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Chapter 0

Introduction

People say that config geo is too easy to train for, and that it’s dying. Well, here’s a nail in
that coffin.

The handout is designed to be read from front to back, mostly because I wrote it generally
from front to back. If you haven’t seen many of these before it won’t make sense back to front,
especially because in each of the chapters, I carry point labelings over from section to sec-
tion. However feel free to do whatever makes most sense to you. There are 100 problems at
the end, from 0 to 99, and I added solutions to all of the ones in which the number 9 appears
in the problem number (e.g. 9, 19,91), and I added hints to all of the ones in which have ei-
ther an 8 or 9 in the problem number. I think this gives a good balance between not giving
hints/solutions to all of the problems (because I’m lazy) and helping you out.

It goes without saying that I discovered none of these theorems myself, and only a few of
them have proofs that I found solely by myself. This is more just a curation of what I think
are important/interesting configurations in triangle geometry plus the proofs of these that
I think are the best (or sometimes just my proofs, hehe). As part of that, I avoid doing any
non-synthetic techniques, except for the Dumpty Point section, but there I only use it for it’s
own sake.

Note that the names Ex,Queue,Humpty,Dumpty,Sharkydevil,Iran Lemma,Midpoint of Alti-
tudes Lemma, Median-Incircle Concurrency, Fact 5,and possibly others I may be forgetting
are all olympiad colloquialisms. Why Point is something I made up to match these. A rule
of thumb is that if you can’t find an actual source that uses the names I use, you probably
can’t cite it on olympiad. Neither can you usually cite it as well known. This is a purpose of
the handout: so that you see the proofs of what others on AoPS and other sites cite as well
known, so you can recreate it on an olympiad.

The prerequisite knowledge necessary is EGMO, but if you don’t know much of EGMO, even
if you only know angle chasing so far, there should be some of stuff in here that you can un-
derstand(the "Nine-Point Circle and Poncelet Points" section is one of the more underrated
topics, and for the purposes of this handout, is just angle chasing). I do go over configurations
already in EGMO though, for completeness.

Also I’m calling this a handout, even though I used the document style book while creating
this, because I thought it would be nicer with chapters and sections rather than sections and
subsections as one would do in the document style article. Additionally in this handout I use
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6 CHAPTER 0. INTRODUCTION

a couple of names and notations that aren’t necessarily standardized.

• I use P1 − P2 − P3 − · · · to mean that the points P1, P2, P3, · · · are collinear.

• I use ] heavily, to mean the directed angle mod 180.

• I use (P1P2P3 · · · ) to mean the circumcircle of P1, P2, P3, · · · .

• I use (P1P2) to mean the circle with diameter P1P2.

• I use degrees instead of radians, so instead of π
2
I use 90.

• I use
√
bc invert to mean that if there is a 4ABC, to invert around A with radius

√
AB · AC

and then reflect the image over the angle bisector of A. To be clear, in saying
√
bc inver-

sion, I also imply the reflection across the angle bisector.

• I use synthetic to exclude long trig and length bashes and to include inversions and es-
pecially projective (which plays a very large role in the handout).

• I use the word disgusting to mean the kinds of geo not covered in this handout.

• I use American Geo to mean . . . umm . . . , I really don’t know. No one really does, but
most agree that the problems in this handout are "American" Geo, even though there
are only 16 official USA problems and 16 ELMO/ELMO SL Problems.

This handout is divided into an "Orthocenter" chapter and an "Incenter" chapter, mostly be-
cause in my head there’s 2 main types of configs. However note that this is loose and I talk
about other triangle centers occasionally (symmedian point as an example).

Finally, many thanks to AoPS user amar_04 for his suggestions. He has seen a lot of great
problems and is really pro. All mistakes and typos in this handout are mine alone.



Chapter 1

Orthocenter Configurations

1.1 Orthocenter Itself

Let’s first define what the orthocenter is:

Definition 1.1.1 (Orthocenter). The orthocenter is the intersection of all of the altitudes of
a triangle.

This exists by Miquel’s theorem on the feet of the altitudes.

Theorem 1.1.1 (Orthocentric System). In a triangle ABC, if H is the orthocenter of ABC,
then A is the orthocenter of BHC, B is the orthocenter of AHC, and C is the orthocenter of
AHB. These form an orthocentic system.

While this is quite obvious, it actually shows up quite a lot.

Theorem 1.1.2. The circumcenter and orthocenter are isogonal conjugates.

]BAH = 90− ]B, ]OAC = 90− ]B.

If you know the lemma regarding isogonal conjugates, which we will prove later, the reflec-
tions of H across the sides of ABC have circumcenter O, and the reflections of O across the
sides of ABC should have circumcenter H. We’ll end up seeing both of those show up here:

Theorem 1.1.3 ("Orthocenter Reflections"). Let HA be the intersection of AH and (ABC).
Let A′ be the antipode of A with respect to (ABC). BHCHA is a kite and BHCA′ is a par-
allelogram.

Time for the first diagram:

7



8 CHAPTER 1. ORTHOCENTER CONFIGURATIONS

A

B C

H

HA A′

Behold, the triangle I’ll use for the entire chapter.

This is just angle chasing. We see that ]HABC = 90 − ]ACB = ]CBH, and similarly
]HACB = ]BCH, so BHCHA is a kite.

]HCB = 90 − ]CBA = ]A′AC = ]A′BC, and similarly ]HBC = ]A′CB, so BHCA′ is a
parallelogram.

Since HA is the reflection of H over BC, this shows that (HAHBHC) has center O. This also
means that (BHC) is the reflection of (ABC) over BC. Thus the reflection of O over BC,
OA, is R away from H, where R is the circumradius of (ABC). This means that (OAOBOC) is
congruent to (ABC) and has center H, as desired.

Definition 1.1.2 (Orthic Triangle). The orthic triangle of 4ABC is the triangle made by
the feet of the altitudes of 4ABC.

Definition 1.1.3 (Euler Line). The line through the circumcenter, centroid, and orthocenter.

This exists because the homothety with factor −1
2

centered at G takes H to the orthocenter of
the medial triangle, or O.

1.2 Nine-Point Circle and Poncelet Points

Let D = AH ∩ BC and let MA be the midpoint of BC. It’s clear that D is the midpoint
of HHA and MA is the midpoint of HA′. What happens if we dilate (ABC) by a factor of 1

2

around H?
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A

B CD

E

F

NA

NB NC

MA

MBMC

H

N9

O

HA A′

OA

Hope you like the labels, they’ll be a recurring theme for this section

We see that in addition to D and MA, we get all the other altitude feet and other midpoints.
That’s 6 points already. The other three, NA, NB, NC , represent the midpoints of AH,BH,CH,
which we also get on this circle. The other points I’ve marked in this diagram are N9, O, and
OA. O, as you can already guess, is the circumcenter of (ABC). N9 is the center of the nine-
point circle (hence N9), and is the midpoint of OH, by the homothety. OA is the reflection of
O over BC.

Definition 1.2.1 (Nine-Point Circle). In a triangle ABC, the feet of the altitudes, the mid-
points of the sides, and the midpoints between each of the vertices and the orthocenter H are
concyclic, and they all lie on the Nine-Point Circle. In addition this circle is the circle re-
sulting from a homothety with factor 1

2
around H to the circumcircle of ABC. As such its

center is the midpoint of the circumcenter and orthocenter of ABC.

Corollary 1.2.1. MAF and MAE are tangent to (AEHF ).

(AEHF ) exists because ]AEH = 90 = ]AFH. This circle has center NA. ]MAFNA =
90 = ]MAENA because the homothety at H taking the nine-point circle to the circumcircle
of ABC takes NA to A and MA to A′.

Corollary 1.2.2. NAOMAH is a parallelogram

We see that since MANA has midpoint N9, as well as HO, as desired.

Corollary 1.2.3. N9 is the midpoint of AOA.

This is because of either parallelograms or a homothety of the nine-point circle at A with fac-
tor 2.

Corollary 1.2.4. Let H be the orthocenter of 4ABC. Then the Nine-Point Circles of AHB,
BHC, CHA, and ABC are the same.
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A natural question to ask, if you like asking questions that I just happen to want to answer, is
what if we replace H with an arbitrary point P .

Definition 1.2.2 (Poncelet Point). Let A,B,C, P be 4 points not in an orthocentric system.
The 9-point circles of 4ABC,4BCP,4CAP,4ABP all meet at one point, the Poncelet
Point of ABCP , P ′ for our purposes.

A

B C

P

MA

MB

MPC

P ′

Guess what P is defined as (hint: Asymptote is a vector-graphics language)?

The plan here is to let P ′ be the intersection of the nine-point circle of 4ABC (dotted) and
4APC (dashed). Then we can show that P ′ is on the nine-point circle of 4BPC, which by
symmetry will put it on the nine-point circle of 4APB. To do this, we can let MPC be the
midpoint of PC. Then ]MAP

′MPC = ]PCB suffices. This is true because

]MAP
′MPC = ]MAP

′MB − ]MPCP
′MB =

]ACB − ]ACP =

]PCB.

Corollary 1.2.5. If H is the orthocenter of ABC, then ABCP , ABHP , BCHP , and ACHP
have the same Poncelet Point.

Theorem 1.2.1. The Poncelet point P ′ lies on the circumcircle of the pedal triangle of P .

This is one of those things that, if it looks true, it probably is because angle chase, but you
don’t actually want to prove.
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A

B C

P

PA

PB

PC

MBMC

MPA

P ′

4PAPBPC is the pedal triangle of P

We can first calculate ]PBP ′PC , and then show it equals ]PBPAPC . Going back to this dia-
gram:

A

B CD

E

F

NA

NB NC

MA

MBMC

H

N9

O

HA A′

If you’re wondering, ∠A = 50◦,∠B = 75◦,∠C = 55◦

we see that ]DNAMA = ]BAC − 2]BAD by undoing the homothety that created the nine-
point circle in the first place. Using this,

]PBP
′PC =
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]PBP
′MB + ]MBP

′MPA + ]MPAP
′MC + ]MCP

′PMC =

]APC − 2]APPB + ]PAC + ]BAP + 2]APPC − ]APB =

]BPC + 2]PBPPC + ]BAC.

We can now note that APBPPC is cyclic, along with BPCPPA and CPAPPB. This allows us
to reduce the above even further, to just ]BPC + ]PBPPC . This note also allows us to cal-
culate ]PBPAPC :

]PBPAPC = ]PBPAP + ]PPAPC =

]PBCP + ]PBPC =

]BPPC + ]PBPC =

]BPC + ]PBPPC

as desired.

While discussing the pedal triangle, it’s important to state the following.

Theorem 1.2.2. Dilate 4PAPBPC around P with factor 2, to get P ′AP ′BP ′C . Then the center
of the circle of these three new points is the isogonal conjugate of P .

Clearly AP ′B = AP = AP ′C . Thus A is on the perpendicular bisector of P ′BP ′C . Let Q be the
isogonal conjugate of P . Then

]P ′CAQ = ]P ′CAB + ]BAQ =

]BAP + ]PAC = ]BAC.

Similarly
]QAP ′B = ]BAC,

so Q is on the perpendicular bisector of P ′BP ′C as desired.

A

B C

P

Q
PA

P ′
A

PB
PC

P ′
B

P ′
C

Lots of dotted lines
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Dilating this by a factor of 1
2
around P gives that N , the midpoint of PQ, is the circumcenter

of 4PAPBPC . Using this same logic for Q, N is also the circumcenter of 4QAQBQC(which is
the pedal triangle of Q). However, N is also equidistant from PA and QA. Thus we have the
following theorem.

Theorem 1.2.3 (Six Point Circle). Let P and Q be isogonal conjugates in 4ABC. Then let
4PAPBPC be the pedal triangle of P , and let 4QAQBQC be the pedal triangle of Q. Then
PA, PB, PC , QA, QB, QC are all concyclic, in a six point circle with center N .

A

B C

P

Q

PA

PB
PC

QA

QB

QC

N

What if P ≡ H?

1.3 Symmedians

The symmedian, as you can probably guess, is symmetric to the median in some way. Specifi-
cally, it’s the reflection of the median(here the midpoint of BC is M) over the angle bisector.

Definition 1.3.1 (Symmedian). In a triangle ABC, the A-Symmedian is isogonal to the
A-median.
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A

B C
M

K

T

I defined K in asymptote with it’s equivalent in complex numbers, which we will see later.

Theorem 1.3.1 (Harmonic Quad). (A,K;B,C) = −1

This is because
AB

BK
=
AM

MC
= −AM

MB
= −AC

CK

when using directed lengths. This condition is symmetric, and it is easily seen to work in re-
verse. This symmetry gives the next theorem.

Theorem 1.3.2. KA is a symmedian of 4KBC, CB is a symmedian of 4ACK, and BC is
a symmedian of 4KBA.

This also lets us show that:

Theorem 1.3.3. Let T be the intersection of the tangents from B and C to (ABC). Then
A−K − T .

If we let TB be the intersection of the B tangent and AK, and we define TC similarly, then

(A,K;AK ∩BC, TB)
B
= (A,K;C,B) = −1 = (A,K;B,C)

C
= (A,K;AK ∩BC, TC).

Thus TB ≡ TC ≡ T .

Bringing back in the orthic triangle, we have the following:

Theorem 1.3.4. If D is the foot of the altitude from A to BC, and E and F are defined as
such for B and C respectively. If MB and MC are the midpoints of AC and AB respectively,
then

• DE ∩MMC is on the A-symmedian of 4ABC

• DF ∩MMB is on the A-symmedian of 4ABC
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We can let P = DE ∩ MMC , and show it’s on the symmedian, and the other bullet point
follows by symmetry.

A

B CD

E

F

P

P ′

M

MBMC

Yay I learned to clip a diagram in asymptote

We know that D,E,M,MC are all on the nine-point circle of 4ABC. Thus if P ′ is the inter-
section of (AEDB) and (AMCM), then by PoP P is on AP ′. Thus it suffices to show that
AP ′ is a symmedian.

]BAP ′ = 2]BAP ′ − ]BAP ′ =

]BMCP
′ − ]BAP ′ = ]BMCM − ]P ′MCM − ]BAP ′ =

]BAC − ]P ′AM − ]BAP ′ = ]MAC

as desired.

We can now move on to the symmedian point, which I will also denote as K. I could have
chosen L for Lemoine Point, but K seems more generally accepted. Note that when talking
about the A-symmedian touchpoint above, I used K, because that’s also generally accepted.

Definition 1.3.2 (Symmedian Point). The symmedian point of ABC is the intersection of
the 3 symmedians of ABC.

This exists because it’s the isogonal conjugate of the centroid.

Theorem 1.3.5 (Second Lemoine Circle). Let XB be the intersection of the A-antiparallel of
BC through K and AC. Let XC be analogous for AB. Define YA, YC , ZA, and ZB similarly.
XB, XC , YA, YC , ZA, ZB are concyclic.
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XB

XC

YA

YC

ZA

ZB

K

A

B C

XBXC being antiparallel to BC means BXCXBC is cyclic

Reflect 4AXBXC around the angle bisector of ∠BAC. Then K goes to a point on the A-
median and XBXC is parallel to BC. Thus K is the midpoint of XBXC . Since

]YAZAK = ]BAC = ]KYAZA,

KYA = KZA. Thus we have that KXB = KXC = KYC = KYA = KZA = KZB, so not only
are these 6 points concyclic, the circle through them has center K.

Corollary 1.3.1. The A-symmedian bisects the antiparallels from A to BC. The converse is
also true.

Theorem 1.3.6 (Schwatt Line). The midpoint of the A-altitude, the midpoint of BC, and
the symmedian point of ABC are concurrent.

While this can be done with barycentrics or projective, it can be proved non-projectively in a
very elegant way. The main claim is that this line is the locus of the centers of rectangles with
2 vertices on BC, one on AB, and one on AC. To prove this is a line, imagine varying a point
P on AB. Then the distance from BC to P varies linearly as P moves from A to B(linearly).
Let P ′ be a point on AC such that PP ′||AC. Then the distance of the midpoint of PP ′ to the
A-altitude varies linearly as P varies linearly. Thus the locus of the centers of these rectangles
is a line.

The midpoint of the A-altitude is obviously on this line, and so is the midpoint of BC (think
of the degenerate rectangles created). K is on this line because of the rectangle ZAYCZBYA
from above.
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P P ′

P P ′

P P ′

K

Everyone loves points that move, right?

Theorem 1.3.7 (First Lemoine Circle). Let XB be the intersection of the parallel to BC
through K and AC. Let XC be the analogous intersection for AB. Let YA, YC , ZA, ZB be
analogous points. XB, XC , YA, YC , ZA, ZB lie on a circle.

