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Algebra

A1. Given a sequence a1, a2, . . . , an of real numbers. For each i (1 ≤ i ≤ n) define

di = max{aj : 1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n}

and let
d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for arbitrary real numbers x1 ≤ x2 ≤ . . . ≤ xn,

max
{
|xi − ai| : 1 ≤ i ≤ n

}
≥ d

2
. (1)

(b) Show that there exists a sequence x1 ≤ x2 ≤ . . . ≤ xn of real numbers such that we have
equality in (1).

(New Zealand)

Solution 1. (a) Let 1 ≤ p ≤ q ≤ r ≤ n be indices for which

d = dq, ap = max{aj : 1 ≤ j ≤ q}, ar = min{aj : q ≤ j ≤ n}

and thus d = ap − ar. (These indices are not necessarily unique.)

xp

ap

p q r

x1

a1

xr

ar

xn

an

For arbitrary real numbers x1 ≤ x2 ≤ . . . ≤ xn, consider just the two quantities |xp − ap|
and |xr − ar|. Since

(ap − xp) + (xr − ar) = (ap − ar) + (xr − xp) ≥ ap − ar = d,

we have either ap − xp ≥
d

2
or xr − ar ≥

d

2
. Hence,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ max
{
|xp − ap|, |xr − ar|

}
≥ max{ap − xp, xr − ar} ≥ d

2
.
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(b) Define the sequence (xk) as

x1 = a1 −
d

2
, xk = max

{

xk−1, ak −
d

2

}

for 2 ≤ k ≤ n.

We show that we have equality in (1) for this sequence.

By the definition, sequence (xk) is non-decreasing and xk − ak ≥ −d

2
for all 1 ≤ k ≤ n.

Next we prove that

xk − ak ≤ d

2
for all 1 ≤ k ≤ n. (2)

Consider an arbitrary index 1 ≤ k ≤ n. Let ` ≤ k be the smallest index such that xk = x`. We
have either ` = 1, or ` ≥ 2 and x` > x`−1. In both cases,

xk = x` = a` −
d

2
. (3)

Since
a` − ak ≤ max{aj : 1 ≤ j ≤ k} − min{aj : k ≤ j ≤ n} = dk ≤ d,

equality (3) implies

xk − ak = a` − ak −
d

2
≤ d − d

2
=

d

2
.

We obtained that −d

2
≤ xk − ak ≤ d

2
for all 1 ≤ k ≤ n, so

max
{
|xi − ai| : 1 ≤ i ≤ n

}
≤ d

2
.

We have equality because |x1 − a1| =
d

2
.

Solution 2. We present another construction of a sequence (xi) for part (b).

For each 1 ≤ i ≤ n, let

Mi = max{aj : 1 ≤ j ≤ i} and mi = min{aj : i ≤ j ≤ n}.

For all 1 ≤ i < n, we have

Mi = max{a1, . . . , ai} ≤ max{a1, . . . , ai, ai+1} = Mi+1

and
mi = min{ai, ai+1, . . . , an} ≤ min{ai+1, . . . , an} = mi+1.

Therefore sequences (Mi) and (mi) are non-decreasing. Moreover, since ai is listed in both
definitions,

mi ≤ ai ≤ Mi.

To achieve equality in (1), set

xi =
Mi + mi

2
.

Since sequences (Mi) and (mi) are non-decreasing, this sequence is non-decreasing as well.
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From di = Mi − mi we obtain that

−di

2
=

mi − Mi

2
= xi − Mi ≤ xi − ai ≤ xi − mi =

Mi − mi

2
=

di

2
.

Therefore

max
{
|xi − ai| : 1 ≤ i ≤ n

}
≤ max

{
di

2
: 1 ≤ i ≤ n

}

=
d

2
.

Since the opposite inequality has been proved in part (a), we must have equality.
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A2. Consider those functions f : N → N which satisfy the condition

f(m + n) ≥ f(m) + f
(
f(n)

)
− 1 (1)

for all m, n ∈ N. Find all possible values of f(2007).
(N denotes the set of all positive integers.)

(Bulgaria)

Answer. 1, 2, . . . , 2008.

Solution. Suppose that a function f : N → N satisfies (1). For arbitrary positive inte-
gers m > n, by (1) we have

f(m) = f
(
n + (m − n)

)
≥ f(n) + f

(
f(m − n)

)
− 1 ≥ f(n),

so f is nondecreasing.
Function f ≡ 1 is an obvious solution. To find other solutions, assume that f 6≡ 1 and take

the smallest a ∈ N such that f(a) > 1. Then f(b) ≥ f(a) > 1 for all integer b ≥ a.
Suppose that f(n) > n for some n ∈ N. Then we have

f
(
f(n)

)
= f

((
f(n) − n

)
+ n
)

≥ f
(
f(n) − n

)
+ f
(
f(n)

)
− 1,

so f
(
f(n)−n

)
≤ 1 and hence f(n)−n < a. Then there exists a maximal value of the expression

f(n)−n; denote this value by c, and let f(k)−k = c ≥ 1. Applying the monotonicity together
with (1), we get

2k + c ≥ f(2k) = f(k + k) ≥ f(k) + f
(
f(k)

)
− 1

≥ f(k) + f(k) − 1 = 2(k + c) − 1 = 2k + (2c − 1),

hence c ≤ 1 and f(n) ≤ n + 1 for all n ∈ N. In particular, f(2007) ≤ 2008.

Now we present a family of examples showing that all values from 1 to 2008 can be realized.
Let

fj(n) = max{1, n + j − 2007} for j = 1, 2, . . . , 2007; f2008(n) =

{

n, 2007 6
∣
∣ n,

n + 1, 2007
∣
∣ n.

We show that these functions satisfy the condition (1) and clearly fj(2007) = j.
To check the condition (1) for the function fj (j ≤ 2007), note first that fj is nondecreasing

and fj(n) ≤ n, hence fj

(
fj(n)

)
≤ fj(n) ≤ n for all n ∈ N. Now, if fj(m) = 1, then the

inequality (1) is clear since fj(m+n) ≥ fj(n) ≥ fj

(
fj(n)

)
= fj(m)+ fj

(
fj(n)

)
− 1. Otherwise,

fj(m) + fj

(
fj(n)

)
− 1 ≤ (m + j − 2007) + n = (m + n) + j − 2007 = fj(m + n).

In the case j = 2008, clearly n + 1 ≥ f2008(n) ≥ n for all n ∈ N; moreover, n + 1 ≥
f2008

(
f2008(n)

)
as well. Actually, the latter is trivial if f2008(n) = n; otherwise, f2008(n) = n+1,

which implies 2007 6
∣
∣ n + 1 and hence n + 1 = f2008(n + 1) = f2008

(
f2008(n)

)
.

So, if 2007
∣
∣ m + n, then

f2008(m + n) = m + n + 1 = (m + 1) + (n + 1) − 1 ≥ f2008(m) + f2008

(
f2008(n)

)
− 1.

Otherwise, 2007 6
∣
∣ m+n, hence 2007 6

∣
∣ m or 2007 6

∣
∣ n. In the former case we have f2008(m) = m,

while in the latter one f2008

(
f2008(n)

)
= f2008(n) = n, providing

f2008(m) + f2008

(
f2008(n)

)
− 1 ≤ (m + n + 1) − 1 = f2008(m + n).
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Comment. The examples above are not unique. The values 1, 2, . . . , 2008 can be realized in several
ways. Here we present other two constructions for j ≤ 2007, without proof:

gj(n) =







1, n < 2007,

j, n = 2007,

n, n > 2007;

hj(n) = max

{

1,

⌊
jn

2007

⌋}

.

Also the example for j = 2008 can be generalized. In particular, choosing a divisor d > 1 of 2007,
one can set

f2008,d(n) =

{

n, d 6
∣
∣ n,

n + 1, d
∣
∣ n.
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A3. Let n be a positive integer, and let x and y be positive real numbers such that xn+yn = 1.
Prove that (

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<
1

(1 − x)(1 − y)
.

(Estonia)

Solution 1. For each real t ∈ (0, 1),

1 + t2

1 + t4
=

1

t
− (1 − t)(1 − t3)

t(1 + t4)
<

1

t
.

Substituting t = xk and t = yk,

0 <

n∑

k=1

1 + x2k

1 + x4k
<

n∑

k=1

1

xk
=

1 − xn

xn(1 − x)
and 0 <

n∑

k=1

1 + y2k

1 + y4k
<

n∑

k=1

1

yk
=

1 − yn

yn(1 − y)
.

Since 1 − yn = xn and 1 − xn = yn,

1 − xn

xn(1 − x)
=

yn

xn(1 − x)
,

1 − yn

yn(1 − y)
=

xn

yn(1 − y)

and therefore
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<
yn

xn(1 − x)
· xn

yn(1 − y)
=

1

(1 − x)(1 − y)
.

Solution 2. We prove

(
n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<

(
1+

√
2

2
ln 2
)2

(1 − x)(1 − y)
<

0.7001

(1 − x)(1 − y)
. (1)

The idea is to estimate each term on the left-hand side with the same constant. To find the

upper bound for the expression
1 + x2k

1 + x4k
, consider the function f(t) =

1 + t

1 + t2
in interval (0, 1).

Since

f ′(t) =
1 − 2t − t2

(1 + t2)2
=

(
√

2 + 1 + t)(
√

2 − 1 − t)

(1 + t2)2
,

the function increases in interval (0,
√

2−1] and decreases in [
√

2−1, 1). Therefore the maximum
is at point t0 =

√
2 − 1 and

f(t) =
1 + t

1 + t2
≤ f(t0) =

1 +
√

2

2
= α.

Applying this to each term on the left-hand side of (1), we obtain
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

≤ nα · nα = (nα)2. (2)

To estimate (1 − x)(1 − y) on the right-hand side, consider the function

g(t) = ln(1 − t1/n) + ln
(
1 − (1 − t)1/n

)
.
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Substituting s for 1 − t, we have

−ng′(t) =
t1/n−1

1 − t1/n
− s1/n−1

1 − s1/n
=

1

st

(
(1 − t)t1/n

1 − t1/n
− (1 − s)s1/n

1 − s1/n

)

=
h(t) − h(s)

st
.

The function

h(t) = t1/n 1 − t

1 − t1/n
=

n∑

i=1

ti/n

is obviously increasing for t ∈ (0, 1), hence for these values of t we have

g′(t) > 0 ⇐⇒ h(t) < h(s) ⇐⇒ t < s = 1 − t ⇐⇒ t <
1

2
.

Then, the maximum of g(t) in (0, 1) is attained at point t1 = 1/2 and therefore

g(t) ≤ g

(
1

2

)

= 2 ln(1 − 2−1/n), t ∈ (0, 1).

Substituting t = xn, we have 1 − t = yn, (1 − x)(1 − y) = exp g(t) and hence

(1 − x)(1 − y) = exp g(t) ≤ (1 − 2−1/n)2. (3)

Combining (2) and (3), we get
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

≤ (αn)2 · 1 ≤ (αn)2 (1 − 2−1/n)2

(1 − x)(1 − y)
=

(
αn(1 − 2−1/n)

)2

(1 − x)(1 − y)
.

Applying the inequality 1 − exp(−t) < t for t =
ln 2

n
, we obtain

αn(1 − 2−1/n) = αn

(

1 − exp

(

− ln 2

n

))

< αn · ln 2

n
= α ln 2 =

1 +
√

2

2
ln 2.

Hence,
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<

(
1+

√
2

2
ln 2
)2

(1 − x)(1 − y)
.

Comment. It is a natural idea to compare the sum Sn(x) =

n∑

k=1

1 + x2k

1 + x4k
with the integral In(x) =

∫ n

0

1 + x2t

1 + x4t
dt. Though computing the integral is quite standard, many difficulties arise. First, the

integrand
1 + x2k

1 + x4k
has an increasing segment and, depending on x, it can have a decreasing segment as

well. So comparing Sn(x) and In(x) is not completely obvious. We can add a term to fix the estimate,
e.g. Sn ≤ In + (α − 1), but then the final result will be weak for the small values of n. Second, we
have to minimize (1 − x)(1 − y)In(x)In(y) which leads to very unpleasant computations.

However, by computer search we found that the maximum of In(x)In(y) is at x = y = 2−1/n, as
well as the maximum of Sn(x)Sn(y), and the latter is less. Hence, one can conjecture that the exact
constant which can be put into the numerator on the right-hand side of (1) is

(

ln 2 ·
∫ 1

0

1 + 4−t

1 + 16−t
dt

)2

=
1

4

(
1

2
ln

17

2
+ arctan 4 − π

4

)2

≈ 0.6484.
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A4. Find all functions f : R
+ → R

+ such that

f
(
x + f(y)

)
= f(x + y) + f(y) (1)

for all x, y ∈ R
+. (Symbol R

+ denotes the set of all positive real numbers.)
(Thaliand)

Answer. f(x) = 2x.

Solution 1. First we show that f(y) > y for all y ∈ R
+. Functional equation (1) yields

f
(
x + f(y)

)
> f(x + y) and hence f(y) 6= y immediately. If f(y) < y for some y, then setting

x = y − f(y) we get

f(y) = f
((

y − f(y)
)

+ f(y)
)

= f
((

y − f(y)
)

+ y
)

+ f(y) > f(y),

contradiction. Therefore f(y) > y for all y ∈ R
+.

For x ∈ R
+ define g(x) = f(x) − x; then f(x) = g(x) + x and, as we have seen, g(x) > 0.

Transforming (1) for function g(x) and setting t = x + y,

f
(
t + g(y)

)
= f(t) + f(y),

g
(
t + g(y)

)
+ t + g(y) =

(
g(t) + t

)
+
(
g(y) + y

)

and therefore
g
(
t + g(y)

)
= g(t) + y for all t > y > 0. (2)

Next we prove that function g(x) is injective. Suppose that g(y1) = g(y2) for some numbers
y1, y2 ∈ R

+. Then by (2),

g(t) + y1 = g
(
t + g(y1)

)
= g
(
t + g(y2)

)
= g(t) + y2

for all t > max{y1, y2}. Hence, g(y1) = g(y2) is possible only if y1 = y2.

Now let u, v be arbitrary positive numbers and t > u + v. Applying (2) three times,

g
(
t + g(u) + g(v)

)
= g
(
t + g(u)

)
+ v = g(t) + u + v = g

(
t + g(u + v)

)
.

By the injective property we conclude that t + g(u) + g(v) = t + g(u + v), hence

g(u) + g(v) = g(u + v). (3)

Since function g(v) is positive, equation (3) also shows that g is an increasing function.

Finally we prove that g(x) = x. Combining (2) and (3), we obtain

g(t) + y = g
(
t + g(y)

)
= g(t) + g

(
g(y)

)

and hence
g
(
g(y)

)
= y.

Suppose that there exists an x ∈ R
+ such that g(x) 6= x. By the monotonicity of g, if

x > g(x) then g(x) > g
(
g(x)

)
= x. Similarly, if x < g(x) then g(x) < g

(
g(x)

)
= x. Both cases

lead to contradiction, so there exists no such x.

We have proved that g(x) = x and therefore f(x) = g(x) + x = 2x for all x ∈ R
+. This

function indeed satisfies the functional equation (1).
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Comment. It is well-known that the additive property (3) together with g(x) ≥ 0 (for x > 0) imply
g(x) = cx. So, after proving (3), it is sufficient to test functions f(x) = (c + 1)x.

Solution 2. We prove that f(y) > y and introduce function g(x) = f(x)− x > 0 in the same
way as in Solution 1.

For arbitrary t > y > 0, substitute x = t − y into (1) to obtain

f
(
t + g(y)

)
= f(t) + f(y)

which, by induction, implies

f
(
t + ng(y)

)
= f(t) + nf(y) for all t > y > 0, n ∈ N. (4)

Take two arbitrary positive reals y and z and a third fixed number t > max{y, z}. For each

positive integer k, let `k =

⌊

k
g(y)

g(z)

⌋

. Then t + kg(y)− `kg(z) ≥ t > z and, applying (4) twice,

f
(
t + kg(y)− `kg(z)

)
+ `kf(z) = f

(
t + kg(y)

)
= f(t) + kf(y),

0 <
1

k
f
(
t + kg(y)− `kg(z)

)
=

f(t)

k
+ f(y) − `k

k
f(z).

As k → ∞ we get

0 ≤ lim
k→∞

(
f(t)

k
+ f(y) − `k

k
f(z)

)

= f(y) − g(y)

g(z)
f(z) = f(y) − f(y) − y

f(z) − z
f(z)

and therefore
f(y)

y
≤ f(z)

z
.

Exchanging variables y and z, we obtain the reverse inequality. Hence,
f(y)

y
=

f(z)

z
for arbi-

trary y and z; so function
f(x)

x
is constant, f(x) = cx.

Substituting back into (1), we find that f(x) = cx is a solution if and only if c = 2. So the
only solution for the problem is f(x) = 2x.
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A5. Let c > 2, and let a(1), a(2), . . . be a sequence of nonnegative real numbers such that

a(m + n) ≤ 2a(m) + 2a(n) for all m, n ≥ 1, (1)

and

a(2k) ≤ 1

(k + 1)c
for all k ≥ 0. (2)

Prove that the sequence a(n) is bounded.
(Croatia)

Solution 1. For convenience, define a(0) = 0; then condition (1) persists for all pairs of
nonnegative indices.

Lemma 1. For arbitrary nonnegative indices n1, . . . , nk, we have

a

(
k∑

i=1

ni

)

≤
k∑

i=1

2ia(ni) (3)

and

a

(
k∑

i=1

ni

)

≤ 2k
k∑

i=1

a(ni). (4)

Proof. Inequality (3) is proved by induction on k. The base case k = 1 is trivial, while the
induction step is provided by

a

(
k+1∑

i=1

ni

)

= a

(

n1+

k+1∑

i=2

ni

)

≤ 2a(n1)+2a

(
k∑

i=1

ni+1

)

≤ 2a(n1)+2

k∑

i=1

2ia(ni+1) =

k+1∑

i=1

2ia(ni).

To establish (4), first the inequality

a

(
2d
∑

i=1

ni

)

≤ 2d
2d
∑

i=1

a(ni)

can be proved by an obvious induction on d. Then, turning to (4), we find an integer d such
that 2d−1 < k ≤ 2d to obtain

a

(
k∑

i=1

ni

)

= a

(
k∑

i=1

ni +

2d
∑

i=k+1

0

)

≤ 2d

(
k∑

i=1

a(ni) +

2d
∑

i=k+1

a(0)

)

= 2d
k∑

i=1

a(ni) ≤ 2k

k∑

i=1

a(ni).

�

Fix an increasing unbounded sequence 0 = M0 < M1 < M2 < . . . of real numbers; the exact
values will be defined later. Let n be an arbitrary positive integer and write

n =

d∑

i=0

εi · 2i, where εi ∈ {0, 1}.

Set εi = 0 for i > d, and take some positive integer f such that Mf > d. Applying (3), we get

a(n) = a

(
f
∑

k=1

∑

Mk−1≤i<Mk

εi · 2i

)

≤
f
∑

k=1

2ka

(
∑

Mk−1≤i<Mk

εi · 2i

)

.
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Note that there are less than Mk − Mk−1 + 1 integers in interval [Mk−1, Mk); hence, using (4)
we have

a(n) ≤
f
∑

k=1

2k · 2(Mk − Mk−1 + 1)
∑

Mk−1≤i<Mk

εi · a(2i)

≤
f
∑

k=1

2k · 2(Mk − Mk−1 + 1)2 max
Mk−1≤i<Mk

a(2i)

≤
f
∑

k=1

2k+1(Mk + 1)2 · 1

(Mk−1 + 1)c
=

f
∑

k=1

(
Mk + 1

Mk−1 + 1

)2
2k+1

(Mk−1 + 1)c−2
.

Setting Mk = 4k/(c−2) − 1, we obtain

a(n) ≤
f
∑

k=1

42/(c−2) 2k+1

(4(k−1)/(c−2))c−2
= 8 · 42/(c−2)

f
∑

k=1

(
1

2

)k

< 8 · 42/(c−2),

and the sequence a(n) is bounded.

Solution 2.

Lemma 2. Suppose that s1, . . . , sk are positive integers such that

k∑

i=1

2−si ≤ 1.

Then for arbitrary positive integers n1, . . . , nk we have

a

(
k∑

i=1

ni

)

≤
k∑

i=1

2sia(ni).

Proof. Apply an induction on k. The base cases are k = 1 (trivial) and k = 2 (follows from the
condition (1)). Suppose that k > 2. We can assume that s1 ≤ s2 ≤ · · · ≤ sk. Note that

k−1∑

i=1

2−si ≤ 1 − 2−sk−1,

since the left-hand side is a fraction with the denominator 2sk−1, and this fraction is less than 1.
Define s′k−1 = sk−1 − 1 and n′

k−1 = nk−1 + nk; then we have

k−2∑

i=1

2−si + 2−s′
k−1 ≤ (1 − 2 · 2−sk−1) + 21−sk−1 = 1.

Now, the induction hypothesis can be applied to achieve

a

(
k∑

i=1

ni

)

= a

(
k−2∑

i=1

ni + n′
k−1

)

≤
k−2∑

i=1

2sia(ni) + 2s′
k−1a(n′

k−1)

≤
k−2∑

i=1

2sia(ni) + 2sk−1−1 · 2
(
a(nk−1) + a(nk)

)

≤
k−2∑

i=1

2sia(ni) + 2sk−1a(nk−1) + 2ska(nk). �
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Let q = c/2 > 1. Take an arbitrary positive integer n and write

n =

k∑

i=1

2ui, 0 ≤ u1 < u2 < · · · < uk.

Choose si = blog2(ui + 1)qc + d (i = 1, . . . , k) for some integer d. We have

k∑

i=1

2−si = 2−d
k∑

i=1

2−blog2(ui+1)qc,

and we choose d in such a way that

1

2
<

k∑

i=1

2−si ≤ 1.

In particular, this implies

2d < 2

k∑

i=1

2−blog2(ui+1)qc < 4

k∑

i=1

1

(ui + 1)q
.

Now, by Lemma 2 we obtain

a(n) = a

(
k∑

i=1

2ui

)

≤
k∑

i=1

2sia(2ui) ≤
k∑

i=1

2d(ui + 1)q · 1

(ui + 1)2q

= 2d
k∑

i=1

1

(ui + 1)q
< 4

(
k∑

i=1

1

(ui + 1)q

)2

,

which is bounded since q > 1.

Comment 1. In fact, Lemma 2 (applied to the case ni = 2ui only) provides a sharp bound for

any a(n). Actually, let b(k) =
1

(k + 1)c
and consider the sequence

a(n) = min

{
k∑

i=1

2sib(ui)

∣
∣
∣
∣
∣
k ∈ N,

k∑

i=1

2−si ≤ 1,

k∑

i=1

2ui = n

}

. (5)

We show that this sequence satisfies the conditions of the problem. Take two arbitrary indices m
and n. Let

a(m) =
k∑

i=1

2sib(ui),
k∑

i=1

2−si ≤ 1,
k∑

i=1

2ui = m;

a(n) =
l∑

i=1

2rib(wi),
l∑

i=1

2−ri ≤ 1,
l∑

i=1

2wi = n.

Then we have

k∑

i=1

2−1−si +

l∑

i=1

2−1−ri ≤ 1

2
+

1

2
= 1,

k∑

i=1

2ui +

l∑

i=1

2wi = m + n,

so by (5) we obtain

a(n + m) ≤
k∑

i=1

21+sib(ui) +
l∑

i=1

21+rib(wi) = 2a(m) + 2a(n).
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Comment 2. The condition c > 2 is sharp; we show that the sequence (5) is not bounded if c ≤ 2.
First, we prove that for an arbitrary n the minimum in (5) is attained with a sequence (ui)

consisting of distinct numbers. To the contrary, assume that uk−1 = uk. Replace uk−1 and uk by
a single number u′

k−1 = uk + 1, and sk−1 and sk by s′k−1 = min{sk−1, sk}. The modified sequences
provide a better bound since

2s′
k−1b(u′

k−1) = 2s′
k−1b(uk + 1) < 2sk−1b(uk−1) + 2skb(uk)

(we used the fact that b(k) is decreasing). This is impossible.
Hence, the claim is proved, and we can assume that the minimum is attained with u1 < · · · < uk;

then

n =
k∑

i=1

2ui

is simply the binary representation of n. (In particular, it follows that a(2n) = b(n) for each n.)
Now we show that the sequence

(
a(2k − 1)

)
is not bounded. For some s1, . . . , sk we have

a(2k − 1) = a

(
k∑

i=1

2i−1

)

=
k∑

i=1

2sib(i − 1) =
k∑

i=1

2si

ic
.

By the Cauchy–Schwarz inequality we get

a(2k − 1) = a(2k − 1) · 1 ≥
(

k∑

i=1

2si

ic

)(
k∑

i=1

1

2si

)

≥
(

k∑

i=1

1

ic/2

)2

,

which is unbounded.
For c ≤ 2, it is also possible to show a concrete counterexample. Actually, one can prove that the

sequence

a

(
k∑

i=1

2ui

)

=

k∑

i=1

i

(ui + 1)2
(0 ≤ u1 < . . . < uk)

satisfies (1) and (2) but is not bounded.
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A6. Let a1, a2, . . . , a100 be nonnegative real numbers such that a2
1 +a2

2 + . . .+a2
100 = 1. Prove

that

a2
1a2 + a2

2a3 + . . . + a2
100a1 <

12

25
.

(Poland)

Solution. Let S =
100∑

k=1

a2
kak+1. (As usual, we consider the indices modulo 100, e.g. we set

a101 = a1 and a102 = a2.)
Applying the Cauchy-Schwarz inequality to sequences (ak+1) and (a2

k + 2ak+1ak+2), and then
the AM-GM inequality to numbers a2

k+1 and a2
k+2,

(3S)2 =

(
100∑

k=1

ak+1(a
2
k + 2ak+1ak+2)

)2

≤
(

100∑

k=1

a2
k+1

)(
100∑

k=1

(a2
k + 2ak+1ak+2)

2

)

(1)

= 1 ·
100∑

k=1

(a2
k + 2ak+1ak+2)

2 =

100∑

k=1

(a4
k + 4a2

kak+1ak+2 + 4a2
k+1a

2
k+2)

≤
100∑

k=1

(
a4

k + 2a2
k(a

2
k+1 + a2

k+2) + 4a2
k+1a

2
k+2

)
=

100∑

k=1

(
a4

k + 6a2
ka

2
k+1 + 2a2

ka
2
k+2

)
.

Applying the trivial estimates

100∑

k=1

(a4
k + 2a2

ka
2
k+1 + 2a2

ka
2
k+2) ≤

(
100∑

k=1

a2
k

)2

and

100∑

k=1

a2
ka

2
k+1 ≤

(
50∑

i=1

a2
2i−1

)(
50∑

j=1

a2
2j

)

,

we obtain that

(3S)2 ≤
(

100∑

k=1

a2
k

)2

+ 4

(
50∑

i=1

a2
2i−1

)(
50∑

j=1

a2
2j

)

≤ 1 +

(
50∑

i=1

a2
2i−1 +

50∑

j=1

a2
2j

)2

= 2,

hence

S ≤
√

2

3
≈ 0.4714 <

12

25
= 0.48.

