB = 3/2. With

a bit of physical intuition, these balancing lines should all pass through the center of mass of the system, and we

define this point of concurrency P (the center of mass) to have barycentric coordinates (2 : 3 : 7) with respect to

triangle ABC. More generally,
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Figure 1: Barycentric coordinates definition

Barycentric Coordinates Definition. The point with coordinates (x : y : z) is the center of mass of the system

when masses of x, y, and z (which may be zero or even negative!) are placed at the vertices A, B and C of the

reference triangle.

Equivalently, as explained above, we may say that

Definition′. The point P = (x : y : z) is the point whose traces D, E, F satisfy BD
DC = z

y , CE
EA = x

z , and AF
FB = y

x ,

using signed ratios.

Using this formulation, we can give a quick proof of Ceva’s theorem, which states that cevians AD, BE, and

CF are concurrent if and only if the three ratios BD
DC = ra, CE

EA = rb, and AF
FB = rc have product 1. The point

P = (rarb : 1 : ra) can be seen to have traces D, E, and F ′, where AF ′

F ′B = 1
rarb

. Cevians AD, BE, CF are concurrent

if and only if F = F ′, i.e. if and only if rc = 1
rarb

, QED. (The barycentric coordinates of P can be written more

symmetrically as P = ( 3
√
rar2b : 3

√
rbr2c : 3

√
rcr2a).)
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There is one more description of barycentric coordinates that is often much more useful that the previous two:

Definition′′. The point P = (x : y : z) is the point in the plane of triangle ABC so that the three (signed) areas

[PBC], [PCA], and [PAB] are in the ratio x : y : z (which explains the chosen notation).

Indeed, we have
[PAB]
[PCA]

=
[PAD]
[PDC]

=
PD

DC
=
z

y
,

and likewise for [PBC].
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Figure 2: Barycentric coordinates through areas

Note that these coordinates are homogeneous. That is, the points (x : y : z) and (kx : ky : kz) for any nonzero

constant k are the same. For this reason, it is often desirable to normalize so that the coordinates have sum 1.

When P is in normalized form, we will use the following notation:

P = (x : y : z) normalized =
1

x+ y + z
(x, y, z) =

(
x

x+ y + z
,

y

x+ y + z
,

z

x+ y + z

)
.

(Note the commas instead of colons in the last two representations.) It can be verified that such a scaling is not

possible, i.e. x + y + z = 0, if and only if AD,BE,CF are parallel, which means the point of concurrency P

corresponds to a point at infinity in the projective plane.

1.2 Examples

Let’s calculate the normalized barycentric coordinates for a few common triangle centers.

1.2.1 Centroid

The centroid G is the point of concurrency of the medians of 4ABC, i.e. the point of concurrency when D,E, F

are taken as midpoints. As BD
DC = CE

EA = AF
FB = 1, the second definition above shows that

G = (1 : 1 : 1) normalized =
1
3

(1, 1, 1).
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Figure 3: Centroid
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Figure 4: Incenter

1.2.2 Incenter

With I as the incenter of4ABC and r the inradius, we see that [IBC] = 1
2ar, so we can write I = ( 1

2ar : 1
2br : 1

2cr),

or after normalizing,

I =
1
2s

(a, b, c)

(where s = a+b+c
2 is the semiperimeter).

1.2.3 Spieker Center

If the sides of triangle ABC are traced with a uniform wire, the Spieker center Sp is the center of mass of the wire.

As the wire BC has mass proportional to a and has center of mass Ma, the Spieker center it is the center of mass

when weights of a, b, and c are placed at the midpoints Ma, Mb, Mc of BC, CA, AB respectively. This implies

two important facts about this center. First, basing our barycentric coordinate system around the medial triangle

MaMbMc gives Sp the coordinates (a : b : c), and since MaMbMc ∼ ABC, we find that Sp is the incenter of the

medial triangle. Secondly, the center of mass of the system with weights a, b, c at Ma, Mb, Mc is the same as

the center of mass of the system which has weights of b+c
2 , c+a

2 , a+b
2 at A, B, C respectively, so the barycentric

coordinates of Sp with respect to ABC are

Sp =
1
4s

(b+ c, c+ a, a+ b).
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Figure 5: Speiker Center
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Figure 6: Orthocenter
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1.2.4 Orthocenter

In Figure 6, notice that ∠BHD = 90− ∠DBH = ∠ECB = γ, so

[HBC] =
1
2
aHD =

1
2
aAD tan γ =

1
2
ac cosβ tan γ =

c

2 sin γ
a cosβ cos γ = Ra cosβ cos γ.