A

B C

XBXC

YA

YC

ZA

ZB

K

The symmedian point is X(6) for ETC people

We see that AZBKYC is a parallelogram, so AK bisects YCZB. This means that YCZB is an-
tiparallel to BC (with respect to A), so XCYCZBXB is cyclic. By symmetry XCYCZBXBYAZA
is cyclic, as desired.

Theorem 1.3.8 (Lemoine’s Pedal Triangle Theorem). The symmedian point K is the only
point in a 4ABC that is the centroid of its pedal triangle.
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Let K ′ be any point on the A-symmedian, and let E and F be the feet from K ′ to AC and
AB. Then we will show that the line through K ′ perpendicular to BC bisects EF , and the
converse will also easily be seen to be true.

We have that AEK ′F is cyclic. ]EFA = 90−]K ′FE = 90−]K ′AE = 90−]K ′AC = 90−
]BAM , so EF ⊥ AM . Let ` be the line through K ′ perpendicular to BC. Then (F,E; ` ∩
EF,P∞)

K′
= (F,E; ` ∩ (AEF ), AM ∩ (AEF ))

A
= (B,C;P∞,M) = −1 as desired.

A

B C

K ′

E

F

M

For K ′, I chose a special point (that has a nice vector representation) on the A-symmedian
that we will talk about later.

1.4 Ex Points,Queue Points, Humpty Points
As it doesn’t make sense to talk about one of these sets of points without mentioning the
other 2, I lumped them into one big section. This section has a lot of theorems that are rel-
atively easy to prove, in contrast to other chapters which take more work to prove their the-
orems, but have less of them. First we can define the Ex Point. Assume that 4DEF is the
orthic triangle.

Definition 1.4.1 (Ex Points). The A-Ex Point XA is the intersection of EF and BC.

This definition brings another theorem with it:

Theorem 1.4.1. (XA, D;B,C) = −1

Thinking about the 9-point circle, we see yet another theorem:

Theorem 1.4.2 (Orthic Axis). XA, XB, XC lie on a line, called the orthic axis.

Since
XAB ·XAC = XAD ·XAM,

XA is on the radical axis of the circumcircle of 4ABC and the nine-point circle of 4ABC.

One more Ex-Point Theorem: Looking at (BFEC), we have the perfect setup for Brocard.
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Theorem 1.4.3. H is the orthocenter of AXAM

Now here are the definitions of the Queue and Humpty Points, which will make it clear why
I’m talking about them both together.

Definition 1.4.2 (Queue Points). The A-Queue Point, QA, is the intersection of (AH) and
(ABC).

Definition 1.4.3 (Humpty Points). The A-Humpty Point, HA, is the intersection of (HA)
and (HBC).

You can probably see the connection. They’re the same point, just in different triangles.

The Humpty Point is also called the HM point, but I like Humpty better.

Thus there are many properties that the Queue and Humpty points share. For example:

Theorem 1.4.4. Let M be the midpoint of BC. Then QA is on HM .

Let A′ be the antipode of A on (ABC). Then since ]AQAH = 90 = ]AQAA
′, QA − H − A′.

Since H −M − A′, QA −H −M . This leads to the analogous Humpty Point Theorem:

Theorem 1.4.5. Let M be the midpoint of BC. Then HA is on AM .

From now on I’m not going to state theorems for both points, because that’s quite redundant.

Theorem 1.4.6. Let R and S be points on BC such that (R, S;B,C) = −1. A,HA, R, S are
concyclic.

This follows from the fact that

MA ·MHA = ME2 = MB ·MC = MR ·MS.

Corollary 1.4.1 (Appolonius Circle). HA lies on the A-Apollonius Circle

Theorem 1.4.7. QA is the center of spiral similarity from FE to BC.

This is purely because of the definition of QA, in terms of the cyclic quad BFEC.

Let W be the intersection of AM and (ABC). Let K be the intersection of the A-symmedian
and (ABC).

Theorem 1.4.8. As HA is on (BHC), naturally reflections over BC produce useful results.

• W is the reflection of HA over M

• K is the reflection of HA over BC.

• XA −H ′ −K

The first thing follows from the fact that reflecting (BCH) over M gives (ABC), and the sec-
ond thing follows from the first. The third follows from reflecting XAHHA across BC.

Theorem 1.4.9. Let H ′ be the reflection of H over BC. Then −1 = (QA, H
′;B,C) and

QA −D −K
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This is just because (QA, H
′;B,C)

A
= (XA, D;B,C) = −1 and −1 = (A,K;B,C)

D
= (H ′, KD ∩

(ABC);B,C) = (H ′, QA;B,C).

Here’s a diagram to hopefully recap some of the previous few theorems.

A

B CD

E

F H HA

H ′
K

M

QA

W

XA

N

N is the midpoint of AH

With this we get lots of cyclic quads:

Theorem 1.4.10. All of these quadrilaterals are cyclic because of the many right angles pro-
duced, plus PoP in some cases:

• XAQAHD

• XAQAHAM

• HHAMD

• DMKH ′

• AMDQA

• XADHAA
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We actually have even more cyclic quads using other methods.

Theorem 1.4.11. Although there aren’t obvious right angles for these, they can be shown to
be cyclic quite easily as well.

• KH ′EF

• QANHAD

• H ′HHAK

KH ′EF is cyclic because

XAF ·XAE = XAB ·XAC = XAH
′ ·XAK.

QANHAD is cyclic because it’s the nine-point circle of 4AXAM . H ′HHAK is cyclic because
it’s an isosceles trapezoid.

Because of the definition of HA, we have an important angle equality:

Theorem 1.4.12.
]CBHA = ]BAHA

and
]HACB = ]HAAC

This is because
]CBHA = ]CHHA =

]CHA− ]HAHA =

90 + ]HAHA − ]CBA = ]BAH + ]HAHA =

]BAHA,

as desired (the other one is true by symmetry).

We also have a fairly often tested collinearity that’s quite simple with knowledge of HA.

Theorem 1.4.13. Let T be the intersection of BC and the tangent at A to (ABC). Let N
be the midpoint of AH. Finally let Q be the point on EF such that AQ||BC. T −N −Q.

The hidden Humpty Point part is that this line is the perpendicular bisector of AHA.

• Because (A,K;B,C) = −1, TA = TK. Since K and HA are reflections across BC,
TA = TK = THA.

• Since A and HA are on (AEF ), which has center N , NA = NHA.

• Since AHA is the A-symmedian of 4AEF , (A,HA;E,F ) = −1. AQ is tangent to
(AEF ), so AQ = AHA.



22 CHAPTER 1. ORTHOCENTER CONFIGURATIONS

A
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Q

N

HAXA

Maybe I shouldn’t have chosen this triangle

This also means that this goes through a fourth point that shows up often enough:

Corollary 1.4.2. The midpoint of AHA is on TNQ.

Since HA is on (BHC), a dilation around A with a scale factor of 1
2
puts the midpoint of

AHA on the nine-point circle of 4ABC. Thus this point is usually classified as the intersec-
tion of AM and the nine-point circle of 4ABC.

1.5 Dumpty Points

Theorem 1.5.1. The Poncelet Point of A,B,C,HA, where HA is the A-Humpty Point, is the
midpoint of AHA.

Dilate (ABC) around HA with scale factor 1
2
. This circle contains the midpoint of BHA, the

midpoint of CHA, and the midpoint of BC, so it is the nine-point circle of 4BCHA. Thus
the midpoint of AHA, P , is on the nine-point circle of 4BCHA. P is also on the nine-point
circle of 4ABC, meaning it is the Poncelet Point of ABCHA.

We now have that P is on the circumcircle of the pedal triangle of HA. Dilate this circle around
HA by a factor of 2. We get that this new circle, ω, goes through A and K, where AK is a
symmedian.

We can now define the Dumpty Point:

Definition 1.5.1 (Dumpty Point). The A-Dumpty Point, DA is the Isogonal Conjugate of
the A-Humpty Point

DA is the center of ω. However we also know that because HA is on the A-median, DA is on
AK. This means that DA is on the midpoint of AK.
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Let T be the intersection of the tangents to (ABC) at B and C

Because DA is the midpoint of AK we have that DA is on (AO), where O is the center of
(ABC). Since ]ODAA = 90 = ]ODAT , DA is on (BOC). This leads us to the classical
definition of the Dumpty Point (none of this is classical by the way).

Definition 1.5.2 (Classical Dumpty Point Definition). The A-Dumpty Point is the inter-
section of (AO) and (BOC).

From the fact that DA is the isogonal conjugate to the Humpty Point, and in the Humpty
Point

]CBHA = ]BAHA

and
]HACB = ]HAAC,

we have that
]DABA = ]DAAC

and
]BADA = ]ACDA.

This gives us the following result:

Theorem 1.5.2. DA is the center of spiral similarity sending BA to AC (and the center of
spiral similarity from CA to AB).
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This is quite profound in that it’s unclear what the center of spiral similarity would be in this
scenario.

In a contest situation, it would likely be cumbersome to list out all of the above, plus results
on the Humpty Point, just for these results. I used this proof because I thought it was quite
nice and tied well with the previous sections. Here’s another proof that this is the desired spi-
ral center, starting with the assumption that DA is the intersection of (AO) and (BOC).

A

B C

T

DA O

A pure angle chase

]DABA = ]BDAA+ ]DAAB =

]BDAT + ]DAAB = ]BCT + ]DAAB =

]BAC − ]BADA = ]DAAC.

Similarly
]BADA = ]ACDA,

as desired. We can then state this next fact:

Theorem 1.5.3. Let D be the foot of the altitude from A to BC and let MB and MC denote
the midpoints of AC and AB respectively. Then DA is the D-Humpty Point of 4DMBMC .

This is because we can do a homothety at A with factor 2 and then reflect the image across
BC. D would go to A, MB would go to C, MC would go to B, and DA would go to HA.

There’s actually another fact about DA concerning the A-altitude:

Theorem 1.5.4. The circle through A and DA tangent to (BOC) is centered on the A-altitude.
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A

B C
D

DA

O′

T

P

This diagram makes it quite obvious what’s going on

If O′ is the center of (BOC), then this is equivalent to proving that the perpendicular bisector
of ADA and O′DA meet on AD(where D is the foot of the altitude from A to BC). If we let
this intersection point be P , then

]PADA = ]O′TDA = ]TDAO
′ = ]ADAP

In bashing, the Dumpty and Humpty Points are suprisingly nice to work with.

Theorem 1.5.5. Assuming A, B, and C are on the unit circle, and represented as a, b, c:

• DA = a2−bc
2a−b−c

• HA = ab2+ac2−b2c−bc2
ab+ac−2bc

The Dumpty Point definition follows straight from the spiral sim. The Humpty Point will take
a little more work.

K = ADA ∩ (ABC) = 2 · a2 − bc
2a− b− c

− a =
ab+ ac− 2bc

2a− b− c
.

This means that

W = AM ∩ (ABC) =
bc

ab+ac−2bc
2a−b−c

=
2abc− b2c− bc2

ab+ ac− 2bc
.

Reflecting this over the midpoint of BC, M , gives

HA = b+ c+
b2c+ bc2 − 2abc

ab+ ac− 2bc
=
ab2 + ac2 − b2c− bc2

ab+ ac− 2bc
.

Now that we’ve cornered DA and HA in complex, and defined the symmedian intersection
point in the process, we can move on to bary.
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Theorem 1.5.6. In barycentric coordinates, if A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1),
then

• DA = (b2 + c2 − a2 : b2 : c2), or alternatively DA = (2SA : b2 : c2)

• HA = (a2 : b2 + c2 − a2 : b2 + c2 − a2), or alternatively HA = (a2 : 2SA : 2SA)

We get that
K = (−a2 : 2b2 : 2c2)

because
−a2 · 2b2 · 2c2 − b2 · −a2 · 2c2 − c2 · −a2 · 2b2 = 0.

Thus DA = (2b2 + 2c2 − a2 − a2 : 2b2 : 2c2) = (b2 + c2 − a2 : b2 : c2). Because HA is its isogonal
conjugate

HA = (
a2

2SA
: 1 : 1) = (a2 : 2SA : 2SA).

1.6 Why Points
I’m calling these Why Points because as of yet, they don’t seem to have a name other than
the clunky "ISL 2011 G4 Points".

Definition 1.6.1 (Why Point). In 4ABC, let A′ be the reflection of A over the perpendic-
ular bisector of BC and let D be the foot of the altitude from A to BC. Then the A-Why
Point, YA, is the intersection of A′D ∩ (ABC)

The first theorem doesn’t concern the Why Points, but it’s important for later.

Theorem 1.6.1. Let G be the centroid of 4ABC. Then D −G− A′.

This is immediate from a homothety around G with a scale factor of −1
2
. This takes (ABC) to

the nine-point circle of 4ABC, and it takes A′ to the intersection of BC and this nine-point
circle that is not the midpoint of BC. This means that A′ goes to D. This also means that
A′G = 2DG.

If we let W = AM ∩ (ABC), and M be the midpoint of BC, then we have

GA ·GW = GA′ ·GYA

or
GM ·GW = GD ·GYA.

Thus we have our second property

Theorem 1.6.2. DMWYA is cyclic

Extend YAW to BC at X ′A. Then

X ′AD ·X ′AM = X ′AYA ·X ′AW = X ′AB ·X ′AC,

so X ′A ≡ XA.

Theorem 1.6.3. XA − YA −W
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Let HA be the intersection of AD and (ABC) (not the A-Humpty Point). Then we have the
following theorem:

Theorem 1.6.4. YA is the Humpty Point of 4HADXA

The orthocenter of 4HADXA is D. Since ]HAYAD = 90 (in definition of Humpty Point) and
B,C,HA, YA are cyclic, where B and C satisfy (XA, D;B,C) = −1 (Theorem 1.4.6), YA is the
desired Humpty Point.

Corollary 1.6.1. HAYA bisects XAD

Since H, the orthocenter of ABC, is the reflection of HA over XAD, by the definition of the
Humpty Point we get two more results.

Theorem 1.6.5. Let A∗ be the antipode of A on (ABC). Then −1 = (A,K;YA, A
∗).

Let N be the midpoint of XAD. Then

−1 = (D,XA;N,P∞)
HA= (A,K;YA, A

∗).

Corollary 1.6.2. Let T be the intersection of the A-tangent to (ABC) and BC. Then T −
YA − A∗.

Theorem 1.6.6. YA is on (HDXA), or the circle with diameter XAH.

This circle is the reflection of (HADXA) over DXA, giving the result.

Corollary 1.6.3. YA is the spiral center taking XAH to DHA

This is because ]XAYAH = 90 = ]DYAHA and ]YAXAH = ]YADH = ]YADHA.

Looking at AYA we see that this passes through a special point.

Theorem 1.6.7. AYA goes through Z, the foot of the altitude from H to EF .

This is because under an inversion around A with radius
√
AH · AD, (XAYADH) inverts to

itself (note that AH · AD = AE · AC = AF · AB). This means that YA goes to the point on
EF that is on (XAYADH), which is Z.

Theorem 1.6.8 (ISL 2011 G4 with better labels). Let MB and MC be the midpoints of AC
and AB respectively. Then (YAMBMC) is tangent to (ABC).

Let P be the foot from O to MBMC . Then by centroid homotheties P is on DG, or YAA′. We
then have

]MCPYA = ]AA′YA = ]ABYA = MCBYA

and similarly
]MBPYA = ]MBCYA.

Thus MCBYAP and MBCYAP are cyclic. Since P is on the perpendicular bisector of BC,

]MCYAB = ]MCPB = 90− ]BPM − 90− ]MPC = ]CPMB = ]CYAMB.

Letting M ′
B and M ′

C be the intersection of YAMB and YAMC respectively with (ABC). Then
because M ′

BM
′
C ||BC||MBMC , a homothety centered at YA takes (ABC) to (YAMBMC).
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The dot between XA and D is the midpoint of XAD

1.7 Others

Let P be a point on the circumcircle of 4ABC.

Theorem 1.7.1 (Simson Line). The feet of the altitudes from P to each of the sides of 4ABC
are collinear on the Simson Line.

Let H is the orthocenter of ABC, let K be the orthocenter of PBC, let HA be the reflec-
tion of H over BC, let KP be the reflection of K over BC, let L be the intersection of the
A-altitude and P -simson line of ABC, and let X be the foot of P to BC.

Theorem 1.7.2. The following are all parallelograms:

• LAKPX

• LAXK

• APKH

• LPXH

This leads to the corollary

Corollary 1.7.1. The P -simson line of 4ABC bisects PH, where H is the orthocenter of
4ABC.
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"All you need to do is construct a parallelogram!"-James Tao

• We have that APY Z, BZPX, and CY PX are cyclic because of the 90-degree angles
formed.

]PY Z = ]PAZ = ]PCB = ]PCX = ]PY X

gives this collinearity.