Comment 1. By applying the Lagrange multiplier method, one can see that the maximum is
attained at values of ai satisfying

a2
k−1 + 2akak+1 = 2λak (2)

for all k = 1, 2, . . . , 100. Though this system of equations seems hard to solve, it can help to find the
estimate above; it may suggest to have a closer look at the expression a2

k−1ak + 2a2
kak+1.

Moreover, if the numbers a1, . . . , a100 satisfy (2), we have equality in (1). (See also Comment 3.)

Comment 2. It is natural to ask what is the best constant cn in the inequality

a2
1a2 + a2

2a3 + . . . + a2
na1 ≤ cn

(
a2

1 + a2
2 + . . . + a2

n

)3/2
. (3)

For 1 ≤ n ≤ 4 one may prove cn = 1/
√

n which is achieved when a1 = a2 = . . . = an. However, the
situation changes completely if n ≥ 5. In this case we do not know the exact value of cn. By computer
search it can be found that cn ≈ 0.4514 and it is realized for example if

a1 ≈ 0.5873, a2 ≈ 0.6771, a3 ≈ 0.4224, a4 ≈ 0.1344, a5 ≈ 0.0133

and ak ≈ 0 for k ≥ 6. This example also proves that cn > 0.4513.
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Comment 3. The solution can be improved in several ways to give somewhat better bounds for cn.
Here we show a variant which proves cn < 0.4589 for n ≥ 5.

The value of cn does not change if negative values are also allowed in (3). So the problem is
equivalent to maximizing

f(a1, a2, . . . , an) = a2
1a2 + a2

2a3 + . . . + a2
na1

on the unit sphere a2
1 + a2

2 + . . . + a2
n = 1 in R

n. Since the unit sphere is compact, the function has a
maximum and we can apply the Lagrange multiplier method; for each maximum point there exists a
real number λ such that

a2
k−1 + 2akak+1 = λ · 2ak for all k = 1, 2, . . . , n.

Then

3S =
n∑

k=1

(
a2

k−1ak + 2a2
kak+1

)
=

n∑

k=1

2λa2
k = 2λ

and therefore
a2

k−1 + 2akak+1 = 3Sak for all k = 1, 2, . . . , n. (4)

From (4) we can derive

9S2 =
n∑

k=1

(3Sak)
2 =

n∑

k=1

(
a2

k−1 + 2akak+1

)2
=

n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 + 4

n∑

k=1

a2
kak+1ak+2 (5)

and

3S2 =
n∑

k=1

3Sa2
k−1ak =

n∑

k=1

a2
k−1

(
a2

k−1 + 2akak+1

)
=

n∑

k=1

a4
k + 2

n∑

k=1

a2
kak+1ak+2. (6)

Let p be a positive number. Combining (5) and (6) and applying the AM-GM inequality,

(9 + 3p)S2 = (1 + p)

n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 + (4 + 2p)

n∑

k=1

a2
kak+1ak+2

≤ (1 + p)
n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 +

n∑

k=1

(

2(1 + p)a2
ka

2
k+2 +

(2 + p)2

2(1 + p)
a2

ka
2
k+1

)

= (1 + p)
n∑

k=1

(a4
k + 2a2

ka
2
k+1 + 2a2

ka
2
k+2) +

(

4 +
(2 + p)2

2(1 + p)
− 2(1 + p)

) n∑

k=1

a2
ka

2
k+1

≤ (1 + p)

(
n∑

k=1

a2
k

)2

+
8 + 4p − 3p2

2(1 + p)

n∑

k=1

a2
ka

2
k+1

= (1 + p) +
8 + 4p − 3p2

2(1 + p)

n∑

k=1

a2
ka

2
k+1.

Setting p =
2 + 2

√
7

3
which is the positive root of 8 + 4p − 3p2 = 0, we obtain

S ≤
√

1 + p

9 + 3p
=

√

5 + 2
√

7

33 + 6
√

7
≈ 0.458879.
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A7. Let n > 1 be an integer. In the space, consider the set

S =
{
(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x + y + z > 0

}
.

Find the smallest number of planes that jointly contain all (n + 1)3 − 1 points of S but none of
them passes through the origin.

(Netherlands)

Answer. 3n planes.

Solution. It is easy to find 3n such planes. For example, planes x = i, y = i or z = i
(i = 1, 2, . . . , n) cover the set S but none of them contains the origin. Another such collection
consists of all planes x + y + z = k for k = 1, 2, . . . , 3n.

We show that 3n is the smallest possible number.

Lemma 1. Consider a nonzero polynomial P (x1, . . . , xk) in k variables. Suppose that P
vanishes at all points (x1, . . . , xk) such that x1, . . . , xk ∈ {0, 1, . . . , n} and x1 + · · · + xk > 0,
while P (0, 0, . . . , 0) 6= 0. Then deg P ≥ kn.

Proof. We use induction on k. The base case k = 0 is clear since P 6= 0. Denote for clarity
y = xk.

Let R(x1, . . . , xk−1, y) be the residue of P modulo Q(y) = y(y − 1) . . . (y − n). Polyno-
mial Q(y) vanishes at each y = 0, 1, . . . , n, hence P (x1, . . . , xk−1, y) = R(x1, . . . , xk−1, y) for
all x1, . . . , xk−1, y ∈ {0, 1, . . . , n}. Therefore, R also satisfies the condition of the Lemma;
moreover, degy R ≤ n. Clearly, deg R ≤ deg P , so it suffices to prove that deg R ≥ nk.

Now, expand polynomial R in the powers of y:

R(x1, . . . , xk−1, y) = Rn(x1, . . . , xk−1)y
n + Rn−1(x1, . . . , xk−1)y

n−1 + · · ·+ R0(x1, . . . , xk−1).

We show that polynomial Rn(x1, . . . , xk−1) satisfies the condition of the induction hypothesis.
Consider the polynomial T (y) = R(0, . . . , 0, y) of degree ≤ n. This polynomial has n roots

y = 1, . . . , n; on the other hand, T (y) 6≡ 0 since T (0) 6= 0. Hence deg T = n, and its leading
coefficient is Rn(0, 0, . . . , 0) 6= 0. In particular, in the case k = 1 we obtain that coefficient Rn

is nonzero.
Similarly, take any numbers a1, . . . , ak−1 ∈ {0, 1, . . . , n} with a1+· · ·+ak−1 > 0. Substituting

xi = ai into R(x1, . . . , xk−1, y), we get a polynomial in y which vanishes at all points y = 0, . . . , n
and has degree ≤ n. Therefore, this polynomial is null, hence Ri(a1, . . . , ak−1) = 0 for all
i = 0, 1, . . . , n. In particular, Rn(a1, . . . , ak−1) = 0.

Thus, the polynomial Rn(x1, . . . , xk−1) satisfies the condition of the induction hypothesis.
So, we have deg Rn ≥ (k − 1)n and deg P ≥ deg R ≥ deg Rn + n ≥ kn. �

Now we can finish the solution. Suppose that there are N planes covering all the points
of S but not containing the origin. Let their equations be aix + biy + ciz + di = 0. Consider
the polynomial

P (x, y, z) =

N∏

i=1

(aix + biy + ciz + di).

It has total degree N . This polynomial has the property that P (x0, y0, z0) = 0 for any
(x0, y0, z0) ∈ S, while P (0, 0, 0) 6= 0. Hence by Lemma 1 we get N = deg P ≥ 3n, as de-
sired.

Comment 1. There are many other collections of 3n planes covering the set S but not covering the
origin.
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Solution 2. We present a different proof of the main Lemma 1. Here we confine ourselves to
the case k = 3, which is applied in the solution, and denote the variables by x, y and z. (The
same proof works for the general statement as well.)

The following fact is known with various proofs; we provide one possible proof for the
completeness.

Lemma 2. For arbitrary integers 0 ≤ m < n and for an arbitrary polynomial P (x) of degree m,

n∑

k=0

(−1)k

(
n

k

)

P (k) = 0. (1)

Proof. We use an induction on n. If n = 1, then P (x) is a constant polynomial, hence
P (1) − P (0) = 0, and the base is proved.

For the induction step, define P1(x) = P (x + 1)−P (x). Then clearly deg P1 = deg P − 1 =
m − 1 < n − 1, hence by the induction hypothesis we get

0 = −
n−1∑

k=0

(−1)k

(
n − 1

k

)

P1(k) =

n−1∑

k=0

(−1)k

(
n − 1

k

)
(
P (k) − P (k + 1)

)

=

n−1∑

k=0

(−1)k

(
n − 1

k

)

P (k) −
n−1∑

k=0

(−1)k

(
n − 1

k

)

P (k + 1)

=

n−1∑

k=0

(−1)k

(
n − 1

k

)

P (k) +

n∑

k=1

(−1)k

(
n − 1

k − 1

)

P (k)

= P (0) +

n−1∑

k=1

(−1)k

((
n − 1

k − 1

)

+

(
n − 1

k

))

P (k) + (−1)nP (n) =

n∑

k=0

(−1)k

(
n

k

)

P (k). �

Now return to the proof of Lemma 1. Suppose, to the contrary, that deg P = N < 3n.
Consider the sum

Σ =

n∑

i=0

n∑

j=0

n∑

k=0

(−1)i+j+k

(
n

i

)(
n

j

)(
n

k

)

P (i, j, k).

The only nonzero term in this sum is P (0, 0, 0) and its coefficient is

(
n

0

)3

= 1; therefore

Σ = P (0, 0, 0) 6= 0.

On the other hand, if P (x, y, z) =
∑

α+β+γ≤N

pα,β,γx
αyβzγ , then

Σ =
n∑

i=0

n∑

j=0

n∑

k=0

(−1)i+j+k

(
n

i

)(
n

j

)(
n

k

)
∑

α+β+γ≤N

pα,β,γi
αjβkγ

=
∑

α+β+γ≤N

pα,β,γ

(
n∑

i=0

(−1)i

(
n

i

)

iα

)(
n∑

j=0

(−1)j

(
n

j

)

jβ

)(
n∑

k=0

(−1)k

(
n

k

)

kγ

)

.

Consider an arbitrary term in this sum. We claim that it is zero. Since N < 3n, one of three
inequalities α < n, β < n or γ < n is valid. For the convenience, suppose that α < n. Applying

Lemma 2 to polynomial xα, we get

n∑

i=0

(−1)i

(
n

i

)

iα = 0, hence the term is zero as required.

This yields Σ = 0 which is a contradiction. Therefore, deg P ≥ 3n.
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Comment 2. The proof does not depend on the concrete coefficients in Lemma 2. Instead of this
Lemma, one can simply use the fact that there exist numbers α0, α1, . . . , αn (α0 6= 0) such that

n∑

k=0

αkk
m = 0 for every 0 ≤ m < n.

This is a system of homogeneous linear equations in variables αi. Since the number of equations is
less than the number of variables, the only nontrivial thing is that there exists a solution with α0 6= 0.
It can be shown in various ways.



Combinatorics

C1. Let n > 1 be an integer. Find all sequences a1, a2, . . . , an2+n satisfying the following
conditions:

(a) ai ∈ {0, 1} for all 1 ≤ i ≤ n2 + n;

(b) ai+1 + ai+2 + . . . + ai+n < ai+n+1 + ai+n+2 + . . . + ai+2n for all 0 ≤ i ≤ n2 − n.
(Serbia)

Answer. Such a sequence is unique. It can be defined as follows:

au+vn =

{

0, u + v ≤ n,

1, u + v ≥ n + 1
for all 1 ≤ u ≤ n and 0 ≤ v ≤ n. (1)

The terms can be arranged into blocks of length n as

(
︸ ︷︷ ︸

n

0 . . . 0) (
︸ ︷︷ ︸

n − 1

0 . . . 0 1) (
︸ ︷︷ ︸

n − 2

0 . . . 0 1 1) . . . (
︸ ︷︷ ︸

n − v

0 . . . 0
︸ ︷︷ ︸

v

1 . . . 1) . . . (0
︸ ︷︷ ︸

n − 1

1 . . . 1) (
︸ ︷︷ ︸

n

1 . . . 1).

Solution 1. Consider a sequence (ai) satisfying the conditions. For arbitrary integers 0 ≤
k ≤ l ≤ n2 + n denote S(k, l] = ak+1 + · · ·+ al. (If k = l then S(k, l] = 0.) Then condition (b)
can be rewritten as S(i, i + n] < S(i + n, i + 2n] for all 0 ≤ i ≤ n2 − n. Notice that for
0 ≤ k ≤ l ≤ m ≤ n2 + n we have S(k, m] = S(k, l] + S(l, m].

By condition (b),

0 ≤ S(0, n] < S(n, 2n] < · · · < S(n2, n2 + n] ≤ n.

We have only n + 1 distinct integers in the interval [0, n]; hence,

S
(
vn, (v + 1)n

]
= v for all 0 ≤ v ≤ n. (2)

In particular, S(0, n] = 0 and S(n2, n2 + n] = n, therefore

a1 = a2 = . . . = an = 0, (3)

an2+1 = an2+2 = . . . = an2+n = 1. (4)

Subdivide sequence (ai) into n+1 blocks, each consisting of n consecutive terms, and number
them from 0 to n. We show by induction on v that the vth blocks has the form

(
︸ ︷︷ ︸

n − v

0 . . . 0
︸ ︷︷ ︸

v

1 . . . 1).

The base case v = 0 is provided by (3).
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Consider the vth block for v > 0. By (2), it contains some “ones”. Let the first “one” in this
block be at the uth position (that is, au+vn = 1). By the induction hypothesis, the (v − 1)th
and vth blocks of (ai) have the form

(
︸ ︷︷ ︸

n − v + 1

0 . . .

P

= v

0 . . . 0
︸ ︷︷ ︸

v − 1

1 . . . 1) (
︸ ︷︷ ︸

u − 1

0 . . . 0 1 ∗ . . . ∗),

where each star can appear to be any binary digit. Observe that u ≤ n − v + 1, since the sum
in this block is v. Then, the fragment of length n bracketed above has exactly (v− 1)+1 ones,
i. e. S

(
u + (v − 1)n, u + vn

]
= v. Hence,

v = S
(
u + (v − 1)n, u + vn

]
< S

(
u + vn, u + (v + 1)n

]
< · · · < S

(
u + (n − 1)n, u + n2

]
≤ n;

we have n− v +1 distinct integers in the interval [v, n], therefore S(u + (t− 1)n, u + tn] = t for
each t = v, . . . , n.

Thus, the end of sequence (ai) looks as following:

(
︸ ︷︷ ︸

P

= v − 1

u zeroes
︷ ︸︸ ︷

0 . . . 0

P

= v

0 . . . 0 1 . . . 1) (
︸ ︷︷ ︸

P

= v

0 . . . 0 1

P

= v + 1

∗ . . . ∗) (
︸ ︷︷ ︸

P

= v + 1

∗ . . . ∗
· · ·

∗ . . . ∗) . . .

P

= n

(
︸ ︷︷ ︸

P

= n

1 . . . 1

n − u ones
︷ ︸︸ ︷

1 . . . 1)

(each bracketed fragment contains n terms). Computing in two ways the sum of all digits
above, we obtain n − u = v − 1 and u = n − v + 1. Then, the first n − v terms in the vth
block are zeroes, and the next v terms are ones, due to the sum of all terms in this block. The
statement is proved.

We are left to check that the sequence obtained satisfies the condition. Notice that ai ≤ ai+n

for all 1 ≤ i ≤ n2. Moreover, if 1 ≤ u ≤ n and 0 ≤ v ≤ n − 1, then au+vn < au+vn+n exactly
when u + v = n. In this case we have u + vn = n + v(n − 1).

Consider now an arbitrary index 0 ≤ i ≤ n2−n. Clearly, there exists an integer v such that
n+ v(n− 1) ∈ [i+1, i+n]. Then, applying the above inequalities we obtain that condition (b)
is valid.

Solution 2. Similarly to Solution 1, we introduce the notation S(k, l] and obtain (2), (3),
and (4) in the same way. The sum of all elements of the sequence can be computed as

S(0, n2 + n] = S(0, n] + S(n, 2n] + . . . + S(n2, n2 + n] = 0 + 1 + . . . + n.

For an arbitrary integer 0 ≤ u ≤ n, consider the numbers

S(u, u + n] < S(u + n, u + 2n] < . . . < S
(
u + (n − 1)n, u + n2

]
. (5)

They are n distinct integers from the n + 1 possible values 0, 1, 2, . . . , n. Denote by m the
“missing” value which is not listed. We determine m from S(0, n2 + n]. Write this sum as

S(0, n2+n] = S(0, u]+S(u, u+n]+S(u+n, u+2n]+. . .+S(u+(n−1)n, u+n2]+S(u+n2, n2+n].

Since a1 = a2 = . . . = au = 0 and au+n2+1 = . . . = an2+n = 1, we have S(0, u] = 0 and
S(u + n2, n + n2] = n − u. Then

0 + 1 + . . . + n = S(0, n2 + n] = 0 +
(
(0 + 1 + . . . + n) − m

)
+ (n − u),
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so m = n − u.
Hence, the numbers listed in (5) are 0, 1, . . . , n − u − 1 and n − u + 1, . . . , n, respectively,

therefore

S
(
u + vn, u + (v + 1)n

]
=

{

v, v ≤ n − u − 1,

v + 1, v ≥ n − u
for all 0 ≤ u ≤ n, 0 ≤ v ≤ n − 1. (6)

Conditions (6), together with (3), provide a system of linear equations in variables ai. Now
we solve this system and show that the solution is unique and satisfies conditions (a) and (b).

First, observe that any solution of the system (3), (6) satisfies the condition (b). By the con-
struction, equations (6) immediately imply (5). On the other hand, all inequalities mentioned
in condition (b) are included into the chain (5) for some value of u.

Next, note that the system (3), (6) is redundant. The numbers S
(
kn, (k + 1)n

]
, where

1 ≤ k ≤ n − 1, appear twice in (6). For u = 0 and v = k we have v ≤ n − u − 1, and (6) gives
S
(
kn, (k + 1)n

]
= v = k. For u = n and v = k − 1 we have v ≥ n − u and we obtain the same

value, S
(
kn, (k +1)n

]
= v +1 = k. Therefore, deleting one equation from each redundant pair,

we can make every sum S(k, k + n] appear exactly once on the left-hand side in (6).

Now, from (3), (6), the sequence (ai) can be reconstructed inductively by

a1 = a2 = . . . = an−1 = 0, ak+n = S(k, k +n]− (ak+1 + ak+2 + . . . + ak+n−1) (0 ≤ k ≤ n2),

taking the values of S(k, k+n] from (6). This means first that there exists at most one solution
of our system. Conversely, the constructed sequence obviously satisfies all equations (3), (6)
(the only missing equation is an = 0, which follows from S(0, n] = 0). Hence it satisfies
condition (b), and we are left to check condition (a) only.

For arbitrary integers 1 ≤ u, t ≤ n we get

au+tn − au+(t−1)n = S
(
u + (t − 1)n, u + tn

]
− S

(
(u − 1) + (t − 1)n, (u − 1) + tn

]

=







(t − 1) − (t − 1) = 0, t ≤ n − u,

t − (t − 1) = 1, t = n − u + 1,

t − t = 0, t ≥ n − u + 2.

Since au = 0, we have

au+vn = au+vn − au =

v∑

t=1

(au+tn − au+(t−1)n)

for all 1 ≤ u, v ≤ n. If v < n−u+1 then all terms are 0 on the right-hand side. If v ≥ n−u+1,
then variable t attains the value n − u + 1 once. Hence,

au+vn =

{

0, u + v ≤ n,

1, u + v ≥ n + 1,

according with (1). Note that the formula is valid for v = 0 as well.

Finally, we presented the direct formula for (ai), and we have proved that it satisfies condi-
tion (a). So, the solution is complete.
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C2. A unit square is dissected into n > 1 rectangles such that their sides are parallel to the
sides of the square. Any line, parallel to a side of the square and intersecting its interior, also
intersects the interior of some rectangle. Prove that in this dissection, there exists a rectangle
having no point on the boundary of the square.

(Japan)

Solution 1. Call the directions of the sides of the square horizontal and vertical. A horizontal
or vertical line, which intersects the interior of the square but does not intersect the interior of
any rectangle, will be called a splitting line. A rectangle having no point on the boundary of
the square will be called an interior rectangle.

Suppose, to the contrary, that there exists a dissection of the square into more than one
rectangle, such that no interior rectangle and no splitting line appear. Consider such a dissection
with the least possible number of rectangles. Notice that this number of rectangles is greater
than 2, otherwise their common side provides a splitting line.

If there exist two rectangles having a common side, then we can replace them by their union
(see Figure 1). The number of rectangles was greater than 2, so in a new dissection it is greater
than 1. Clearly, in the new dissection, there is also no splitting line as well as no interior
rectangle. This contradicts the choice of the original dissection.

Denote the initial square by ABCD, with A and B being respectively the lower left and lower
right vertices. Consider those two rectangles a and b containing vertices A and B, respectively.
(Note that a 6= b, otherwise its top side provides a splitting line.) We can assume that the
height of a is not greater than that of b. Then consider the rectangle c neighboring to the lower
right corner of a (it may happen that c = b). By aforementioned, the heights of a and c are
distinct. Then two cases are possible.

a b
c

d

A B

D C

a b
c

d

A B

D C

Figure 1 Figure 2 Figure 3

Case 1. The height of c is less than that of a. Consider the rectangle d which is adjacent
to both a and c, i. e. the one containing the angle marked in Figure 2. This rectangle has no
common point with BC (since a is not higher than b), as well as no common point with AB
or with AD (obviously). Then d has a common point with CD, and its left side provides a
splitting line. Contradiction.

Case 2. The height of c is greater than that of a. Analogously, consider the rectangle d
containing the angle marked on Figure 3. It has no common point with AD (otherwise it has
a common side with a), as well as no common point with AB or with BC (obviously). Then d
has a common point with CD. Hence its right side provides a splitting line, and we get the
contradiction again.
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Solution 2. Again, we suppose the contrary. Consider an arbitrary counterexample. Then we
know that each rectangle is attached to at least one side of the square. Observe that a rectangle
cannot be attached to two opposite sides, otherwise one of its sides lies on a splitting line.

We say that two rectangles are opposite if they are attached to opposite sides of ABCD. We
claim that there exist two opposite rectangles having a common point.

Consider the union L of all rectangles attached to the left. Assume, to the contrary, that L
has no common point with the rectangles attached to the right. Take a polygonal line p
connecting the top and the bottom sides of the square and passing close from the right to the
boundary of L (see Figure 4). Then all its points belong to the rectangles attached either to
the top or to the bottom. Moreover, the upper end-point of p belongs to a rectangle attached
to the top, and the lower one belongs to an other rectangle attached to the bottom. Hence,
there is a point on p where some rectangles attached to the top and to the bottom meet each
other. So, there always exists a pair of neighboring opposite rectangles.

L

p

a

b
X

a

b

a′ b′

c

`

X

Y

Figure 4 Figure 5 Figure 6

Now, take two opposite neighboring rectangles a and b. We can assume that a is attached
to the left and b is attached to the right. Let X be their common point. If X belongs to their
horizontal sides (in particular, X may appear to be a common vertex of a and b), then these
sides provide a splitting line (see Figure 5). Otherwise, X lies on the vertical sides. Let ` be
the line containing these sides.

Since ` is not a splitting line, it intersects the interior of some rectangle. Let c be such a
rectangle, closest to X; we can assume that c lies above X. Let Y be the common point of `
and the bottom side of c (see Figure 6). Then Y is also a vertex of two rectangles lying below c.

So, let Y be the upper-right and upper-left corners of the rectangles a′ and b′, respectively.
Then a′ and b′ are situated not lower than a and b, respectively (it may happen that a = a′

or b = b′). We claim that a′ is attached to the left. If a = a′ then of course it is. If a 6= a′

then a′ is above a, below c and to the left from b′. Hence, it can be attached to the left only.
Analogously, b′ is attached to the right. Now, the top sides of these two rectangles pass

through Y , hence they provide a splitting line again. This last contradiction completes the
proof.



30

C3. Find all positive integers n, for which the numbers in the set S = {1, 2, . . . , n} can be
colored red and blue, with the following condition being satisfied: the set S × S × S contains
exactly 2007 ordered triples (x, y, z) such that (i) x, y, z are of the same color and (ii) x+ y + z
is divisible by n.

(Netherlands)

Answer. n = 69 and n = 84.

Solution. Suppose that the numbers 1, 2, . . . , n are colored red and blue. Denote by R and B
the sets of red and blue numbers, respectively; let |R| = r and |B| = b = n − r. Call a
triple (x, y, z) ∈ S × S × S monochromatic if x, y, z have the same color, and bichromatic
otherwise. Call a triple (x, y, z) divisible if x + y + z is divisible by n. We claim that there are
exactly r2 − rb + b2 divisible monochromatic triples.

For any pair (x, y) ∈ S × S there exists a unique zx,y ∈ S such that the triple (x, y, zx,y) is
divisible; so there are exactly n2 divisible triples. Furthermore, if a divisible triple (x, y, z) is
bichromatic, then among x, y, z there are either one blue and two red numbers, or vice versa.
In both cases, exactly one of the pairs (x, y), (y, z) and (z, x) belongs to the set R×B. Assign
such pair to the triple (x, y, z).

Conversely, consider any pair (x, y) ∈ R × B, and denote z = zx,y. Since x 6= y, the
triples (x, y, z), (y, z, x) and (z, x, y) are distinct, and (x, y) is assigned to each of them. On the
other hand, if (x, y) is assigned to some triple, then this triple is clearly one of those mentioned
above. So each pair in R × B is assigned exactly three times.

Thus, the number of bichromatic divisible triples is three times the number of elements
in R × B, and the number of monochromatic ones is n2 − 3rb = (r + b)2 − 3rb = r2 − rb + b2,
as claimed.

So, to find all values of n for which the desired coloring is possible, we have to find all
n, for which there exists a decomposition n = r + b with r2 − rb + b2 = 2007. Therefore,
9
∣
∣ r2 − rb + b2 = (r + b)2 − 3rb. From this it consequently follows that 3

∣
∣ r + b, 3

∣
∣ rb, and

then 3
∣
∣ r, 3

∣
∣ b. Set r = 3s, b = 3c. We can assume that s ≥ c. We have s2 − sc + c2 = 223.

Furthermore,

892 = 4(s2 − sc + c2) = (2c − s)2 + 3s2 ≥ 3s2 ≥ 3s2 − 3c(s − c) = 3(s2 − sc + c2) = 669,

so 297 ≥ s2 ≥ 223 and 17 ≥ s ≥ 15. If s = 15 then

c(15 − c) = c(s − c) = s2 − (s2 − sc + c2) = 152 − 223 = 2

which is impossible for an integer c. In a similar way, if s = 16 then c(16 − c) = 33, which is
also impossible. Finally, if s = 17 then c(17 − c) = 66, and the solutions are c = 6 and c = 11.
Hence, (r, b) = (51, 18) or (r, b) = (51, 33), and the possible values of n are n = 51 + 18 = 69
and n = 51 + 33 = 84.

Comment. After the formula for the number of monochromatic divisible triples is found, the solution
can be finished in various ways. The one presented is aimed to decrease the number of considered
cases.
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C4. Let A0 = (a1, . . . , an) be a finite sequence of real numbers. For each k ≥ 0, from the
sequence Ak = (x1, . . . , xn) we construct a new sequence Ak+1 in the following way.

