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§ Brocard’s Theorem

Figure 1 : O is the orthocentre of ∆PQR

§ Prerequisites

Brocard’s theorem is a very powerful tool in synthetic as well as in projective geometry.
Many of you know this theorem well but not so much familiar with the proof. So, here I
am trying to give a complete proof of this theorem step by step. Some ideas of symmedians,
projective geometry, perspectivity, harmonic bundles, poles and polars etc. will be needed.
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Let ABCD is a cyclic quadrilateral inscribed in a circle with centre O. P,Q,R
are the intersection points of (BA - CD), (DA - CB) and (AC - BD) respectively. Then,
point   O is the orthocentre of ∆PQR. (In fact, P is the pole of QR, Q is the pole of PR,
and R is the pole of PQ )



§1 Symmedians

Symmedian is the reflection of median over the corresponding angle bisector of a triangle
(isogonal of the median).

Lemma 1.1 : In ∆ABC,P be a point on BC, then
PB
PC = AB2

AC2
if and only if AP is a symmedian.
(Just draw the median AM , use the fact 6 BAP = 6 CAM, 6 BAM = 6 CAP and ratio lemma .)

Lemma 1.2 : If the tangents at B and C to circumcircle of ∆ABC intersect at K then the
line AK is a symmedian.

Figure 2 : The A -symmedian of ∆ABC

Proof : Let P be the intersection of AK with BC. So by lemma 1.1, it is enough to show

that BP
CP = AB2

AC2

In the above figure, we have BP
CP = BK

CK ·
sinBKP
sinCKP

As , BK = CK (tangent from same point to the circumcircle) , hence
BP
CP = sinBKP

sinCKP

Applying Sine laws in ∆KAB and ∆KAC , we get

AB
sinBKP = AK

sinABK = AK
sin(A+B)

and

AC
sinCKP = AK

sinACK = AK
sin(A+C)

[KB and KC are tangents to (ABC) , so 6 KBC = 6 KCB = 6 A ]
Hence,

sinBKP
sinCKP = AB

AC ·
sin(A+C)
sin(A+B) =

AB
AC ·

sinB
sinC = AB2

AC2
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So, we get
BP
CP = AB2

AC2 . Hence, AK is a symmedian of ∆ABC .

Lemma 1.3 : In ∆ABC,AK is the A - symmedian of ∆ABC with K on BC. Let AK meet

(ABC) at X. Then
AB
AC = BX

CX

Figure 3 : ABXC is called harmonic quadrilateral
(cyclic and product of opposite sides are equal)

Proof : By ratio lemma,

BX
CX ·

sinBXA
sinCXA = BP

CP

Since ,
BP
CP = AB2

BC2 and 6 BXA = 6 C, 6 CXA = 6 B ,

BX
CX = AB2

AC2 · sinBsinC = AB2

AC2 · ACAB = AB
AC

§2 Cross Ratios – Projective Geometry

For any given four collinear points A,B,X, Y , the cross ratio is

(A,B;X, Y ) = XA
XB ÷

Y A
Y B

When four lines a, b, c, d are concurrent at some point P, then the cross ratio will be

(a, b; c, d) = sin 6 (c,a)

sin 6 (c,b)
· sin 6 (d,a)

sin 6 (d,b)

Where 6 (x, y) is the angle between the lines x, y.

If A,B,X, Y are collinear points on lines a, b, x, y (respectively) concurrent at K,

K(A,B;X, Y ) = (a, b;x, y)

K(A,B;X, Y ) is called a pencil of lines.
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Lemma 2.1 : If P (A,B;X, Y ) is a pencil of lines and A,B,X, Y are collinear then

P (A,B;X, Y ) = (A,B;X, Y )

(Just apply sine laws on the corresponding triangles)

Lemma 2.2 : If A,B,X, Y are concyclic and P is any point on the circumcircle, then

P (A,B;X, Y )= ±XA
XB ·

Y A
Y B

Here, P (A,B;X, Y ) does not depend on P .