Thus,

H = (a cosβ cos γ : b cos γ cosα : c cosα cosβ) normalized.

By the Law of Cosines, a cosβ cos γ = 1
4abc (c

2 + a2 − b2)(a2 + b2 − c2), so we also have

H =
(
(c2 + a2 − b2)(a2 + b2 − c2) : (a2 + b2 − c2)(b2 + c2 − a2) : (b2 + c2 − a2)(c2 + a2 − b2)

)
normalized.

But what are the normalizing factors? The sum of the coordinates in the second expression can be expanded to

∑
cyc

(c2 + a2 − b2)(a2 + b2 − c2) = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

= (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b) = 16(s)(s− a)(s− b)(s− c) = 16[ABC]2 = 16r2s2,

so we find the two equivalent normalized forms

H =
1

16r2s2
(
(c2 + a2 − b2)(a2 + b2 − c2),−,−

)
=
R

rs
(a cosβ cos γ,−,−)

(we used the well-known formula abc = 4srR to obtain the second expression from the first).

2 Collinearity

Barycentric coordinates can be used to detect when three points are on a line. Suppose we have two normalized

points P = (x1, y1, z1) and Q = (x2, y2, z2), which means x1 = [PBC]/[ABC], etc. Let Px, Py, Pz be the

projections from P to lines BC, CA, AB respectively, and likewise for Q. Since [PBC] = 1
2 · PPx · a, we have

PPx = 2[PBC]/a = 2[ABC]
a · x1, and likewise QQx = 2[ABC]

a · x2.
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Figure 7: Collinearity condition

Consider the point R = (x3, y3, z3) on line BC so that PR/PQ = k for some real number k, and let Rx be its

projection onto BC. By right trapezoid PPxQxQ, it can be seen that RRx = (1 − k) · PPx + (k) · QQx, i.e. that
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x3 = (1− k) · x1 + (k) · x2. As the same holds for y3 and z3, we find that

R = (1− k)P + (k)Q,

so R is simply a weighted average of P and Q. When homogeneity is taken into account (i.e. without assuming P

and Q have been normalized), the criterion for collinearity becomes the following:

Collinearity Condition. Points P = (x1 : y1 : z1), Q = (x2 : y2 : z2), and R = (x3 : y3 : z3) are collinear if and

only if the vectors (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are linearly dependent, i.e. the determinant∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣
is zero. Furthermore, if P , Q, and R are normalized, the value of k for which R = (1− k)P + (k)Q corresponds to

the ratio k = PR/PQ.

2.1 Examples

2.1.1 Euler Line

The points H, G, and O lie on a line in that order with OH = 3OG. To see why, we need the normalized

barycentric coordinates for O (the other two were calculated above in sections 1.2.1 and 1.2.4). The area of OBC

is 1
2R

2 sin 2α = R2 sinα cosα = 1
2Ra cosα, so (with a bit of work) we obtain the following equivalent normalized

expressions:

O =
R

2rs
(a cosα,−,−) =

1
4s2r2

(
a2(b2 + c2 − a2),−,−

)
.

We simply need to illustrate that 3G = H + 2O, i.e. that

1 =
Ra

rs
· cosβ cos γ +

Ra

rs
· cosα.

Notice that cosα + cosβ cos γ = cosα + cos(β + γ) + sinβ sin γ = bc
4R2 , so the right side of the previous equation

equals abc
4srR = 1, as needed.
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Figure 8: Euler line
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Figure 9: Nagel line
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2.1.2 Nagel Line

The Nagel point Na, Spieker center Sp, centroid G, and incenter I are collinear along the so-called Nagel Line in

that order, with Sp and G respectively bisecting and trisecting segment NaI. The Nagel point is defined as the

point of concurrency of AD, BE, and CF where DEF is the extouch triangle, meaning the excircle opposite vertex

A is tangent to BC at D, and similarly for E and F . Since BD/DC = (s− c)/(s− b), and likewise for E and F ,

we obtain Na = 1
s (s− a, s− b, s− c). Now the statement above is easy to verify:

1
2
(
Na + I

)
=
( s−a

s + a
2s

2
,−,−

)
=
(
b+ c

4s
,−,−

)
= Sp

and
1
3
Na +

2
3
I =

(
s− a

3s
+

a

3s
,−,−

)
=
(

1
3
,−,−

)
= G.