1. We choose a partition {1, . . . , n} = I ∪ J , where I and J are two disjoint sets, such that
the expression ∣

∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣
∣

attains the smallest possible value. (We allow the sets I or J to be empty; in this case the
corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.

2. We set Ak+1 = (y1, . . . , yn), where yi = xi + 1 if i ∈ I, and yi = xi − 1 if i ∈ J .
Prove that for some k, the sequence Ak contains an element x such that |x| ≥ n/2.

(Iran)

Solution.

Lemma. Suppose that all terms of the sequence (x1, . . . , xn) satisfy the inequality |xi| < a.
Then there exists a partition {1, 2, . . . , n} = I ∪ J into two disjoint sets such that

∣
∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣
∣
< a. (1)

Proof. Apply an induction on n. The base case n = 1 is trivial. For the induction step,
consider a sequence (x1, . . . , xn) (n > 1). By the induction hypothesis there exists a splitting
{1, . . . , n − 1} = I ′ ∪ J ′ such that

∣
∣
∣
∣

∑

i∈I′

xi −
∑

j∈J ′

xj

∣
∣
∣
∣
< a.

For convenience, suppose that
∑

i∈I′
xi ≥

∑

j∈J ′

xj . If xn ≥ 0 then choose I = I ′, J = J ∪ {n}; other-

wise choose I = I ′ ∪ {n}, J = J ′. In both cases, we have
∑

i∈I′
xi−

∑

j∈J ′

xj ∈ [0, a) and |xn| ∈ [0, a);

hence ∑

i∈I

xi −
∑

j∈J

xj =
∑

i∈I′

xi −
∑

j∈J ′

xj − |xn| ∈ (−a, a),

as desired. �

Let us turn now to the problem. To the contrary, assume that for all k, all the numbers
in Ak lie in interval (−n/2, n/2). Consider an arbitrary sequence Ak = (b1, . . . , bn). To obtain
the term bi, we increased and decreased number ai by one several times. Therefore bi − ai is
always an integer, and there are not more than n possible values for bi. So, there are not more
than nn distinct possible sequences Ak, and hence two of the sequences A1, A2, . . . , Ann+1

should be identical, say Ap = Aq for some p < q.
For any positive integer k, let Sk be the sum of squares of elements in Ak. Consider two

consecutive sequences Ak = (x1, . . . , xn) and Ak+1 = (y1, . . . , yn). Let {1, 2, . . . , n} = I ∪ J be
the partition used in this step — that is, yi = xi + 1 for all i ∈ I and yj = xj − 1 for all j ∈ J .

Since the value of
∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣ is the smallest possible, the Lemma implies that it is less

than n/2. Then we have

Sk+1 −Sk =
∑

i∈I

(
(xi +1)2 −x2

i

)
+
∑

j∈J

(
(xj −1)2 −x2

j

)
= n+2

(
∑

i∈I

xi −
∑

j∈J

xj

)

> n−2 · n
2

= 0.

Thus we obtain Sq > Sq−1 > · · · > Sp. This is impossible since Ap = Aq and hence Sp = Sq.
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C5. In the Cartesian coordinate plane define the strip Sn = {(x, y) | n ≤ x < n + 1} for
every integer n. Assume that each strip Sn is colored either red or blue, and let a and b be two
distinct positive integers. Prove that there exists a rectangle with side lengths a and b such
that its vertices have the same color.

(Romania)

Solution. If Sn and Sn+a have the same color for some integer n, then we can choose the
rectangle with vertices (n, 0) ∈ Sn, (n, b) ∈ Sn, (n + a, 0) ∈ Sn+a, and (n + a, b) ∈ Sn+a, and we
are done. So it can be assumed that Sn and Sn+a have opposite colors for each n.

Similarly, it also can be assumed that Sn and Sn+b have opposite colors. Then, by induction
on |p|+ |q|, we obtain that for arbitrary integers p and q, strips Sn and Sn+pa+qb have the same
color if p + q is even, and these two strips have opposite colors if p + q is odd.

Let d = gcd(a, b), a1 = a/d and b1 = b/d. Apply the result above for p = b1 and q = −a1.
The strips S0 and S0+b1a−a1b are identical and therefore they have the same color. Hence, a1+b1

is even. By the construction, a1 and b1 are coprime, so this is possible only if both are odd.
Without loss of generality, we can assume a > b. Then a1 > b1 ≥ 1, so a1 ≥ 3.
Choose integers k and ` such that ka1 − `b1 = 1 and therefore ka− `b = d. Since a1 and b1

are odd, k + ` is odd as well. Hence, for every integer n, strips Sn and Sn+ka−`b = Sn+d have
opposite colors. This also implies that the coloring is periodic with period 2d, i.e. strips Sn

and Sn+2d have the same color for every n.

A

B

C

D

D0B0

t t + 2d u u + 2d

a

b

a

b

x

Figure 1

We will construct the desired rectangle ABCD with AB = CD = a and BC = AD = b in
a position such that vertex A lies on the x-axis, and the projection of side AB onto the x-axis
is of length 2d (see Figure 1). This is possible since a = a1d > 2d. The coordinates of the
vertices will have the forms

A = (t, 0), B = (t + 2d, y1), C = (u + 2d, y2), D = (u, y3).

Let ϕ =
√

a2
1 − 4. By Pythagoras’ theorem,

y1 = BB0 =
√

a2 − 4d2 = d
√

a2
1 − 4 = dϕ.

So, by the similar triangles ADD0 and BAB0, we have the constraint

u − t = AD0 =
AD

AB
· BB0 =

bd

a
ϕ (1)
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for numbers t and u. Computing the numbers y2 and y3 is not required since they have no
effect to the colors.

Observe that the number ϕ is irrational, because ϕ2 is an integer, but ϕ is not: a1 > ϕ ≥
√

a2
1 − 2a1 + 2 > a1 − 1.

By the periodicity, points A and B have the same color; similarly, points C and D have the
same color. Furthermore, these colors depend only on the values of t and u. So it is sufficient
to choose numbers t and u such that vertices A and D have the same color.

Let w be the largest positive integer such that there exist w consecutive strips Sn0
, Sn0+1, . . . ,

Sn0+w−1 with the same color, say red. (Since Sn0+d must be blue, we have w ≤ d.) We will
choose t from the interval (n0, n0 + w).

I

A D0B0

t t + 2d u x( )
n0 n0 + w

( )

Figure 2

Consider the interval I =

(

n0 +
bd

a
ϕ, n0 +

bd

a
ϕ+w

)

on the x-axis (see Figure 2). Its length

is w, and the end-points are irrational. Therefore, this interval intersects w + 1 consecutive
strips. Since at most w consecutive strips may have the same color, interval I must contain both

red and blue points. Choose u ∈ I such that the line x = u is red and set t = u− bd

a
ϕ, according

to the constraint (1). Then t ∈ (n0, n0 + w) and A = (t, 0) is red as well as D = (u, y3).
Hence, variables u and t can be set such that they provide a rectangle with four red vertices.

Comment. The statement is false for squares, i.e. in the case a = b. If strips S2ka, S2ka+1, . . .,
S(2k+1)a−1 are red, and strips S(2k+1)a, S(2k+1)a+1, . . ., S(2k+2)a−1 are blue for every integer k, then
each square of size a × a has at least one red and at least one blue vertex as well.
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C6. In a mathematical competition some competitors are friends; friendship is always mutual.
Call a group of competitors a clique if each two of them are friends. The number of members
in a clique is called its size.

It is known that the largest size of cliques is even. Prove that the competitors can be
arranged in two rooms such that the largest size of cliques in one room is the same as the
largest size of cliques in the other room.

(Russia)

Solution. We present an algorithm to arrange the competitors. Let the two rooms be Room A
and Room B. We start with an initial arrangement, and then we modify it several times by
sending one person to the other room. At any state of the algorithm, A and B denote the sets
of the competitors in the rooms, and c(A) and c(B) denote the largest sizes of cliques in the
rooms, respectively.

Step 1. Let M be one of the cliques of largest size, |M | = 2m. Send all members of M to
Room A and all other competitors to Room B.

Since M is a clique of the largest size, we have c(A) = |M | ≥ c(B).

Step 2. While c(A) > c(B), send one person from Room A to Room B.

Room A Room B

A ∩ M B ∩ M

Note that c(A) > c(B) implies that Room A is not empty.
In each step, c(A) decreases by one and c(B) increases by at most one. So at the end we

have c(A) ≤ c(B) ≤ c(A) + 1.
We also have c(A) = |A| ≥ m at the end. Otherwise we would have at least m+1 members

of M in Room B and at most m−1 in Room A, implying c(B)−c(A) ≥ (m+1)− (m−1) = 2.

Step 3. Let k = c(A). If c(B) = k then STOP.
If we reached c(A) = c(B) = k then we have found the desired arrangement.
In all other cases we have c(B) = k + 1.
From the estimate above we also know that k = |A| = |A ∩ M | ≥ m and |B ∩ M | ≤ m.

Step 4. If there exists a competitor x ∈ B ∩ M and a clique C ⊂ B such that |C| = k + 1
and x /∈ C, then move x to Room A and STOP.

Room A Room B

A ∩ M B ∩ M

x C

After moving x back to Room A, we will have k + 1 members of M in Room A, thus
c(A) = k + 1. Due to x /∈ C, c(B) = |C| is not decreased, and after this step we have
c(A) = c(B) = k + 1.
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If there is no such competitor x, then in Room B, all cliques of size k + 1 contain B ∩ M
as a subset.

Step 5. While c(B) = k + 1, choose a clique C ⊂ B such that |C| = k + 1 and move one
member of C \ M to Room A.

Room A Room B

A ∩ M B ∩ MC

Note that |C| = k + 1 > m ≥ |B ∩ M |, so C \ M cannot be empty.
Every time we move a single person from Room B to Room A, so c(B) decreases by at

most 1. Hence, at the end of this loop we have c(B) = k.

In Room A we have the clique A∩M with size |A∩M | = k thus c(A) ≥ k. We prove that
there is no clique of larger size there. Let Q ⊂ A be an arbitrary clique. We show that |Q| ≤ k.

Room A Room B

B ∩ M
A ∩ M

Q

In Room A, and specially in set Q, there can be two types of competitors:
– Some members of M . Since M is a clique, they are friends with all members of B ∩ M .
– Competitors which were moved to Room A in Step 5. Each of them has been in a clique

with B ∩ M so they are also friends with all members of B ∩ M .
Hence, all members of Q are friends with all members of B ∩ M . Sets Q and B ∩ M are

cliques themselves, so Q ∪ (B ∩ M) is also a clique. Since M is a clique of the largest size,

|M | ≥ |Q ∪ (B ∩ M)| = |Q| + |B ∩ M | = |Q| + |M | − |A ∩ M |,

therefore
|Q| ≤ |A ∩ M | = k.

Finally, after Step 5 we have c(A) = c(B) = k.

Comment. Obviously, the statement is false without the assumption that the largest clique size is
even.
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C7. Let α <
3 −

√
5

2
be a positive real number. Prove that there exist positive integers n

and p > α · 2n for which one can select 2p pairwise distinct subsets S1, . . . , Sp, T1, . . . , Tp of
the set {1, 2, . . . , n} such that Si ∩ Tj 6= ∅ for all 1 ≤ i, j ≤ p.

(Austria)

Solution. Let k and m be positive integers (to be determined later) and set n = km. De-
compose the set {1, 2, . . . , n} into k disjoint subsets, each of size m; denote these subsets
by A1, . . . , Ak. Define the following families of sets:

S =
{
S ⊂ {1, 2, . . . , n} : ∀i S ∩ Ai 6= ∅

}
,

T1 =
{
T ⊂ {1, 2, . . . , n} : ∃i Ai ⊂ T

}
, T = T1 \ S.

For each set T ∈ T ⊂ T1, there exists an index 1 ≤ i ≤ k such that Ai ⊂ T . Then for all S ∈ S,
S ∩ T ⊃ S ∩ Ai 6= ∅. Hence, each S ∈ S and each T ∈ T have at least one common element.

Below we show that the numbers m and k can be chosen such that |S|, |T | > α · 2n. Then,
choosing p = min

{
|S|, |T |

}
, one can select the desired 2p sets S1, . . . , Sp and T1, . . . , Tp from

families S and T , respectively. Since families S and T are disjoint, sets Si and Tj will be
pairwise distinct.

To count the sets S ∈ S, observe that each Ai has 2m−1 nonempty subsets so we have 2m−1
choices for S ∩ Ai. These intersections uniquely determine set S, so

|S| = (2m − 1)k. (1)

Similarly, if a set H ⊂ {1, 2, . . . , n} does not contain a certain set Ai then we have 2m − 1
choices for H ∩ Ai: all subsets of Ai, except Ai itself. Therefore, the complement of T1 con-
tains (2m − 1)k sets and

|T1| = 2km − (2m − 1)k. (2)

Next consider the family S \T1. If a set S intersects all Ai but does not contain any of them,
then there exists 2m − 2 possible values for each S ∩ Ai: all subsets of Ai except ∅ and Ai.
Therefore the number of such sets S is (2m − 2)k, so

|S \ T1| = (2m − 2)k. (3)

From (1), (2), and (3) we obtain

|T | = |T1| − |S ∩ T1| = |T1| −
(
|S| − |S \ T1|

)
= 2km − 2(2m − 1)k + (2m − 2)k.

Let δ =
3 −

√
5

2
and k = k(m) =

[
2m log 1

δ

]
. Then

lim
m→∞

|S|
2km

= lim
m→∞

(

1 − 1

2m

)k

= exp

(

− lim
m→∞

k

2m

)

= δ

and similarly

lim
m→∞

|T |
2km

= 1 − 2 lim
m→∞

(

1 − 1

2m

)k

+ lim
m→∞

(

1 − 2

2m

)k

= 1 − 2δ + δ2 = δ.

Hence, if m is sufficiently large then
|S|
2mk

and
|T |
2mk

are greater than α (since α < δ). So

|S|, |T | > α · 2mk = α · 2n.

Comment. It can be proved that the constant
3 −

√
5

2
is sharp. Actually, if S1, . . . , Sp, T1, . . . , Tp

are distinct subsets of {1, 2, . . . , n} such that each Si intersects each Tj, then p <
3 −

√
5

2
· 2n.
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C8. Given a convex n-gon P in the plane. For every three vertices of P , consider the triangle
determined by them. Call such a triangle good if all its sides are of unit length.

Prove that there are not more than 2
3
n good triangles.

(Ukraine)

Solution. Consider all good triangles containing a certain vertex A. The other two vertices
of any such triangle lie on the circle ωA with unit radius and center A. Since P is convex, all
these vertices lie on an arc of angle less than 180◦. Let LARA be the shortest such arc, oriented
clockwise (see Figure 1). Each of segments ALA and ARA belongs to a unique good triangle.
We say that the good triangle with side ALA is assigned counterclockwise to A, and the second
one, with side ARA, is assigned clockwise to A. In those cases when there is a single good
triangle containing vertex A, this triangle is assigned to A twice.

There are at most two assignments to each vertex of the polygon. (Vertices which do not
belong to any good triangle have no assignment.) So the number of assignments is at most 2n.

Consider an arbitrary good triangle ABC, with vertices arranged clockwise. We prove
that ABC is assigned to its vertices at least three times. Then, denoting the number of good
triangles by t, we obtain that the number K of all assignments is at most 2n, while it is not
less than 3t. Then 3t ≤ K ≤ 2n, as required.

Actually, we prove that triangle ABC is assigned either counterclockwise to C or clockwise
to B. Then, by the cyclic symmetry of the vertices, we obtain that triangle ABC is assigned
either counterclockwise to A or clockwise to C, and either counterclockwise to B or clockwise
to A, providing the claim.

A

LA

RA

ωA

A

LA

RA

ωA A

B C

A′

B′C ′

X=L
(′)
C

Y =R
(′)
B

ωA

ωBωC

Figure 1 Figure 2

Assume, to the contrary, that LC 6= A and RB 6= A. Denote by A′, B′, C ′ the intersection
points of circles ωA, ωB and ωC , distinct from A, B, C (see Figure 2). Let CLCL′

C be the good
triangle containing CLC . Observe that the angle of arc LCA is less than 120◦. Then one of the
points LC and L′

C belongs to arc B′A of ωC ; let this point be X. In the case when LC = B′

and L′
C = A, choose X = B′.

Analogously, considering the good triangle BR′
BRB which contains BRB as an edge, we see

that one of the points RB and R′
B lies on arc AC ′ of ωB. Denote this point by Y , Y 6= A.

Then angles XAY , Y AB, BAC and CAX (oriented clockwise) are not greater than 180◦.
Hence, point A lies in quadrilateral XY BC (either in its interior or on segment XY ). This is
impossible, since all these five points are vertices of P .

Hence, each good triangle has at least three assignments, and the statement is proved.

Comment 1. Considering a diameter AB of the polygon, one can prove that every good triangle
containing either A or B has at least four assignments. This observation leads to t ≤

⌊
2
3(n − 1)

⌋
.
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A

B1

Bn

C1
Cn

D1

Dn

Figure 3

Comment 2. The result t ≤
⌊

2
3(n − 1)

⌋
is sharp. To

construct a polygon with n = 3k + 1 vertices and t = 2k tri-
angles, take a rhombus AB1C1D1 with unit side length and
∠B1 = 60◦. Then rotate it around A by small angles ob-
taining rhombi AB2C2D2, . . . , ABkCkDk (see Figure 3). The
polygon AB1 . . . BkC1 . . . CkD1 . . . Dk has 3k +1 vertices and
contains 2k good triangles.

The construction for n = 3k and n = 3k − 1 can be
obtained by deleting vertices Dn and Dn−1.



Geometry

G1. In triangle ABC, the angle bisector at vertex C intersects the circumcircle and the per-
pendicular bisectors of sides BC and CA at points R, P , and Q, respectively. The midpoints of
BC and CA are S and T , respectively. Prove that triangles RQT and RPS have the same area.

(Czech Republic)

Solution 1. If AC = BC then triangle ABC is isosceles, triangles RQT and RPS are
symmetric about the bisector CR and the statement is trivial. If AC 6= BC then it can be
assumed without loss of generality that AC < BC.

R

B

S
OQT

A

C

P
`

Denote the circumcenter by O. The right triangles CTQ and CSP have equal angles at
vertex C, so they are similar, ∠CPS = ∠CQT = ∠OQP and

QT

PS
=

CQ

CP
. (1)

Let ` be the perpendicular bisector of chord CR; of course, ` passes through the circum-
center O. Due to the equal angles at P and Q, triangle OPQ is isosceles with OP = OQ.
Then line ` is the axis of symmetry in this triangle as well. Therefore, points P and Q lie
symmetrically on line segment CR,

RP = CQ and RQ = CP. (2)

Triangles RQT and RPS have equal angles at vertices Q and P , respectively. Then

area(RQT )

area(RPS)
=

1
2
· RQ · QT · sin ∠RQT

1
2
· RP · PS · sin ∠RPS

=
RQ

RP
· QT

PS
.

Substituting (1) and (2),

area(RQT )

area(RPS)
=

RQ

RP
· QT

PS
=

CP

CQ
· CQ

CP
= 1.

Hence, area(RQT ) = area(RSP ).
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Solution 2. Assume again AC < BC. Denote the circumcenter by O, and let γ be the
angle at C. Similarly to the first solution, from right triangles CTQ and CSP we obtain
that ∠OPQ = ∠OQP = 90◦ − γ

2
. Then triangle OPQ is isosceles, OP = OQ and moreover

∠POQ = γ.
As is well-known, point R is the midpoint of arc AB and ∠ROA = ∠BOR = γ.

C

B

ST

A

γ
γ

Q O

γ

P

R

Consider the rotation around point O by angle γ. This transform moves A to R, R to B
and Q to P ; hence triangles RQA and BPR are congruent and they have the same area.

Triangles RQT and RQA have RQ as a common side, so the ratio between their areas is

area(RQT )

area(RQA)
=

d(T, CR)

d(A, CR)
=

CT

CA
=

1

2
.

(d(X, Y Z) denotes the distance between point X and line Y Z).

It can be obtained similarly that

area(RPS)

area(BPR)
=

CS

CB
=

1

2
.

Now the proof can be completed as

area(RQT ) =
1

2
area(RQA) =

1

2
area(BPR) = area(RPS).
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G2. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted
by M . Let X be a variable point on the shorter arc MA of the circumcircle of triangle ABM .
Let T be the point in the angle domain BMA, for which ∠TMX = 90◦ and TX = BX. Prove
that ∠MTB − ∠CTM does not depend on X.

(Canada)

Solution 1. Let N be the midpoint of segment BT (see Figure 1). Line XN is the axis of
symmetry in the isosceles triangle BXT , thus ∠TNX = 90◦ and ∠BXN = ∠NXT . Moreover,
in triangle BCT , line MN is the midline parallel to CT ; hence ∠CTM = ∠NMT .

Due to the right angles at points M and N , these points lie on the circle with diameter XT .
Therefore,

∠MTB = ∠MTN = ∠MXN and ∠CTM = ∠NMT = ∠NXT = ∠BXN.

Hence
∠MTB − ∠CTM = ∠MXN − ∠BXN = ∠MXB = ∠MAB

which does not depend on X.

A

B C

N

T

X

M

A

B C

S

T

X

M

Figure 1 Figure 2

Solution 2. Let S be the reflection of point T over M (see Figure 2). Then XM is the per-
pendicular bisector of TS, hence XB = XT = XS, and X is the circumcenter of triangle BST .
Moreover, ∠BSM = ∠CTM since they are symmetrical about M . Then

∠MTB − ∠CTM = ∠STB − ∠BST =
∠SXB − ∠BXT

2
.

Observe that ∠SXB = ∠SXT − ∠BXT = 2∠MXT − ∠BXT , so

∠MTB − ∠CTM =
2∠MXT − 2∠BXT

2
= ∠MXB = ∠MAB,

which is constant.
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G3. The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between the
parallel lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P and Q.
Prove that ∠BQP = ∠DAQ.

(Ukraine)

Solution. Let t =
AD

BC
. Consider the homothety h with center P and scale −t. Triangles PDA

and PBC are similar with ratio t, hence h(B) = D and h(C) = A.

B C

Q′

Q

A D

P

Let Q′ = h(Q) (see Figure 1). Then points Q, P and Q′ are obviously collinear. Points Q
and P lie on the same side of AD, as well as on the same side of BC; hence Q′ and P are
also on the same side of h(BC) = AD, and therefore Q and Q′ are on the same side of AD.
Moreover, points Q and C are on the same side of BD, while Q′ and A are on the opposite
side (see Figure above).

By the homothety, ∠AQ′D = ∠CQB = ∠AQD, hence quadrilateral AQ′QD is cyclic. Then

∠DAQ = ∠DQ′Q = ∠DQ′P = ∠BQP

(the latter equality is valid by the homothety again).

Comment. The statement of the problem is a limit case of the following result.
In an arbitrary quadrilateral ABCD, let P = AC ∩BD, I = AD ∩BC, and let Q be an arbitrary

point which is not collinear with any two of points A, B, C, D. Then ∠AQD = ∠CQB if and only if
∠BQP = ∠IQA (angles are oriented; see Figure below to the left).

In the special case of the trapezoid, I is an ideal point and ∠DAQ = ∠IQA = ∠BQP .

i

p

a

b

c

d
A

B

C

D

P

Q

I

U V

A

B C

D

P

Q

I

I

I

Let a = QA, b = QB, c = QC, d = QD, i = QI and p = QP . Let line QA intersect lines BC
and BD at points U and V , respectively. On lines BC and BD we have

(abci) = (UBCI) and (badp) = (abpd) = (V BPD).

Projecting from A, we get
(abci) = (UBCI) = (V BPD) = (badp).

Suppose that ∠AQD = ∠CQB. Let line p′ be the reflection of line i about the bisector of
angle AQB. Then by symmetry we have (badp′) = (abci) = (badp). Hence p = p′, as desired.

The converse statement can be proved analogously.
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G4. Consider five points A, B, C, D, E such that ABCD is a parallelogram and BCED is
a cyclic quadrilateral. Let ` be a line passing through A, and let ` intersect segment DC and
line BC at points F and G, respectively. Suppose that EF = EG = EC. Prove that ` is the
bisector of angle DAB.

(Luxembourg)

Solution. If CF = CG, then ∠FGC = ∠GFC, hence ∠GAB = ∠GFC = ∠FGC = ∠FAD,
and ` is a bisector.

Assume that CF < GC. Let EK and EL be the altitudes in the isosceles triangles ECF
and EGC, respectively. Then in the right triangles EKF and ELC we have EF = EC and

KF =
CF

2
<

GC

2
= LC,

so
KE =

√
EF 2 − KF 2 >

√
EC2 − LC2 = LE.

Since quadrilateral BCED is cyclic, we have ∠EDC = ∠EBC, so the right triangles BEL
and DEK are similar. Then KE > LE implies DK > BL, and hence

DF = DK − KF > BL − LC = BC = AD.

But triangles ADF and GCF are similar, so we have 1 >
AD

DF
=

GC

CF
; this contradicts our

assumption.

The case CF > GC is completely similar. We consequently obtain the converse inequalities

KF > LC, KE < LE, DK < BL, DF < AD, hence 1 <
AD

DF
=

GC

CF
; a contradiction.

A

B C

D

E

F

G

K

L

`
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G5. Let ABC be a fixed triangle, and let A1, B1, C1 be the midpoints of sides BC, CA, AB,
respectively. Let P be a variable point on the circumcircle. Let lines PA1, PB1, PC1 meet the
circumcircle again at A′, B′, C ′ respectively. Assume that the points A, B, C, A′, B′, C ′ are
distinct, and lines AA′, BB′, CC ′ form a triangle. Prove that the area of this triangle does not
depend on P .

(United Kingdom)

Solution 1. Let A0, B0, C0 be the points of intersection of the lines AA′, BB′ and CC ′ (see
Figure). We claim that area(A0B0C0) = 1

2
area(ABC), hence it is constant.

Consider the inscribed hexagon ABCC ′PA′. By Pascal’s theorem, the points of intersection
of its opposite sides (or of their extensions) are collinear. These points are AB ∩ C ′P = C1,
BC ∩ PA′ = A1, CC ′ ∩ A′A = B0. So point B0 lies on the midline A1C1 of triangle ABC.
Analogously, points A0 and C0 lie on lines B1C1 and A1B1, respectively.

Lines AC and A1C1 are parallel, so triangles B0C0A1 and AC0B1 are similar; hence we have

P

A B

C

A1
B1

C1

A′

B′

C ′

A0

B0

C0

B0C0

AC0
=

A1C0

B1C0
.

Analogously, from BC ‖ B1C1 we obtain

A1C0

B1C0
=

BC0

A0C0
.

Combining these equalities, we get

B0C0

AC0
=

BC0

A0C0
,

or
A0C0 · B0C0 = AC0 · BC0.