If two lines s and t are given such that points A,B,C,D) lie on s. Let P be a point
and the intersection points of PA, PB, PC, PD with line t are A′, B′, C ′, D′ respectively .
Then,

P (A,B;C,D) = P (A′, B′;C ′, D′) = (A,B;C,D) = (A′, B′;C ′, D′)

This is called perspectivity at P . This is denoted by

(A,B;C,D)
P
= (A′, B′, C ′, D′)

Figure 4 : Projecting (A,B,C,D) from s to t

This will be same even if s is a circle instead of a line ,that is P,A,B,C,D are concyclic.
The cross ratio will be preserved.

§3 Harmonic Bundles

For four collinear points A,B,X, Y , if (A,B;X, Y ) = −1 then, A,B,X, Y is called a har-
monic bundle .
(The sign is negative as the direction is opposite)

Lemma 3.1 : Let Γ be a circle. P be a point outside it. Let PX and PY be tangents
to Γ. If a line through P intersecs Γ at A and B and K be the intersection point of AB and
XY . Then, (A,B;K,P ) is a harmonic bundle.

4

÷



Figure 5 : AXBY is a harmonic quadrilateral.

Proof: From lemma 1.3, we know that
AY
BY = AX

BX .So, ABXY is harmonic. That means,
(A,B;X, Y ) = −1

We can write,

(A,B;X, Y )
X
= (A,B;K,P )

Because, we are projecting from the point X lying on the circle onto the line AB.
( As PX is tangent to Γ and if we bring a point M very very close to X, XM behaves as
the tangent . So, XX is indeed PX.)

Lemma 3.2 : Let ABC be a triangle. AD,BE,CF are concurrent lines with D on BC,
E on AC and F on AB. The line EF meets BC at X (may be point at infinity). Then
(B,C;X,D) is a harmonic bundle.

Figure 6 : (B,C;X,D) = −1

(Apply Ceva’s theorem and Menelaus’s theorem , then compare the ratios BX
CX and BD

CD)
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§4 Poles and Polars

Let Γ be a circle with centre O . P be a point on the plane. Let Q be the inverse of P with
respect to Γ.(That is , O,Q, P are collinear and OQ ·OP = radius2)
Then, the Polar of point P is the line passing through Q perpendicular to OP .

When P is Γ then its polar is the line (let’s say l) through the two tangency points from P
to Γ. Here, P is the pole of the line l.

Figure 7 : The line throgh Q perpendicular to OP is the polar of P .

• La Hire’s Theorem: A point X lies on the polar of a point Y if and only if Y lies on
the polar of X. (Hint: Find similar triangles)

Lemma 4 : Let PQ be a line, points R, S lies on PQ. Then R lies on the polar of S if
and only if (P,Q;R, S) = −1

Figure 8 : (P,Q;R, S) = −1

Proof : Let Ω be a circle containing P , Q. Now we will consider the case when R is
outside Ω (La Hire’s). Draw tangents RX,RY to Ω. Let the intersection of XY and PQ is
S ′ . From lemma 3.1, we get

(P,Q;R, S ′) = −1 (P,Q;R, S ′) = (P,Q;S ′, R) because both are -1

So, S lies on the polar of R if and only if (P,Q;R, S) = −1
(Because , the harmonic conjugate of R with respect to PQ is unique , so S ′ = S)

Now the crucial part comes...
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§ Proof of Brocard’s Theorem

Statement : Let ABCD be an cyclic quadrilateral inscribed in a circle with center O, and
X, Y and Z are the intersection points of (AB,CD), (BC,DA) and (AC,BD). Then ,

(i)X is the pole of Y Z, Y is the pole of ZX and Z is the pole of XY .
(ii) O is the orthocenter of triangle XY Z.

(2nd result is just the consequence of the 1st)

Figure 9 : O is the orthocentre of XY Z

Proof : Let the intersection of XZ with AD and BC are P and Q respectively. From lemma
3.2, we get (B,C;Y,Q) is a harmonic bundle. Now,

−1 = (B,C;Y,Q)
X
= (A,D;Y, P )

So, (A,D;Y, P ) is also harmonic. By lemma 4 , P and Q both lie on the polar of Y . As ,
the polar has to be a straight line, then the polar of Y is PQ, which is same as XZ.

Similarly, X is the pole of Y Z and Z is the pole of XY . (∆XY Z is called self-polar)
From the definition of poles and polars, we get O is the orthocentre of ∆XY Z.
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