•
]PKPA = ]PCA = ]PXY = ]PXL

proves that LAKPX is a parallelogram.

• Since KPX = KX, LAXK is a parallelogram.

• Since APKPHA is an isosceles trapezoid, and reflecting KPHA over BC gives KH, APKH
is a parallelogram.

• Since AH = PK and AL = XK, LH = PX, giving that LPXH is a parallelogram.

We can actually say more than Corollary 1.7.1.

Corollary 1.7.2. The midpoint of PH is the Poncelet Point of ABCP .

Notice that the midpoint of PH is on the nine-point circle of 4ABC. Since it’s also on
the nine-point circles of 4AHP , 4BHP , 4CHP , it’s the Poncelet Point of A,B,C, P ,
as desired. Notice that we also used this logic at the beginning of the Dumpty Point
section, but with H,B,C,HA.

Theorem 1.7.3 (Paralleogram Isogonality Lemma). For a triangle ABC, let P be the a point
such that ]ACP = ]PBA and let Q be the point such that BPCQ is a parallelogram. Then
AP and AQ are isogonal.

Let R be the point such that APBR is a parallelogram. Then ACQR is also a parallelogram.

]RQB = ]CQB − ]CQR =
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]BPC − ]RAC = ]BPC − ]BAC − ]RAB =

]ACB + ]CBA− ]PCB − ]CBP − ]PBA =

]ACP = ]PBA = ]RAB.

Thus ARBQ is a cyclic quadrilateral, so ]BAP = ]ABR = ]AQR = ]QAC, as desired.

A

B C

P

Q

R

You could also prove this with DDIT but sadly EGMO doesn’t talk about DDIT.

Now let P be an arbitrary point.

Theorem 1.7.4 (Hagge Circle). Let AP ∩ (ABC) = A1, and let A2 be the reflection of A1

across BC. Define B2 and C2 similarly. Then H,A2, B2, C2 are concyclic on the P -Hagge Cir-
cle.

Let P ′ be the isogonal conjugate of P . Then let A′1, B′1, C ′1 be the inersection of AP ′, BP ′, CP ′
respectively with (ABC). Let B′2 and C ′2 be the reflections of B′1 and C ′1 across the midpoint
of BC.

Since B′1 is clearly the reflection of B2 across the midpoint of AC, AB′1CB2 is a parallelo-
gram. Since CB2BB

′
2 is also a parallelogram, AB′1B′2B is a parallelogram. Thus the mid-

point of AB′2 is the foot from O to BB′1, or the foot from O to BP ′. Thus the midpoints of
AA′1, AB

′
2, AC

′
2 are on the circle with diameter OP ′. A homothety at A with factor 2 plus a

reflection across the midpoint of BC proves the theorem.
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This is pretty much copy pasted from Telv Cohl

Corollary 1.7.3. The center of the Hagge Circle is the reflection of P ′ over the nine-point
center of 4ABC.

https://artofproblemsolving.com/community/c284651h1272116_properties_of_hagge_circle
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Chapter 2

Incenter Configurations

2.1 Fact 5 and Excentral-Orthic Duality

We can start with the definitions of the incenter, incircle, excenter, and excircle.

Definition 2.1.1 (Incircle). The incircle of 4ABC is the circle inside 4ABC that is tan-
gent to all of its sides.

Definition 2.1.2 (Excircle). The A-excircle of 4ABC is the circle tangent to all 3 lines
BC, AC, AB created by a homothety of the incircle around A.

Definition 2.1.3 (Incenter). The incenter of 4ABC is the center of the incircle.

Definition 2.1.4 (Excenter). The A-excenter of 4ABC is the center of the A-excircle.

A

B C

I

IA

Hopefully you see what I mean

33
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We see that I bisects the angles of 4ABC. We also get that BIA and CIA are the external
angle bisectors of ∠B and ∠C respectively. We then get that because of this ]IABI = 90 =
]IACI.

Also because of the homothety at A from the incircle to the A-excircle we have that A−I−IA.
This leads to excentral-orthic duality.

IA

IB

IC

A

B C

I

What do you think is O(the center of (ABC)) in terms of (IAIBIC)?

Theorem 2.1.1 (Excentral-Orthic Duality). In 4IAIBIC , I is its orthocenter and 4ABC is
its orthic triangle.

This leads to the so-called Fact 5:

Theorem 2.1.2 (Fact 5). Let MA be the midpoint of the arc BC on (ABC) not containing
A. MA is the midpoint of IIA, and thus the circumcenter of (BICIA).

If we remember that (ABC) is the nine-point circle of 4IAIBIC , then this becomes obvious.

It is common for problems to be stated in terms of 4ABC, when it would make more sense
for them to be stated in terms of 4IAIBIC . Similarly it is common for problems to be stated
in 4ABC when it would be better stated in terms of its orthic triangle.

Especially concerning
√
bc inversion, it is worth mentioning that 4ABI ∼ 4AIAC. This

can be angle chased, or one can notice that since BI and CIA meet at IB and A, IB, C, I and
A, IB, IA, B are cyclic, A is the center of spiral similarity between BI and IAC.

Theorem 2.1.3. AI · AIA = AB · AC, so under
√
bc inversion I goes to IA.

2.2 Incircle Homotheties
Let D be the tangency point of the incircle and BC, and let X be the analogous point for the
A-excircle. Then because the midpoint of I and IA is on the perpendicular bisector of BC,
the midpoint of D and X is M , the midpoint of BC.

Let D′ be the antipode of D on the incircle. Let N1 be the midpoint of the AP , where the
foot of A to BC is P , and let N2 be the midpoint of AD. Let E and F be the tangency points
of the incircle with AC and AB respectively. Finally let K be the intersection of DI and EF .
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Theorem 2.2.1. The following collinearities hold:

• A−D′ −X

• N2 − I −M

• N1 − I −X - Midpoint of Altitude Lemma

• N1 −D − IA - Midpoint of Altitude Lemma

• A−K −M - Median-Incircle Concurrency

A

B CD

E

F

D′

I

M X

N1 N2

K
B′ C ′

P

IA

S

In this chapter we have ∠A = 50, ∠B = 85, and ∠C = 45.

For the first 4 collinearities,

• A−D′ −X because the homothety sending the incircle to the A-excircle sends D′ to X.

• N2 − I −M because it’s the D-midline of 4ADX.

• N1 − I −X because it’s the X-median of 4APX.

• N1 −D − IA because PD
PX

= DI
XIA

and N1 − I −X.
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Corollary 2.2.1. AX||IM and AD||MIA

The first one is by a homothety at D with factor 2 and the second one can result from a ho-
mothety at X with factor 2 (by homothety the bottom point of the excircle is collinear with A
and D).

For the last collinearity, let B′ and C ′ be the intersection of the parallel of BC through K and
AB and AC, respectively. Then ]B′KI = ]B′FI = 90 and ]IKC ′ = ]IEC ′ = 90, so
B′KFI and IKEC ′ are cyclic.

We have
]IB′A = ]IB′K + ]KB′A = ]IFE + ]CBA = ]IAC + ]CBA.

Similarly
]IC ′A = ]IAB + ]BCA.

Since these are equal, AB′IC ′ is cyclic. Thus the homothety sending (AB′IC) to (ABC)
around A sends K to M , as desired.

If instead of I, we used IA (and we used the A-excircle instead of the incircle), by a homoth-
ety around A, the last collinearity still holds.

While I used a homothety solution (because I named this chapter Incircle Homotheties), try
finding the polar of K with respect to the incircle, and proving that K is on the A-median
that way.

Let S be the intersection of AX and (DEF ).

Theorem 2.2.2. SM is tangent to (DEF ).

]DSX = ]DSD′ = 90, so M is the circumcenter of 4DSX, meaning that MD = MS, as
desired.

Here are some definitions that, while not very related to incircle homotheties, are important
to state:

Definition 2.2.1 (Gergonne Point). The Gergonne Point is the intersection of AD, BE,
and CF .

This exists either by noting that the Gergonne Point is the symmedian point of 4DEF or by
using Ceva’s theorem on 4ABC.

Definition 2.2.2 (Intouch Triangle). The Intouch Triangle or Contact Triangle of 4ABC
is the pedal triangle of its incenter, I.

2.3 Feuerbach Point
So far in this handout we’ve seen 1 special instance of a Poncelet Point; that of A,B,C,HA,
where HA is the A-Humpty Point of 4ABC. Now we will see another special instance:

Definition 2.3.1 (Feuerbach Point). The Feuerbach Point Fe is the Poncelet Point of
A,B,C, I, where I is the incenter of 4ABC.
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As the Poncelet Point of these 4 points, it would have to be one of the intersections of the
nine-point circle of 4ABC and the incircle of 4ABC, as the incircle is the pedal triangle of
I. We can actually state something stronger about the intersections of these two circles, and
the excircles.

Theorem 2.3.1. The nine-point circle of 4ABC is tangent to its incircle and its 3 excircles.

It suffices to show that the nine-point circle is tangent to the incircle and the A-excircle. I’ll
only prove it for the incircle, as the A-excircle case is nearly identical.

A

B CD X

D′

I

MKP

N9

A weird inversion

Let P be the foot of the altitude from A to BC. Let K = AI ∩ BC, and let N9 be the center
of the nine-point circle. Then since

(P,K;D,X)
A
= (P∞, I;D,D′) = −1,

we have
MP ·MJ = MD ·MX.

The trick is to now invert around (DX). The incircle is orthogonal to this circle, so it stays
in place. The nine-point circle goes to a line through K perpendicular to MN9. It suffices to
show that this line is tangent to the incircle.

Let the line through K tangent to the incircle be `. Then

](`, BC) = 2]AKB = 2]IAB + 2]ABK = ]CAB + 2]ABC.

Since this is equivalent to the angle made by the line perpendicular to N9M and BC, the
nine-point circle is tangent to the incircle, as desired.

An interesting side note because of this is to realize that the nine-point circle is tangent to not
2, not 4, but 16 circles as a result of the above, because of the quadrality of the orthocentric
system.

This proof also leads to this:
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Corollary 2.3.1. Let D∗ be the reflection of D over AI. Then MD∗ goes through Fe.

Theorem 2.3.2. Let MAI denote the midpoint of A and I. Then MAI −D′ − Fe.

We will actually prove that MBI − E ′ − Fe and MCI − F ′ − Fe, where MBI ,MCI ,E ′,F ′ are
defined as expected. By symmetry MAI −D′ − Fe.

]DE ′F ′ = 90− ]DEF = 90− ]BDF = ]CBI.

Similarly
]DF ′E ′ = ]BCI.

Thus
4DE ′F ′ ∼ 4IBC.

4DMBIMCI is similar to 4IBC as well because a dilation around I with factor 2 sends 4DMBIMCI

to the reflection of 4IBC across BC.

Thus D is the center of spiral similarity between MBIMCI and E ′F ′. MBIE ′ and MCIF ′ must
meet on the intersection of (DE ′F ′) and (DMBIMCI). Since Fe is the Poncelet point of ABCI,
(DE ′F ′) is the circumcircle of the pedal triangle of I, and (DMBIMCI) is the nine-point circle
of 4BIC, Fe is this intersection point, as desired.

A

B CD

E

F

E ′

F ′

MBI

MCI

Fe

I

Poncelet Points are quite helpful, and I’ve only scratched the surface of the surface of them.

2.4 Sharkydevil
Definition 2.4.1 (Sharkydevil Point). The A-Sharkydevil Point, S, is the intersection of
(AEIF ) and (ABC).

If A′ is the antipode of A on (ABC), then since ]ASA′ = ]ASI = 90, S − I − A′. In-
vert around the incircle. A goes to the midpoint of EF , B goes to the midpoint of DF , and
C goes to the midpoint of DE. Therefore (ABC) goes to the 9-point circle of DEF . (AEIF )
goes to EF , so we have the following theorem.
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Theorem 2.4.1. Let P be the foot of the altitude from D to EF . Then S − P − I − A′.
Additionally by the definition of the Sharkydevil Point we have the following:

Theorem 2.4.2. S is the center of spiral similarity sending FE to BC.

This spiral similarity is actually quite interesting. It sends F to B, E to C, I to MA(the mid-
point of the arc BC of (ABC) not containing A), but where does it send P?

Theorem 2.4.3. The spiral similarity sending FE to BC sends P to D, or alternatively S −
D −MA.

Since PD||IMA and D is on BC, this is true. Additionally, BS
SC

= BE
CF

= BD
CD

, so SD bisects
∠BSC. This means that S −D −MA.

Theorem 2.4.4. Let L be the midpoint of B̂AC. Then LS, EF , and BC concur.

This is because (LS ∩ BC,D;B,C)
S
= (L,MA;B,C) = −1. We can call LS ∩ BC as Q. Let Y

be the intersection of AS and EF .

Theorem 2.4.5. If P1 = DI ∩ (AEF ), then S − P1 − L.
]SP1D = ]SP1I = ]SAI = ]SAMA = ]SLMA, so 4SDP1 and 4SMAL are homothetic,
as desired.

Theorem 2.4.6. Y is the D-Ex Point of 4DEF .

This is simply because (Y, P ;E,F )
S
= (A, I;E,F ) = −1. Alternatively if N is the midpoint of

EF then ]ASP = ]ASI = 90 − ]ANP , so ASPN is cyclic, and Y F · Y E = Y S · Y A =
Y P · Y N .

A

B CD

E

F I

L

MA

P
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S

Y

A′

N

P1

The best *shakes head back and forth vigorously* is yet *head continues shaking back and
forth vigorously* to come.

Because of all of the right angles and PoP produced, there are tons of concyclic points. How-
ever I’ll just show two rather useful examples:
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Theorem 2.4.7. Let QD be the D-Queue Point and let K be the intersection between AI
and BC. Then A, S,QD, D,K all are concyclic.

Y QD · Y D = Y F · Y E = Y S · Y A,

so A, S,QD, D are concyclic.

]AKD = ]ACB + ]MAAC = ]ACB + ]BCMA = ]ACMA = ]ASMA = ]ASD

so A, S,D,K are concyclic too, as desired.

Theorem 2.4.8. (MDQD) and (ABC) have radical axis EF .

Since

QD ·QM = QB ·QC

and

Y A · Y S = Y D · Y QD,

this is true.

The remaining theorems in this section are an entry into the very rich configuration in the
next section.

Theorem 2.4.9. Let I ′ be the intersection of LI and (BIC). Then the tangents to (BIC) at
I, I ′ meet at the intersection of AS and BC.

The first observation you hopefully had is that I said that the tangents to (BIC) at I and I ′
meet on BC. This is because LB and LC are tangents to (BIC), so (I, I ′;B,C) = −1.

Since both (AEIF ) and (BIC) are centered on AMA, the tangent to (BIC) at I is actually
the line at I perpendicular to AI, or the radical axis of (AEIF ) and (BIC). Radical axis on
these two circles plus (ABC) gives that this tangent goes through AS ∩BC.

Theorem 2.4.10. Let Z = AL ∩BC. Then Z,A, I,D, I ′ are all concyclic.

Notice that ]ZAI = ]ZDI = 90. It suffices to show that ]ZI ′I = 90. ]IAI ′I = 90, so it
actually suffices to show that Z− I ′− IA. −1 = (I ′, I;B,C)

IA= (I ′IA∩BC,K;B,C) as desired.
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A

B CD

E

F
I

IA

I ′

K

L

S

QD

M

With Z in the diagram it was almost unreadable.

2.5 Mixtilinear Incircle

Let’s start with a few definitions.

Definition 2.5.1 (Mixtilinear Incircle). The A-mixtilinear incircle is tangent to AB, AC,
and internally tangent to (ABC). The A-mixtilinear touchpoint TA is the tangency point
of the mixtilinear incircle and (ABC).
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A

B C

TA

B1

C1

Let B1 and C1 be the tangency points of the A-mixtilinear incircle with AB and AC
respectively.

This looks quite intractable at first sight. How would one deal with this weird tangency condi-
tion? However,

√
bc inverting makes this the A-excircle, something we can handle more easily.

A

BC B′
1

C ′
1

IA

Z X

L

Get ready

Let B′1 and C ′1 be the images of B1 and C1. We have that ]AB′1IA = ]AC1I
′
A = 90, so
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AB′1IAC
′
1 is cyclic. Additionally ]ZAIA = ]ZXIA = 90, so ZAXIA is cyclic. While these

might seem quite arbitrary,
√
bc inverting back we get these theorems.

Theorem 2.5.1. ATA and AX are isogonal in 4ABC

Theorem 2.5.2. L− I − TA

Reflecting AX over the perpendicular bisector of BC we get another theorem.

Theorem 2.5.3. Let A′ be the reflection of A over the perpendicular bisector of BC. Then
TAD passes through A′.