Hence we have

area(A0B0C0) =
1

2
A0C0 · B0C0 sin ∠A0C0B0 =

1

2
AC0 · BC0 sin ∠AC0B = area(ABC0).

Since C0 lies on the midline, we have d(C0, AB) = 1
2
d(C, AB) (we denote by d(X, Y Z) the

distance between point X and line Y Z). Then we obtain

area(A0B0C0) = area(ABC0) =
1

2
AB · d(C0, AB) =

1

4
AB · d(C, AB) =

1

2
area(ABC).

Solution 2. Again, we prove that area(A0B0C0) = 1
2
area(ABC).

We can assume that P lies on arc AC. Mark a point L on side AC such that ∠CBL =
∠PBA; then ∠LBA = ∠CBA − ∠CBL = ∠CBA − ∠PBA = ∠CBP . Note also that
∠BAL = ∠BAC = ∠BPC and ∠LCB = ∠APB. Hence, triangles BAL and BPC are
similar, and so are triangles LCB and APB.

Analogously, mark points K and M respectively on the extensions of sides CB and AB
beyond point B, such that ∠KAB = ∠CAP and ∠BCM = ∠PCA. For analogous reasons,
∠KAC = ∠BAP and ∠ACM = ∠PCB. Hence 4ABK ∼ 4APC ∼ 4MBC, 4ACK ∼
4APB, and 4MAC ∼ 4BPC. From these similarities, we have ∠CMB = ∠KAB = ∠CAP ,
while we have seen that ∠CAP = ∠CBP = ∠LBA. Hence, AK ‖ BL ‖ CM .



45

P

A
B

C

A1

C1

A′

B′ C ′

A0

X=B0

C0

K

L

M

Let line CC ′ intersect BL at point X. Note that ∠LCX = ∠ACC ′ = ∠APC ′ = ∠APC1,
and PC1 is a median in triangle APB. Since triangles APB and LCB are similar, CX is a
median in triangle LCB, and X is a midpoint of BL. For the same reason, AA′ passes through
this midpoint, so X = B0. Analogously, A0 and C0 are the midpoints of AK and CM .

Now, from AA0 ‖ CC0, we have

area(A0B0C0) = area(AC0A0) − area(AB0A0) = area(ACA0) − area(AB0A0) = area(ACB0).

Finally,

area(A0B0C0) = area(ACB0) =
1

2
B0L · AC sin ALB0 =

1

4
BL · AC sin ALB =

1

2
area(ABC).

Comment 1. The equality area(A0B0C0) = area(ACB0) in Solution 2 does not need to be proved
since the following fact is frequently known.

Suppose that the lines KL and MN are parallel, while the lines KM and LN intersect in a point E.
Then area(KEN) = area(MEL).

Comment 2. It follows immediately from both solutions that AA0 ‖ BB0 ‖ CC0. These lines pass
through an ideal point which is isogonally conjugate to P . It is known that they are parallel to the
Simson line of point Q which is opposite to P on the circumcircle.

Comment 3. If A = A′, then one can define the line AA′ to be the tangent to the circumcircle at
point A. Then the statement of the problem is also valid in this case.
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G6. Determine the smallest positive real number k with the following property.

Let ABCD be a convex quadrilateral, and let points A1, B1, C1 and D1 lie on sides AB, BC,
CD and DA, respectively. Consider the areas of triangles AA1D1, BB1A1, CC1B1, and DD1C1;
let S be the sum of the two smallest ones, and let S1 be the area of quadrilateral A1B1C1D1.
Then we always have kS1 ≥ S.

(U.S.A.)

Answer. k = 1.

Solution. Throughout the solution, triangles AA1D1, BB1A1, CC1B1, and DD1C1 will be
referred to as border triangles. We will denote by [R] the area of a region R.

First, we show that k ≥ 1. Consider a triangle ABC with unit area; let A1, B1, K be
the midpoints of its sides AB, BC, AC, respectively. Choose a point D on the extension
of BK, close to K. Take points C1 and D1 on sides CD and DA close to D (see Figure 1).
We have [BB1A1] = 1

4
. Moreover, as C1, D1, D → K, we get [A1B1C1D1] → [A1B1K] = 1

4
,

[AA1D1] → [AA1K] = 1
4
, [CC1B1] → [CKB1] = 1

4
and [DD1C1] → 0. Hence, the sum of the

two smallest areas of border triangles tends to 1
4
, as well as [A1B1C1D1]; therefore, their ratio

tends to 1, and k ≥ 1.
We are left to prove that k = 1 satisfies the desired property.

A

B

C

D

A1 B1

C1D1
K

A

B

C

A1

B1

C1

A′

B′

C ′

X

A

B

C

A1

B1

C1

A′

B′

C ′

Y

Z

Figure 1 Figure 2 Figure 3

Lemma. Let points A1, B1, C1 lie respectively on sides BC, CA, AB of a triangle ABC. Then
[A1B1C1] ≥ min

{
[AC1B1], [BA1C1], [CB1A1]

}
.

Proof. Let A′, B′, C ′ be the midpoints of sides BC, CA and AB, respectively.
Suppose that two of points A1, B1, C1 lie in one of triangles AC ′B′, BA′C ′ and CB′A′

(for convenience, let points B1 and C1 lie in triangle AC ′B′; see Figure 2). Let segments B1C1

and AA1 intersect at point X. Then X also lies in triangle AC ′B′. Hence A1X ≥ AX, and we
have

[A1B1C1]

[AC1B1]
=

1
2
A1X · B1C1 · sin ∠A1XC1

1
2
AX · B1C1 · sin ∠AXB1

=
A1X

AX
≥ 1,

as required.
Otherwise, each one of triangles AC ′B′, BA′C ′, CB′A′ contains exactly one of points A1,

B1, C1, and we can assume that BA1 < BA′, CB1 < CB′, AC1 < AC ′ (see Figure 3). Then
lines B1A1 and AB intersect at a point Y on the extension of AB beyond point B, hence
[A1B1C1]

[A1B1C ′]
=

C1Y

C ′Y
> 1; also, lines A1C

′ and CA intersect at a point Z on the extension

of CA beyond point A, hence
[A1B1C

′]

[A1B′C ′]
=

B1Z

B′Z
> 1. Finally, since A1A

′ ‖ B′C ′, we have

[A1B1C1] > [A1B1C
′] > [A1B

′C ′] = [A′B′C ′] = 1
4
[ABC].
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Now, from [A1B1C1] + [AC1B1] + [BA1C1] + [CB1A1] = [ABC] we obtain that one of
the remaining triangles AC1B1, BA1C1, CB1A1 has an area less than 1

4
[ABC], so it is less

than [A1B1C1]. �

Now we return to the problem. We say that triangle A1B1C1 is small if [A1B1C1] is less than
each of [BB1A1] and [CC1B1]; otherwise this triangle is big (the similar notion is introduced
for triangles B1C1D1, C1D1A1, D1A1B1). If both triangles A1B1C1 and C1D1A1 are big,
then [A1B1C1] is not less than the area of some border triangle, and [C1D1A1] is not less than
the area of another one; hence, S1 = [A1B1C1] + [C1D1A1] ≥ S. The same is valid for the pair
of B1C1D1 and D1A1B1. So it is sufficient to prove that in one of these pairs both triangles
are big.

Suppose the contrary. Then there is a small triangle in each pair. Without loss of generality,
assume that triangles A1B1C1 and D1A1B1 are small. We can assume also that [A1B1C1] ≤
[D1A1B1]. Note that in this case ray D1C1 intersects line BC.

Consider two cases.

A

B

C

D

A1

B1

C1D1
K L

A
B

C

D

A1

B1

C1D1

K

L

Figure 4 Figure 5

Case 1. Ray C1D1 intersects line AB at some point K. Let ray D1C1 intersect line BC at
point L (see Figure 4). Then we have [A1B1C1] < [CC1B1] < [LC1B1], [A1B1C1] < [BB1A1]
(both — since [A1B1C1] is small), and [A1B1C1] ≤ [D1A1B1] < [AA1D1] < [KA1D1] < [KA1C1]
(since triangle D1A1B1 is small). This contradicts the Lemma, applied for triangle A1B1C1

inside LKB.

Case 2. Ray C1D1 does not intersect AB. Then choose a “sufficiently far” point K on
ray BA such that [KA1C1] > [A1B1C1], and that ray KC1 intersects line BC at some point L
(see Figure 5). Since ray C1D1 does not intersect line AB, the points A and D1 are on different
sides of KL; then A and D are also on different sides, and C is on the same side as A and B.
Then analogously we have [A1B1C1] < [CC1B1] < [LC1B1] and [A1B1C1] < [BB1A1] since
triangle A1B1C1 is small. This (together with [A1B1C1] < [KA1C1]) contradicts the Lemma
again.
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G7. Given an acute triangle ABC with angles α, β and γ at vertices A, B and C, respectively,
such that β > γ. Point I is the incenter, and R is the circumradius. Point D is the foot of
the altitude from vertex A. Point K lies on line AD such that AK = 2R, and D separates A
and K. Finally, lines DI and KI meet sides AC and BC at E and F , respectively.

Prove that if IE = IF then β ≤ 3γ.
(Iran)

Solution 1. We first prove that

∠KID =
β − γ

2
(1)

even without the assumption that IE = IF . Then we will show that the statement of the
problem is a consequence of this fact.

Denote the circumcenter by O. On the circumcircle, let P be the point opposite to A, and
let the angle bisector AI intersect the circle again at M . Since AK = AP = 2R, triangle AKP
is isosceles. It is known that ∠BAD = ∠CAO, hence ∠DAI = ∠BAI − ∠BAD = ∠CAI −
∠CAO = ∠OAI, and AM is the bisector line in triangle AKP . Therefore, points K and P
are symmetrical about AM , and ∠AMK = ∠AMP = 90◦. Thus, M is the midpoint of KP ,
and AM is the perpendicular bisector of KP .

A

B C

B1

A1

I O
T

D

P

M

D′

K

Denote the perpendicular feet of incenter I on lines BC, AC, and AD by A1, B1, and T ,
respectively. Quadrilateral DA1IT is a rectangle, hence TD = IA1 = IB1.

Due to the right angles at T and B1, quadrilateral AB1IT is cyclic. Hence ∠B1TI =
∠B1AI = ∠CAM = ∠BAM = ∠BPM and ∠IB1T = ∠IAT = ∠MAK = ∠MAP =

∠MBP . Therefore, triangles B1TI and BPM are similar and
IT

IB1
=

MP

MB
.

It is well-known that MB = MC = MI. Then right triangles ITD and KMI are also
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similar, because
IT

TD
=

IT

IB1
=

MP

MB
=

KM

MI
. Hence, ∠KIM = ∠IDT = ∠IDA, and

∠KID = ∠MID − ∠KIM = (∠IAD + ∠IDA) − ∠IDA = ∠IAD.

Finally, from the right triangle ADB we can compute

∠KID = ∠IAD = ∠IAB − ∠DAB =
α

2
− (90◦ − β) =

α

2
− α + β + γ

2
+ β =

β − γ

2
.

Now let us turn to the statement and suppose that IE = IF . Since IA1 = IB1, the right
triangles IEB1 and IFA1 are congruent and ∠IEB1 = ∠IFA1. Since β > γ, A1 lies in the
interior of segment CD and F lies in the interior of A1D. Hence, ∠IFC is acute. Then two
cases are possible depending on the order of points A, C, B1 and E.

A

B C
A1

B1

I

K

D

E

F

M

A

B C
A1

B1

I

K

D

E

F

M

If point E lies between C and B1 then ∠IFC = ∠IEA, hence quadrilateral CEIF is cyclic
and ∠FCE = 180◦ −∠EIF = ∠KID. By (1), in this case we obtain ∠FCE = γ = ∠KID =
β − γ

2
and β = 3γ.

Otherwise, if point E lies between A and B1, quadrilateral CEIF is a deltoid such that
∠IEC = ∠IFC < 90◦. Then we have ∠FCE > 180◦ − ∠EIF = ∠KID. Therefore,

∠FCE = γ > ∠KID =
β − γ

2
and β < 3γ.

Comment 1. In the case when quadrilateral CEIF is a deltoid, one can prove the desired inequality
without using (1). Actually, from ∠IEC = ∠IFC < 90◦ it follows that ∠ADI = 90◦ − ∠EDC <
∠AED − ∠EDC = γ. Since the incircle lies inside triangle ABC, we have AD > 2r (here r is the

inradius), which implies DT < TA and DI < AI; hence
β − γ

2
= ∠IAD < ∠ADI < γ.

Solution 2. We give a different proof for (1). Then the solution can be finished in the same
way as above.

Define points M and P again; it can be proved in the same way that AM is the perpendicular
bisector of KP . Let J be the center of the excircle touching side BC. It is well-known that
points B, C, I, J lie on a circle with center M ; denote this circle by ω1.

Let B′ be the reflection of point B about the angle bisector AM . By the symmetry, B′ is the
second intersection point of circle ω1 and line AC. Triangles PBA and KB′A are symmetrical
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with respect to line AM , therefore ∠KB′A = ∠PBA = 90◦. By the right angles at D and B′,
points K, D, B′, C are concyclic and

AD · AK = AB′ · AC.

From the cyclic quadrilateral IJCB′ we obtain AB′ · AC = AI · AJ as well, therefore

AD · AK = AB′ · AC = AI · AJ

and points I, J , K, D are also concyclic. Denote circle IDKJ by ω2.

A

B
C

I

D

P

M
K

B′

J

N

ω1
ω2

Let N be the point on circle ω2 which is opposite to K. Since ∠NDK = 90◦ = ∠CDK,
point N lies on line BC. Point M , being the center of circle ω1, is the midpoint of segment IJ ,
and KM is perpendicular to IJ . Therefore, line KM is the perpendicular bisector of IJ and
hence it passes through N .

From the cyclic quadrilateral IDKN we obtain

∠KID = ∠KND = 90◦ − ∠DKN = 90◦ − ∠AKM = ∠MAK =
β − γ

2
.

Comment 2. The main difficulty in the solution is finding (1). If someone can guess this fact, he or
she can compute it in a relatively short way.

One possible way is finding and applying the relation AI2 = 2R(ha − 2r), where ha = AD is the
length of the altitude. Using this fact, one can see that triangles AKI and AID′ are similar (here D′

is the point symmetrical to D about T ). Hence, ∠MIK = ∠DD′I = ∠IDD′. The proof can be
finished as in Solution 1.



52

G8. Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle
of triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of
triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E,
and let lines AK and BL meet at F . Prove that points E, I, and F are collinear.

(Poland)

Solution. Let Ω be the circle tangent to segment AB and to rays AD and BC; let J be its
center. We prove that points E and F lie on line IJ .

A BP

K
L

C

D

J

I

F

IA

IB

Ω

ω

ωA

ωB

Denote the incircles of triangles ADP and BCP by ωA and ωB. Let h1 be the homothety
with a negative scale taking ω to Ω. Consider this homothety as the composition of two
homotheties: one taking ω to ωA (with a negative scale and center K), and another one
taking ωA to Ω (with a positive scale and center A). It is known that in such a case the three
centers of homothety are collinear (this theorem is also referred to as the theorem on the three
similitude centers). Hence, the center of h1 lies on line AK. Analogously, it also lies on BL,
so this center is F . Hence, F lies on the line of centers of ω and Ω, i. e. on IJ (if I = J ,
then F = I as well, and the claim is obvious).

Consider quadrilateral APCD and mark the equal segments of tangents to ω and ωA (see the
figure below to the left). Since circles ω and ωA have a common point of tangency with PD,
one can easily see that AD + PC = AP + CD. So, quadrilateral APCD is circumscribed;
analogously, circumscribed is also quadrilateral BCDP . Let ΩA and ΩB respectively be their
incircles.

A

C

D

P

ω

ΩA

ωA

A B

C

D

P

E

I

J

JA

JB

Ω

ω

ΩA

ΩB
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Consider the homothety h2 with a positive scale taking ω to Ω. Consider h2 as the compo-
sition of two homotheties: taking ω to ΩA (with a positive scale and center C), and taking ΩA

to Ω (with a positive scale and center A), respectively. So the center of h2 lies on line AC. By
analogous reasons, it lies also on BD, hence this center is E. Thus, E also lies on the line of
centers IJ , and the claim is proved.

Comment. In both main steps of the solution, there can be several different reasonings for the same
claims. For instance, one can mostly use Desargues’ theorem instead of the three homotheties theorem.
Namely, if IA and IB are the centers of ωA and ωB, then lines IAIB , KL and AB are concurrent (by
the theorem on three similitude centers applied to ω, ωA and ωB). Then Desargues’ theorem, applied
to triangles AIAK and BIBL, yields that the points J = AIA∩BIB, I = IAK∩IBL and F = AK∩BL
are collinear.

For the second step, let JA and JB be the centers of ΩA and ΩB. Then lines JAJB , AB and CD are
concurrent, since they appear to be the two common tangents and the line of centers of ΩA and ΩB .
Applying Desargues’ theorem to triangles AJAC and BJBD, we obtain that the points J = AJA∩BJB ,
I = CJA ∩ DJB and E = AC ∩ BD are collinear.
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Number Theory

N1. Find all pairs (k, n) of positive integers for which 7k − 3n divides k4 + n2.
(Austria)

Answer. (2, 4).

Solution. Suppose that a pair (k, n) satisfies the condition of the problem. Since 7k − 3n is
even, k4 + n2 is also even, hence k and n have the same parity. If k and n are odd, then
k4 +n2 ≡ 1 +1 = 2 (mod 4), while 7k − 3n ≡ 7− 3 ≡ 0 (mod 4), so k4 +n2 cannot be divisible
by 7k − 3n. Hence, both k and n must be even.

Write k = 2a, n = 2b. Then 7k − 3n = 72a − 32b =
7a − 3b

2
· 2(7a + 3b), and both factors are

integers. So 2(7a + 3b)
∣
∣ 7k − 3n and 7k − 3n

∣
∣ k4 + n2 = 2(8a4 + 2b2), hence

7a + 3b ≤ 8a4 + 2b2. (1)

We prove by induction that 8a4 < 7a for a ≥ 4, 2b2 < 3b for b ≥ 1 and 2b2 +9 ≤ 3b for b ≥ 3.
In the initial cases a = 4, b = 1, b = 2 and b = 3 we have 8 · 44 = 2048 < 74 = 2401, 2 < 3,
2 · 22 = 8 < 32 = 9 and 2 · 32 + 9 = 33 = 27, respectively.

If 8a4 < 7a (a ≥ 4) and 2b2 + 9 ≤ 3b (b ≥ 3), then

8(a + 1)4 = 8a4

(
a + 1

a

)4

< 7a

(
5

4

)4

= 7a625

256
< 7a+1 and

2(b + 1)2 + 9 < (2b2 + 9)

(
b + 1

b

)2

≤ 3b

(
4

3

)2

= 3b 16

9
< 3b+1,

as desired.

For a ≥ 4 we obtain 7a + 3b > 8a4 + 2b2 and inequality (1) cannot hold. Hence a ≤ 3, and
three cases are possible.

Case 1: a = 1. Then k = 2 and 8 + 2b2 ≥ 7 + 3b, thus 2b2 + 1 ≥ 3b. This is possible only

if b ≤ 2. If b = 1 then n = 2 and
k4 + n2

7k − 3n
=

24 + 22

72 − 32
=

1

2
, which is not an integer. If b = 2

then n = 4 and
k4 + n2

7k − 3n
=

24 + 42

72 − 34
= −1, so (k, n) = (2, 4) is a solution.

Case 2: a = 2. Then k = 4 and k4 + n2 = 256 + 4b2 ≥ |74 − 3n| = |49− 3b| · (49 + 3b). The
smallest value of the first factor is 22, attained at b = 3, so 128 + 2b2 ≥ 11(49 + 3b), which is
impossible since 3b > 2b2.

Case 3: a = 3. Then k = 6 and k4 + n2 = 1296 + 4b2 ≥ |76 − 3n| = |343 − 3b| · (343 + 3b).
Analogously, |343 − 3b| ≥ 100 and we have 324 + b2 ≥ 25(343 + 3b), which is impossible again.

We find that there exists a unique solution (k, n) = (2, 4).



56

N2. Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such
that b − an

k is divisible by k. Prove that b = An for some integer A.
(Canada)

Solution. Let the prime factorization of b be b = pα1

1 . . . pαs
s , where p1, . . . , ps are distinct primes.

Our goal is to show that all exponents αi are divisible by n, then we can set A = p
α1/n
1 . . . p

αs/n
s .

Apply the condition for k = b2. The number b − an
k is divisible by b2 and hence, for

each 1 ≤ i ≤ s, it is divisible by p2αi

i > pαi

i as well. Therefore

an
k ≡ b ≡ 0 (mod pαi

i )

and
an

k ≡ b 6≡ 0 (mod pαi+1
i ),

which implies that the largest power of pi dividing an
k is pαi

i . Since an
k is a complete nth power,

this implies that αi is divisible by n.

Comment. If n = 8 and b = 16, then for each prime p there exists an integer ap such that b − an
p is

divisible by p. Actually, the congruency x8 − 16 ≡ 0 (mod p) expands as

(x2 − 2)(x2 + 2)(x2 − 2x + 2)(x2 + 2x + 2) ≡ 0 (mod p).

Hence, if −1 is a quadratic residue modulo p, then congruency x2 + 2x + 2 = (x + 1)2 + 1 ≡ 0 has a
solution. Otherwise, one of congruencies x2 ≡ 2 and x2 ≡ −2 has a solution.

Thus, the solution cannot work using only prime values of k.
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N3. Let X be a set of 10 000 integers, none of them is divisible by 47. Prove that there
exists a 2007-element subset Y of X such that a − b + c − d + e is not divisible by 47 for any
a, b, c, d, e ∈ Y .

(Netherlands)

Solution. Call a set M of integers good if 47 6
∣
∣ a − b + c − d + e for any a, b, c, d, e ∈ M .

Consider the set J = {−9,−7,−5,−3,−1, 1, 3, 5, 7, 9}. We claim that J is good. Actually,
for any a, b, c, d, e ∈ J the number a − b + c − d + e is odd and

−45 = (−9) − 9 + (−9) − 9 + (−9) ≤ a − b + c − d + e ≤ 9 − (−9) + 9 − (−9) + 9 = 45.

But there is no odd number divisible by 47 between −45 and 45.
For any k = 1, . . . , 46 consider the set

Ak = {x ∈ X | ∃j ∈ J : kx ≡ j (mod 47)}.

If Ak is not good, then 47
∣
∣ a − b + c − d + e for some a, b, c, d, e ∈ Ak, hence 47

∣
∣ ka − kb +

kc − kd + ke. But set J contains numbers with the same residues modulo 47, so J also is not
good. This is a contradiction; therefore each Ak is a good subset of X.

Then it suffices to prove that there exists a number k such that |Ak| ≥ 2007. Note that
each x ∈ X is contained in exactly 10 sets Ak. Then

46∑

k=1

|Ak| = 10|X| = 100 000,

hence for some value of k we have

|Ak| ≥
100 000

46
> 2173 > 2007.

This completes the proof.

Comment. For the solution, it is essential to find a good set consisting of 10 different residues.
Actually, consider a set X containing almost uniform distribution of the nonzero residues (i. e. each
residue occurs 217 or 218 times). Let Y ⊂ X be a good subset containing 2007 elements. Then the
set K of all residues appearing in Y contains not less than 10 residues, and obviously this set is good.

On the other hand, there is no good set K consisting of 11 different residues. The Cauchy–
Davenport theorem claims that for any sets A, B of residues modulo a prime p,

|A + B| ≥ min{p, |A| + |B| − 1}.

Hence, if |K| ≥ 11, then |K + K| ≥ 21, |K + K + K| ≥ 31 > 47 − |K + K|, hence |K + K + K +
(−K) + (−K)| = 47, and 0 ≡ a + c + e − b − d (mod 47) for some a, b, c, d, e ∈ K.

From the same reasoning, one can see that a good set K containing 10 residues should satisfy
equalities |K + K| = 19 = 2|K| − 1 and |K + K + K| = 28 = |K + K|+ |K| − 1. It can be proved that
in this case set K consists of 10 residues forming an arithmetic progression. As an easy consequence,
one obtains that set K has the form aJ for some nonzero residue a.
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N4. For every integer k ≥ 2, prove that 23k divides the number

(
2k+1

2k

)

−
(

2k

2k−1

)

(1)

but 23k+1 does not.
(Poland)

Solution. We use the notation (2n − 1)!! = 1 · 3 · · · (2n − 1) and (2n)!! = 2 · 4 · · · (2n) = 2nn!
for any positive integer n. Observe that (2n)! = (2n)!! (2n − 1)!! = 2nn! (2n − 1)!!.

For any positive integer n we have

(
4n

2n

)

=
(4n)!

(2n)!2
=

22n(2n)! (4n − 1)!!

(2n)!2
=

22n

(2n)!
(4n − 1)!!,

(
2n

n

)

=
1

(2n)!

(
(2n)!

n!

)2

=
1

(2n)!

(
2n(2n − 1)!!

)2
=

22n

(2n)!
(2n − 1)!!2.

Then expression (1) can be rewritten as follows:

(
2k+1

2k

)

−
(

2k

2k−1

)

=
22k

(2k)!
(2k+1 − 1)!! − 22k

(2k)!
(2k − 1)!!2

=
22k

(2k − 1)!!

(2k)!
·
(

(2k +1)(2k +3) . . . (2k +2k−1)− (2k−1)(2k−3) . . . (2k−2k +1)
)

.

(2)

We compute the exponent of 2 in the prime decomposition of each factor (the first one is a
rational number but not necessarily an integer; it is not important).

First, we show by induction on n that the exponent of 2 in (2n)! is 2n − 1. The base
case n = 1 is trivial. Suppose that (2n)! = 22n−1(2d + 1) for some integer d. Then we have

(2n+1)! = 22n

(2n)! (2n+1 − 1)!! = 22n

22n−1 · (2d + 1)(2n+1 − 1)!! = 22n+1−1 · (2q + 1)

for some integer q. This finishes the induction step.
Hence, the exponent of 2 in the first factor in (2) is 2k − (2k − 1) = 1.

The second factor in (2) can be considered as the value of the polynomial

P (x) = (x + 1)(x + 3) . . . (x + 2k − 1) − (x − 1)(x − 3) . . . (x − 2k + 1). (3)

at x = 2k. Now we collect some information about P (x).
Observe that P (−x) = −P (x), since k ≥ 2. So P (x) is an odd function, and it has nonzero

coefficients only at odd powers of x. Hence P (x) = x3Q(x) + cx, where Q(x) is a polynomial
with integer coefficients.

Compute the exponent of 2 in c. We have

c = 2(2k − 1)!!

2k−1

∑

i=1

1

2i − 1
= (2k − 1)!!

2k−1

∑

i=1

(
1

2i − 1
+

1

2k − 2i + 1

)

= (2k − 1)!!

2k−1

∑

i=1

2k

(2i − 1)(2k − 2i + 1)
= 2k

2k−1

∑

i=1

(2k − 1)!!

(2i − 1)(2k − 2i + 1)
= 2kS.
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For any integer i = 1, . . . , 2k−1, denote by a2i−1 the residue inverse to 2i−1 modulo 2k. Clearly,
when 2i − 1 runs through all odd residues, so does a2i−1, hence

S =

2k−1

∑

i=1

(2k − 1)!!

(2i − 1)(2k − 2i + 1)
≡ −

2k−1

∑

i=1

(2k − 1)!!