3 Area

Barycentric coordinates can also be used to calculate triangle areas, as follows:

Area Formula. For three points P = (x1, y1, z1), Q = (x2, y2, z2), R = (x3, y3, z3) written in normalized barycen-

tric coordinates with respect to triangle ABC, we have

[PQR]
[ABC]

=

∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣ .
Proof. Choose a point O not in the plane of 4ABC, and set up a three dimensional coordinate system with

O = (0, 0, 0), A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1) (note that this need not be an orthonormal frame!). It is

not difficult to show that for a point X = (x, y, z) with x+ y + z = 1, i.e. in the plane of 4ABC, the coordinates

(x, y, z) in the coordinate system correspond to its normalized barycentric coordinates X. Letting PABC be the

parallelepiped spanned by vectors
−→
OA,

−−→
OB,

−−→
OC, and likewise for PPQR, the definition of determinant via volume

gives

vol(PPQR)
vol(PABC)

=

∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣ .
We have vol(PABC) = 6 vol(OABC) = 2[ABC] · h, where h is the length of the height from O to plane ABC, and

likewise, vol(PPQR) = 2[PQR] · h. Thus, the ratio above equals

[PQR]
[ABC]

,

as claimed.
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3.1 Example: Triangle OIH

Problem 1. The area of triangle OIH is 1
8r (a− b)(b− c)(c− a).

A

B C

O I

H

Figure 10: Triangle OIH

Solution. According to the previous formula, the area of triangle OIH is

[ABC] · R
2rs
· 1

2s
· R
rs
·

∣∣∣∣∣∣∣∣
a cosα b cosβ c cos γ

a b c

a cosβ cos γ b cos γ cosα c cosα cosβ

∣∣∣∣∣∣∣∣ =
R2abc

4rs2
·

∣∣∣∣∣∣∣∣
cosα cosβ c cos γ

1 1 1

cosβ cos γ cos γ cosα cosα cosβ

∣∣∣∣∣∣∣∣
=
R3

s
· (cosβ − cosα)(cos γ − cosβ)(cosα− cos γ).

Finally, using the formula

cosβ − cosα =
c2 + a2 − b2

2ca
− b2 + c2 − a2

2bc
=

(a− b)(a+ b+ c)(a+ b− c)
2abc

=
(a− b)(s− c)

2rR
,

the above simplifies to

1
8sr3

(s− a)(s− b)(s− c)(a− b)(b− c)(c− a) =
1
8r

(a− b)(b− c)(c− a),

as claimed. (The last simplification is due to Heron’s formula: rs =
√
s(s− a)(s− b)(s− c).)

4 Problems

Problem 2 (MOP 2006). Triangle ABC is inscribed in circle ω. Point P lies on line BC such that line PA is

tangent to ω. The bisector of ∠APB meets segments AB and AC at D and E respectively. Segments BE and CD

meet at Q. Given that line PQ passes through the center of ω, compute ∠BAC.

Solution. By similar triangles PBA and PAC, PBPA = PA
PC = c

b , so BD
DA = c

b and AE
EC = c

b . This is enough to identify

D = (c : b : 0), E = (b : 0 : c), and Q = (bc : b2 : c2). Point P , lying on line BC, has the form P = (0 : x : y)

for some x and y, and since P , D, and E are collinear, we have
∣∣∣ 0 x yc b 0
b 0 c

∣∣∣ = 0, i.e. x
y = − b

2

c2 . So P = (0 : b2 : −c2).
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Figure 11: Problem 2

Finally, since P , Q, and O = (a cosα : − : −) are collinear, we find that∣∣∣∣∣∣∣∣
0 b2 −c2

bc b2 c2

a cosα b cosβ c cos γ

∣∣∣∣∣∣∣∣ = bc ·

∣∣∣∣∣∣∣∣
0 b −c
bc b c

a cosα cosβ cos γ

∣∣∣∣∣∣∣∣ = 0

which simplifies to 2abc cosα = bc2 cosβ + b2c cos γ = bc(c cosβ + b cos γ) = abc, i.e. cosα = 1
2 and α = 60◦.