Theorem 2.5.4. B1C1 is the line perpendicular to AI at I.

Theorem 2.5.5. Let MC be the midpoint of the arc AB not containing C, and define MB

similarly. Then TA −B1 −MC and TA − C1 −MB.

Since the tangents to B1 and C1 on (TAB1C1) are AB and AC respectively, and the tangents
to MC and MB on (TAMCMB) are parallel to AB and AC respectively, the homothety at T
sending the A-mixtilinear incircle to (ABC) sends B1 to MC and C1 to MB.

Let OA be the center of the A-mixtilinear incircle.

Theorem 2.5.6. OA is on (AB1C1).

This is because ]C1OAB1 = 2]C1TAB1 = 2]MBAMC = ]C1AB1.

Theorem 2.5.7. An inversion about the circle centered at A with radius AI switches the A-
mixtillinear incircle and the incircle.

This is because from similar triangles we have AE
AI

= AI
AC1

.

Theorem 2.5.8. If MA is the antipode of L on (ABC) then AD and TAMA meet on the
"bottom point" of the A-mixtilinear incircle and AX and TAL meet at the "top point" of the
A-mixtilinear incircle.

A homothety sending the incircle to the A-mixtillinear circle at A means that the top and
bottom points of the A-mixtilinear incircle are on AX and AD respectively. Similarly the ho-
mothety sending the A-mixtillinear incircle to (ABC) at TA means that the top and bottom
points of the A-mixtilinear incircle are on TAL and TAMA respectively.
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A

B CD X

A′

MB

MC

I

B1

C1

L

TA

OA

MA

Already 8 theorems, and many more waiting

Realize that in the previous section, we already saw B1C1. Additionally, note that MA is the
center of (BIC) and that ]MATAI = 90. This means that TAMA is the perpendicular bisec-
tor of II ′. Thus we have the following.

Theorem 2.5.9. AS, B1C1, BC, and TAMA are concurrent.

Let T be the intersection of TAMA and BC. Let R be the intersection of LI and BC.

Theorem 2.5.10. R is the orthocenter of 4TLMA.

This is because LR is perpendicular to MAT and TR is perpendicular to LMA.

Let J be the intersection of LT and MAR.

Theorem 2.5.11. (TA, J ;B,C) = −1.

First of all ]MAJL = 90, so J is on (ABC). From there we can use (L,MA;B,C)
R
= (TA, J, B, C).

Theorem 2.5.12. (R, T ;B,C) = −1.

This is just from (TA, J ;B,C)
L
= (R, T ;B,C).
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T

A

B C

L

MA

I

TA

B1

C1

J

R

A non-crowded diagram

Now let J ′ be the intersection of (AB1C1) and (ABC). J ′ is the center of spiral similarity
from B1C1 to BC. It is also the center of spiral similarity from B1I to BM . Thus TJ ′IM is
cyclic. However TJIM is cyclic, because J, I,M are all on the circle with diameter TMA.

Theorem 2.5.13. A,C1, B1, J are all concyclic.

Theorem 2.5.14. Let DA be the intersection of the altitude from D to EF and (DEF ). Let
QD be the D-Queue Point of 4DEF . A−DA −QD − TA.

It suffices to show that A − DA − TA since A − DA − QD comes from (QD, DA;E,F ) =
−1.The homothety at A sending (DEF ) to (TAB1C1) plus the homothety sending (TAB1C1)
to (ABC) sends D,E, F to MA,MB,MC respectively, because the tangents at MA,MB,MC to
(ABC) are parallel to BC, AC, AB respectively, which are the tangents to (DEF ) at D,E, F
respectively. Since MAA ⊥ MBMC(consider that MBMC is the perpendicular bisector of AI)
these two homotheties send DA to A. Thus DA is on ATA as desired.

The next point I’ll bring up in this section is EO, the intersection of AP and (ABC). The
reason this is named as such is because it showed up in TSTST 2020/2, and Evan Chen said
he hadn’t seen it before, which means that it isn’t well known, because he’s such an author-
ity. It’s not like he’s had a decade of olympiad experience and he was a Gold Medalist at
IMO, right. It’s also not like I started olympiad a couple months ago, right. Thus the point
is named EO for Evan is Old. I know that Evan Chen created the whole notion of American
Geo in the first place but ... yeah.

Theorem 2.5.15. (S,EO;B,C) = −1

(Y, P ;E,F )
A
= (S,EO;B,C) gives this important fact.
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Theorem 2.5.16. Because of the previous theorem there are many collinearities worth men-
tioning.

• A− P −R− EO

• L−D − EO

• Q− EO −MA(Q = EF ∩BC)

For the first collinearity, −1 = (Y, P ;E,F )
A
= (T,AP ∩ BC;B,C) gives A − P − R, or

A− P −R− EO, as desired.

For the second collinearity −1 = (S,EO;B,C)
D
= (MA, EOD ∩ (ABC);B,C) gives L−D−EO.

Note that if one needs to just prove that AP and ND intersect on BC, then looking at the
spiral sim taking FE to BC plus an angle chase should suffice.

For the final collinearity −1 = (S,EO;B,C)
MA= (MAEO, D;B,C) gives Q−D − EO.

A

B

B1

C

C1

D

E

EO

F IJ

L

M

MA

P

R

S

T

Y

Q

Back to a semi-crowded diagram

Theorem 2.5.17. If H is the orthocenter of 4DEF and HD is the D-Humpty Point of 4DEF ,
then an inversion about the incircle sends TA and EO the midpoints of DH and DHD respec-
tively.

The first thing to note is that the inversion of (ABC) around the incircle goes to the nine-
point circle of 4DEF
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Let I ′ be the reflection of I over TA, or the point on (BIC) such that −1 = (I, I ′;B,C). Then
Let B′ and C ′ be the midpoints of DF and DE respectively. I ′ inverts to the midpoint of B′
and C ′. Let N be the midpoint of DH. Since NB′IC ′ is a parallelogram (dilate it by a factor
of 2 around D), the midpoint of NI is the midpoint of B′C ′, so TA inverts to N , as desired.

Let P be the foot of D to EF . Then EO inverts to a point E ′O on the nine-point circle of
4DEF , or a point on (DB′C ′), such that −1 = (D,E ′O;B′, C ′), because inversion preserves
cross ratio. We can recast this in terms of 4DEF .

Let 4ABC have orthocenter H, A-Humpty Point HA, and let the midpoint of AHA be E ′O.
Let AH ∩ BC = P , let the midpoint of AC be B′, and let the midpoint of AB be C ′. Then
prove that (P,E ′O;B′, C ′) = −1.

Dilate P,E ′O, B′, C ′ around A by a factor of 2 and reflect their images around BC. P goes to
A, EO goes to K, B′ goes to C, and C ′ goes to B, proving the recasting.

A

B CP

K

H HA

I
I ′′

E ′
ON

B′C ′

What does (ITAEO) invert to?

Corollary 2.5.1. EO lies on (ZAIDI ′)

This is because (ZAIDI ′) turns into the D-median of 4DEF under an inversion about the
incircle. In addition, LZ · LA = LD · LEO by shooting lemma also suffices, and is shorter on
an olympiad.

2.6 Iran Lemma

This chapter, while having only one theorem, is separated because I want to make it very
clear that it is very useful.

The Iran Lemma, named after its use in the famous Iran TST 2009/9(a modified version ap-
pears as Problem 3.67), goes as follows:

Theorem 2.6.1 (Iran Lemma). Let M and MAC be the midpoints of BC and AC respec-
tively. Then the following concur:
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• EF

• MMAC

• The C-altitude of 4BIC

• BI

A

B CD

E

F

M

MAC

K

I

Let K = EF ∩BI

Since
]EKI = ]IBF + ]EFB = ]IBA+ 90− ]FAI = ]ECI,

we have EKIC cyclic. This means that

]IKC = 90 = ]BKC,

proving that K is the foot of the altitude from C to BI.

Since K is on (BC), and
]CMMB = 2]CBI,

MMAC goes through K.

It is helpful to think of this lemma as the concurrence of an intouch chord, midline, and angle
bisector, all on different angles (here I used A,C, and B respectively). This also means that
when looking at 4BIC, the foot from B to CI and the foot from C to BI both lie on EF .
This trick of looking at 4BIC is helpful in some circumstances, especially when the orthocen-
ter of it shows up. In addition, this theorem works exactly the same with IA instead of I.

The above trick of recasting in terms of 4BIC shows up extremely often, especially when you
can define the points in such a way that A,E, F are not very important.
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I

B C

MA

A

E

F D

Ok I know here ∠BIC is acute so I is an excenter of 4ABC but the point still stands.

2.7 Others
When the line OI shows up, often, but not always, homotheties are present.

Theorem 2.7.1. 4DEF ∼ 4MAMBMC ∼ 4IAIBIC , and all of the pairwise centers of
homothety are on OI.

We already stated above that 4DEF ∼ 4MAMBMC above, with the homothety that sends
the incircle to the A-mixtilinear incircle plus the homothety that sends the A-mixtilinear in-
circle to (ABC). Since these two have circumcenters I and O respectively, the center of homo-
thety between these two is on OI.

We already have that 4MAMBMC ∼ 4IAIBIC by a homothety at I with factor 2. Since O
is the nine-point center of 4IAIBIC , the circumcenter of O is on OI. Since the circumcenter
of 4DEF is I, and 4DEF ∼ 4MAMBMC ∼ 4IAIBIC , the center of homothety between
4DEF and 4IAIBIC is on OI.

Corollary 2.7.1. The Euler lines of 4DEF , 4MAMBMC , and 4IAIBIC are all OI.

Corollary 2.7.2. The homothety center between 4DEF and 4MAMBMC is on ATA(and by
symmetry the intersection of ATA, BTB, and CTC is this homothety center).

Monge on (ABC), the A-mixtilinear incircle, and the incircle means that the exsimilicenter
of the incircle and (ABC), or the homothety center between 4DEF and 4MAMBMC , is on
ATA.
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Now that we’ve seen theorems on OI, let’s see one on OIA.

Theorem 2.7.2. Let Y = BI ∩ AC and Z = CI ∩ AB. Then OIA ⊥ Y Z.

This follows from a lot of radical axis. Introducing I, IB, IC , Y is the radical center of (IIB),
(IIBIC), (ABC), and Z is the radical center of (IIC),(IIBIC),(ABC). Thus Y Z is the rad-
ical axis of (IIBIC) and (ABC). The line through O and the center of (IIBIC) is OIA by
Excentral-Orthic Duality.

A

B C

O

I

IA

IB

IC
Y

Z

Radical axis is quite powerful, especially as shown here

The next 3 theorems are about a tangent to the incircle.

Theorem 2.7.3. Let P be the foot from D to EF and let Y = AB ∩ CP ,Z = AC ∩ BP .
Then Y Z is tangent to the incircle on DA = DP ∩ (DEF ).
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A

B CD

E

F

T

Y

Z

DA

P
C1

C2

B1

B2

This makes Y Z antiparallel to BC.

(B1, B2;D,E)
P
= (B2, B1;DA, F ), so ZDA is tangent to (DEF ). Similarly Y DA is tangent to

(DEF ), so Y Z is tangent to (DEF ) at DA.

Theorem 2.7.4. BCZY is cyclic.

Since ]Y ZC = 2]DADE = 2]FED = ]Y BC, our claim is proved.

Theorem 2.7.5. Y Z goes through T , or the point on BC such that ]AIT = 90.

Since BC is the tangent to (DEF ) at D and Y Z is tangent to (DEF ) at DA, they meet at T
by angle chasing. Additionally since BZ and CY meet at P and AP ∩BC is R, (T,R;B,C) =
−1, gives the conclusion.

Theorem 2.7.6 (Euler’s Theorem). In a 4ABC, if O is the circumcenter, R is the circumra-
dius, I is the incenter, and r is the inradius, then OI2 = R(R− 2r).

Let L be the midpoint of B̂AC and let MA be the antipode of L on (ABC). Let F be the
foot from I to AB. Then AI

r
= AI

IF
= LMA

BMA
= 2R

IMA
, so AI · IMA = 2Rr. By Power of a Point we

get that R2 − OI2 = AI · IMA = 2Rr, so OI2 = R(R − 2r). This, along with the existence of
the Feuerbach tangency, is a proof that R ≥ 2r.
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A

B C
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MA
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O

This theorem has among the most original names in existence.

Corollary 2.7.3 (Poncelet’s Porism for triangles and circles). If Γ and ω are the circumcircle
and incircle of 4ABC respectively, then for any point P on Γ, there is a triangle with P as a
vertex that also has Γ and ω as its circumcircle and incircle respectively.

If I is the incenter of 4ABC, then let P ′ = PI ∩ Γ. Let the circle centered at P ′ with radius
P ′I intersect Γ at P1 and P2 respectively. Then 4PP1P2 has incenter I by Fact 5. By Euler’s
theorem the inradius of this triangle must be the same as the inradius of 4ABC, so ω is the
incircle of 4PP1P2 as desired.

As hinted in the name, the full statement of Poncelet’s Porism is much more general. However
for our purposes this is good enough.



Chapter 3

Problems

"Why was the six afraid of the seven?"

"Because seven ate nine."
"Why was the student afraid of the six"

"Because P6s are hard"
"Fear not. They say to become a master you must do something 10000 times. If you speed
your slow self up by 100, you should be a master by the end of these 100 problems."

While I have put these in roughly ascending order in terms of difficulty, arguing about prob-
lem difficulty is fun, as many have noted before. Basically the ordering, for the most part, is a
piece of garbage.

Problem 3.0 (North Korea TST 2013/1). The incircle of a non-isosceles triangle ABC with
the center I touches the sides BC,CA,AB at A1, B1, C1 respectively. The line AI meets the
circumcircle of ABC at A2. The line B1C1 meets the line BC at A3 and the line A2A3 meets
the circumcircle of ABC at A4( 6= A2). Define B4, C4 similarly. Prove that the lines AA4, BB4, CC4

are concurrent.

Problem 3.1 (GOTEEM 3). Let D be a point in the plane of 4ABC. Define DA, DB, DC to
be the reflections of D over BC,CA,AB, respectively. Prove that the circumcircles of 4DABC,
4DBCA, 4DCAB, 4DADBDC concur at a point P . Moreover, prove that the midpoint of
DP lies on the nine-point circle of 4ABC.

Problem 3.2 (USA TST 2011/1). In an acute scalene triangle ABC, points D,E, F lie on
sides BC,CA,AB, respectively, such that AD ⊥ BC,BE ⊥ CA,CF ⊥ AB. Altitudes
AD,BE,CF meet at orthocenter H. Points P and Q lie on segment EF such that AP ⊥ EF
and HQ ⊥ EF . Lines DP and QH intersect at point R. Compute HQ/HR.

Problem 3.3 (USA TST 2008/7). Let ABC be a triangle with G as its centroid. Let P be
a variable point on segment BC. Points Q and R lie on sides AC and AB respectively, such
that PQ ‖ AB and PR ‖ AC. Prove that, as P varies along segment BC, the circumcircle of
triangle AQR passes through a fixed point X such that ∠BAG = ∠CAX.

Problem 3.4 (USA TSTST 2017/1). Let ABC be a triangle with circumcircle Γ, circumcen-
ter O, and orthocenter H. Assume that AB 6= AC and that ∠A 6= 90◦. Let M and N be
the midpoints of sides AB and AC, respectively, and let E and F be the feet of the altitudes
from B and C in 4ABC, respectively. Let P be the intersection of line MN with the tangent

53
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line to Γ at A. Let Q be the intersection point, other than A, of Γ with the circumcircle of
4AEF . Let R be the intersection of lines AQ and EF . Prove that PR ⊥ OH.

Problem 3.5 (USAJMO 2014/6). Let ABC be a triangle with incenter I, incircle γ, and cir-
cumcircle Γ. Let M,N,P be the midpoints of sides BC, CA, and AB respectively and let E
and F be the tangency points of γ with CA and AB, respectively. Let U and V be the in-
tersections of lines EF with MN and MP respectively, and let X be the midpoint of the arc
BAC of Γ.

(a) Prove that I lies on CV

(b) Prove that the line XI bisects the segment UV

.

Problem 3.6 (ISL 2016 G2). Let ABC be a triangle with circumcircle Γ and incenter I. Let
M be the midpoint of BC. The points D,E, F are selected on sides BC, AC, and AB respec-
tively such that ID ⊥ BC, IE ⊥ AI, and IF ⊥ AI. Suppose that the circumcircle of 4AEF
intersects Γ at a points X other than A. Prove that lines XD and AM meet on Γ.