(2i − 1)2
≡ −

2k−1

∑

i=1

(2k − 1)!! a2
2i−1

= −(2k − 1)!!

2k−1

∑

i=1

(2i − 1)2 = −(2k − 1)!!
2k−1(22k − 1)

3
(mod 2k).

Therefore, the exponent of 2 in S is k − 1, so c = 2kS = 22k−1(2t + 1) for some integer t.

Finally we obtain that

P (2k) = 23kQ(2k) + 2kc = 23kQ(2k) + 23k−1(2t + 1),

which is divisible exactly by 23k−1. Thus, the exponent of 2 in (2) is 1 + (3k − 1) = 3k.

Comment. The fact that (1) is divisible by 22k is known; but it does not help in solving this problem.
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N5. Find all surjective functions f : N → N such that for every m, n ∈ N and every prime p,
the number f(m + n) is divisible by p if and only if f(m) + f(n) is divisible by p.

(N is the set of all positive integers.)
(Iran)

Answer. f(n) = n.

Solution. Suppose that function f : N → N satisfies the problem conditions.

Lemma. For any prime p and any x, y ∈ N, we have x ≡ y (mod p) if and only if f(x) ≡ f(y)
(mod p). Moreover, p

∣
∣ f(x) if and only if p

∣
∣ x.

Proof. Consider an arbitrary prime p. Since f is surjective, there exists some x ∈ N such
that p

∣
∣ f(x). Let

d = min
{
x ∈ N : p

∣
∣ f(x)

}
.

By induction on k, we obtain that p
∣
∣ f(kd) for all k ∈ N. The base is true since p

∣
∣ f(d).

Moreover, if p
∣
∣ f(kd) and p

∣
∣ f(d) then, by the problem condition, p

∣
∣ f(kd+ d) = f

(
(k +1)d

)

as required.
Suppose that there exists an x ∈ N such that d 6

∣
∣ x but p

∣
∣ f(x). Let

y = min
{
x ∈ N : d 6

∣
∣ x, p

∣
∣ f(x)

}
.

By the choice of d, we have y > d, and y − d is a positive integer not divisible by d.
Then p 6

∣
∣ f(y − d), while p

∣
∣ f(d) and p

∣
∣ f
(
d + (y − d)

)
= f(y). This contradicts the problem

condition. Hence, there is no such x, and

p
∣
∣ f(x) ⇐⇒ d

∣
∣ x. (1)

Take arbitrary x, y ∈ N such that x ≡ y (mod d). We have p
∣
∣ f
(
x + (2xd − x)

)
= f(2xd);

moreover, since d
∣
∣ 2xd+(y−x) = y+(2xd−x), we get p

∣
∣ f
(
y+(2xd−x)

)
. Then by the problem

condition p
∣
∣ f(x) + f(2xd − x), p

∣
∣ f(y) + f(2xd − x), and hence f(x) ≡ −f(2xd − x) ≡ f(y)

(mod p).
On the other hand, assume that f(x) ≡ f(y) (mod p). Again we have p

∣
∣ f(x)+f(2xd−x)

which by our assumption implies that p
∣
∣ f(x)+f(2xd−x)+

(
f(y)−f(x)

)
= f(y)+f(2xd−x).

Hence by the problem condition p
∣
∣ f
(
y+(2xd−x)

)
. Using (1) we get 0 ≡ y+(2xd−x) ≡ y−x

(mod d).
Thus, we have proved that

x ≡ y (mod d) ⇐⇒ f(x) ≡ f(y) (mod p). (2)

We are left to show that p = d: in this case (1) and (2) provide the desired statements.

The numbers 1, 2, . . . , d have distinct residues modulo d. By (2), numbers f(1), f(2), . . . ,
f(d) have distinct residues modulo p; hence there are at least d distinct residues, and p ≥ d.
On the other hand, by the surjectivity of f , there exist x1, . . . , xp ∈ N such that f(xi) = i for
any i = 1, 2, . . . , p. By (2), all these xi’s have distinct residues modulo d. For the same reasons,
d ≥ p. Hence, d = p. �

Now we prove that f(n) = n by induction on n. If n = 1 then, by the Lemma, p 6
∣
∣ f(1) for

any prime p, so f(1) = 1, and the base is established. Suppose that n > 1 and denote k = f(n).
Note that there exists a prime q

∣
∣ n, so by the Lemma q

∣
∣ k and k > 1.

If k > n then k − n + 1 > 1, and there exists a prime p
∣
∣ k − n + 1; we have k ≡ n − 1

(mod p). By the induction hypothesis we have f(n − 1) = n − 1 ≡ k = f(n) (mod p). Now,
by the Lemma we obtain n − 1 ≡ n (mod p) which cannot be true.
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Analogously, if k < n, then f(k−1) = k−1 by induction hypothesis. Moreover, n−k+1 > 1,
so there exists a prime p

∣
∣ n− k + 1 and n ≡ k− 1 (mod p). By the Lemma again, k = f(n) ≡

f(k − 1) = k − 1 (mod p), which is also false. The only remaining case is k = n, so f(n) = n.

Finally, the function f(n) = n obviously satisfies the condition.
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N6. Let k be a positive integer. Prove that the number (4k2 − 1)2 has a positive divisor of
the form 8kn − 1 if and only if k is even.

(United Kingdom)

Solution. The statement follows from the following fact.

Lemma. For arbitrary positive integers x and y, the number 4xy − 1 divides (4x2 − 1)2 if and
only if x = y.

Proof. If x = y then 4xy− 1 = 4x2 − 1 obviously divides (4x2 − 1)2 so it is sufficient to consider
the opposite direction.

Call a pair (x, y) of positive integers bad if 4xy−1 divides (4x2 −1)2 but x 6= y. In order to
prove that bad pairs do not exist, we present two properties of them which provide an infinite
descent.

Property (i). If (x, y) is a bad pair and x < y then there exists a positive integer z < x such
that (x, z) is also bad.

Let r =
(4x2 − 1)2

4xy − 1
. Then

r = −r · (−1) ≡ −r(4xy − 1) = −(4x2 − 1)2 ≡ −1 (mod 4x)

and r = 4xz − 1 with some positive integer z. From x < y we obtain that

4xz − 1 =
(4x2 − 1)2

4xy − 1
< 4x2 − 1

and therefore z < x. By the construction, the number 4xz−1 is a divisor of (4x2−1)2 so (x, z)
is a bad pair.

Property (ii). If (x, y) is a bad pair then (y, x) is also bad.

Since 1 = 12 ≡ (4xy)2 (mod 4xy − 1), we have

(4y2 − 1)2 ≡
(
4y2 − (4xy)2

)2
= 16y4(4x2 − 1)2 ≡ 0 (mod 4xy − 1).

Hence, the number 4xy − 1 divides (4y2 − 1)2 as well.

Now suppose that there exists at least one bad pair. Take a bad pair (x, y) such that 2x + y
attains its smallest possible value. If x < y then property (i) provides a bad pair (x, z)
with z < y and thus 2x+ z < 2x+ y. Otherwise, if y < x, property (ii) yields that pair (y, x) is
also bad while 2y + x < 2x + y. Both cases contradict the assumption that 2x + y is minimal;
the Lemma is proved. �

To prove the problem statement, apply the Lemma for x = k and y = 2n; the num-
ber 8kn − 1 divides (4k2 − 1)2 if and only if k = 2n. Hence, there is no such n if k is odd and
n = k/2 is the only solution if k is even.

Comment. The constant 4 in the Lemma can be replaced with an arbitrary integer greater than 1:
if a > 1 and axy − 1 divides (ax2 − 1)2 then x = y.
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N7. For a prime p and a positive integer n, denote by νp(n) the exponent of p in the prime
factorization of n!. Given a positive integer d and a finite set {p1, . . . , pk} of primes. Show that
there are infinitely many positive integers n such that d

∣
∣ νpi

(n) for all 1 ≤ i ≤ k.
(India)

Solution 1. For arbitrary prime p and positive integer n, denote by ordp(n) the exponent of p
in n. Thus,

νp(n) = ordp(n!) =
n∑

i=1

ordp(i).

Lemma. Let p be a prime number, q be a positive integer, k and r be positive integers such
that pk > r. Then νp(qp

k + r) = νp(qp
k) + νp(r).

Proof. We claim that ordp(qp
k + i) = ordp(i) for all 0 < i < pk. Actually, if d = ordp(i)

then d < k, so qpk + i is divisible by pd, but only the first term is divisible by pd+1; hence the
sum is not.

Using this claim, we obtain

νp(qp
k + r) =

qpk

∑

i=1

ordp(i) +

qpk+r
∑

i=qpk+1

ordp(i) =

qpk

∑

i=1

ordp(i) +

r∑

i=1

ordp(i) = νp(qp
k) + νp(r). �

For any integer a, denote by a its residue modulo d. The addition of residues will also be
performed modulo d, i. e. a+b = a + b. For any positive integer n, let f(n) =

(
f1(n), . . . , fk(n)

)
,

where fi(n) = νpi
(n).

Define the sequence n1 = 1, n`+1 = (p1p2 . . . pk)
n` . We claim that

f(n`1 + n`2 + . . . + n`m
) = f(n`1) + f(n`2) + . . . + f(n`m

)

for any `1 < `2 < . . . < `m. (The addition of k-tuples is componentwise.) The base case m = 1
is trivial.

Suppose that m > 1. By the construction of the sequence, p
n`1

i divides n`2 +. . .+n`m
; clearly,

p
n`1

i > n`1 for all 1 ≤ i ≤ k. Therefore the Lemma can be applied for p = pi, k = r = n`1

and qpk = n`2 + . . . + n`m
to obtain

fi(n`1 + n`2 + . . . + n`m
) = fi(n`1) + fi(n`2 + . . . + n`m

) for all 1 ≤ i ≤ k,

and hence

f(n`1 + n`2 + . . . + n`m
) = f(n`1) + f(n`2 + . . . + n`m

) = f(n`1) + f(n`2) + . . . + f(n`m
)

by the induction hypothesis.

Now consider the values f(n1), f(n2), . . . . There exist finitely many possible values of f .
Hence, there exists an infinite sequence of indices `1 < `2 < . . . such that f(n`1) = f(n`2) = . . .
and thus

f(n`m+1
+ n`m+2

+ . . . + n`m+d
) = f(n`m+1

) + . . . + f(n`m+d
) = d · f(n`1) = (0, . . . , 0)

for all m. We have found infinitely many suitable numbers.
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Solution 2. We use the same Lemma and definition of the function f .
Let S = {f(n) : n ∈ N}. Obviously, set S is finite. For every s ∈ S choose the minimal ns

such that f(ns) = s. Denote N = max
s∈S

ns. Moreover, let g be an integer such that pg
i > N for

each i = 1, 2, . . . , k. Let P = (p1p2 . . . pk)
g.

We claim that
{
f(n) | n ∈ [mP, mP + N ]

}
= S (1)

for every positive integer m. In particular, since (0, . . . , 0) = f(1) ∈ S, it follows that for an
arbitrary m there exists n ∈ [mP, mP + N ] such that f(n) = (0, . . . , 0). So there are infinitely
many suitable numbers.

To prove (1), let ai = fi(mP ). Consider all numbers of the form nm,s = mP + ns with
s = (s1, . . . , sk) ∈ S (clearly, all nm,s belong to [mP, mP +N ]). Since ns ≤ N < pg

i and pg
i

∣
∣ mP ,

we can apply the Lemma for the values p = pi, r = ns, k = g, qpk = mP to obtain

fi(nm,s) = fi(mP ) + fi(ns) = ai + si;

hence for distinct s, t ∈ S we have f(nm,s) 6= f(nm,t).
Thus, the function f attains at least |S| distinct values in [mP, mP + N ]. Since all these

values belong to S, f should attain all possible values in [mP, mP + N ].

Comment. Both solutions can be extended to prove the following statements.
Claim 1. For any K there exist infinitely many n divisible by K, such that d

∣
∣ νpi

(n) for each i.
Claim 2. For any s ∈ S, there exist infinitely many n ∈ N such that f(n) = s.
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Algebra

A1. Find all functions f : (0,∞) → (0,∞) such that

f(p)2 + f(q)2

f(r2) + f(s2)
=

p2 + q2

r2 + s2

for all p, q, r, s > 0 with pq = rs.

Solution. Let f satisfy the given condition. Setting p = q = r = s = 1 yields f(1)2 = f(1) and
hence f(1) = 1. Now take any x > 0 and set p = x, q = 1, r = s =

√
x to obtain

f(x)2 + 1

2f(x)
=

x2 + 1

2x
.

This recasts into

xf(x)2 + x = x2f(x) + f(x),
(
xf(x) − 1

)(
f(x) − x

)
= 0.

And thus,

for every x > 0, either f(x) = x or f(x) =
1

x
. (1)

Obviously, if

f(x) = x for all x > 0 or f(x) =
1

x
for all x > 0 (2)

then the condition of the problem is satisfied. We show that actually these two functions are
the only solutions.

So let us assume that there exists a function f satisfying the requirement, other than
those in (2). Then f(a) 6= a and f(b) 6= 1/b for some a, b > 0. By (1), these values must be
f(a) = 1/a, f(b) = b. Applying now the equation with p = a, q = b, r = s =

√
ab we obtain

(a−2 + b2)/2f(ab) = (a2 + b2)/2ab ; equivalently,

f(ab) =
ab(a−2 + b2)

a2 + b2
. (3)

We know however (see (1)) that f(ab) must be either ab or 1/ab . If f(ab) = ab then by (3)
a−2 + b2 = a2 + b2, so that a = 1. But, as f(1) = 1, this contradicts the relation f(a) 6= a.
Likewise, if f(ab) = 1/ab then (3) gives a2b2(a−2 + b2) = a2 + b2, whence b = 1, in contradiction
to f(b) 6= 1/b . Thus indeed the functions listed in (2) are the only two solutions.
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Comment. The equation has as many as four variables with only one constraint pq = rs, leaving
three degrees of freedom and providing a lot of information. Various substitutions force various useful
properties of the function searched. We sketch one more method to reach conclusion (1); certainly
there are many others.

Noticing that f(1) = 1 and setting, first, p = q = 1, r =
√

x, s = 1/
√

x, and then p = x, q = 1/x,
r = s = 1, we obtain two relations, holding for every x > 0,

f(x) + f

(
1

x

)

= x +
1

x
and f(x)2 + f

(
1

x

)2

= x2 +
1

x2
. (4)

Squaring the first and subtracting the second gives 2f(x)f(1/x) = 2. Subtracting this from the second
relation of (4) leads to

(

f(x) − f

(
1

x

))2

=

(

x − 1

x

)2

or f(x) − f

(
1

x

)

= ±
(

x − 1

x

)

.

The last two alternatives combined with the first equation of (4) imply the two alternatives of (1).
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A2. (a) Prove the inequality

x2

(x − 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

for real numbers x, y, z 6= 1 satisfying the condition xyz = 1.
(b) Show that there are infinitely many triples of rational numbers x, y, z for which this

inequality turns into equality.

Solution 1. (a) We start with the substitution

x

x − 1
= a,

y

y − 1
= b,

z

z − 1
= c, i.e., x =

a

a − 1
, y =

b

b − 1
, z =

c

c − 1
.

The inequality to be proved reads a2 + b2 + c2 ≥ 1. The new variables are subject to the
constraints a, b, c 6= 1 and the following one coming from the condition xyz = 1,

(a − 1)(b − 1)(c − 1) = abc.

This is successively equivalent to

a + b + c − 1 = ab + bc + ca,

2(a + b + c − 1) = (a + b + c)2 − (a2 + b2 + c2),

a2 + b2 + c2 − 2 = (a + b + c)2 − 2(a + b + c),

a2 + b2 + c2 − 1 = (a + b + c − 1)2.

Thus indeed a2 + b2 + c2 ≥ 1, as desired.

(b) From the equation a2 + b2 + c2 − 1 = (a + b + c − 1)2 we see that the proposed inequal-
ity becomes an equality if and only if both sums a2 + b2 + c2 and a + b + c have value 1. The
first of them is equal to (a + b + c)2 − 2(ab + bc + ca). So the instances of equality are described
by the system of two equations

a + b + c = 1, ab + bc + ca = 0

plus the constraint a, b, c 6= 1. Elimination of c leads to a2 + ab + b2 = a + b, which we regard
as a quadratic equation in b,

b2 + (a − 1)b + a(a − 1) = 0,

with discriminant
∆ = (a − 1)2 − 4a(a − 1) = (1 − a)(1 + 3a).

We are looking for rational triples (a, b, c); it will suffice to have a rational such that 1 − a
and 1 + 3a are both squares of rational numbers (then ∆ will be so too). Set a = k/m. We
want m − k and m + 3k to be squares of integers. This is achieved for instance by taking
m = k2 − k + 1 (clearly nonzero); then m − k = (k − 1)2, m + 3k = (k + 1)2. Note that dis-
tinct integers k yield distinct values of a = k/m.

And thus, if k is any integer and m = k2 − k + 1, a = k/m then ∆ = (k2 − 1)2/m2 and the
quadratic equation has rational roots b = (m − k ± k2 ∓ 1)/(2m). Choose e.g. the larger root,

b =
m − k + k2 − 1

2m
=

m + (m − 2)

2m
=

m − 1

m
.
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Computing c from a + b + c = 1 then gives c = (1 − k)/m. The condition a, b, c 6= 1 eliminates
only k = 0 and k = 1. Thus, as k varies over integers greater than 1, we obtain an infinite family
of rational triples (a, b, c)—and coming back to the original variables (x = a/(a − 1) etc.)—an
infinite family of rational triples (x, y, z) with the needed property. (A short calculation shows
that the resulting triples are x = −k/(k − 1)2, y = k − k2, z = (k − 1)/k2; but the proof was
complete without listing them.)

Comment 1. There are many possible variations in handling the equation system a2 + b2 + c2 = 1,
a + b + c = 1 (a, b, c 6= 1) which of course describes a circle in the (a, b, c)-space (with three points
excluded), and finding infinitely many rational points on it.

Also the initial substitution x = a/(a − 1) (etc.) can be successfully replaced by other similar
substitutions, e.g. x = 1 − 1/α (etc.); or x = x′ − 1 (etc.); or 1 − yz = u (etc.)—eventually reducing
the inequality to (· · · )2 ≥ 0, the expression in the parentheses depending on the actual substitution.

Depending on the method chosen, one arrives at various sequences of rational triples (x, y, z)
as needed; let us produce just one more such example: x = (2r − 2)/(r + 1)2, y = (2r + 2)/(r − 1)2,
z = (r2 − 1)/4 where r can be any rational number different from 1 or −1.

Solution 2 (an outline). (a) Without changing variables, just setting z = 1/xy and clearing
fractions, the proposed inequality takes the form

(xy − 1)2
(
x2(y − 1)2 + y2(x − 1)2

)
+ (x − 1)2(y − 1)2 ≥ (x − 1)2(y − 1)2(xy − 1)2.

With the notation p = x + y, q = xy this becomes, after lengthy routine manipulation and a
lot of cancellation

q4 − 6q3 + 2pq2 + 9q2 − 6pq + p2 ≥ 0.

It is not hard to notice that the expression on the left is just (q2 − 3q + p)2, hence nonnegative.
(Without introducing p and q, one is of course led with some more work to the same

expression, just written in terms of x and y; but then it is not that easy to see that it is a
square.)

(b) To have equality, one needs q2 − 3q + p = 0. Note that x and y are the roots of
the quadratic trinomial (in a formal variable t): t2 − pt + q. When q2 − 3q + p = 0, the
discriminant equals

δ = p2 − 4q = (3q − q2)2 − 4q = q(q − 1)2(q − 4).

Now it suffices to have both q and q − 4 squares of rational numbers (then p = 3q − q2 and
√

δ
are also rational, and so are the roots of the trinomial). On setting q = (n/m)2 = 4 + (l/m)2 the
requirement becomes 4m2 + l2 = n2 (with l, m, n being integers). This is just the Pythagorean
equation, known to have infinitely many integer solutions.

Comment 2. Part (a) alone might also be considered as a possible contest problem (in the category
of easy problems).
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A3. Let S ⊆ R be a set of real numbers. We say that a pair (f, g) of functions from S into S
is a Spanish Couple on S, if they satisfy the following conditions:

(i) Both functions are strictly increasing, i.e. f(x) < f(y) and g(x) < g(y) for all x, y ∈ S
with x < y;

(ii) The inequality f(g(g(x))) < g(f(x)) holds for all x ∈ S.

Decide whether there exists a Spanish Couple

(a) on the set S = N of positive integers;

(b) on the set S = {a − 1/b : a, b ∈ N}.

Solution. We show that the answer is NO for part (a), and YES for part (b).

(a) Throughout the solution, we will use the notation gk(x) =

k
︷ ︸︸ ︷

g(g(. . . g(x) . . .)), including
g0(x) = x as well.

Suppose that there exists a Spanish Couple (f, g) on the set N. From property (i) we have
f(x) ≥ x and g(x) ≥ x for all x ∈ N.

We claim that gk(x) ≤ f(x) for all k ≥ 0 and all positive integers x. The proof is done by
induction on k. We already have the base case k = 0 since x ≤ f(x). For the induction step
from k to k + 1, apply the induction hypothesis on g2(x) instead of x, then apply (ii):

g(gk+1(x)) = gk

(
g2(x)

)
≤ f

(
g2(x)

)
< g(f(x)).

Since g is increasing, it follows that gk+1(x) < f(x). The claim is proven.

If g(x) = x for all x ∈ N then f(g(g(x))) = f(x) = g(f(x)), and we have a contradiction
with (ii). Therefore one can choose an x0 ∈ S for which x0 < g(x0). Now consider the sequence
x0, x1, . . . where xk = gk(x0). The sequence is increasing. Indeed, we have x0 < g(x0) = x1,
and xk < xk+1 implies xk+1 = g(xk) < g(xk+1) = xk+2.

Hence, we obtain a strictly increasing sequence x0 < x1 < . . . of positive integers which on
the other hand has an upper bound, namely f(x0). This cannot happen in the set N of positive
integers, thus no Spanish Couple exists on N.

(b) We present a Spanish Couple on the set S = {a − 1/b : a, b ∈ N}.
Let

f(a − 1/b) = a + 1 − 1/b,

g(a − 1/b) = a − 1/(b + 3a).

These functions are clearly increasing. Condition (ii) holds, since

f(g(g(a− 1/b))) = (a + 1) − 1/(b + 2 · 3a) < (a + 1) − 1/(b + 3a+1) = g(f(a − 1/b)).

Comment. Another example of a Spanish couple is f(a − 1/b) = 3a − 1/b, g(a − 1/b) = a − 1/(a+b).
More generally, postulating f(a − 1/b) = h(a) − 1/b, g(a − 1/b) = a − 1/G(a, b) with h increasing
and G increasing in both variables, we get that f ◦ g ◦ g < g ◦ f holds if G

(
a,G(a, b)

)
< G

(
h(a), b

)
.

A search just among linear functions h(a) = Ca, G(a, b) = Aa + Bb results in finding that any in-
tegers A > 0, C > 2 and B = 1 produce a Spanish couple (in the example above, A = 1, C = 3). The
proposer’s example results from taking h(a) = a + 1, G(a, b) = 3a + b.
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A4. For an integer m, denote by t(m) the unique number in {1, 2, 3} such that m + t(m) is a
multiple of 3. A function f : Z → Z satisfies f(−1) = 0, f(0) = 1, f(1) = −1 and

f(2n + m) = f(2n − t(m)) − f(m) for all integers m, n ≥ 0 with 2n > m.

Prove that f(3p) ≥ 0 holds for all integers p ≥ 0.

Solution. The given conditions determine f uniquely on the positive integers. The signs of
f(1), f(2), . . . seem to change quite erratically. However values of the form f(2n − t(m)) are
sufficient to compute directly any functional value. Indeed, let n > 0 have base 2 representation
n = 2a0 +2a1 + · · ·+2ak , a0 > a1 > · · · > ak ≥ 0, and let nj = 2aj +2aj−1 + · · ·+2ak , j = 0, . . . , k.
Repeated applications of the recurrence show that f(n) is an alternating sum of the quantities
f(2aj − t(nj+1)) plus (−1)k+1. (The exact formula is not needed for our proof.)

So we focus attention on the values f(2n−1), f(2n−2) and f(2n−3). Six cases arise; more
specifically,

t(22k−3) = 2, t(22k−2) = 1, t(22k−1) = 3, t(22k+1−3) = 1, t(22k+1−2) = 3, t(22k+1−1) = 2.

Claim. For all integers k ≥ 0 the following equalities hold:

f(22k+1 − 3) = 0, f(22k+1 − 2) = 3k, f(22k+1 − 1) = −3k,

f(22k+2 − 3) = −3k, f(22k+2 − 2) = −3k, f(22k+2 − 1) = 2 · 3k.

Proof. By induction on k. The base k = 0 comes down to checking that f(2) = −1 and
f(3) = 2; the given values f(−1) = 0, f(0) = 1, f(1) = −1 are also needed. Suppose the claim
holds for k− 1. For f(22k+1 − t(m)), the recurrence formula and the induction hypothesis yield

f(22k+1 − 3) = f(22k + (22k − 3)) = f(22k − 2) − f(22k − 3) = −3k−1 + 3k−1 = 0,

f(22k+1 − 2) = f(22k + (22k − 2)) = f(22k − 1) − f(22k − 2) = 2 · 3k−1 + 3k−1 = 3k,

f(22k+1 − 1) = f(22k + (22k − 1)) = f(22k − 3) − f(22k − 1) = −3k−1 − 2 · 3k−1 = −3k.

For f(22k+2 − t(m)) we use the three equalities just established:

f(22k+2 − 3) = f(22k+1 + (22k+1 − 3)) = f(22k+1 − 1) − f(22k+1 − 3) = −3k − 0 = −3k,

f(22k+2 − 2) = f(22k+1 + (22k+1 − 2)) = f(22k+1 − 3) − f(22k − 2) = 0 − 3k = −3k,

f(22k+2 − 1) = f(22k+1 + (22k+1 − 1)) = f(22k+1 − 2) − f(22k+1 − 1) = 3k + 3k = 2 · 3k.

The claim follows.

A closer look at the six cases shows that f(2n − t(m)) ≥ 3(n−1)/2 if 2n − t(m) is divisible
by 3, and f(2n − t(m)) ≤ 0 otherwise. On the other hand, note that 2n − t(m) is divisible by 3
if and only if 2n + m is. Therefore, for all nonnegative integers m and n,

(i) f(2n − t(m)) ≥ 3(n−1)/2 if 2n + m is divisible by 3;

(ii) f(2n − t(m)) ≤ 0 if 2n + m is not divisible by 3.

One more (direct) consequence of the claim is that |f(2n − t(m))| ≤ 2
3
· 3n/2 for all m, n ≥ 0.

The last inequality enables us to find an upper bound for |f(m)| for m less than a given
power of 2. We prove by induction on n that |f(m)| ≤ 3n/2 holds true for all integers m, n ≥ 0
with 2n > m.
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The base n = 0 is clear as f(0) = 1. For the inductive step from n to n + 1, let m and n
satisfy 2n+1 > m. If m < 2n, we are done by the inductive hypothesis. If m ≥ 2n then
m = 2n + k where 2n > k ≥ 0. Now, by |f(2n − t(k))| ≤ 2

3
· 3n/2 and the inductive assumption,

|f(m)| = |f(2n − t(k)) − f(k)| ≤ |f(2n − t(k))| + |f(k)| ≤ 2

3
· 3n/2 + 3n/2 < 3(n+1)/2.