Problem 3 (USAMO 2001 #2). Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points

where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides BC and AC,

respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the point of intersection of segments AD2

and BE2. Circle ω intersects segment AD2 at two points, the closer of which to the vertex A is denoted by Q.

Prove that AQ = D2P .
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Figure 12: Problem 3
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Figure 13: A, Q, D1 collinearity

Solution. We can locate most of the points in the diagram: I = 1
2s (a, b, c), D1 = 1

a (0, s−c, s−b), D2 = 1
a (0, s−b, s−c)

(the point of tangency of BC with A’s excircle), E2 = 1
b (s − a, 0, s − c), and P = Na = 1

s (s − a, s − b, s − c) (this

is the Nagel point). To find Q, we note that the homothecy at A taking A’s excircle to the incircle must take D2

to Q. This means the radius IQ is parallel to IaD2 ‖ ID1, i.e. Q is diametrically opposite to D1 along the incircle:

Q = 2I −D1 =
(
a
s ,

b
s −

s−c
a , cs −

s−b
a

)
. Now, all we must show is AQ = PD2.

While distances in general are not pretty in barycentric coordinates, we are saved by the fact that all four points

are on a line. We offer two ways to finish. The first is to appeal to the 3D coordinate frame view developed in
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Figure 14: Isogonal conjugates
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Figure 15: Problem 4

section 3 and claim it suffices to show that
−→
AQ =

−−→
PD2 (since these points are already in normalized form), i.e. that(

a

s
− 1,

b

s
− s− c

a
,
c

s
− s− b

a

)
=
(
−s− a

s
,
s− b
a
− s− b

s
,
s− c
a
− s− c

s

)
.

This can be checked directly. The first coordinates are clearly equal; equality of the second coordinates boils down

to 2s = a+ b+ c; and likewise for the third coordinates. Another method is to show that [AQB] = [PD2B]. This

becomes ∣∣∣∣∣∣∣∣
1 0 0
a
s

b
s −

s−c
a

c
s −

s−b
a

0 1 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
s−a
s

s−b
s

s−c
s

0 s−b
a

s−c
a

0 1 0

∣∣∣∣∣∣∣∣ ,
i.e. s−b

a −
c
s = − s−as ·

s−c
a . But again, this is just a rewriting of a+ b+ c = s.

Problem 4. Show that the isogonal conjugate of the Nagel point is the center of positive homothecy between the

incircle and circumcircle. Likewise, the isogonal conjugate of the Gergonne point is the center of negative homothecy

between the two circles.

Solution. To do this, first we need to calculate the isogonal conjugate P ∗ of a general point P = (x : y : z). Let Py
and Pz be the projections from P to AC and AB respectively, and likewise for P ∗y and P ∗z . Setting ∠BAP = θ and

∠PAC = φ, we have

[P ∗CA]
[P ∗AB]

=
b

c
·
P ∗P ∗y
P ∗P ∗z

=
b

c
· sin θ

sinφ
=
b

c
· PPz
PPy

=
b2

c2
· [PAB]

[PCA]
=
b2/y

c2/z
,

so we find P ∗ =
(
a2

x : b
2

y : c
2

z

)
.

Now, since Na = (s− a : s− b : s− c) normalized, the above gives

N∗a =
(

a2

s− a
: − : −

)
normalized =

(
a2(s− b)(s− c) : − : −

)
normalized.
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Using the identity sin2 α
2 = (s−b)(s−c)

bc , the above can be manipulated as follows:

N∗a =
(
a2bc sin2 α

2 : − : −
)

normalized

= (a(1− cosα) : − : −) normalized

=
(

(a : b : c)− (a cosα : b cosβ : c cos γ)
)

normalized

=
(
2s · I − 2rs

R
·O
)

normalized

=
(
R · I − r ·O

)
normalized

=
R

R− r
· I − r

R− r
·O.

This means that N∗a is on line OI such that N∗a I/N
∗
aO = r/R, i.e. N∗a is exactly the center of homothecy taking I

to O with positive ratio R/r. Likewise, it may be calculated that G∗e = R
R+r · I + r

R+r · O, i.e. G∗e is the center of

homothecy taking I to O with negative ratio −R/r.
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