Problem 3.7 (Korea 2020/2). H is the orthocenter of an acute triangle ABC, and let M be
the midpoint of BC. Suppose (AH) meets AB and AC at D,E respectively. AH meets DE
at P , and the line through H perpendicular to AH meets DM at Q. Prove that P,Q,B are
collinear.

Problem 3.8 (USA TSTST 2011/4). Acute triangle ABC is inscribed in circle ω. Let H and
O denote its orthocenter and circumcenter, respectively. Let M and N be the midpoints of
sides AB and AC, respectively. Rays MH and NH meet ω at P and Q, respectively. Lines
MN and PQ meet at R. Prove that OA ⊥ RA.

Hint: 20

Problem 3.9 (USAMO 2008/2). Let ABC be an acute, scalene triangle, and let M , N , and
P be the midpoints of BC, CA, and AB, respectively. Let the perpendicular bisectors of AB
and AC intersect ray AM in points D and E respectively, and let lines BD and CE intersect
in point F , inside of triangle ABC. Prove that points A, N , F , and P all lie on one circle.

Hint: 86

Problem 3.10 (USA TST 2005/6). Let ABC be an acute scalene triangle with O as its cir-
cumcenter. Point P lies inside triangle ABC with ∠PAB = ∠PBC and ∠PAC = ∠PCB.
Point Q lies on line BC with QA = QP . Prove that ∠AQP = 2∠OQB.

Problem 3.11 (AoPS Community). Given acute triangle ABC, BE⊥AC,CF⊥AB at E,F ,
resp. M is midpoint of BC, N is intersection of EF and AM . NK⊥BC at K. Prove that
AK is symmedian of triangle ABC.

Problem 3.12 (USA TSTST 2015/2). Let ABC be a scalene triangle. Let Ka, La and Ma

be the respective intersections with BC of the internal angle bisector, external angle bisector,
and the median from A. The circumcircle of AKaLa intersects AMa a second time at point Xa

different from A. Define Xb and Xc analogously. Prove that the circumcenter of XaXbXc lies
on the Euler line of ABC.

(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocen-
ter of ABC.)



55

Problem 3.13 (STEMS 2019 CAT B P6). In triangle ABC, with circumcircle Γ, the incircle
ω has center I and touches sides BC,CA,AB at D,E, F respectively. Point Q lies on EF
and point R lies on ω such that DQ ⊥ EF and D,Q,R are collinear. Ray AR meets ω again
at P and Γ again at S. Ray AQ meets BC at T . Let M be the midpoint of BC and let O be
the circumcenter of triangle MPD. Prove that O, T, I, S are collinear.

Problem 3.14 (Vietnam TST 2003/2). Given a triangle ABC. Let O be the circumcenter
of this triangle ABC. Let H, K, L be the feet of the altitudes of triangle ABC from the ver-
tices A, B, C, respectively. Denote by A0, B0, C0 the midpoints of these altitudes AH, BK,
CL, respectively. The incircle of triangle ABC has center I and touches the sides BC, CA,
AB at the points D, E, F , respectively. Prove that the four lines A0D, B0E, C0F and OI are
concurrent. (When the point O concides with I, we consider the line OI as an arbitrary line
passing through O.)

Problem 3.15 (Taiwan TST Round 2 2019 Day 1 P2). Let ABC be a scalene triangle,let I
be its incenter and let Ω be its circumcircle. Let M be the midpoint of BC. The incircle ω
touches CA,AB at E,F respectively. Suppose that the line EF intersects Ω at two points
P,Q, and let R be the point on the circumcircle Γ of 4MPQ such that MR is perpendicular
to PQ. Prove that AR,Γ,and ω intersect at one point.

Problem 3.16 (Sun Yat-sen University bi-weekly problem). Let I be the incenter of 4ABC.
D,E, F be the symmetric point of I wrt BC,CA,AB respectively. Prove that there exists a
point P such that AP ⊥ DP,BP ⊥ EP,CP ⊥ FP .

Problem 3.17 (2013 ELMO SL G3). In 4ABC, a point D lies on line BC. The circumcircle
of ABD meets AC at F (other than A), and the circumcircle of ADC meets AB at E (other
than A). Prove that as D varies, the circumcircle of AEF always passes through a fixed point
other than A, and that this point lies on the median from A to BC.

Problem 3.18 (Korea Winter Program Practice Test 2018/5). Let ∆ABC be a triangle with
circumcenter O and circumcircle w. Let S be the center of the circle which is tangent with
AB, AC, and w (in the inside), and let the circle meet w at point K. Let the circle with di-
ameter AS meet w at T . If M is the midpoint of BC, show that K,T,M,O are concyclic.

Hint: 38

Problem 3.19 (2019 ELMO SL G3). Let 4ABC be an acute triangle with incenter I and
circumcenter O. The incircle touches sides BC,CA, and AB at D,E, and F respectively, and
A′ is the reflection of A over O. The circumcircles of ABC and A′EF meet at G, and the
circumcircles of AMG and A′EF meet at a point H 6= G, where M is the midpoint of EF .
Prove that if GH and EF meet at T , then DT ⊥ EF .

Hint: 26

Problem 3.20 (2013 ELMO SL G2). Let ABC be a scalene triangle with circumcircle Γ, and
let D,E,F be the points where its incircle meets BC, AC, AB respectively. Let the circumcir-
cles of 4AEF , 4BFD, and 4CDE meet Γ a second time at X, Y, Z respectively. Prove that
the perpendiculars from A,B,C to AX,BY,CZ respectively are concurrent.

Problem 3.21 (USA TST 2014/1). Let ABC be an acute triangle, and let X be a variable
interior point on the minor arc BC of its circumcircle. Let P and Q be the feet of the per-
pendiculars from X to lines CA and CB, respectively. Let R be the intersection of line PQ



56 CHAPTER 3. PROBLEMS

and the perpendicular from B to AC. Let ` be the line through P parallel to XR. Prove that
as X varies along minor arc BC, the line ` always passes through a fixed point. (Specifically:
prove that there is a point F , determined by triangle ABC, such that no matter where X is
on arc BC, line ` passes through F .)

Problem 3.22 (ELMO SL 2018/1). Let ABC be an acute triangle with orthocenter H, and
let P be a point on the nine-point circle of ABC. Lines BH,CH meet the opposite sides
AC,AB at E,F , respectively. Suppose that the circumcircles (EHP ), (FHP ) intersect lines
CH,BH a second time at Q,R, respectively. Show that as P varies along the nine-point circle
of ABC, the line QR passes through a fixed point.

Problem 3.23 (AoPS user math_pi_rate). Let XA and YA be the A-intouch point and the
foot of the A-internal angle bisector in a 4ABC. Define XB, YB and XC , YC analogously.
Then prove that the radical center of �AXAYA, �BXBYB, �CXCYC lies on OI(O is the cir-
cumcenter and I is the incenter respectively of 4ABC).

Problem 3.24 (ELMO 2020/4). Let acute scalene triangle ABC have orthocenter H and
altitude AD with D on side BC. Let M be the midpoint of side BC, and let D′ be the reflec-
tion of D over M . Let P be a point on line D′H such that lines AP and BC are parallel, and
let the circumcircles of 4AHP and 4BHC meet again at G 6= H. Prove that ∠MHG = 90◦.

Problem 3.25 (ELMO 2012/1). In acute triangle ABC, let D,E, F denote the feet of the
altitudes from A,B,C, respectively, and let ω be the circumcircle of 4AEF . Let ω1 and ω2

be the circles through D tangent to ω at E and F , respectively. Show that ω1 and ω2 meet at
a point P on BC other than D.

Problem 3.26 (Japan 2017/3). Let ABC be an acute-angled triangle with the circumcenter
O. Let D,E and F be the feet of the altitudes from A,B and C, respectively, and let M be
the midpoint of BC. AD and EF meet at X, AO and BC meet at Y , and let Z be the mid-
point of XY . Prove that A,Z,M are collinear.

Problem 3.27 (Sharygin 2015 Final Round Grade 10(penultimate grade) Problem 3). Let
A1, B1 and C1 be the midpoints of sides BC, CA and AB of triangle ABC, respectively. Points
B2 and C2 are the midpoints of segments BA1 and CA1 respectively. Point B3 is symmetric
to C1 wrt B, and C3 is symmetric to B1 wrt C. Prove that one of common points of circles
BB2B3 and CC2C3 lies on the circumcircle of triangle ABC.

Problem 3.28 (ELMO 2018/4). Let ABC be a scalene triangle with orthocenter H and cir-
cumcenter O. Let P be the midpoint of AH and let T be on line BC with ∠TAO = 90◦. Let
X be the foot of the altitude from O onto line PT . Prove that the midpoint of PX lies on the
nine-point circle* of 4ABC.

*The nine-point circle of 4ABC is the unique circle passing through the following nine points:
the midpoint of the sides, the feet of the altitudes, and the midpoints of AH, BH, and CH.

Hint: 59

Problem 3.29 (ELMO 2017/2). Let ABC be a triangle with orthocenter H, and let M be
the midpoint of BC. Suppose that P and Q are distinct points on the circle with diameter
AH, different from A, such that M lies on line PQ. Prove that the orthocenter of 4APQ lies
on the circumcircle of 4ABC.

Hint: 87
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Problem 3.30 (CJMO 2019/3). Let I be the incenter of 4ABC, and M the midpoint of
BC. Let Ω be the nine-point circle of 4BIC. Suppose that BC intersects Ω at a point D 6=
M . If Y is the intersection of BC and the A-intouch chord, and X is the projection of Y onto
AM , prove that X lies on Ω, and the intersection of the tangents to Ω at D and X intersect
on the A-intouch chord of 4ABC.

Problem 3.31 (GOTEEM 1). Let ABC be a scalene triangle. The incircle of 4ABC is
tangent to sides BC, CA, AB at D,E, F , respectively. Let G be a point on the incircle of
4ABC such that ∠AGD = 90◦. If lines DG and EF intersect at P , prove that AP is parallel
to BC.

Problem 3.32 (GGG1/4). Let ABC be an acute triangle, let ω be its incircle, and let MA

be the midpoint of minor arc B̂C on the circumcircle of ABC. Let ω touch BC,CA,AB at
points D,E, F , respectively, and let H be the foot of the altitude from A to BC. Denote by
L the intersection of

←−−→
MAD and

←→
AH. Let IE and IF denote the E and F -excenters of triangle

ELF , respectively.

Prove that IE and IF lie on ω.

Problem 3.33 (USAJMO 2016/1 generalization). The triangle 4ABC is inscribed in the
circle ω. Let P be a variable point on the arc B̂C that does not contain A, and let IB and IC
denote the incenters of triangles 4ABP and 4ACP , respectively.

Prove that as P varies, the circumcircle of 4PIBIC passes through a fixed point.

Problem 3.34 (ELMO 2010/6). Let ABC be a triangle with circumcircle ω, incenter I, and
A-excenter IA. Let the incircle and the A-excircle hit BC at D and E, respectively, and let M
be the midpoint of arc BC without A. Consider the circle tangent to BC at D and arc BAC
at T . If TI intersects ω again at S, prove that SIA and ME meet on ω.

Problem 3.35 (ELMO 2014/5). Let ABC be a triangle with circumcenter O and orthocenter
H. Let ω1 and ω2 denote the circumcircles of triangles BOC and BHC, respectively. Suppose
the circle with diameter AO intersects ω1 again at M , and line AM intersects ω1 again at X.
Similarly, suppose the circle with diameter AH intersects ω2 again at N , and line AN inter-
sects ω2 again at Y . Prove that lines MN and XY are parallel.

Problem 3.36 (USA TST 2015/1). Let ABC be a non-isosceles triangle with incenter I
whose incircle is tangent to BC, CA, AB at D, E, F , respectively. Denote by M the mid-
point of BC. Let Q be a point on the incircle such that ∠AQD = 90◦. Let P be the point
inside the triangle on line AI for which MD = MP . Prove that either ∠PQE = 90◦ or
∠PQF = 90◦.

Problem 3.37 (BMOSL 2018/2). Let ABC be a triangle inscribed in circle Γ with center
O. Let H be the orthocenter of triangle ABC and let K be the midpoint of OH. Tangent
of Γ at B intersects the perpendicular bisector of AC at L. Tangent of Γ at C intersects the
perpendicular bisector of AB at M . Prove that AK and LM are perpendicular.

Problem 3.38 (Folklore I think). Given a triangle ABC with circumcenter O, let M be the
midpoint of BC and D be the foot from A to BC. P = OD∩AM . Prove that P = OD∩AM
lies on the radical axis of (BOC) and the nine-point circle of (ABC).

Hints: 35,92
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Problem 3.39 (Vietnam 2019/6). Given an acute triangle ABC and (O) be its circumcircle,
and H is its orthocenter. Let M,N,P be midpoints of BC,CA,AB, respectively. D,E, F are
the feet of the altitudes from A,B and C, respectively. Let K symmetry with H through BC.
DE intersects MP at X, DF intersects MN at Y .

a XY intersects smaller arc BC of (O) at Z. Prove that K,Z,E, F are concyclic.

b KE,KF intersect (O) at S, T (S, T 6= K), respectively. Prove that BS,CT,XY are
concurrent.

Hints: 32,14

Problem 3.40 (AoPS user tutubixu9198). Let ABC be a triangle with circumcenter O and
incenter I. Let (O1) be a circle ex-tangent to (BOC) and tangent to AB,AC at M,N . Prove
that MN passes through midpoint of AI.

Problem 3.41 (Sharygin Correspondence Round 2020/15). Let H be the orthocenter of a
nonisosceles triangle ABC. The bisector of angle BHC meets AB and AC at points P and Q
respectively. The perpendiculars to AB and AC from P and Q meet at K. Prove that KH
bisects the segment BC.

Problem 3.42 (GOTEEM 2). Let ABC be an acute triangle with AB 6= AC, and let D,E, F
be the feet of the altitudes from A,B,C, respectively. Let P be a point on DE such that
AP ⊥ AB and let Q be a point on DF such that AQ ⊥ AC. Lines PQ and BC intersect
at T . If M is the midpoint of BC, prove that ∠MAT = 90◦.

Problem 3.43 (2012 ELMO SL G3). ABC is a triangle with incenter I. The foot of the per-
pendicular from I to BC is D, and the foot of the perpendicular from I to AD is P . Prove
that ∠BPD = ∠DPC.

Problem 3.44 (2017 ISL G4). In triangle ABC, let ω be the excircle opposite to A. Let
D,E and F be the points where ω is tangent to BC,CA, and AB, respectively. The circle
AEF intersects line BC at P and Q. Let M be the midpoint of AD. Prove that the circle
MPQ is tangent to ω.

Problem 3.45 (GGG3 6). Let ABC be a scalene triangle with incenter I and circumcircle Ω;
L is the midpoint of arc BAC and A′ is diametrically opposite A on Ω. D is the foot of the
perpendicular from I to BC.

←→
LI meets

←→
BC and Ω at X and Y , respectively, and

←→
LD meets Ω

again at Z.
←→
XZ meets

←→
A′I at T .

←→
DI meets the circle with diameter AI again at P . Show that

the second intersection between
←→
PT and the circle with diameter AI lies on AY .

Problem 3.46 (Iran TST 2012 Day 1 P2). Consider ω, the circumcircle of a triangle ABC.
D is the midpoint of arc BAC and I is the incenter of 4ABC. Let DI intersect BC at E
and ω for the second time at F . Let P be a point on line AF such that PE is parallel to AI.
Prove that PE is the angle bisector of angle BPC.

Problem 3.47 (Centroamerican Olympiad 2016/6). Let 4ABC be triangle with incenter I
and circumcircle Γ. Let M = BI ∩ Γ and N = CI ∩ Γ, the line parallel to MN through I cuts
AB, AC in P and Q. Prove that the circumradius of �(BNP ) and �(CMQ) are equal.

Problem 3.48 (2019 ELMO SL G1). Let ABC be an acute triangle with orthocenter H and
circumcircle Γ. Let BH intersect AC at E, and let CH intersect AB at F . Let AH intersect
Γ again at P 6= A. Let PE intersect Γ again at Q 6= P . Prove that BQ bisects segment EF .

Hints: 11,79
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Problem 3.49 (Our one true god Wolfram Alpha). Let 4ABC have orthic triangle DEF .
Prove that the Euler lines of 4AEF,4BDF,4CDE are all concurrent.

Hint: 7,69,57

Problem 3.50 (Romania JBMO TST 2019/1.3). Let ABC a triangle, I the incenter, D the
contact point of the incircle with the side BC and E the foot of the bisector of the angle A. If
M is the midpoint of the arc BC which contains the point A of the circumcircle of the trian-
gle ABC and {F} = DI ∩ AM , prove that MI passes through the midpoint of [EF ].