The induction is complete.

We proceed to prove that f(3p) ≥ 0 for all integers p ≥ 0. Since 3p is not a power of 2, its
binary expansion contains at least two summands. Hence one can write 3p = 2a + 2b + c where
a > b and 2b > c ≥ 0. Applying the recurrence formula twice yields

f(3p) = f(2a + 2b + c) = f(2a − t(2b + c)) − f(2b − t(c)) + f(c).

Since 2a + 2b + c is divisible by 3, we have f(2a − t(2b + c)) ≥ 3(a−1)/2 by (i). Since 2b + c is
not divisible by 3, we have f(2b − t(c)) ≤ 0 by (ii). Finally |f(c)| ≤ 3b/2 as 2b > c ≥ 0, so that
f(c) ≥ −3b/2. Therefore f(3p) ≥ 3(a−1)/2 − 3b/2 which is nonnegative because a > b.
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A5. Let a, b, c, d be positive real numbers such that

abcd = 1 and a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
.

Prove that

a + b + c + d <
b

a
+

c

b
+

d

c
+

a

d
.

Solution. We show that if abcd = 1, the sum a + b + c + d cannot exceed a certain weighted

mean of the expressions
a

b
+

b

c
+

c

d
+

d

a
and

b

a
+

c

b
+

d

c
+

a

d
.

By applying the AM-GM inequality to the numbers
a

b
,

a

b
,

b

c
and

a

d
, we obtain

a =
4

√

a4

abcd
=

4

√

a

b
· a

b
· b

c
· a

d
≤ 1

4

(
a

b
+

a

b
+

b

c
+

a

d

)

.

Analogously,

b ≤ 1

4

(
b

c
+

b

c
+

c

d
+

b

a

)

, c ≤ 1

4

(
c

d
+

c

d
+

d

a
+

c

b

)

and d ≤ 1

4

(
d

a
+

d

a
+

a

b
+

d

c

)

.

Summing up these estimates yields

a + b + c + d ≤ 3

4

(
a

b
+

b

c
+

c

d
+

d

a

)

+
1

4

(
b

a
+

c

b
+

d

c
+

a

d

)

.

In particular, if a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
then a + b + c + d <

b

a
+

c

b
+

d

c
+

a

d
.

Comment. The estimate in the above solution was obtained by applying the AM-GM inequality to
each column of the 4 × 4 array

a/b b/c c/d d/a
a/b b/c c/d d/a
b/c c/d d/a a/b
a/d b/a c/b d/c

and adding up the resulting inequalities. The same table yields a stronger bound: If a, b, c, d > 0 and
abcd = 1 then (

a

b
+

b

c
+

c

d
+

d

a

)3 (
b

a
+

c

b
+

d

c
+

a

d

)

≥ (a + b + c + d)4.

It suffices to apply Hölder’s inequality to the sequences in the four rows, with weights 1/4:

(
a

b
+

b

c
+

c

d
+

d

a

)1/4 (
a

b
+

b

c
+

c

d
+

d

a

)1/4 (
b

c
+

c

d
+

d

a
+

a

b

)1/4 (
a

d
+

b

a
+

c

b
+

d

c

)1/4

≥
(

aaba

bbcd

)1/4

+

(
bbcb

ccda

)1/4

+

(
ccdc

ddab

)1/4

+

(
ddad

aabc

)1/4

= a + b + c + d.
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A6. Let f : R → N be a function which satisfies

f

(

x +
1

f(y)

)

= f

(

y +
1

f(x)

)

for all x, y ∈ R. (1)

Prove that there is a positive integer which is not a value of f .

Solution. Suppose that the statement is false and f(R) = N. We prove several properties of
the function f in order to reach a contradiction.

To start with, observe that one can assume f(0) = 1. Indeed, let a ∈ R be such that
f(a) = 1, and consider the function g(x) = f(x + a). By substituting x + a and y + a for x
and y in (1), we have

g

(

x +
1

g(y)

)

= f

(

x + a +
1

f(y + a)

)

= f

(

y + a +
1

f(x + a)

)

= g

(

y +
1

g(x)

)

.

So g satisfies the functional equation (1), with the additional property g(0) = 1. Also, g and f
have the same set of values: g(R) = f(R) = N. Henceforth we assume f(0) = 1.

Claim 1. For an arbitrary fixed c ∈ R we have

{

f

(

c +
1

n

)

: n ∈ N

}

= N.

Proof. Equation (1) and f(R) = N imply

f(R) =

{

f

(

x +
1

f(c)

)

: x ∈ R

}

=

{

f

(

c +
1

f(x)

)

: x ∈ R

}

⊂
{

f

(

c +
1

n

)

: n ∈ N

}

⊂ f(R).

The claim follows.

We will use Claim 1 in the special cases c = 0 and c = 1/3:
{

f

(
1

n

)

: n ∈ N

}

=

{

f

(
1

3
+

1

n

)

: n ∈ N

}

= N. (2)

Claim 2. If f(u) = f(v) for some u, v ∈ R then f(u+q) = f(v+q) for all nonnegative rational q.
Furthermore, if f(q) = 1 for some nonnegative rational q then f(kq) = 1 for all k ∈ N.

Proof. For all x ∈ R we have by (1)

f

(

u +
1

f(x)

)

= f

(

x +
1

f(u)

)

= f

(

x +
1

f(v)

)

= f

(

v +
1

f(x)

)

.

Since f(x) attains all positive integer values, this yields f(u + 1/n) = f(v + 1/n) for all n ∈ N.
Let q = k/n be a positive rational number. Then k repetitions of the last step yield

f(u + q) = f

(

u +
k

n

)

= f

(

v +
k

n

)

= f(v + q).

Now let f(q) = 1 for some nonnegative rational q, and let k ∈ N. As f(0) = 1, the previous
conclusion yields successively f(q) = f(2q), f(2q) = f(3q), . . . , f ((k − 1)q) = f(kq), as needed.

Claim 3. The equality f(q) = f(q + 1) holds for all nonnegative rational q.

Proof. Let m be a positive integer such that f(1/m) = 1. Such an m exists by (2). Applying
the second statement of Claim 2 with q = 1/m and k = m yields f(1) = 1.

Given that f(0) = f(1) = 1, the first statement of Claim 2 implies f(q) = f(q + 1) for all
nonnegative rational q.
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Claim 4. The equality f

(
1

n

)

= n holds for every n ∈ N.

Proof. For a nonnegative rational q we set x = q, y = 0 in (1) and use Claim 3 to obtain

f

(
1

f(q)

)

= f

(

q +
1

f(0)

)

= f(q + 1) = f(q).

By (2), for each n ∈ N there exists a k ∈ N such that f(1/k) = n. Applying the last equation
with q = 1/k, we have

n = f

(
1

k

)

= f

(
1

f(1/k)

)

= f

(
1

n

)

.

Now we are ready to obtain a contradiction. Let n ∈ N be such that f(1/3 + 1/n) = 1.
Such an n exists by (2). Let 1/3 + 1/n = s/t, where s, t ∈ N are coprime. Observe that t > 1
as 1/3 + 1/n is not an integer. Choose k, l ∈ N so that that ks − lt = 1.

Because f(0) = f(s/t) = 1, Claim 2 implies f(ks/t) = 1. Now f(ks/t) = f(1/t + l); on the
other hand f(1/t + l) = f(1/t) by l successive applications of Claim 3. Finally, f(1/t) = t by
Claim 4, leading to the impossible t = 1. The solution is complete.
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A7. Prove that for any four positive real numbers a, b, c, d the inequality

(a − b)(a − c)

a + b + c
+

(b − c)(b − d)

b + c + d
+

(c − d)(c − a)

c + d + a
+

(d − a)(d − b)

d + a + b
≥ 0

holds. Determine all cases of equality.

Solution 1. Denote the four terms by

A =
(a − b)(a − c)

a + b + c
, B =

(b − c)(b − d)

b + c + d
, C =

(c − d)(c − a)

c + d + a
, D =

(d − a)(d − b)

d + a + b
.

The expression 2A splits into two summands as follows,

2A = A′ + A′′ where A′ =
(a − c)2

a + b + c
, A′′ =

(a − c)(a − 2b + c)

a + b + c
;

this is easily verified. We analogously represent 2B = B′ + B′′, 2C = C ′ + C ′′, 2B = D′ + D′′

and examine each of the sums A′ + B′ + C ′ + D′ and A′′ + B′′ + C ′′ + D′′ separately.
Write s = a + b + c + d ; the denominators become s − d, s − a, s − b, s − c. By the Cauchy-

Schwarz inequality,

( |a − c|√
s − d

·
√

s − d +
|b − d|√

s − a
·
√

s − a +
|c − a|√

s − b
·
√

s − b +
|d − b|√

s − c
·
√

s − c

)2

≤
(

(a − c)2

s − d
+

(b − d)2

s − a
+

(c − a)2

s − b
+

(d − b)2

s − c

)
(
4s − s

)
= 3s

(
A′ + B′ + C ′ + D′).

Hence

A′ + B′ + C ′ + D′ ≥
(
2|a − c| + 2|b − d|

)2

3s
≥ 16 · |a − c| · |b − d|

3s
. (1)

Next we estimate the absolute value of the other sum. We couple A′′ with C ′′ to obtain

A′′ + C ′′ =
(a − c)(a + c − 2b)

s − d
+

(c − a)(c + a − 2d)

s − b

=
(a − c)(a + c − 2b)(s − b) + (c − a)(c + a − 2d)(s − d)

(s − d)(s − b)

=
(a − c)

(
−2b(s − b) − b(a + c) + 2d(s − d) + d(a + c)

)

s(a + c) + bd

=
3(a − c)(d − b)(a + c)

M
, with M = s(a + c) + bd.

Hence by cyclic shift

B′′ + D′′ =
3(b − d)(a − c)(b + d)

N
, with N = s(b + d) + ca.

Thus

A′′ + B′′ + C ′′ + D′′ = 3(a − c)(b − d)

(
b + d

N
− a + c

M

)

=
3(a − c)(b − d)W

MN
(2)

where
W = (b + d)M − (a + c)N = bd(b + d) − ac(a + c). (3)
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Note that
MN >

(
ac(a + c) + bd(b + d)

)
s ≥ |W | · s. (4)

Now (2) and (4) yield

|A′′ + B′′ + C ′′ + D′′| ≤ 3 · |a − c| · |b − d|
s

. (5)

Combined with (1) this results in

2(A + B + C + D) = (A′ + B′ + C ′ + D′) + (A′′ + B′′ + C ′′ + D′′)

≥ 16 · |a − c| · |b − d|
3s

− 3 · |a − c| · |b − d|
s

=
7 · |a − c| · |b − d|
3(a + b + c + d)

≥ 0.

This is the required inequality. From the last line we see that equality can be achieved only if
either a = c or b = d. Since we also need equality in (1), this implies that actually a = c and
b = d must hold simultaneously, which is obviously also a sufficient condition.

Solution 2. We keep the notations A, B, C, D, s, and also M , N , W from the preceding
solution; the definitions of M , N , W and relations (3), (4) in that solution did not depend on
the foregoing considerations. Starting from

2A =
(a − c)2 + 3(a + c)(a − c)

a + b + c
− 2a + 2c,

we get

2(A + C) = (a − c)2

(
1

s − d
+

1

s − b

)

+ 3(a + c)(a − c)

(
1

s − d
− 1

s − b

)

= (a − c)2 2s − b − d

M
+ 3(a + c)(a − c) · d − b

M
=

p(a − c)2 − 3(a + c)(a − c)(b − d)

M

where p = 2s − b − d = s + a + c. Similarly, writing q = s + b + d we have

2(B + D) =
q(b − d)2 − 3(b + d)(b − d)(c − a)

N
;

specific grouping of terms in the numerators has its aim. Note that pq > 2s2. By adding the
fractions expressing 2(A + C) and 2(B + D),

2(A + B + C + D) =
p(a − c)2

M
+

3(a − c)(b − d)W

MN
+

q(b − d)2

N

with W defined by (3).

Substitution x = (a − c)/M , y = (b − d)/N brings the required inequality to the form

2(A + B + C + D) = Mpx2 + 3Wxy + Nqy2 ≥ 0. (6)

It will be enough to verify that the discriminant ∆ = 9W 2 − 4MNpq of the quadratic trinomial
Mpt2 + 3Wt + Nq is negative; on setting t = x/y one then gets (6). The first inequality in (4)
together with pq > 2s2 imply 4MNpq > 8s3

(
ac(a + c) + bd(b + d)

)
. Since

(a + c)s3 > (a + c)4 ≥ 4ac(a + c)2 and likewise (b + d)s3 > 4bd(b + d)2,

the estimate continues as follows,

4MNpq > 8
(
4(ac)2(a + c)2 + 4(bd)2(b + d)2

)
> 32

(
bd(b + d) − ac(a + c)

)2
= 32W 2 ≥ 9W 2.

Thus indeed ∆ < 0. The desired inequality (6) hence results. It becomes an equality if and
only if x = y = 0; equivalently, if and only if a = c and simultaneously b = d.
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Comment. The two solutions presented above do not differ significantly; large portions overlap. The
properties of the number W turn out to be crucial in both approaches. The Cauchy-Schwarz inequality,
applied in the first solution, is avoided in the second, which requires no knowledge beyond quadratic
trinomials.

The estimates in the proof of ∆ < 0 in the second solution seem to be very wasteful. However,
they come close to sharp when the terms in one of the pairs (a, c), (b, d) are equal and much bigger
than those in the other pair.

In attempts to prove the inequality by just considering the six cases of arrangement of the numbers
a, b, c, d on the real line, one soon discovers that the cases which create real trouble are precisely
those in which a and c are both greater or both smaller than b and d.

Solution 3.

(a − b)(a − c)(a + b + d)(a + c + d)(b + c + d) =

=
(

(a − b)(a + b + d)
)(

(a − c)(a + c + d)
)

(b + c + d) =

= (a2 + ad − b2 − bd)(a2 + ad − c2 − cd)(b + c + d) =

=
(
a4+2a3d−a2b2−a2bd−a2c2−a2cd+a2d2−ab2d−abd2−ac2d−acd2+b2c2+b2cd+bc2d+bcd2

)
(b+c+d) =

= a4b + a4c + a4d + (b3c2 + a2d3) − a2c3 + (2a3d2 − b3a2 + c3b2)+

+(b3cd − c3da − d3ab) + (2a3bd + c3db − d3ac) + (2a3cd − b3da + d3bc)

+(−a2b2c + 3b2c2d − 2ac2d2) + (−2a2b2d + 2bc2d2) + (−a2bc2 − 2a2c2d − 2ab2d2 + 2b2cd2)+

+(−2a2bcd − ab2cd − abc2d − 2abcd2)

Introducing the notation Sxyzw =
∑

cyc

axbyczdw, one can write

∑

cyc

(a − b)(a − c)(a + b + d)(a + c + d)(b + c + d) =

= S4100 + S4010 + S4001 + 2S3200 − S3020 + 2S3002 − S3110 + 2S3101 + 2S3011 − 3S2120 − 6S2111 =

+

(

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120

)

+

+

(

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111

)

+

+
9

16

(

S3200 − S2210 − S2201 + S3002

)

+
23

16

(

S3200 − 2S3101 + S3002

)

+
39

8

(

S3101 − S2111

)

,

where the expressions

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120 =

∑

cyc

(

a4b + bc4 +
1

2
a3bc +

1

2
abc3 − 3a2bc2

)

,

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111 =

∑

cyc

a2c

(

a − c − 3

4
b +

3

4
d

)2

,

S3200 − S2210 − S2201 + S3002 =
∑

cyc

b2(a3 − a2c − ac2 + c3) =
∑

cyc

b2(a + c)(a − c)2,

S3200 − 2S3101 + S3002 =
∑

cyc

a3(b − d)2 and S3101 − S2111 =
1

3

∑

cyc

bd(2a3 + c3 − 3a2c)

are all nonnegative.
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Combinatorics

C1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and
have positive length. Such a rectangle will be called a box . Two boxes intersect if they have a
common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

Solution. The maximum number of such boxes is 6. One example is shown in the figure.

B2B1

B4
B3

B6

B5

Now we show that 6 is the maximum. Suppose that boxes B1, . . . , Bn satisfy the condition.
Let the closed intervals Ik and Jk be the projections of Bk onto the x- and y-axis, for 1 ≤ k ≤ n.

If Bi and Bj intersect, with a common point (x, y), then x ∈ Ii ∩ Ij and y ∈ Ji ∩ Jj. So the
intersections Ii ∩ Ij and Ji ∩Jj are nonempty. Conversely, if x ∈ Ii ∩ Ij and y ∈ Ji∩Jj for some
real numbers x, y, then (x, y) is a common point of Bi and Bj. Putting it around, Bi and Bj

are disjoint if and only if their projections on at least one coordinate axis are disjoint.
For brevity we call two boxes or intervals adjacent if their indices differ by 1 modulo n, and

nonadjacent otherwise.
The adjacent boxes Bk and Bk+1 do not intersect for each k = 1, . . . , n. Hence (Ik, Ik+1)

or (Jk, Jk+1) is a pair of disjoint intervals, 1 ≤ k ≤ n. So there are at least n pairs of disjoint
intervals among (I1, I2), . . . , (In−1, In), (In, I1); (J1, J2), . . . , (Jn−1, Jn), (Jn, J1).

Next, every two nonadjacent boxes intersect, hence their projections on both axes intersect,
too. Then the claim below shows that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are
disjoint, and the same holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1). Consequently n ≤ 3 + 3 = 6,
as stated. Thus we are left with the claim and its justification.

Claim. Let ∆1, ∆2, . . . , ∆n be intervals on a straight line such that every two nonadjacent
intervals intersect. Then ∆k and ∆k+1 are disjoint for at most three values of k = 1, . . . , n.

Proof. Denote ∆k = [ak, bk], 1 ≤ k ≤ n. Let α = max(a1, . . . , an) be the rightmost among
the left endpoints of ∆1, . . . , ∆n, and let β = min(b1, . . . , bn) be the leftmost among their right
endpoints. Assume that α = a2 without loss of generality.

If α ≤ β then ai ≤ α ≤ β ≤ bi for all i. Every ∆i contains α, and thus no disjoint pair
(∆i, ∆i+1) exists.



22

If β < α then β = bi for some i such that ai < bi = β < α = a2 < b2, hence ∆2 and ∆i are
disjoint. Now ∆2 intersects all remaining intervals except possibly ∆1 and ∆3, so ∆2 and ∆i

can be disjoint only if i = 1 or i = 3. Suppose by symmetry that i = 3; then β = b3. Since
each of the intervals ∆4, . . . , ∆n intersects ∆2, we have ai ≤ α ≤ bi for i = 4, . . . , n. Therefore
α ∈ ∆4 ∩ . . . ∩ ∆n, in particular ∆4 ∩ . . . ∩ ∆n 6= ∅. Similarly, ∆5, . . . , ∆n, ∆1 all intersect ∆3,
so that ∆5 ∩ . . . ∩ ∆n ∩ ∆1 6= ∅ as β ∈ ∆5 ∩ . . . ∩ ∆n ∩ ∆1. This leaves (∆1, ∆2), (∆2, ∆3) and
(∆3, ∆4) as the only candidates for disjoint interval pairs, as desired.

Comment.The problem is a two-dimensional version of the original proposal which is included below.
The extreme shortage of easy and appropriate submissions forced the Problem Selection Committee
to shortlist a simplified variant. The same one-dimensional Claim is used in both versions.

Original proposal. We consider parallelepipeds in three-dimensional space, with edges par-
allel to the coordinate axes and of positive length. Such a parallelepiped will be called a box .
Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

The maximum number of such boxes is 9. Suppose that boxes B1, . . . , Bn satisfy the con-
dition. Let the closed intervals Ik, Jk and Kk be the projections of box Bk onto the x-, y-
and z-axis, respectively, for 1 ≤ k ≤ n. As before, Bi and Bj are disjoint if and only if their
projections on at least one coordinate axis are disjoint.

We call again two boxes or intervals adjacent if their indices differ by 1 modulo n, and
nonadjacent otherwise.

The adjacent boxes Bi and Bi+1 do not intersect for each i = 1, . . . , n. Hence at least one of
the pairs (Ii, Ii+1), (Ji, Ji+1) and (Ki, Ki+1) is a pair of disjoint intervals. So there are at least
n pairs of disjoint intervals among (Ii, Ii+1), (Ji, Ji+1), (Ki, Ki+1), 1 ≤ i ≤ n.

Next, every two nonadjacent boxes intersect, hence their projections on the three axes
intersect, too. Referring to the Claim in the solution of the two-dimensional version, we
cocnclude that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are disjoint; the same
holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1) and (K1, K2), . . . , (Kn−1, Kn), (Kn, K1). Consequently
n ≤ 3 + 3 + 3 = 9, as stated.

For n = 9, the desired system of boxes exists. Consider the intervals in the following table:

i Ii Ji Ki

1 [1, 4] [1, 6] [3, 6]
2 [5, 6] [1, 6] [1, 6]
3 [1, 2] [1, 6] [1, 6]
4 [3, 6] [1, 4] [1, 6]
5 [1, 6] [5, 6] [1, 6]
6 [1, 6] [1, 2] [1, 6]
7 [1, 6] [3, 6] [1, 4]
8 [1, 6] [1, 6] [5, 6]
9 [1, 6] [1, 6] [1, 2]

We have I1 ∩ I2 = I2 ∩ I3 = I3 ∩ I4 = ∅, J4 ∩ J5 = J5 ∩ J6 = J6 ∩ J7 = ∅, and finally
K7 ∩ K8 = K8 ∩ K9 = K9 ∩ K1 = ∅. The intervals in each column intersect in all other cases.
It follows that the boxes Bi = Ii × Ji × Ki, i = 1, . . . , 9, have the stated property.
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C2. For every positive integer n determine the number of permutations (a1, a2, . . . , an) of the
set {1, 2, . . . , n} with the following property:

2(a1 + a2 + · · ·+ ak) is divisible by k for k = 1, 2, . . . , n.

Solution. For each n let Fn be the number of permutations of {1, 2, . . . , n} with the required
property; call them nice. For n = 1, 2, 3 every permutation is nice, so F1 = 1, F2 = 2, F3 = 6.

Take an n > 3 and consider any nice permutation (a1, a2, . . . , an) of {1, 2, . . . , n}. Then
n − 1 must be a divisor of the number

2(a1 + a2 + · · · + an−1) = 2
(
(1 + 2 + · · · + n) − an

)

= n(n + 1) − 2an = (n + 2)(n − 1) + (2 − 2an).

So 2an − 2 must be divisible by n − 1, hence equal to 0 or n − 1 or 2n − 2. This means that

an = 1 or an =
n + 1

2
or an = n.

Suppose that an = (n + 1)/2. Since the permutation is nice, taking k = n − 2 we get that n − 2
has to be a divisor of

2(a1 + a2 + · · · + an−2) = 2
(
(1 + 2 + · · · + n) − an − an−1

)

= n(n + 1) − (n + 1) − 2an−1 = (n + 2)(n − 2) + (3 − 2an−1).

So 2an−1 − 3 should be divisible by n − 2, hence equal to 0 or n − 2 or 2n − 4. Obviously 0 and
2n − 4 are excluded because 2an−1 − 3 is odd. The remaining possibility (2an−1 − 3 = n − 2)
leads to an−1 = (n + 1)/2 = an, which also cannot hold. This eliminates (n + 1)/2 as a possible
value of an. Consequently an = 1 or an = n.

If an = n then (a1, a2, . . . , an−1) is a nice permutation of {1, 2, . . . , n−1}. There are Fn−1

such permutations. Attaching n to any one of them at the end creates a nice permutation of
{1, 2, . . . , n}.

If an = 1 then (a1−1, a2−1, . . . , an−1−1) is a permutation of {1, 2, . . . , n−1}. It is also nice
because the number

2
(
(a1−1) + · · ·+ (ak−1)

)
= 2(a1 + · · ·+ ak) − 2k

is divisible by k, for any k ≤ n − 1. And again, any one of the Fn−1 nice permutations
(b1, b2, . . . , bn−1) of {1, 2, . . . , n−1} gives rise to a nice permutation of {1, 2, . . . , n} whose last
term is 1, namely (b1+1, b2+1, . . . , bn−1+1, 1).

The bijective correspondences established in both cases show that there are Fn−1 nice per-
mutations of {1, 2, . . . , n} with the last term 1 and also Fn−1 nice permutations of {1, 2, . . . , n}
with the last term n. Hence follows the recurrence Fn = 2Fn−1. With the base value F3 = 6
this gives the outcome formula Fn = 3 · 2n−2 for n ≥ 3.
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C3. In the coordinate plane consider the set S of all points with integer coordinates. For a
positive integer k, two distinct points A, B ∈ S will be called k-friends if there is a point C ∈ S
such that the area of the triangle ABC is equal to k. A set T ⊂ S will be called a k-clique
if every two points in T are k-friends. Find the least positive integer k for which there exists
a k-clique with more than 200 elements.

Solution. To begin, let us describe those points B ∈ S which are k-friends of the point (0, 0).
By definition, B = (u, v) satisfies this condition if and only if there is a point C = (x, y) ∈ S
such that 1

2
|uy − vx| = k. (This is a well-known formula expressing the area of triangle ABC

when A is the origin.)
To say that there exist integers x, y for which |uy − vx| = 2k, is equivalent to saying that the

greatest common divisor of u and v is also a divisor of 2k. Summing up, a point B = (u, v) ∈ S
is a k-friend of (0, 0) if and only if gcd(u, v) divides 2k.

Translation by a vector with integer coordinates does not affect k-friendship; if two points are
k-friends, so are their translates. It follows that two points A, B ∈ S, A = (s, t), B = (u, v), are
k-friends if and only if the point (u − s, v − t) is a k-friend of (0, 0); i.e., if gcd(u − s, v − t)|2k.

Let n be a positive integer which does not divide 2k. We claim that a k-clique cannot have
more than n2 elements.

Indeed, all points (x, y) ∈ S can be divided into n2 classes determined by the remainders
that x and y leave in division by n. If a set T has more than n2 elements, some two points
A, B ∈ T , A = (s, t), B = (u, v), necessarily fall into the same class. This means that n|u − s
and n|v − t. Hence n|d where d = gcd(u − s, v − t). And since n does not divide 2k, also d
does not divide 2k. Thus A and B are not k-friends and the set T is not a k-clique.

Now let M(k) be the least positive integer which does not divide 2k. Write M(k) = m for
the moment and consider the set T of all points (x, y) with 0 ≤ x, y < m. There are m2 of
them. If A = (s, t), B = (u, v) are two distinct points in T then both differences |u − s|, |v − t|
are integers less than m and at least one of them is positive. By the definition of m, every
positive integer less than m divides 2k. Therefore u − s (if nonzero) divides 2k, and the same
is true of v − t. So 2k is divisible by gcd(u − s, v − t), meaning that A, B are k-friends. Thus
T is a k-clique.

It follows that the maximum size of a k-clique is M(k)2, with M(k) defined as above. We
are looking for the minimum k such that M(k)2 > 200.

By the definition of M(k), 2k is divisible by the numbers 1, 2, . . . , M(k)−1, but not by
M(k) itself. If M(k)2 > 200 then M(k) ≥ 15. Trying to hit M(k) = 15 we get a contradiction
immediately (2k would have to be divisible by 3 and 5, but not by 15).

So let us try M(k) = 16. Then 2k is divisible by the numbers 1, 2, . . . , 15, hence also by
their least common multiple L, but not by 16. And since L is not a multiple of 16, we infer
that k = L/2 is the least k with M(k) = 16.

Finally, observe that if M(k) ≥ 17 then 2k must be divisible by the least common multiple
of 1, 2, . . . , 16, which is equal to 2L. Then 2k ≥ 2L, yielding k > L/2.

In conclusion, the least k with the required property is equal to L/2 = 180180.
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C4. Let n and k be fixed positive integers of the same parity, k ≥ n. We are given 2n lamps
numbered 1 through 2n; each of them can be on or off. At the beginning all lamps are off. We
consider sequences of k steps. At each step one of the lamps is switched (from off to on or from
on to off).

Let N be the number of k-step sequences ending in the state: lamps 1, . . . , n on, lamps
n+1, . . . , 2n off.

Let M be the number of k-step sequences leading to the same state and not touching lamps
n+1, . . . , 2n at all.

Find the ratio N/M .

Solution. A sequence of k switches ending in the state as described in the problem statement
(lamps 1, . . . , n on, lamps n+1, . . . , 2n off ) will be called an admissible process. If, moreover,
the process does not touch the lamps n+1, . . . , 2n, it will be called restricted. So there are N
admissible processes, among which M are restricted.

In every admissible process, restricted or not, each one of the lamps 1, . . . , n goes from off

to on, so it is switched an odd number of times; and each one of the lamps n+1, . . . , 2n goes
from off to off, so it is switched an even number of times.

Notice that M > 0; i.e., restricted admissible processes do exist (it suffices to switch each
one of the lamps 1, . . . , n just once and then choose one of them and switch it k − n times,
which by hypothesis is an even number).

Consider any restricted admissible process p. Take any lamp `, 1 ≤ ` ≤ n, and suppose
that it was switched k` times. As noticed, k` must be odd. Select arbitrarily an even number
of these k` switches and replace each of them by the switch of lamp n+`. This can be done
in 2k`−1 ways (because a k`-element set has 2k`−1 subsets of even cardinality). Notice that
k1 + · · · + kn = k.

These actions are independent, in the sense that the action involving lamp ` does not
affect the action involving any other lamp. So there are 2k1−1 · 2k2−1 · · · 2kn−1 = 2k−n ways of
combining these actions. In any of these combinations, each one of the lamps n+1, . . . , 2n gets
switched an even number of times and each one of the lamps 1, . . . , n remains switched an odd
number of times, so the final state is the same as that resulting from the original process p.

This shows that every restricted admissible process p can be modified in 2k−n ways, giving
rise to 2k−n distinct admissible processes (with all lamps allowed).

Now we show that every admissible process q can be achieved in that way. Indeed, it is
enough to replace every switch of a lamp with a label ` > n that occurs in q by the switch of
the corresponding lamp `−n; in the resulting process p the lamps n+1, . . . , 2n are not involved.

Switches of each lamp with a label ` > n had occurred in q an even number of times. So
the performed replacements have affected each lamp with a label ` ≤ n also an even number of
times; hence in the overall effect the final state of each lamp has remained the same. This means
that the resulting process p is admissible—and clearly restricted, as the lamps n+1, . . . , 2n are
not involved in it any more.

If we now take process p and reverse all these replacements, then we obtain process q.
These reversed replacements are nothing else than the modifications described in the foregoing
paragraphs.

Thus there is a one–to–(2k−n) correspondence between the M restricted admissible processes
and the total of N admissible processes. Therefore N/M = 2k−n.
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C5. Let S = {x1, x2, . . . , xk+`} be a (k + `)-element set of real numbers contained in the
interval [0, 1]; k and ` are positive integers. A k-element subset A ⊂ S is called nice if

∣
∣
∣
∣
∣
∣

1

k

∑

xi∈A

xi −
1

`

∑

xj∈S\A
xj

∣
∣
∣
∣
∣
∣

≤ k + `

2k`
.

Prove that the number of nice subsets is at least
2

k + `

(
k + `

k

)

.

Solution. For a k-element subset A ⊂ S, let f(A) =
1

k

∑

xi∈A

xi −
1

`

∑

xj∈S\A
xj . Denote

k + `

2k`
= d.

By definition a subset A is nice if |f(A)| ≤ d.

To each permutation (y1, y2, . . . , yk+`) of the set S = {x1, x2, . . . , xk+`} we assign k+` subsets
of S with k elements each, namely Ai = {yi, yi+1, . . . , yi+k−1}, i = 1, 2, . . . , k + `. Indices are
taken modulo k + ` here and henceforth. In other words, if y1, y2, . . . , yk+` are arranged around
a circle in this order, the sets in question are all possible blocks of k consecutive elements.

Claim. At least two nice sets are assigned to every permutation of S.

Proof. Adjacent sets Ai and Ai+1 differ only by the elements yi and yi+k, i = 1, . . . , k + `. By
the definition of f , and because yi, yi+k ∈ [0, 1],

|f(Ai+1) − f(Ai)| =

∣
∣
∣
∣

(
1

k
+

1

`

)

(yi+k − yi)

∣
∣
∣
∣
≤ 1

k
+

1

`
= 2d.

Each element yi ∈ S belongs to exactly k of the sets A1, . . . , Ak+`. Hence in k of the
expressions f(A1), . . . , f(Ak+`) the coefficient of yi is 1/k; in the remaining ` expressions, its
coefficient is −1/`. So the contribution of yi to the sum of all f(Ai) equals k · 1/k− ` · 1/` = 0.
Since this holds for all i, it follows that f(A1) + · · ·+ f(Ak+`) = 0.

If f(Ap) = min f(Ai), f(Aq) = max f(Ai), we obtain in particular f(Ap) ≤ 0, f(Aq) ≥ 0.
Let p < q (the case p > q is analogous; and the claim is true for p = q as f(Ai) = 0 for all i).

We are ready to prove that at least two of the sets A1, . . . , Ak+` are nice. The interval [−d, d]
has length 2d, and we saw that adjacent numbers in the circular arrangement f(A1), . . . , f(Ak+`)
differ by at most 2d. Suppose that f(Ap) < −d and f(Aq) > d. Then one of the numbers
f(Ap+1), . . . , f(Aq−1) lies in [−d, d], and also one of the numbers f(Aq+1), . . . , f(Ap−1) lies there.
Consequently, one of the sets Ap+1, . . . , Aq−1 is nice, as well as one of the sets Aq+1, . . . , Ap−1.
If −d ≤ f(Ap) and f(Aq) ≤ d then Ap and Aq are nice.

Let now f(Ap) < −d and f(Aq) ≤ d. Then f(Ap) + f(Aq) < 0, and since
∑

f(Ai) = 0,
there is an r 6= q such that f(Ar) > 0. We have 0 < f(Ar) ≤ f(Aq) ≤ d, so the sets f(Ar)
and f(Aq) are nice. The only case remaining, −d ≤ f(Ap) and d < f(Aq), is analogous.

Apply the claim to each of the (k + `)! permutations of S = {x1, x2, . . . , xk+`}. This gives
at least 2(k + `)! nice sets, counted with repetitions: each nice set is counted as many times as
there are permutations to which it is assigned.

On the other hand, each k-element set A ⊂ S is assigned to exactly (k+`) k! `! permutations.
Indeed, such a permutation (y1, y2, . . . , yk+`) is determined by three independent choices: an in-
dex i ∈ {1, 2, . . . , k+`} such that A = {yi, yi+1, . . . , yi+k−1}, a permutation (yi, yi+1, . . . , yi+k−1)
of the set A, and a permutation (yi+k, yi+k+1, . . . , yi−1) of the set S \ A.

In summary, there are at least
2(k + `)!

(k + `) k! `!
=

2

k + `

(
k + `

k

)

nice sets.
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C6. For n ≥ 2, let S1, S2, . . . , S2n be 2n subsets of A = {1, 2, 3, . . . , 2n+1} that satisfy the
following property: There do not exist indices a and b with a < b and elements x, y, z ∈ A with
x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Prove that at least one of the sets S1, S2, . . . , S2n

contains no more than 4n elements.

Solution 1. We prove that there exists a set Sa with at most 3n + 1 elements.
Given a k ∈ {1, . . . , n}, we say that an element z ∈ A is k-good to a set Sa if z ∈ Sa and

Sa contains two other elements x and y with x < y < z such that z − y < 2k and z − x ≥ 2k.
Also, z ∈ A will be called good to Sa if z is k-good to Sa for some k = 1, . . . , n.

We claim that each z ∈ A can be k-good to at most one set Sa. Indeed, suppose on the
contrary that z is k-good simultaneously to Sa and Sb, with a < b. Then there exist ya ∈ Sa,
ya < z, and xb ∈ Sb, xb < z, such that z − ya < 2k and z − xb ≥ 2k. On the other hand, since
z ∈ Sa∩Sb, by the condition of the problem there is no element of Sa strictly between xb and z.
Hence ya ≤ xb, implying z− ya ≥ z−xb. However this contradicts z− ya < 2k and z−xb ≥ 2k.
The claim follows.

As a consequence, a fixed z ∈ A can be good to at most n of the given sets (no more than
one of them for each k = 1, . . . , n).

Furthermore, let u1 < u2 < · · · < um < · · · < up be all elements of a fixed set Sa that are
not good to Sa. We prove that um − u1 > 2(um−1 − u1) for all m ≥ 3.

Indeed, assume that um − u1 ≤ 2(um−1 − u1) holds for some m ≥ 3. This inequality can be
written as 2(um − um−1) ≤ um − u1. Take the unique k such that 2k ≤ um − u1 < 2k+1. Then
2(um − um−1) ≤ um − u1 < 2k+1 yields um − um−1 < 2k. However the elements z = um, x = u1,
y = um−1 of Sa then satisfy z − y < 2k and z − x ≥ 2k, so that z = um is k-good to Sa.

Thus each term of the sequence u2 −u1, u3 −u1, . . . , up −u1 is more than twice the previous
one. Hence up − u1 > 2p−1(u2 − u1) ≥ 2p−1. But up ∈ {1, 2, 3, . . . , 2n+1}, so that up ≤ 2n+1.
This yields p − 1 ≤ n, i. e. p ≤ n + 1.

In other words, each set Sa contains at most n + 1 elements that are not good to it.
To summarize the conclusions, mark with red all elements in the sets Sa that are good to

the respective set, and with blue the ones that are not good. Then the total number of red
elements, counting multiplicities, is at most n · 2n+1 (each z ∈ A can be marked red in at
most n sets). The total number of blue elements is at most (n + 1)2n (each set Sa contains
at most n + 1 blue elements). Therefore the sum of cardinalities of S1, S2, . . . , S2n does not
exceed (3n + 1)2n. By averaging, the smallest set has at most 3n + 1 elements.

Solution 2. We show that one of the sets Sa has at most 2n + 1 elements. In the sequel | · |
denotes the cardinality of a (finite) set.

Claim. For n ≥ 2, suppose that k subsets S1, . . . , Sk of {1, 2, . . . , 2n} (not necessarily different)
satisfy the condition of the problem. Then

k∑

i=1

(|Si| − n) ≤ (2n − 1)2n−2.

Proof. Observe that if the sets Si (1 ≤ i ≤ k) satisfy the condition then so do their arbitrary
subsets Ti (1 ≤ i ≤ k). The condition also holds for the sets t + Si = {t + x | x ∈ Si} where t
is arbitrary.

Note also that a set may occur more than once among S1, . . . , Sk only if its cardinality is
less than 3, in which case its contribution to the sum

∑k
i=1(|Si| − n) is nonpositive (as n ≥ 2).

The proof is by induction on n. In the base case n = 2 we have subsets Si of {1, 2, 3, 4}.
Only the ones of cardinality 3 and 4 need to be considered by the remark above; each one of



28

them occurs at most once among S1, . . . , Sk. If Si = {1, 2, 3, 4} for some i then no Sj is a

3-element subset in view of the condition, hence
∑k

i=1(|Si| − 2) ≤ 2. By the condition again,
it is impossible that Si = {1, 3, 4} and Sj = {2, 3, 4} for some i, j. So if |Si| ≤ 3 for all i then
at most 3 summands |Si| − 2 are positive, corresponding to 3-element subsets. This implies
∑k

i=1(|Si| − 2) ≤ 3, therefore the conclusion is true for n = 2.
Suppose that the claim holds for some n ≥ 2, and let the sets S1, . . . , Sk ⊆ {1, 2, . . . , 2n+1}

satisfy the given property. Denote Ui = Si ∩ {1, 2, . . . , 2n}, Vi = Si ∩ {2n + 1, . . . , 2n+1}. Let

I = {i | 1 ≤ i ≤ k, |Ui| 6= 0}, J = {1, . . . , k} \ I.

The sets Sj with j ∈ J are all contained in {2n + 1, . . . , 2n+1}, so the induction hypothesis
applies to their translates −2n +Sj which have the same cardinalities. Consequently, this gives
∑

j∈J(|Sj| − n) ≤ (2n − 1)2n−2, so that

∑

j∈J

(|Sj | − (n + 1)) ≤
∑

j∈J

(|Sj| − n) ≤ (2n − 1)2n−2. (1)

For i ∈ I, denote by vi the least element of Vi. Observe that if Va and Vb intersect, with a < b,
a, b ∈ I, then va is their unique common element. Indeed, let z ∈ Va ∩ Vb ⊆ Sa ∩ Sb and let m
be the least element of Sb. Since b ∈ I, we have m ≤ 2n. By the condition, there is no element
of Sa strictly between m ≤ 2n and z > 2n, which implies z = va.

It follows that if the element vi is removed from each Vi, a family of pairwise disjoint sets
Wi = Vi \ {vi} is obtained, i ∈ I (we assume Wi = ∅ if Vi = ∅). As Wi ⊆ {2n + 1, . . . , 2n+1} for
all i, we infer that

∑

i∈I |Wi| ≤ 2n. Therefore
∑

i∈I(|Vi| − 1) ≤
∑

i∈I |Wi| ≤ 2n.
On the other hand, the induction hypothesis applies directly to the sets Ui, i ∈ I, so that

∑

i∈I(|Ui| − n) ≤ (2n − 1)2n−2. In summary,

∑

i∈I

(|Si| − (n + 1)) =
∑

i∈I

(|Ui| − n) +
∑

i∈I

(|Vi| − 1) ≤ (2n − 1)2n−2 + 2n. (2)

The estimates (1) and (2) are sufficient to complete the inductive step:

k∑

i=1

(|Si| − (n + 1)) =
∑

i∈I

(|Si| − (n + 1)) +
∑

j∈J

(|Sj| − (n + 1))

≤ (2n − 1)2n−2 + 2n + (2n − 1)2n−2 = (2n + 1)2n−1.

Returning to the problem, consider k = 2n subsets S1, S2, . . . , S2n of {1, 2, 3, . . . , 2n+1}. If
they satisfy the given condition, the claim implies

∑2n

i=1(|Si| − (n + 1)) ≤ (2n + 1)2n−1. By
averaging again, we see that the smallest set has at most 2n + 1 elements.

Comment. It can happen that each set Si has cardinality at least n + 1. Here is an example by the
proposer.

For i = 1, . . . , 2n, let Si = {i + 2k | 0 ≤ k ≤ n}. Then |Si| = n + 1 for all i. Suppose that there
exist a < b and x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Hence z = a + 2k = b + 2l for some k > l.
Since y ∈ Sa and y < z, we have y ≤ a + 2k−1. So the element x ∈ Sb satisfies

x < y ≤ a + 2k−1 = z − 2k−1 ≤ z − 2l = b.

However the least element of Sb is b + 1, a contradiction.



Geometry

G1. In an acute-angled triangle ABC, point H is the orthocentre and A0, B0, C0 are the
midpoints of the sides BC, CA, AB, respectively. Consider three circles passing through
H : ωa around A0, ωb around B0 and ωc around C0. The circle ωa intersects the line BC at
A1 and A2; ωb intersects CA at B1 and B2; ωc intersects AB at C1 and C2. Show that the
points A1, A2, B1, B2, C1, C2 lie on a circle.

Solution 1. The perpendicular bisectors of the segments A1A2, B1B2, C1C2 are also the
perpendicular bisectors of BC, CA, AB. So they meet at O, the circumcentre of ABC. Thus
O is the only point that can possibly be the centre of the desired circle.

From the right triangle OA0A1 we get

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2. (1)

Let K be the midpoint of AH and let L be the midpoint of CH . Since A0 and B0 are the
midpoints of BC and CA, we see that A0L‖BH and B0L‖AH . Thus the segments A0L and B0L
are perpendicular to AC and BC, hence parallel to OB0 and OA0, respectively. Consequently
OA0LB0 is a parallelogram, so that OA0 and B0L are equal and parallel. Also, the midline B0L
of triangle AHC is equal and parallel to AK and KH .

It follows that AKA0O and HA0OK are parallelograms. The first one gives A0K = OA = R,
where R is the circumradius of ABC. From the second one we obtain

2(OA2
0 + A0H

2) = OH2 + A0K
2 = OH2 + R2. (2)

(In a parallelogram, the sum of squares of the diagonals equals the sum of squares of the sides).
From (1) and (2) we get OA2

1 = (OH2 + R2)/2. By symmetry, the same holds for the
distances OA2, OB1, OB2, OC1 and OC2. Thus A1, A2, B1, B2, C1, C2 all lie on a circle with
centre at O and radius (OH2 + R2)/2.

A

K

B A0 C

H

A1

B0

L

O
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Solution 2. We are going to show again that the circumcentre O is equidistant from the six
points in question.

Let A′ be the second intersection point of ωb and ωc. The line B0C0, which is the line of
centers of circles ωb and ωc, is a midline in triangle ABC, parallel to BC and perpendicular
to the altitude AH . The points A′ and H are symmetric with respect to the line of centers.
Therefore A′ lies on the line AH .

From the two circles ωb and ωc we obtain AC1 · AC2 = AA′ · AH = AB1 · AB2. So the
quadrilateral B1B2C1C2 is cyclic. The perpendicular bisectors of the sides B1B2 and C1C2

meet at O. Hence O is the circumcentre of B1B2C1C2 and so OB1 = OB2 = OC1 = OC2.
Analogous arguments yield OA1 = OA2 = OB1 = OB2 and OA1 = OA2 = OC1 = OC2.

Thus A1, A2, B1, B2, C1, C2 lie on a circle centred at O.

C1
A′

ωc

A

A2

B1

O
C2

CB

B2

ωb

A1

H

C0 B0

A0

Comment. The problem can be solved without much difficulty in many ways by calculation, using
trigonometry, coordinate geometry or complex numbers. As an example we present a short proof using
vectors.

Solution 3. Let again O and R be the circumcentre and circumradius. Consider the vectors

−→
OA = a,

−−→
OB = b,

−→
OC = c, where a2 = b2 = c2 = R2.

It is well known that
−−→
OH = a + b + c. Accordingly,

−−→
A0H =

−−→
OH −−−→

OA0 = (a + b + c) − b + c

2
=

2a + b + c

2
,

and

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2 =

(
b + c

2

)2

+

(
2a + b + c

2

)2

=
1

4
(b2 + 2bc + c2) +

1

4
(4a2 + 4ab + 4ac + b2 + 2bc + c2) = 2R2 + (ab + ac + bc);

here ab, bc, etc. denote dot products of vectors. We get the same for the distances OA2, OB1,
OB2, OC1 and OC2.
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G2. Given trapezoid ABCD with parallel sides AB and CD, assume that there exist points
E on line BC outside segment BC, and F inside segment AD, such that ∠DAE = ∠CBF .
Denote by I the point of intersection of CD and EF , and by J the point of intersection of AB
and EF . Let K be the midpoint of segment EF ; assume it does not lie on line AB.

Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle
of CDJ .

Solution. Assume that the disposition of points is as in the diagram.
Since ∠EBF = 180◦ − ∠CBF = 180◦ − ∠EAF by hypothesis, the quadrilateral AEBF is

cyclic. Hence AJ · JB = FJ · JE. In view of this equality, I belongs to the circumcircle
of ABK if and only if IJ · JK = FJ · JE. Expressing IJ = IF + FJ , JE = FE − FJ ,
and JK = 1

2
FE − FJ , we find that I belongs to the circumcircle of ABK if and only if

FJ =
IF · FE

2IF + FE
.

Since AEBF is cyclic and AB, CD are parallel, ∠FEC = ∠FAB = 180◦ − ∠CDF . Then
CDFE is also cyclic, yielding ID · IC = IF · IE. It follows that K belongs to the circumcircle
of CDJ if and only if IJ · IK = IF · IE. Expressing IJ = IF + FJ , IK = IF + 1

2
FE, and

IE = IF + FE, we find that K is on the circumcircle of CDJ if and only if

FJ =
IF · FE

2IF + FE
.

The conclusion follows.
E

I C

K

J

D

F

BA

Comment. While the figure shows B inside segment CE, it is possible that C is inside segment BE.
Consequently, I would be inside segment EF and J outside segment EF . The position of point K on
line EF with respect to points I, J may also vary.

Some case may require that an angle ϕ be replaced by 180◦ − ϕ, and in computing distances, a
sum may need to become a difference. All these cases can be covered by the proposed solution if it is
clearly stated that signed distances and angles are used.
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G3. Let ABCD be a convex quadrilateral and let P and Q be points in ABCD such that
PQDA and QPBC are cyclic quadrilaterals. Suppose that there exists a point E on the line
segment PQ such that ∠PAE = ∠QDE and ∠PBE = ∠QCE. Show that the quadrilateral
ABCD is cyclic.

Solution 1. Let F be the point on the line AD such that EF‖PA. By hypothesis, the quadri-
lateral PQDA is cyclic. So if F lies between A and D then ∠EFD = ∠PAD = 180◦ − ∠EQD;
the points F and Q are on distinct sides of the line DE and we infer that EFDQ is a
cyclic quadrilateral. And if D lies between A and F then a similar argument shows that
∠EFD = ∠EQD; but now the points F and Q lie on the same side of DE, so that EDFQ is
a cyclic quadrilateral.

In either case we obtain the equality ∠EFQ = ∠EDQ = ∠PAE which implies that FQ‖AE.
So the triangles EFQ and PAE are either homothetic or parallel-congruent. More specifically,
triangle EFQ is the image of PAE under the mapping f which carries the points P , E respec-
tively to E, Q and is either a homothety or translation by a vector. Note that f is uniquely
determined by these conditions and the position of the points P , E, Q alone.

Let now G be the point on the line BC such that EG‖PB. The same reasoning as above
applies to points B, C in place of A, D, implying that the triangle EGQ is the image of PBE
under the same mapping f . So f sends the four points A, P, B, E respectively to F, E, G, Q.

If PE 6= QE, so that f is a homothety with a centre X, then the lines AF , PE, BG—i.e. the
lines AD, PQ, BC—are concurrent at X. And since PQDA and QPBC are cyclic quadri-
laterals, the equalities XA · XD = XP · XQ = XB · XC hold, showing that the quadrilateral
ABCD is cyclic.

Finally, if PE = QE, so that f is a translation, then AD‖PQ‖BC. Thus PQDA and
QPBC are isosceles trapezoids. Then also ABCD is an isosceles trapezoid, hence a cyclic
quadrilateral.

D

F

P E

A

Q

Y

X

B
G

C

Solution 2. Here is another way to reach the conclusion that the lines AD, BC and PQ are
either concurrent or parallel. From the cyclic quadrilateral PQDA we get

∠PAD = 180◦ − ∠PQD = ∠QDE + ∠QED = ∠PAE + ∠QED.
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Hence ∠QED = ∠PAD − ∠PAE = ∠EAD. This in view of the tangent-chord theorem means
that the circumcircle of triangle EAD is tangent to the line PQ at E. Analogously, the
circumcircle of triangle EBC is tangent to PQ at E.

Suppose that the line AD intersects PQ at X. Since XE is tangent to the circle (EAD),
XE2 = XA · XD. Also, XA · XD = XP · XQ because P, Q, D, A lie on a circle. Therefore
XE2 = XP · XQ.

It is not hard to see that this equation determines the position of the point X on the line
PQ uniquely. Thus, if BC also cuts PQ, say at Y , then the analogous equation for Y yields
X = Y , meaning that the three lines indeed concur. In this case, as well as in the case where
AD‖PQ‖BC, the concluding argument is the same as in the first solution.

It remains to eliminate the possibility that e.g. AD meets PQ at X while BC‖PQ. Indeed,
QPBC would then be an isosceles trapezoid and the angle equality ∠PBE = ∠QCE would
force that E is the midpoint of PQ. So the length of XE, which is the geometric mean of the
lengths of XP and XQ, should also be their arithmetic mean—impossible, as XP 6= XQ. The
proof is now complete.

Comment. After reaching the conclusion that the circles (EDA) and (EBC) are tangent to PQ one
may continue as follows. Denote the circles (PQDA), (EDA), (EBC), (QPBC) by ω1, ω2, ω3, ω4

respectively. Let `ij be the radical axis of the pair (ωi, ωj) for i < j. As is well-known, the lines
`12, `13, `23 concur, possibly at infinity (let this be the meaning of the word concur in this comment).
So do the lines `12, `14, `24. Note however that `23 and `14 both coincide with the line PQ. Hence the
pair `12, PQ is in both triples; thus the four lines `12, `13, `24 and PQ are concurrent.

Similarly, `13, `14, `34 concur, `23, `24, `34 concur, and since `14 = `23 = PQ, the four lines
`13, `24, `34 and PQ are concurrent. The lines `13 and `24 are present in both quadruples, there-
fore all the lines `ij are concurrent. Hence the result.
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G4. In an acute triangle ABC segments BE and CF are altitudes. Two circles passing
through the points A and F are tangent to the line BC at the points P and Q so that B lies
between C and Q. Prove that the lines PE and QF intersect on the circumcircle of triangle
AEF .

Solution 1. To approach the desired result we need some information about the slopes of the
lines PE and QF ; this information is provided by formulas (1) and (2) which we derive below.

The tangents BP and BQ to the two circles passing through A and F are equal, as
BP 2 = BA · BF = BQ2. Consider the altitude AD of triangle ABC and its orthocentre H .
From the cyclic quadrilaterals CDFA and CDHE we get BA · BF = BC · BD = BE · BH.
Thus BP 2 = BE · BH, or BP/BH = BE/BP , implying that the triangles BPH and BEP
are similar. Hence

∠BPE = ∠BHP. (1)

The point P lies between D and C; this follows from the equality BP 2 = BC · BD. In view
of this equality, and because BP = BQ,

DP · DQ = (BP − BD) · (BP + BD) = BP 2 − BD2 = BD · (BC − BD) = BD · DC.