Problem 3.51 (MMOSL G3). Let D,E, and F be the respective feet of the A,B, and C
altitudes in 4ABC, and let M and N be the respecive midpoints of AC and AB. Lines DF
and DE intersect the line through A parallel to BC at X and Y , respectively. Lines MX and
Y N intersect at Z. Prove that the circumcircles of 4EFZ and 4XY Z are tangent.

Problem 3.52 (AoPS user MP8148). In triangle ABC let the incenter be I. Suppose that
the A-mixtilinear incircle ω touches (ABC) at T , and Q = IT∩BC. Show that the homothety
sending ω to (ABC) sends Q to the midpoint of IQ.

Problem 3.53 (Myself (i3435)). Let ABC be a triangle with orthocenter H. Let BH ∩AC =
E, and CH ∩ AB = F . Let N be the midpoint of EF and let X be the point besides N on
EF such that HN = HX. Let AX intersect (ABC) at Y . Let A′ be the point on (ABC)
such that AA′||BC and let M be the midpoint of BC. Prove that A′Y bisects AM .

Problem 3.54 (Error: Not Found). Let ABC be an acute scalene triangle with orthocenter
H. Prove that the midpoint of AH lies on the incircle of ABC if and only if the incenter of
ABC lies on the circle with diameter AH.

Problem 3.55 (IGO Advanced 2020/2). Let 4ABC be an acute-angled triangle with its
incenter I. Suppose that N is the midpoint of the arc B̂AC of the circumcircle of triangle
4ABC, and P is a point such that ABPC is a parallelogram.Let Q be the reflection of A
over N and R the projection of A on QI. Show that the line AI is tangent to the circumcircle
of triangle 4PQR.

Problem 3.56 (AoPS user jayme). Let ABC be an acute triangle with orthocenter H, DEF
as the orthic triangle, and X as the foot from A to EF . He and Hf are the orthocenters of
4HFD, 4HED respectively. Prove that HeHf ⊥ DX.

Problem 3.57 (Japan 2019/4). Let ABC be a triangle with its inceter I, incircle w, and let
M be a midpoint of the side BC. A line through the point A perpendicular to the line BC
and a line through the point M perpendicular to the line AI meet at K. Show that a circle
with line segment AK as the diameter touches w.

Problem 3.58 (Brazil 2013/6). The incircle of triangle ABC touches sides BC,CA and AB
at points D,E and F , respectively. Let P be the intersection of lines AD and BE. The re-
flections of P with respect to EF, FD and DE are X, Y and Z, respectively. Prove that lines
AX,BY and CZ are concurrent at a point on line IO, where I and O are the incenter and
circumcenter of triangle ABC.

Hints: 67,53
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Problem 3.59 (ISL 2002 G7). The incircle Ω of the acute-angled triangle ABC is tangent to
its side BC at a point K. Let AD be an altitude of triangle ABC, and let M be the midpoint
of the segment AD. If N is the common point of the circle Ω and the line KM (distinct from
K), then prove that the incircle Ω and the circumcircle of triangle BCN are tangent to each
other at the point N .

Hints: 72,12

Problem 3.60 (USA TSTST 2016/2). Let ABC be a scalene triangle with orthocenter H
and circumcenter O. Denote by M , N the midpoints of AH, BC. Suppose the circle γ with
diameter AH meets the circumcircle of ABC at G 6= A, and meets line AN at a point Q 6=
A. The tangent to γ at G meets line OM at P . Show that the circumcircles of 4GNQ and
4MBC intersect at a point T on PN .

Problem 3.61 (CAMO 2020/3). Let ABC be a triangle with incircle ω, and let ω touch
BC,CA,AB at D,E, F respectively. Point M is the midpoint of EF , and T is the point on
ω such that DT is a diameter of ω. Line MT meets the line through A parallel to BC at P
and ω again at Q. Lines DF and DE intersect line AP at X and Y respectively. Prove that
the circumcircles of 4APQ and 4DXY are tangent.

Problem 3.62 (AQGO 2020/6). ]Let ∆ABC be a triangle with orthocenter H and BH meet
AC at E and CH meet AB at F . Let EF intersect the line through A parallel to BC at X
and the tangent to (ABC) at A intersect BC at Y . Let XY intersect AB at P and let XY
meet AC at Q. Let O be the circumcenter of ∆APQ and AO meet BC at T . Let V be the
projection of H on AT and M be the midpoint of BC. Then prove that (BHC) and (TVM)
are tangent to each other.

Problem 3.63 (Myself (i3435)). Let ABC be a triangle such that the foot of the altitude
from A to BC is D, the foot of the altitude form B to AC is E, and the foot of the altitude
from C to AB is F . Let X = EF ∩ BC. Let the circle with diameter AD hit DE at E ′, DF
at F ′, and (DEF ) at the non-D point L. Let GI ∩ EF = K. Then prove that X,D,L,K are
concyclic.

Problem 3.64 (Romania TST 2009 Day 3 P3). Let ABC be a non-isosceles triangle, in
which X, Y, and Z are the tangency points of the incircle of center I with sides BC,CA and
AB respectively. Denoting by O the circumcircle of 4ABC, line OI meets BC at a point D.
The perpendicular dropped from X to Y Z intersects AD at E. Prove that Y Z is the perpen-
dicular bisector of [EX].

Problem 3.65 (2017 USAMO P3). Let ABC be a scalene triangle with circumcircle Ω and
incenter I. Ray AI meets BC at D and meets Ω again at M ; the circle with diameter DM
cuts Ω again at K. Lines MK and BC meet at S, and N is the midpoint of IS. The circum-
circles of 4KID and 4MAN intersect at points L1 and L2. Prove that Ω passes through L1

or L2.

Problem 3.66 (Taiwan TST 2015 Round 3 Quiz 3 P2). In a scalene triangle ABC with in-
center I, the incircle is tangent to sides CA and AB at points E and F . The tangents to the
circumcircle of triangle AEF at E and F meet at S. Lines EF and BC intersect at T . Prove
that the circle with diameter ST is orthogonal to the nine-point circle of triangle BIC.
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Problem 3.67 (Modified Iran TST 2009/9). Let 4ABC have incenter I and contact triangle
DEF . Let H be the orthocenter of 4BIC, and let P be the foot from D to EF . If the mid-
point of EF is N , the midpoint of DP is N∗, and Ge is the gergonne point of 4ABC, then
prove that N∗ −Ge−N −H.

Problem 3.68 (POGCHAMP 6). Triangle ABC has incenter I, A-excenter IA, and let D be
the foot of I onto BC. M is the midpoint of arc B̂AC in �(ABC), MA intersects BC at E,
and line IAD intersects �(AID) again at F 6= D. Let O be the circumcenter of 4AMF and
suppose the line through E perpendicular to OI meets MIA at G. Find, with proof, the value
of IAG

MG
.

Hints: 49,56

Problem 3.69 (AoPS user proglote). Let T be the homothetic center of the intouch and ex-
central triangle of a triangle ABC. Prove that T is collinear with the centroid of 4ABC, G
and the Gergonne Point of 4ABC, Ge.

Hints: 84,76,28

Problem 3.70 (2012 ELMO SL G7). Let 4ABC be an acute triangle with circumcenter O
such that AB < AC, let Q be the intersection of the external bisector of ∠A with BC, and
let P be a point in the interior of 4ABC such that 4BPA is similar to 4APC. Show that
∠QPA+ ∠OQB = 90◦.

Problem 3.71 (Fake USAMO 2020/3). Let 4ABC be a scalene triangle with circumcenter
O, incenter I, and incircle ω. Let ω touch the sides BC, CA, and AB at points D, E, and F
respectively. Let T be the projection of D to EF . The line AT intersects the circumcircle of
4ABC again at point X 6= A. The circumcircles of 4AEX and 4AFX intersect ω again at
points P 6= E and Q 6= F respectively. Prove that the lines EQ, FP , and OI are concurrent.

Problem 3.72 (Myself (i3435)). Let ABC be a triangle. Let E,F be the feet of the altitudes
of 4ABC from B,C respectively. Let M be the midpoint of BC and let N be the midpoint
of EF . Let X be the point such that 4XMN is similar and similarly oriented to 4XFE.
Let Y be the point such that 4YMN is similar and similarly oriented to 4Y EF . Let Z =
FX ∩ EY and let T be the intersection of the tangents to (ABC) at B and C. Prove AZ
bisects MT .

Problem 3.73 (Myself(i3435)). In triangle ABC, let I be the incenter, and let the incircle
hit the sides BC, AC, and AB at D,E, F respectively. Let S be the non-A intersection of
(AEF ) and (ABC), let J = AI ∩ BC, and let N be the midpoint of EF . Let SJ and DN
intersect at P . Prove P is on the 9-point circle of DEF .

Problem 3.74 (2015 Taiwan TST Round 3 Quiz 1 P2). Let O be the circumcircle of the tri-
angle ABC. Two circles O1, O2 are tangent to each of the circle O and the rays

−→
AB,
−→
AC, with

O1 interior to O, O2 exterior to O. The common tangent of O,O1 and the common tangent
of O,O2 intersect at the point X. Let M be the midpoint of the arc BC (not containing the
point A) on the circle O, and the segment AA′ be the diameter of O. Prove that X,M , and
A′ are collinear.

Problem 3.75 (Myself(i3435)). Let ABC be a triangle with circumcenter O, incenter I,
and intouch triangle DEF . Let L be the midpoint of arc B̂AC, and let LD intersect (ABC)
again at X. Let (EFX) meet (ABC) again at Y . Then let AX = `A and LY = mA. Define
`B, `C ,mB,mC similarly. Prove that `A, `B, `C ,mA,mB,mC , and OI all concur at one point.
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Problem 3.76 (AoPS user MP8148). Let ABC be a triangle with incenter I, orthocenter H,
and circumcenter O. Show that the line parallel through O parallel to BC and the polar of H
with respect to (BIC) meet on AI.

Problem 3.77 (SORY P6). Let 4ABC be a triangle with incenter I. Let the incircle be tan-
gent to the sides BC,CA,AB at D,E, F respectively. Let P be the foot of the perpendicular
from D onto EF . Assume that BP,CP intersect the sides AC,AB at Y, Z respectively. Fi-
nally let the rays IP, Y Z meet the circumcircle of 4ABC in R,X respectively.

Prove that the tangent from X to the incircle and RD intersect on the circumcircle of 4ABC.

Problem 3.78 (AoPS user beiqiang). Let acute triangle ABC be inscribed in a circle ω,
and suppose the incircle of ABC touches side BC at N . Let ω′ be a circle tangent to BC at
N , and tangent to ω at T such that ω′ is on the same side of BC as A. Let O be the center
of ω′ and Ia be the A-excenter. Let the midpoint of smaller arc BC be L, and A′ be the A-
antipode. Let TN and AO intersect at P .

Show that:

1. T is on NL and IA′,

2. {AO,NIa}, {BC,PIa}, {ON,A′P} are parallel,

3. LIaPA′ and ATIaP are cyclic, and

4. AT , A′L and IaP are concurrent.

Hints: 88,8,44,85

Problem 3.79 (2017 ELMO SL G4). Let ABC be an acute triangle with incenter I and cir-
cumcircle ω. Suppose a circle ωB is tangent to BA,BC, and internally tangent to ω at B1,
while a circle ωC is tangent to CA,CB, and internally tangent to ω at C1. If B2, C2 are the
points opposite to B,C on ω, respectively, and X denotes the intersection of B1C2, B2C1,
prove that XA = XI.

Hints: 81,58

Problem 3.80 (AoPS User MP8148). Let ABC be a triangle with incenter I, circumcenter
O, and circumcircle Γ. Let M be the midpoint of the arc BC not containing A. Suppose the
incircle is tangent to BC at D, and N is the midpoint of IM . Denote Ω to be the circumcir-
cle of 4AON . Show that

a Lines OI and MD meet on the radical axis of Γ and Ω.

b Lines OI and ND meet on Γ.

Hints: 36,22

Problem 3.81 (2014 ELMO SL G8). In triangle ABC with incenter I and circumcenter O,
let A′, B′, C ′ be the points of tangency of its circumcircle with its A,B,C-mixtilinear circles,
respectively. Let ωA be the circle through A′ that is tangent to AI at I, and define ωB, ωC
similarly. Prove that ωA, ωB, ωC have a common point X other than I, and that ∠AXO =
∠OXA′.

Hints: 27,30
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Problem 3.82 (USA TST 2016/2). Let ABC be a scalene triangle with circumcircle Ω, and
suppose the incircle of ABC touches BC at D. The angle bisector of ∠A meets BC and Ω at
E and F . The circumcircle of 4DEF intersects the A-excircle at S1, S2, and Ω at T 6= F .
Prove that line AT passes through either S1 or S2.

Hints: 13,41

Problem 3.83 (EMMO Juniors 2016/5). Let 4ABC be a triangle with circumcenter O and
circumcircle Γ. The point X lies on Γ such that AX is the A- symmedian of triangle 4ABC.
The line through X perpendicular to AX intersects AB,AC in F,E, respectively. Denote by
γ the nine-point circle of triangle 4AEF, and let Γ and γ intersect again in P 6= X. Further,
let the tangent to Γ at A meet the line BC in Y, and let Z be the antipode of A with respect
to circle Γ. Prove that the points Y, P, Z are collinear.

Hints: 39,47

Problem 3.84 (All Russian 2013 Grade 11 (12 in American System) P8 (why am I putting
Russia problems in an American Geo handout?)). Let ω be the incircle of 4ABC and with
center I. Let Γ be the circumcircle of the triangle BIC. Circles ω and Γ intersect at the points
X and Y . Let Z be the intersection of the common tangents of the circles ω and Γ. Show
that the circumcircle of the triangle XY Z is tangent to the circumcircle of 4ABC.

Hints: 2,71,73,21

Problem 3.85 (AoPS user MP8148). In scalene triangle ABC with AB 6= AC, I is the in-
center, and O is the circumcenter. Let L be the midpoint of arc BAC, P be the point on BC
such that PI ⊥ OI, and Q be the point on AL such that QP ⊥ LI.

If the incircle is tangent to BC at D and D′ is the reflection of D over I, show that QD′ =
QI.

Hints: 80,94,23

Problem 3.86 (Mathematical Reflections O451). Let ABC be a triangle, Γ be its circumcir-
cle, ω its incircle, and I the incenter. Let M be the midpoint of BC. The incircle ω is tangent
to AB and AC at F and E respectively. Suppose EF meets Γ at distinct points P and Q.
Let J denote the point on EF such that MJ is perpendicular on EF . Show that IJ and the
radical axis of (MPQ) and (AJI) intersect on Γ.

Hint: 89

Problem 3.87 (AoPS Problem Making Contest 2016/7). Let 4ABC be given, it’s A−mixtilinear
incircle, ω, and it’s excenter IA. Let H be the foot of altitude from A to BC, E midpoint
of arc B̂AC and denote by M and N , midpoints of BC and AH, respectively. Suposse that
MN ∩ AE = {P} and that line IAP meet ω at S and T in this order: IA − T − S − P .

Prove that circumcircle of 4BSC and ω are tangent to each other.

Hints: 68,63,60
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Problem 3.88 (AoPS user tutubixu9198). Let ABC be a triangle with circumcircle (O). The
tangents to (O) at the vertices B and C meet at a point S. Let d be the internal bisector of
the angle BAC. Let the perpendicular bisector of AB,AC intersect d at M,N respectively
and P = BM ∩ CN . Prove that A, I, S are collinear where I is the incenter of triangle PMN .

Hints: 61,3

Problem 3.89 (AoPS User Supercali). In ∆ABC, let Fe be the Feuerbach point, let I be the
incentre, let H be orthocentre of ∆BIC and let A′ be reflection of A in Fe. Then, prove that
AH, IA′ and BC are concurrent.

Hints: 6,50,48,77

Problem 3.90 (Iran TST Third Round 2020 Geometry P4). Triangle ABC is given. Let O
be it’s circumcenter. Let I be the center of it’s incircle.The external angle bisector of A meet
BC at D. And IA is the A-excenter . The point K is chosen on the line AI such that AK =
2AI and A is closer to K than I. If the segment DF is the diameter of the circumcircle of
triangle DKIA, then prove OF = 3OI.

Hints: 43,66

Problem 3.91 (ELMO 2016/6). Elmo is now learning olympiad geometry. In triangle ABC
with AB 6= AC, let its incircle be tangent to sides BC, CA, and AB at D, E, and F , respec-
tively. The internal angle bisector of ∠BAC intersects lines DE and DF at X and Y , respec-
tively. Let S and T be distinct points on side BC such that ∠XSY = ∠XTY = 90◦. Finally,
let γ be the circumcircle of 4AST .

a Help Elmo show that γ is tangent to the circumcircle of 4ABC.

b Help Elmo show that γ is tangent to the incircle of 4ABC.

Hints: 29,62,1

Problem 3.92 (AoPS Community). In a triangle ABC, let 4DEF be the intouch triangle.
Let P be the foot from D to EF , and let I and H be the incenter and orthocenter respec-
tively of 4ABC. Prove that ∠HPI is bisected by PD.

Hints: 15,45,40,96

Problem 3.93 (2020 Taiwan TST Round 2 Mock IMO Day 6). Let I, O, ω,Ω be the incenter,
circumcenter, the incircle, and the circumcircle, respectively, of a scalene triangle ABC. The
incircle ω is tangent to side BC at point D. Let S be the point on the circumcircle Ω such
that AS,OI,BC are concurrent. Let H be the orthocenter of triangle BIC. Point T lies on Ω
such that ∠ATI is a right angle. Prove that the points D,T,H, S are concyclic.

Hints: 5,91,65,37,17

Problem 3.94 (Posted by AoPS user buratinogigle). Let ABC be a triangle inscribed in cir-
cle (O). Tangent at A meets BC at X. Median AM meets (O) again at P . Q lies on ray MP
such that PQ = 2PM . Choose the points R on line OX and D on segment BC such that
RD = RA = RQ. Let S, T be on perpendicular bisector of AD such that BS ⊥ BA and
CT ⊥ CA. Prove that ASDT is a rhombus.

Hints: 64,82,52,46,42
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Problem 3.95 (Encyclopedia of Triangle Centers). In 4ABC, let Be be the Bevan Point, or
the reflection of the incenter over the circumcenter. If Be′ is the antipode of Be on (BCBe),
then prove that ABe′ goes through the homothety center between the intouch and excentral
triangle.

Hints: 9,19,75

Problem 3.96 (Myself (i3435)). Let ABC be a triangle with circumcenter O and let the A-
symmedian intersect BC at D. Let P be the foot from B to AO and let Q be the foot from
C to AO. Let A1 be the intersection of DP and AC and let A2 be the intersection of DQ and
AB. Define B1, B2, C1, C2 similarly. Prove that A1, A2, B1, B2, C1, C2 are all concyclic.

Hints: 16,95,31,70,25

Problem 3.97 (India TST???). Let ABC be a triangle with circumcircle Γ and altitudes
AD,BE,CF meeting at H. Let ω be the circumcircle of 4DEF . Point S 6= A lies on Γ
such that DS = DA. Line AD meets EF at Q, and meets ω at L 6= D. Point M is cho-
sen such that DM is a diameter of ω. Point P lies on EF with DP ⊥ EF . Prove that lines
SH,MQ,PL are concurrent.

Hints: 34,74,4,18,93

Problem 3.98 (USAMO 2016/3). Let 4ABC be an acute triangle, and let IB, IC , and O de-
note its B-excenter, C-excenter, and circumcenter, respectively. Points E and Y are selected
on AC such that ∠ABY = ∠CBY and BE ⊥ AC. Similarly, points F and Z are selected on
AB such that ∠ACZ = ∠BCZ and CF ⊥ AB.

Lines
←−→
IBF and

←−→
ICE meet at P . Prove that PO and Y Z are perpendicular.

Hints: 90,54,33,83,51

Problem 3.99 (USA TSTST 2016/6). Let ABC be a triangle with incenter I, and whose in-
circle is tangent to BC, CA, AB at D, E, F , respectively. Let K be the foot of the altitude
from D to EF . Suppose that the circumcircle of 4AIB meets the incircle at two distinct
points C1 and C2, while the circumcircle of 4AIC meets the incircle at two distinct points
B1 and B2. Prove that the radical axis of the circumcircles of 4BB1B2 and 4CC1C2 passes
through the midpoint M of DK.

Hints: 78,24,10,55
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Hints

1. For part b, prove that the incircle and (XSY T ) are orthogonal.

2. Using PoP, where should (XY Z) go through for this problem to be true.

3. Try projecting in a couple different ways. Involve (BOC).

4. Use projective to show that MQ and PL meet on ω. Use some dilations to prove that if
S ′ is the point on ω such that MQ,PL, S ′H are concurrent, then it suffices to show that
LS ′ ⊥MH.

5. Show that it suffices for A, I, S,H to be concyclic.

6. Project in multiple ways.

7. Notice that they intersect at on the nine-point circle. Try and guess where they inter-
sect.

8. Show that AO||DIa =⇒ ATIaP cyclic =⇒ the rest.

9. Try drawing a line perpendicular to ABe′.

10. Use PoP to show that the orthocenter of 4BIC is on the desired radical axis.

11. Draw in the symmedian

12. Note that the tangents from T to Ω meet Ω at N and K.

13. Prove that T = TA.

14. Pascal’s

15. Prove that PD bisects ∠BPC

16. What circle is this?

17.
√
bc invert (in 4BIC).

18. Let TA be the D-mixtillinear touch-point of 4DEF . Then show that DTA and MAS ′

intersect on the tangent to ω at M by projective.

19. Draw (ABe).

67
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20. Prove that MNPQ is cyclic.

21. Appolonius Circle

22. For the first hint, try finding a certain 9-point circle. Then try finding a spiral center for
part b.

23. Try inverting about the incircle for both claims in the second hint.

24. Invert (AIC) and (AIB) around the incircle to show that the midpoint of EF is on the
radical axis.

25. Draw the segment between A and the intersection of the A-tangent to (ABC) and BC.
Prove that both lines in last hint trisect the segment.

26. This means that T is on the radical axis of (AMG) and (A′EF ). Is there a special point
one of the circles must go through?

27. What does ωA pass through on BC.

28. Neither T or Ge go to each other. However what other point is on this line that homo-
theties from T and G send Ge to?

29. Let M be the midpoint of XY , or the center of (XSY T ). Prove that A, S,M, T are
cyclic.

30. Once you locate X, prove that A,A′, O,X are concyclic.

31. Project on AO. Reduce the problem to showing that AK ∩ (ABC) − YA − KA1 ∩
BC(assume this and then solve the problem).

32. What is the point Z?

33. Show that this line goes through the foot of IA on AC.

34. They meet on ω. Use excentral-orthic duality.

35. What should the midpoint of PX be? What is the line perpendicular to PT at this
point?

36. Show that TA is on (AON).

37. Rephrase the problem in terms of (BIC).

38. What is the relation between K and T?

39. What is P?

40. Parallelogram Isogonality Lemma

41. Reflect (DEF ) over EF .

42. What is the most reduced form of AS = AT under the inversion.

43. Use excentral-orthic duality.
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44. What is the antipode of D on ω′.

45. What points are on PI

46. Since R is on OX, what other point is on (ADQ)? What does (ADQ) invert to?

47. Invert around A.

48. Show that if D is the foot from I to BC, then using projective show that IA′ trisecting
AD suffices.

49. Excentral-orthic duality

50. Remember the Iran Lemma and the Median-Incircle Concurrency to involve H.

51. Reflect IA over each of the vertices of the A-extouch triangle.

52. Note that inversion preserves cross ratio. Prove that Q inverts to the symmedian point
of 4ABC.

53. Look at the reflection condition as an equal angle condition.

54. Draw the line through IC through the midpoint of BE.

55. Construct HB and HC. What 4 points are collinear.

56. G is the centroid of 4IAIBIC . What is a way to use (AMF ) to tie X and G together?

57. If you have guessed the 4-points that have the Poncelet Point correctly, then the rest
should be angle chasing.

58. Remember Corollary 2.7.1 of Theorem 2.7.2.

59. What should the midpoint of PX be? What is the line perpendicular to PT at this
point?

60. If K = AI ∩BC, then −1 = (A,K; I, IA).

61. What is the P -excenter of 4PMN?

62. Try using Shooting lemma.

63. Remember that T ′ is the intersection of AD and TAMA.

64.
√
bc invert.

65. What might be a better way to deal with the awkward point Q?

66. Dilate around the orthocenter by a factor of 1
2
.

67. Where does AX intersect EF? Use projective to handle the reflection condition?

68. Let R be the intersection of EI and BC and let T ′ be the "bottom point" of ω. Prove
that R− T ′ − IA, and the finish.

69. Think of Poncelet Points.
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70. Draw the tangent at A to (ABC). Prove that KAK ′ and KAYA interact with it in a spe-
cial way.

71. Let 4DEF be the intouch triangle, and let Q = EF ∩ BC. Prove that XY ∩ BC is the
midpoint of DQ.

72. Let the tangent to N to Ω meet BC at T . Use PoP.

73. Let S be the A-Sharkydevil Point. Show that (SXY ) is tangent to (ABC), and it suf-
fices that S,X, Y, Z concyclic.

74. Do Problem 3.34.

75. Remember radical axis.

76. 99% of the time, when G is present, homotheties are present. Additionally the presence
of T suggests homotheties are present.

77. Use multiple homotheties to finish.

78. Do Problem 3.67, and show that the midpoint of EF is on this radical axis.

79. Pascal’s (I know this is hint 14 but I’m lazy)

80. Show that Q is the center of some circle that goes through D′ and I.

81. Pascal’s (I know this is hint 14 but I’m lazy)

82. Where does Q go under
√
bc inversion?

83. One of the triangles in the homothety is 4IIBIC .

84. Because G is present, what technique should be used?

85. Finish the problem with projective.

86. What is F?

87. What is the antipode of A on (APQ)?

88. Prove that T is on NL, and thus the A-Sharkydevil Point, using homothety.

89. Do Problem 3.15.

90. P must be on OIA. Show that P is the center of a homothety between two triangles.

91. Show that if OI ∩ (BIC) = Q, that it suffices for A, I,Q,H to be concyclic.

92. Draw in the tangential triangle of 4ABC.

93. Find a suitable rotation at TA that proves that LS ′ ⊥MH.

94. Show that P is on the perpendicular bisector of ITA, and if A′ is the reflection of I across
A, show that A′D′ITA is cyclic.

95. Let A′1 be the point on AC such that KA′1 ⊥ AO, where K is the symmedian point of
4ABC.

96. Remember Theorem 2.7.4.
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Chapter 6

Solutions

Problem 9

Define F ′ as the A-Dumpty-Point of 4ABC. Since F ′ is the center of spiral similarity from
BA to AC,

]ACF ′ = ]BAF ′ = ]MAC.

Similarly
]ABF ′ = ]MAB,

so F ′ ≡ F . Thus A,N, F, P are concyclic as desired.

A

B C

D

EF

M

NP

At the top the anglemarks are for ]BAF and ]FAC

Problem 19

This is equivalent to T being on the radical axis of (AMG) and (A′EF ). Let Y be the D-Ex
Point of 4DEF . Then it suffices to show that Y is on (AMG), because MT · Y T = ET · FT .
Since ]AMY = 90, ]AGY should equal to 90. This is equivalent to Y − G− A′. This is true
because the power of Y with respect to (ABC) and (DEF ) is the same, so Y is on the radical
axis of (ABC) and (A′EF ), as desired.
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A

B CD

E

F

G

Y

A′

M
T

The important part is to recognize Y

Problem 29
Since H is the antipode of A on (AH), it suffices to show that the midpoint of PQ is on the
dilation of (ABC) around H with a factor of 1

2
, or the nine-point circle of (ABC). Let the

midpoint of AH be N and the midpoint of PQ be N ′. Since ]NN ′M = 90, this is true.

A

B CM

H

P

Q

N ′
N

The trick is to look at 4APQ, then the rest falls into place.

Problem 39
We already know that Z is the intersection of the A-symmedian and (ABC) and that K,Z,E, F
are already concyclic. The only difficulty is actually proving that BS,CT,XY are concurrent.

The important thing to notice is that BS and CT seem to intersect on AZ ∩ EF . Pascal’s
on BSKTCA proves that BS and CT meet on EF and Pascal’s on AZKSBC proves that
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BS and AZ meet on EF (because KZ and BC meet on the A-Ex Point, which is on EF ) as
desired.

A

B C

E

F

K Z

S

T

Although I never mention Pascal in the content portion of the handout, it’s very important

Problem 49

Let P be the Poncelet Point of A,B,C,O(where O is the circumcenter) and let N be the mid-
point of AH(where H is the orthocenter). Since EF is antiparallel to BC, we want to show
that ]PNA = ]AOH, and by symmetry this will be true for B and C. We know that P
is on the nine-point circle of 4AHO, and thus the radical axis of the nine-point circles of
4ABC and 4AHO.

Let N9 and N9A be the nine-point centers of these 2 respectively. Let MAO be the midpoint of
A and O. Then since MAON9 ⊥ BC, we want to show that 90 − ]PNA = ]MAON9N9A =
90− ]AOH. If OA is the circumcenter of 4AOH and O′A is the reflection of OA over N , then
we get ]MAON9N9A = ]AHO′A = ]OAHA = 90− ]AOH, as desired.

I originally guessed the Poncelet Point of A,B,C and the symmedian point K. While this is
also right... you’d be better off reading this to find out why.

https://artofproblemsolving.com/community/c1035023h2232784_basic_properties_of_antigonal_conjugates_with_a_taste_of_rectangular_hyperbolas
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A

B C

H

MAO

N

N9

N9A

O

OA
O′

A

P

This is a nice wishful thinking problem: with the right guess of P , it’s just an angle chase.

Problem 59

Let T be the point on BC such that TN is tangent to Ω. We have that the A-excenter IA is
on KN . Let T ′ be the midpoint of KN . Then TN2 = TT ′ · TI. Since ]IAT ′I = 90, T ′ is on
(BIC), so TN2 = TB · TC as desired.

A

B C

I

IA

K

N

T

T ′

Clearly people in 2002 didn’t know how to label correctly.

However there is another method, which is actually quite interesting. Let the intouch triangle
be 4KEF . Note that the IA-Why Point of the excentral triangle is on KIA. Additionally the
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homothety center between the excentral triangle and 4KEF is on KIA, so dilating from the
excentral triangle to 4KEF means that N is the K-Why Point of 4KEF .

Let B0 and C0 be the midpoints of KF and KE respectively. Since (B0C0N) is tangent to Ω,
an inversion around Ω means that (BCN) is tangent to Ω as well.

A

B CK

I

N

IA

B0

C0

E

F

Note that I is the orthocenter of the excentral triangle and that K is the foot from I to BC.

Problem 69

Let 4DEF be the intouch triangle of 4ABC and let IA be the A-excenter of 4ABC. Let M
be the midpoint of BC. DA is the D-symmedian of 4DEF and MIA is the IA-symmedian
of the excentral triangle. Thus T , Ge, and the symmedian point of the excentral triangle are
collinear.

Because AD||MIA, a homothety at G sending A to M also means that Ge,G, and the symme-
dian point of the excentral triangle are collinear, as desired.
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A

B CD

E

F G
Ge

IA

IB

IC

M

T

This symmedian point is actually the Mittenpunkt of 4ABC, which is the isogonal conjugate
of T .

Problem 79

Rename B1 and C1 as TB and TC respectively. That was for no reason except to attain inner
peace.

Define LB and LC as the midpoints of arcs ÂBC and ÂCB respectively, and define MB and
MC as their antipodes, respectively. Then Pascal’s on BTBC2CTCB2 gives that TBC2 and
TCB2 meet on OI, because BB2 and CC2 meet at O and BTB and CTC meet on OI, which
is because of Theorem 2.7.1 and Corollary 2.7.2.

Pascal’s on MBMCCC2TBLB gives that TBC2 and MBMC meet on OI because LBMB and
CC2 meet on O and MCC and LBTB meet on I.

Thus TBC2 and TCB2 meet on MBMC , which is the perpendicular bisector of AI, as desired.
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A

B C

MB

MC

LB

LC

TC

C2 B2

TB

I

O

The especially interesting part about this problem is the concurrence with OI

Problem 89

Let D′ be the reflection of D over I, and let D′′ be the reflection of I over D′. Let D1/3 be the
point between A and D such that 2AD1/3 = DD2/3, let D1/2 be the point between A and D
such that AD1/2 = DD1/2, and let D2/3 be the point between A and D such that AD2/3 =
2DD2/3. A homothety at D with factor 3

2
sends D1/3D

′ to AD′′, and a homothety at I with
factor 1

2
means that D1/3D

′ bisects AI. Thus D1/3−D′−Fe and D2/3−I−A′ by a homothety
at A with factor 2.

By the Iran Lemma and Median-Extouch Lemma, if M is the midpoint of BC, then (D,M ;AI∩
BC, IA′∩BC)

I
= (D,D1/2;A,D2/3) = −1 = (D,AM ∩DI; I,H)

A
= (D,M ;AI∩BC,AH∩BC),

as desired.
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A

B CD

D′

D′′

D1/3

D1/2

D2/3 I

Fe

M

A′

H

I like the (0, 2
3
; 1, 1

2
) = −1 harmonic bundle a lot, I dunno about you.

Problem 90

We can restate the problem as following through Excentral-Orthic Duality.

Let 4ABC have orthocenter H and circumcenter O. Let XA be the A-Ex Point and let L be
the reflection of H over O. If D is the foot from A to BC, HA is the reflection of H over D,
and Q′ is the reflection of D over HA, then prove that ]XAAL = 90 = ]XAQ

′L.

Let N be the midpoint of AH, let P be the midpoint of XAH, and let Q be the midpoint of
HQ′, or the midpoint of DHA. It suffices to show that ]PNO = 90 = ]PQO.

If M is the midpoint of BC, then HM ||NO. Since H is the orthocenter of 4AXAM , HM ⊥
AXA. Since AXA||PN , ]PNO = 90.

Let A′ be the reflection of A across the perpendicular bisector of BC. By a homothety cen-
tered at HA QO||DA′. Additionally, P is the center of (XH) and Q is the center of (DHA).
If YA is the A-Why Point of 4ABC, then the radical axis of these two circles is DYA or DA′.
Thus PQ ⊥ DA′, as desired.
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A

B C
D

A′

HA

H
P

XA

O

Q

Q′

N

M

YA

Excentral-Orthic Duality seemed to be a theme in this test

Problem 91

By the Iran Lemma X is on (IB) and Y is on (IC). Thus under an inversion about the in-
circle X goes to Y and Y goes to X, so (XY ), or (XSY T ), inverts to itself. Similarly, and
inversion around (XSY T ) inverts the incircle to itself.

Let K be the intersection of XY and BC. Then (A,K;X, Y )
D
= (A,B;F,DE ∩ AB) = −1.

Thus if M is the midpoint of XY , MK ·MA = MX ·MY . Under an inversion about (XSY T ),
A goes to K, so (AST ) goes to BC, which is tangent to the incircle, proving part b. (You can
similarly prove that (AST ) is tangent to the A-excircle of 4ABC.)

From this inversion, we see that A, S,M, T are concyclic. Thus

]SAM = ]STM = ]MST = ]MAT.

Letting S ′ and T ′ be the intersection of AS and AT with (ABC), S ′T ′||BC, so a dilation at A
takes (ABC) to (AST ). This proves part a, and finishes the problem.
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A

B CD

E

F

I
X

Y
M

K
S

T

S ′ T ′

This is probably one of my favorite problem statements.

Problem 92

Let Q = EF ∩ BC. Then (Q,D;B,C) = −1 and ]QPD = 90, so PD is an angle bisector of
∠BPC.

Let A′ be the antipode of A on (ABC). Then P −I−A′ and HBA′C is a parallelogram. Thus
for PH and PA′ to be isogonal in 4PBC, we need ]PCH = ]HBP , or ]ACH − ]ACP =
]HBA − ]PBA. Since ]ABH = ]ACH = 90 − ]BAC, it suffices to show that ]ACP =
]PBA.

Let Y = CP ∩ AB and let Z = BP ∩ AC. Then BCZY is cyclic. ]ACP = ]ZY C = ]PBA,
as desired.
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A

B CD

E

F

Y

Z

H

I

A′

P

Q

This problem nicely ties the orthocenter with the incenter.

Problem 93

Let MA be the midpoint of B̂C on (ABC) not containing A. Then T − D −MA, so ]IAS =
]MAAS = ]MATS = ]DTS. In addition ]DHS = ]IHS, so it suffices to show that
A, I, S,H are concyclic.

Let Q = OI ∩ (BIC). Then by radical axis it suffices to show that A, I,Q,H are concyclic.
We can rephrase the problem in terms of 4BIC.
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A

B CD

T

MA

S

H

Q

The definition of Q initially looks just as hopeless as the defintion of T , but it’s actually
better because Q is more well-defined in terms of 4BIC.

Let 4ABC have orthocenter H and circumcenter O. Let N be the circumcenter of (BOC)
and let AN ∩ (ABC) = Q. Let AO ∩ (BOC) = P . Prove that A,H,Q, P are concyclic.
√
bc invert. O goes to A′, the reflection of A across BC, so (BOC) goes to (BHC). If N9 is

the nine-point center of 4ABC, then AN goes to AN9. Thus the image of Q is AN9 ∩ BC.
The image of H is P , and the image of P is H. Thus we want to show that HP and AN9

concur on BC.

Note that since H goes to P and O goes to A′ under
√
bc inversion, HO||A′P . We have that

OA′ is the reflection of AN9 over BC, so we want to show that OA′ and HP concur on AN9.
Since N9 is the midpoint of HO, by Ceva’s on 4AHO, this is true.
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A

B C

H

N9

O

P

N

Q

A′

While not the fastest solution, I think that this is the most easily motivatable by the contents
of the handout.

Problem 94

Let HA be the A-Humpty Point. Then since AM · HAM = CM2, (AHAC) is tangent to BC.
Similarly (AHAB) is tangent to BC.

√
bc inverting, we see that HA maps to TA, the intersec-

tion of the tangents to (ABC) at B,C.

Let K be the symmedian point and let K ′A = AK ∩ BC. Then (A,K ′A;K,TA) = −1. Since
(P∞, P ;Q,HA) = −1, K maps to Q under

√
bc inversion.
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K ′
A

This can be used to prove that AK = bc
√
2b2+2c2−a2
a2+b2+c2

.

Let KA = AK ∩ (ABC). Then since XKA = XA and OKA = OA, RKA = RA, so KA is
on (ADQ). Under

√
bc inversion, KA goes to M and K goes to Q, so (ADQ) inverts to the

A-Schwatt Line of 4ABC. D inverts to D′, an intersection of this line with (ABC).

The circle centered at D′ passing through A meets (AB) and (AC) at S ′ and T ′ respectively,
which are the images of S and T under the

√
bc inversion. Let MAC and MAB be the mid-

points of AC and AB respectively. Then S ′ and T ′ are the reflections of A across D′MAB and
D′MAC respectively. For AS = AT , A must be the same distance from D′MAB and D′MAC .
Thus our problem is reduced to ]MACD

′A = ]AD′MAB.
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But why must D′ be on the A-Schwatt Line?

Let D′B and D′C hit MABMAC at B′ and C ′ respectively. Let N1 be the midpoint of the A-
altitude. N1 is on KM and MABMAC . Since BM = MC, B′N1 = N1C

′, so ]MACB
′A =

]MABC
′A.

Since ]AMACB
′ = ]ACB = ]AD′B = ]AD′B′, B′, A,MAC , D

′ are cyclic. By symme-
try C ′, A,MAB, D

′ are cyclic, so ]MACD
′A = ]MACB

′A = ]MABC
′A = ]AC ′MAB =

]AD′MAB, as desired.
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Note that the two possible points for D are the only ones on BC that make ASDT a
rhombus.

Problem 95

Let the intouch triangle be 4DEF and let P be the foot from D to EF . Then the homothety
from 4DEF to the excentral triangle sends P to A, so we want to show that Be′ is on AP ,
or AEO.

Let (ABe) and (BCBe) meet again at Be′′. Then ]ABe′′Be = ]BeB′′Be = 90, so A−Be′′ −
Be′ and BeBe′′ ⊥ ABe′. Let L be the midpoint of B̂AC. Since I and O are the orthocen-
ter and nine-point center respectively of the excentral triangle, Be is the circumcenter of the
excentral triangle. Since L is the midpoint of IBIC by excentral-orthic duality, L is on (ABe).

Radical axis on (ABe), (ABC), and (BCBe) means that if Z = AL ∩ BC, it suffices to show
that AX57 ⊥ BeZ. BeZ is parallel to the line between O and the midpoint of ZI by a homo-
thety around I. Since ]ZAI = 90, we want to show that AEO is the radical axis of (ABC)
and (ZI). However by Corollary 2.5.1, we are done.



89

A

B CD

I

L

Z

Be

Be′

Be′′

EO

O

Finally, a circle actually intersected at L and it’s not just my eyes tricking me.

Problem 96

First I present the backwards version of how I created this, which I think is one of the short-
est solutions for this problem.

Let A′ be the reflection of A over the perpendicular bisector of BC, let G be the centroid of
4ABC, and let D1 be the foot from A to BC. Then A′ −G−D1.

Isogonally conjugate this line. A′ goes to X, the point at infinity of the A-antiparallels of
4ABC, G goes to K, the symmedian point of 4ABC, and AD1 is isogonal to AO, so the
conic through A,B,C,K,X is tangent to AO.

Pascal’s on AAKXBC gives that A1 is the intersection of the A-antiparallel of 4ABC through
K and AC. We now finish by Second Lemoine Circle.
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As you can probably tell the only two things I know about conics are Pascal’s and isogonally
conjugating a line gives a circumconic.

However, using a bunch of projections, there is another method, which the hints hopefully led
you towards.

Let A′1 be the intersection of the A-antiparallel through K and AC. We want to show that
D − P − A′1. Let K ′ be the intersection of KA1 and BC, let KA = AK ∩ (ABC), and let YA
be the A-Why Point. We first try to show that K ′ − YA −KA

Let T be the intersection of the A-tangent to (ABC) and BC. Then let N be the midpoint of
AT and let A∗ be the antipode of A on (ABC). (A,A∗;YA, YAP∞AT )− 1 = (A, T ;N,P∞AT )

YA=
(A,A∗;NYA∩ (ABC), YAP∞AT ∩ (ABC)), so NYA is tangent to (ABC) at YA. Thus projecting
−1 = (YA, A

∗;A,KA) through YA to AT gives that KAYA trisects AT .

Let T ′ = TKA∩K ′KA. Then by homothety it suffices to show that K ′ trisects KT ′. (K,T ′;K ′, P∞)
T
= (K,KA;D,A). Let KC = CK∩(ABC) and let M be the midpoint of BC. Then (K,KA;D,A)
C
= (KC , KA;B,A) =

KCB

KCA

KAB

KAA

=
AC
BC
MC
AC

= 2 as desired.

Now onto the main problem. Let O′ = AO ∩ BC and let Q′A = KAO′ ∩ (ABC). Then
−1 = (A,KA;B,C)

O′
= (A∗, Q′A;B,C)

YA= (T, YAQ′A ∩ BC;B,C) so YA −D −Q′A. (A,P ;K ′K ∩
AO,O′)

P∞AT
= (T,B;K ′, O′)

KA= (KA, B;YA, Q
′
A)

D
= (A,C;Q′A, YA)

KA= (D,C;O′, K ′) =

(C,D;K ′, O′)
A′

1= (A,A′1D ∩ AO;K ′K ∩ AO,O′) as desired.
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Sometimes non-harmonic cross ratios help.

Problem 97

Using excentral-orthic duality, we have the following:

Let 4ABC have incenter I, circumcenter O, and A-excenter IA. Let MA be the midpoint of
the arc B̂C on (ABC) not containing A and let A′ be the antipode of A on 4ABC. Let P
be the foot of A on BC and let K = AMA ∩ BC. Then prove that if A′K ∩ (ABC) = Q,
MA − P − Q. Furthermore, if IQ ∩ (ABC) = S ′ and the midpoint of AI is MAI , then prove
that MAIMA = MAIS

′.

Let D be the foot from I onto BC and let X be the foot from IA onto BC. Then by Problem
3.34 A′IA and MX meet at S ′A, the reflection of the A-Sharkydevil Point SA over the perpen-
dicular bisector of BC. −1 = (A,K; I, IA)

A′
= (A,Q;SA, S

′
A)

MA= (K,MAQ ∩ BC;D,X) as
desired.

We want to show that MAIO ⊥ MAS ′, or that IA′ ⊥ MAS ′. Let S ′AI ∩ (ABC) = R.
The position of R isn’t really that important, but if L is the antipode of MA on (ABC) and
TA is the A-mixtillinear touchpoint on (ABC), then (A,Q;SA, S

′
A)

I
= (MA, S

′;A′, R) and
(L,MA;SA, S

′
A)

I
= (TA, A;A′, R). Thus ATA and MAS ′ meet on the tangent to (ABC) at A′,

let’s say at T .

Credits go to the AoPS user The_Turtle for this last part. I complex bashed this in terms of
4MAA

′TA but they found a better solution. Notice that TA′MATA ∼ A′AITA, since ]TTAA′ =
]A′TAA, ]TAA′T = ]TAAA′, ]TAA′MA = ]TAAI, and ]MAA

′T = ]IAA′. Since a 90 de-
gree rotation plus a dilation at TA brings these 2 to each other, MAS ′ ⊥ IA′ as desired.
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This was apparently Green Practice Test 3 P3 (out of 4) during MOP 2019. Do I need to say
that this is copyrighted by MAA? I dunno, I never went to MOP. The Green MOP tests are

copyrighted by MAA, as they were developed under contract as part of MOP.

Problem 98

This solution is due to v_Enhance on the corresponding AoPS thread

Let IA be the A-excenter and let 4A1B1C1 be the A-extouch triangle (defined similarly as the
intouch triangle). Let D be the foot from A to BC and let A2, B2, C2 be the reflections of IA
across A1, B1, C1.

Let ICB ∩ AC = P1 and let P2 be the foot from IC to AC. Then −1 = (P1, B; IC , IA) =

(P1, E;P2, B1)
IC= (B,E;P∞, ICB1 ∩ BE), showing that ICB1 bisects BE. Thus IC − E − B2

and similarly IB − F −B2.

Since A1B1||IIC , A1C1||IIB, and B1C1||IBIC , 4A2B2C2 ∼ 4IICIB. The center of homothety
between these is P . Thus P is on the line between IA, which is the circumcenter of 4A2B2C2,
and the circumcenter of 4IICIB. Thus P is on OIA, which is perpendicular to Y Z, as de-
sired.
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Finding 4A2B2C2 is why this is 45 Mohs

Problem 99
The first part of this problem is proving that X, the midpoint of EF , is on the desired radical
axis. Let Y be the midpoint of DF and let Z be the midpoint of DE. Then since under an
inversion about the incircle (AIC) inverts to XZ and (AIB) inverts to XY , the radical center
of (BB1B2), (CC1C2), and (DEF ) is X.

The rest of the solution is due to anantmudgal09 and EulerMacaroni, on the corresponding
AoPS thread).

Let BA,BC meet ωB at P,R respectively; define Q,S similarly. Let H be the orthocenter of
4BIC; B′ = HB ∩ ωB, C ′ = HC ∩ ωC .

Note that ]RPB′ = ]RBB′ = ]DFE and ]SQC ′ = ]DEF . Also, ](PR,QS) = ]EDF
since PR ‖ DF and QS ‖ DE. Observe that ]RPB′ + ]SQC ′ + ](PR,QS) = 180◦, hence
P,Q,B′, C ′ are collinear.
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Consequently, B,C,B′, C ′ are concyclic (say, on γ); indeed, ]CC ′Q = ]CSQ = ]CBB′ as
SQ ‖ BB′. Apply radical axis theorem to ωB, ωC and γ, to get that H lies on the radical axis
of ωB, ωC , as desired.
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C2

B′

C ′

Try solving this problem using the Gergonne Point instead of the orthocenter of 4BIC.



95

Problem 100

Got Lil’ Wayne pumpin’ on my iPod
Pumpin’ on the subs in the back of my crew cab
Redneck rockin’ like a rockstar
Sling a lil’ mud off the back, we can do that
Friday night football, Saturday Last Call, Sunday Hallelujah
If you like it up loud and you’re hillbilly proud
Then you know what I’m talking about

Let me hear you say, Truck Yeah
Wanna get it jacked up yeah
Let’s crank it on up yeah
With a little bit of luck I can find me a girl with a Truck Yeah
We can love it on up yeah
’Til the sun comes up yeah
And if you think this life I love is a little too country
Truck Yeah

Our party in the club is a honky tonk downtown
Yeah that’s where I like to hang out
Chillin’ in the back room
Hangin’ with my whole crew
Sippin’ on a cold brew, hey now!
Got a mixed up playlist, DJ play this
Wanna hear a country song
If you like it up loud and you’re hillbilly proud
Throw your hands up now, let me hear you shout

Truck Yeah
Wanna get it jacked up yeah
Let’s crank it on up yeah
With a little bit of luck I can find me a girl with a Truck Yeah
We can love it on up yeah
’Til the sun comes up yeah
And if you think this life I love is a little too country
Truck Yeah

Rap or country, city farm
It don’t matter who you are
Got a little fight, got a little love
Got a little redneck in your blood
Are you one of us?
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Truck Yeah
Wanna get it jacked up yeah
Let’s crank it on up yeah
With a little bit of luck I can find me a girl with a Truck Yeah
We can love it on up yeah
’Til the sun comes up yeah
And if you think this life I love is a little too country
You’re right on the money
Truck Yeah!

This is a noncommerical use of the song "Truck Yeah". Watch the music video, it’s even cringier.
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