Also AD · DH = BD · DC, as is seen from the similar triangles BDH and ADC. Combining
these equalities we obtain AD · DH = DP · DQ. Therefore DH/DP = DQ/DA, showing that
the triangles HDP and QDA are similar. Hence ∠HPD = ∠QAD, which can be rewritten as
∠BPH = ∠BAD + ∠BAQ. And since BQ is tangent to the circumcircle of triangle FAQ,

∠BQF = ∠BAQ = ∠BPH − ∠BAD. (2)

From (1) and (2) we deduce

∠BPE + ∠BQF = (∠BHP + ∠BPH) − ∠BAD = (180◦ − ∠PBH) − ∠BAD

= (90◦ + ∠BCA) − (90◦ − ∠ABC) = ∠BCA + ∠ABC = 180◦ − ∠CAB.

Thus ∠BPE + ∠BQF < 180◦, which means that the rays PE and QF meet. Let S be the
point of intersection. Then ∠PSQ = 180◦ − (∠BPE + ∠BQF ) = ∠CAB = ∠EAF .

If S lies between P and E then ∠PSQ = 180◦ − ∠ESF ; and if E lies between P and S
then ∠PSQ = ∠ESF . In either case the equality ∠PSQ = ∠EAF which we have obtained
means that S lies on the circumcircle of triangle AEF .

A

B P C

S

H

F
E

DQ
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Solution 2. Let H be the orthocentre of triangle ABC and let ω be the circle with diameter
AH , passing through E and F . Introduce the points of intersection of ω with the following lines
emanating from P : PA ∩ ω = {A, U}, PH ∩ ω = {H, V }, PE ∩ ω = {E, S}. The altitudes of
triangle AHP are contained in the lines AV , HU , BC, meeting at its orthocentre Q′.

By Pascal’s theorem applied to the (tied) hexagon AESFHV , the points AE ∩ FH = C,
ES ∩ HV = P and SF ∩ V A are collinear, so FS passes through Q′.

Denote by ω1 and ω2 the circles with diameters BC and PQ′, respectively. Let D be the
foot of the altitude from A in triangle ABC. Suppose that AD meets the circles ω1 and ω2 at
the respective points K and L.

Since H is the orthocentre of ABC, the triangles BDH and ADC are similar, and so
DA · DH = DB · DC = DK2; the last equality holds because BKC is a right triangle. Since
H is the orthocentre also in triangle AQ′P , we analogously have DL2 = DA · DH. Therefore
DK = DL and K = L.

Also, BD · BC = BA · BF , from the similar triangles ABD, CBF . In the right triangle
BKC we have BK2 = BD · BC. Hence, and because BA · BF = BP 2 = BQ2 (by the defini-
tion of P and Q in the problem statement), we obtain BK = BP = BQ. It follows that B is
the centre of ω2 and hence Q′ = Q. So the lines PE and QF meet at the point S lying on the
circumcircle of triangle AEF .

A

Q′ B P C

V

UT

E
F

K

ω1

H

S

ω2

ω

D

Comment 1. If T is the point defined by PF ∩ ω = {F, T}, Pascal’s theorem for the hexagon
AFTEHV will analogously lead to the conclusion that the line ET goes through Q′. In other words,
the lines PF and QE also concur on ω.

Comment 2. As is known from algebraic geometry, the points of the circle ω form a commutative
groups with the operation defined as follows. Choose any point 0 ∈ ω (to be the neutral element of
the group) and a line ` exterior to the circle. For X,Y ∈ ω, draw the line from the point XY ∩ `
through 0 to its second intersection with ω and define this point to be X + Y .

In our solution we have chosen H to be the neutral element in this group and line BC to be `. The
fact that the lines AV , HU , ET , FS are concurrent can be deduced from the identities A + A = 0,
F = E + A, V = U + A = S + E = T + F .

Comment 3. The problem was submitted in the following equivalent formulation:
Let BE and CF be altitudes of an acute triangle ABC. We choose P on the side BC and Q

on the extension of CB beyond B such that BQ2 = BP 2 = BF · AB. If QF and PE intersect at S,
prove that ESAF is cyclic.
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G5. Let k and n be integers with 0 ≤ k ≤ n− 2. Consider a set L of n lines in the plane such
that no two of them are parallel and no three have a common point. Denote by I the set of
intersection points of lines in L. Let O be a point in the plane not lying on any line of L.

A point X ∈ I is colored red if the open line segment OX intersects at most k lines in L.
Prove that I contains at least 1

2
(k + 1)(k + 2) red points.

Solution. There are at least 1
2
(k + 1)(k + 2) points in the intersection set I in view of the

condition n ≥ k + 2.
For each point P ∈ I, define its order as the number of lines that intersect the open line

segment OP . By definition, P is red if its order is at most k. Note that there is always at
least one point X ∈ I of order 0. Indeed, the lines in L divide the plane into regions, bounded
or not, and O belongs to one of them. Clearly any corner of this region is a point of I with
order 0.

Claim. Suppose that two points P, Q ∈ I lie on the same line of L, and no other line of L
intersects the open line segment PQ. Then the orders of P and Q differ by at most 1.

Proof. Let P and Q have orders p and q, respectively, with p ≥ q. Consider triangle OPQ.
Now p equals the number of lines in L that intersect the interior of side OP . None of these
lines intersects the interior of side PQ, and at most one can pass through Q. All remaining
lines must intersect the interior of side OQ, implying that q ≥ p − 1. The conclusion follows.

We prove the main result by induction on k. The base k = 0 is clear since there is a point
of order 0 which is red. Assuming the statement true for k − 1, we pass on to the inductive
step. Select a point P ∈ I of order 0, and consider one of the lines ` ∈ L that pass through P .
There are n− 1 intersection points on `, one of which is P . Out of the remaining n− 2 points,
the k closest to P have orders not exceeding k by the Claim. It follows that there are at least
k + 1 red points on `.

Let us now consider the situation with ` removed (together with all intersection points
it contains). By hypothesis of induction, there are at least 1

2
k(k + 1) points of order not

exceeding k − 1 in the resulting configuration. Restoring ` back produces at most one new
intersection point on each line segment joining any of these points to O, so their order is at
most k in the original configuration. The total number of points with order not exceeding k is
therefore at least (k + 1) + 1

2
k(k + 1) = 1

2
(k + 1)(k + 2). This completes the proof.

Comment. The steps of the proof can be performed in reverse order to obtain a configuration of n
lines such that equality holds simultaneously for all 0 ≤ k ≤ n− 2. Such a set of lines is illustrated in
the Figure.
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G6. There is given a convex quadrilateral ABCD. Prove that there exists a point P inside
the quadrilateral such that

∠PAB + ∠PDC = ∠PBC + ∠PAD = ∠PCD + ∠PBA = ∠PDA + ∠PCB = 90◦ (1)

if and only if the diagonals AC and BD are perpendicular.

Solution 1. For a point P in ABCD which satisfies (1), let K, L, M, N be the feet of per-
pendiculars from P to lines AB, BC, CD, DA, respectively. Note that K, L, M, N are interior
to the sides as all angles in (1) are acute. The cyclic quadrilaterals AKPN and DNPM give

∠PAB + ∠PDC = ∠PNK + ∠PNM = ∠KNM.

Analogously, ∠PBC + ∠PAD = ∠LKN and ∠PCD + ∠PBA = ∠MLK . Hence the equal-
ities (1) imply ∠KNM = ∠LKN = ∠MLK = 90◦, so that KLMN is a rectangle. The
converse also holds true, provided that K, L, M, N are interior to sides AB, BC, CD, DA.

(i) Suppose that there exists a point P in ABCD such that KLMN is a rectangle. We show
that AC and BD are parallel to the respective sides of KLMN .

Let OA and OC be the circumcentres of the cyclic quadrilaterals AKPN and CMPL. Line
OAOC is the common perpendicular bisector of LM and KN , therefore OAOC is parallel to KL
and MN . On the other hand, OAOC is the midline in the triangle ACP that is parallel to AC.
Therefore the diagonal AC is parallel to the sides KL and MN of the rectangle. Likewise, BD
is parallel to KN and LM . Hence AC and BD are perpendicular.

OC

A

K

B

L

C

M

P

D

N

OA

UA UC

R

VC VA

(ii) Suppose that AC and BD are perpendicular and meet at R. If ABCD is a rhombus, P
can be chosen to be its centre. So assume that ABCD is not a rhombus, and let BR < DR
without loss of generality.

Denote by UA and UC the circumcentres of the triangles ABD and CDB, respectively. Let
AVA and CVC be the diameters through A and C of the two circumcircles. Since AR is an
altitude in triangle ADB, lines AC and AVA are isogonal conjugates, i. e. ∠DAVA = ∠BAC.
Now BR < DR implies that ray AUA lies in ∠DAC. Similarly, ray CUC lies in ∠DCA. Both
diameters AVA and CVC intersect BD as the angles at B and D of both triangles are acute.
Also UAUC is parallel to AC as it is the perpendicular bisector of BD. Hence VAVC is parallel
to AC, too. We infer that AVA and CVC intersect at a point P inside triangle ACD, hence
inside ABCD.
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Construct points K, L, M, N, OA and OC in the same way as in the introduction. It follows
from the previous paragraph that K, L, M, N are interior to the respective sides. Now OAOC

is a midline in triangle ACP again. Therefore lines AC, OAOC and UAUC are parallel.
The cyclic quadrilateral AKPN yields ∠NKP = ∠NAP . Since ∠NAP = ∠DAUA =

∠BAC, as specified above, we obtain ∠NKP = ∠BAC. Because PK is perpendicular to AB,
it follows that NK is perpendicular to AC, hence parallel to BD. Likewise, LM is parallel
to BD.

Consider the two homotheties with centres A and C which transform triangles ABD and
CDB into triangles AKN and CML, respectively. The images of points UA and UC are OA and
OC, respectively. Since UAUC and OAOC are parallel to AC, the two ratios of homothety are
the same, equal to λ = AN/AD = AK/AB = AOA/AUA = COC/CUC = CM/CD = CL/CB.
It is now straightforward that DN/DA = DM/DC = BK/BA = BL/BC = 1−λ. Hence KL
and MN are parallel to AC, implying that KLMN is a rectangle and completing the proof.

OC

A

K

B

L

C

M

P

D

N

OA

UA UC

R

VC VA

Solution 2. For a point P distinct from A, B, C, D, let circles (APD) and (BPC) inter-
sect again at Q (Q = P if the circles are tangent). Next, let circles (AQB) and (CQD)
intersect again at R. We show that if P lies in ABCD and satisfies (1) then AC and BD
intersect at R and are perpendicular; the converse is also true. It is convenient to use directed
angles. Let ](UV, XY ) denote the angle of counterclockwise rotation that makes line UV
parallel to line XY . Recall that four noncollinear points U, V, X, Y are concyclic if and only if
](UX, V X) = ](UY, V Y ).

The definitions of points P , Q and R imply

](AR, BR) = ](AQ, BQ) = ](AQ, PQ) + ](PQ, BQ) = ](AD, PD) + ](PC, BC),

](CR, DR) = ](CQ, DQ) = ](CQ, PQ) + ](PQ, DQ) = ](CB, PB) + ](PA, DA),

](BR, CR) = ](BR, RQ) + ](RQ, CR) = ](BA, AQ) + ](DQ, CD)

= ](BA, AP ) + ](AP, AQ) + ](DQ, DP ) + ](DP, CD)

= ](BA, AP ) + ](DP, CD).

Observe that the whole construction is reversible. One may start with point R, define Q as the
second intersection of circles (ARB) and (CRD), and then define P as the second intersection
of circles (AQD) and (BQC). The equalities above will still hold true.
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Assume in addition that P is interior to ABCD. Then

](AD, PD) = ∠PDA, ](PC, BC) = ∠PCB, ](CB, PB) = ∠PBC, ](PA, DA) = ∠PAD,

](BA, AP ) = ∠PAB, ](DP, CD) = ∠PDC.

(i) Suppose that P lies in ABCD and satisfies (1). Then ](AR, BR) = ∠PDA+∠PCB = 90◦

and similarly ](BR, CR) = ](CR, DR) = 90◦. It follows that R is the common point of
lines AC and BD, and that these lines are perpendicular.
(ii) Suppose that AC and BD are perpendicular and intersect at R. We show that the point P
defined by the reverse construction (starting with R and ending with P ) lies in ABCD. This
is enough to finish the solution, because then the angle equalities above will imply (1).

One can assume that Q, the second common point of circles (ABR) and (CDR), lies
in ∠ARD. Then in fact Q lies in triangle ADR as angles AQR and DQR are obtuse. Hence
∠AQD is obtuse, too, so that B and C are outside circle (ADQ) (∠ABD and ∠ACD are
acute).

Now ∠CAB+∠CDB = ∠BQR+∠CQR = ∠CQB implies ∠CAB < ∠CQB and ∠CDB <
∠CQB. Hence A and D are outside circle (BCQ). In conclusion, the second common point P
of circles (ADQ) and (BCQ) lies on their arcs ADQ and BCQ.

We can assume that P lies in ∠CQD. Since

∠QPC + ∠QPD = (180◦ − ∠QBC) + (180◦ − ∠QAD) =

= 360◦ − (∠RBC + ∠QBR) − (∠RAD − ∠QAR) = 360◦ − ∠RBC − ∠RAD > 180◦,

point P lies in triangle CDQ, and hence in ABCD. The proof is complete.

B

C

D

A

Q

R

P
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G7. Let ABCD be a convex quadrilateral with AB 6= BC. Denote by ω1 and ω2 the incircles
of triangles ABC and ADC. Suppose that there exists a circle ω inscribed in angle ABC,
tangent to the extensions of line segments AD and CD. Prove that the common external
tangents of ω1 and ω2 intersect on ω.

Solution. The proof below is based on two known facts.

Lemma 1. Given a convex quadrilateral ABCD, suppose that there exists a circle which is
inscribed in angle ABC and tangent to the extensions of line segments AD and CD. Then
AB + AD = CB + CD.

Proof. The circle in question is tangent to each of the lines AB, BC, CD, DA, and the respective
points of tangency K, L, M, N are located as with circle ω in the figure. Then

AB + AD = (BK − AK) + (AN − DN), CB + CD = (BL − CL) + (CM − DM).

Also BK = BL, DN = DM , AK = AN , CL = CM by equalities of tangents. It follows that
AB + AD = CB + CD.

B

C′

C

L

M

N

T
ω

Q′

Q

P

ω1

ω2

K

A

A′

P ′

D

For brevity, in the sequel we write “excircle AC” for the excircle of a triangle with side AC
which is tangent to line segment AC and the extensions of the other two sides.

Lemma 2. The incircle of triangle ABC is tangent to its side AC at P . Let PP ′ be the diameter
of the incircle through P , and let line BP ′ intersect AC at Q. Then Q is the point of tangency
of side AC and excircle AC.

Proof. Let the tangent at P ′ to the incircle ω1 meet BA and BC at A′ and C ′. Now ω1 is the
excircle A′C ′ of triangle A′BC ′, and it touches side A′C ′ at P ′. Since A′C ′ ‖ AC, the homothety
with centre B and ratio BQ/BP ′ takes ω1 to the excircle AC of triangle ABC. Because this
homothety takes P ′ to Q, the lemma follows.



41

Recall also that if the incircle of a triangle touches its side AC at P , then the tangency
point Q of the same side and excircle AC is the unique point on line segment AC such that
AP = CQ.

We pass on to the main proof. Let ω1 and ω2 touch AC at P and Q, respectively; then
AP = (AC + AB − BC)/2, CQ = (CA + CD − AD)/2. Since AB − BC = CD − AD
by Lemma 1, we obtain AP = CQ. It follows that in triangle ABC side AC and excircle AC
are tangent at Q. Likewise, in triangle ADC side AC and excircle AC are tangent at P . Note
that P 6= Q as AB 6= BC.

Let PP ′ and QQ′ be the diameters perpendicular to AC of ω1 and ω2, respectively. Then
Lemma 2 shows that points B, P ′ and Q are collinear, and so are points D, Q′ and P .

Consider the diameter of ω perpendicular to AC and denote by T its endpoint that is closer
to AC. The homothety with centre B and ratio BT/BP ′ takes ω1 to ω. Hence B, P ′ and T
are collinear. Similarly, D, Q′ and T are collinear since the homothety with centre D and
ratio −DT/DQ′ takes ω2 to ω.

We infer that points T, P ′ and Q are collinear, as well as T, Q′ and P . Since PP ′ ‖ QQ′, line
segments PP ′ and QQ′ are then homothetic with centre T . The same holds true for circles ω1

and ω2 because they have PP ′ and QQ′ as diameters. Moreover, it is immediate that T lies on
the same side of line PP ′ as Q and Q′, hence the ratio of homothety is positive. In particular
ω1 and ω2 are not congruent.

In summary, T is the centre of a homothety with positive ratio that takes circle ω1 to
circle ω2. This completes the solution, since the only point with the mentioned property is the
intersection of the the common external tangents of ω1 and ω2.
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Number Theory

N1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers
(not necessarily positive) satisfying the equations

an + pb = bn + pc = cn + pa,

then a = b = c.

Solution 1. If two of a, b, c are equal, it is immediate that all the three are equal. So we
may assume that a 6= b 6= c 6= a. Subtracting the equations we get an − bn = −p(b − c) and two
cyclic copies of this equation, which upon multiplication yield

an − bn

a − b
· bn − cn

b − c
· cn − an

c − a
= −p3. (1)

If n is odd then the differences an − bn and a − b have the same sign and the product on the
left is positive, while −p3 is negative. So n must be even.

Let d be the greatest common divisor of the three differences a − b, b − c, c − a, so that
a − b = du, b − c = dv, c − a = dw; gcd(u, v, w) = 1, u + v + w = 0.

From an − bn = −p(b − c) we see that (a − b)|p(b − c), i.e., u|pv; and cyclically v|pw, w|pu.
As gcd(u, v, w) = 1 and u + v + w = 0, at most one of u, v, w can be divisible by p. Sup-
posing that the prime p does not divide any one of them, we get u|v, v|w, w|u, whence
|u| = |v| = |w| = 1; but this quarrels with u + v + w = 0.

Thus p must divide exactly one of these numbers. Let e.g. p|u and write u = pu1. Now
we obtain, similarly as before, u1|v, v|w, w|u1 so that |u1| = |v| = |w| = 1. The equation
pu1 + v + w = 0 forces that the prime p must be even; i.e. p = 2. Hence v + w = −2u1 = ±2,
implying v = w (= ±1) and u = −2v. Consequently a − b = −2(b − c).

Knowing that n is even, say n = 2k, we rewrite the equation an − bn = −p(b − c) with p = 2
in the form

(ak + bk)(ak − bk) = −2(b − c) = a − b.

The second factor on the left is divisible by a − b, so the first factor (ak + bk) must be ±1.
Then exactly one of a and b must be odd; yet a − b = −2(b − c) is even. Contradiction ends
the proof.

Solution 2. The beginning is as in the first solution. Assuming that a, b, c are not all equal,
hence are all distinct, we derive equation (1) with the conclusion that n is even. Write n = 2k.

Suppose that p is odd. Then the integer

an − bn

a − b
= an−1 + an−2b + · · ·+ bn−1,
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which is a factor in (1), must be odd as well. This sum of n = 2k summands is odd only if
a and b have different parities. The same conclusion holding for b, c and for c, a, we get that
a, b, c, a alternate in their parities, which is clearly impossible.

Thus p = 2. The original system shows that a, b, c must be of the same parity. So we may
divide (1) by p3, i.e. 23, to obtain the following product of six integer factors:

ak + bk

2
· ak − bk

a − b
· bk + ck

2
· bk − ck

b − c
· ck + ak

2
· ck − ak

c − a
= −1. (2)

Each one of the factors must be equal to ±1. In particular, ak + bk = ±2. If k is even, this
becomes ak + bk = 2 and yields |a| = |b| = 1, whence ak − bk = 0, contradicting (2).

Let now k be odd. Then the sum ak + bk, with value ±2, has a + b as a factor. Since a and b
are of the same parity, this means that a + b = ±2; and cyclically, b + c = ±2, c + a = ±2. In
some two of these equations the signs must coincide, hence some two of a, b, c are equal. This
is the desired contradiction.

Comment. Having arrived at the equation (1) one is tempted to write down all possible decomposi-
tions of −p3 (cube of a prime) into a product of three integers. This leads to cumbersome examination
of many cases, some of which are unpleasant to handle. One may do that just for p = 2, having earlier
in some way eliminated odd primes from consideration.

However, the second solution shows that the condition of p being a prime is far too strong. What
is actually being used in that solution, is that p is either a positive odd integer or p = 2.
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N2. Let a1, a2, . . . , an be distinct positive integers, n ≥ 3. Prove that there exist distinct
indices i and j such that ai + aj does not divide any of the numbers 3a1, 3a2, . . . , 3an.

Solution. Without loss of generality, let 0 < a1 < a2 < · · · < an. One can also assume that
a1, a2, . . . , an are coprime. Otherwise division by their greatest common divisor reduces the
question to the new sequence whose terms are coprime integers.

Suppose that the claim is false. Then for each i < n there exists a j such that an + ai

divides 3aj . If an + ai is not divisible by 3 then an + ai divides aj which is impossible as
0 < aj ≤ an < an +ai. Thus an+ai is a multiple of 3 for i = 1, . . . , n−1, so that a1, a2, . . . , an−1

are all congruent (to −an) modulo 3.
Now an is not divisible by 3 or else so would be all remaining ai’s, meaning that a1, a2, . . . , an

are not coprime. Hence an ≡ r (mod 3) where r ∈ {1, 2}, and ai ≡ 3 − r (mod 3) for all
i = 1, . . . , n − 1.

Consider a sum an−1 +ai where 1 ≤ i ≤ n−2. There is at least one such sum as n ≥ 3. Let
j be an index such that an−1 + ai divides 3aj. Observe that an−1 + ai is not divisible by 3 since
an−1 + ai ≡ 2ai 6≡ 0 (mod 3). It follows that an−1 + ai divides aj, in particular an−1 + ai ≤ aj .
Hence an−1 < aj ≤ an, implying j = n. So an is divisible by all sums an−1 + ai, 1 ≤ i ≤ n − 2.
In particular an−1 + ai ≤ an for i = 1, . . . , n − 2.

Let j be such that an + an−1 divides 3aj. If j ≤ n − 2 then an + an−1 ≤ 3aj < aj + 2an−1.
This yields an < an−1 +aj; however an−1 +aj ≤ an for j ≤ n−2. Therefore j = n−1 or j = n.

For j = n − 1 we obtain 3an−1 = k(an + an−1) with k an integer, and it is straightforward
that k = 1 (k ≤ 0 and k ≥ 3 contradict 0 < an−1 < an; k = 2 leads to an−1 = 2an > an−1).
Thus 3an−1 = an + an−1, i. e. an = 2an−1.

Similarly, if j = n then 3an = k(an + an−1) for some integer k, and only k = 2 is possible.
Hence an = 2an−1 holds true in both cases remaining, j = n − 1 and j = n.

Now an = 2an−1 implies that the sum an−1 + a1 is strictly between an/2 and an. But an−1

and a1 are distinct as n ≥ 3, so it follows from the above that an−1 + a1 divides an. This
provides the desired contradiction.
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N3. Let a0, a1, a2, . . . be a sequence of positive integers such that the greatest common divisor
of any two consecutive terms is greater than the preceding term; in symbols, gcd(ai, ai+1) > ai−1.
Prove that an ≥ 2n for all n ≥ 0.

Solution. Since ai ≥ gcd(ai, ai+1) > ai−1, the sequence is strictly increasing. In particular
a0 ≥ 1, a1 ≥ 2. For each i ≥ 1 we also have ai+1 − ai ≥ gcd(ai, ai+1) > ai−1, and consequently
ai+1 ≥ ai + ai−1 + 1. Hence a2 ≥ 4 and a3 ≥ 7. The equality a3 = 7 would force equalities
in the previous estimates, leading to gcd(a2, a3) = gcd(4, 7) > a1 = 2, which is false. Thus
a3 ≥ 8; the result is valid for n = 0, 1, 2, 3. These are the base cases for a proof by induction.

Take an n ≥ 3 and assume that ai ≥ 2i for i = 0, 1, . . . , n. We must show that an+1 ≥ 2n+1.
Let gcd(an, an+1) = d. We know that d > an−1. The induction claim is reached immediately
in the following cases:

if an+1 ≥ 4d then an+1 > 4an−1 ≥ 4 · 2n−1 = 2n+1 ;

if an ≥ 3d then an+1 ≥ an +d ≥ 4d > 4an−1 ≥ 4 ·2n−1 = 2n+1 ;

if an = d then an+1 ≥ an + d = 2an ≥ 2 · 2n = 2n+1.

The only remaining possibility is that an = 2d and an+1 = 3d, which we assume for the
sequel. So an+1 = 3

2
an.

Let now gcd(an−1, an) = d′; then d′ > an−2. Write an = md′ (m an integer). Keeping
in mind that d′ ≤ an−1 < d and an = 2d, we get that m ≥ 3. Also an−1 < d = 1

2
md′,

an+1 = 3
2
md′. Again we single out the cases which imply the induction claim immediately:

if m ≥ 6 then an+1 = 3
2
md′ ≥ 9d′ > 9an−2 ≥ 9 · 2n−2 > 2n+1 ;

if 3 ≤ m ≤ 4 then an−1 < 1
2
· 4d′, and hence an−1 = d′,

an+1 = 3
2
man−1 ≥ 3

2
·3an−1 ≥ 9

2
·2n−1 > 2n+1.

So we are left with the case m = 5, which means that an = 5d′, an+1 = 15
2
d′ , an−1 < d = 5

2
d′.

The last relation implies that an−1 is either d′ or 2d′. Anyway, an−1|2d′.

The same pattern repeats once more. We denote gcd(an−2, an−1) = d′′; then d′′ > an−3.
Because d′′ is a divisor of an−1, hence also of 2d′, we may write 2d′ = m′d′′ (m′ an integer).
Since d′′ ≤ an−2 < d′, we get m′ ≥ 3. Also, an−2 < d′ = 1

2
m′d′′, an+1 = 15

2
d′ = 15

4
m′d′′. As

before, we consider the cases:

if m′ ≥ 5 then an+1 = 15
4
m′d′′ ≥ 75

4
d′′ > 75

4
an−3 ≥ 75

4
·2n−3 > 2n+1 ;

if 3 ≤ m′ ≤ 4 then an−2 < 1
2
· 4d′′, and hence an−2 = d′′,

an+1 = 15
4
m′an−2 ≥ 15

4
·3an−2 ≥ 45

4
·2n−2 > 2n+1.

Both of them have produced the induction claim. But now there are no cases left. Induction
is complete; the inequality an ≥ 2n holds for all n.
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N4. Let n be a positive integer. Show that the numbers
(

2n − 1

0

)

,

(
2n − 1

1

)

,

(
2n − 1

2

)

, . . . ,

(
2n − 1

2n−1 − 1

)

are congruent modulo 2n to 1, 3, 5, . . . , 2n−1 in some order.

Solution 1. It is well-known that all these numbers are odd. So the assertion that their
remainders (mod 2n) make up a permutation of {1, 3, . . . , 2n−1} is equivalent just to saying
that these remainders are all distinct. We begin by showing that
(

2n − 1

2k

)

+

(
2n − 1

2k + 1

)

≡ 0 (mod 2n) and

(
2n − 1

2k

)

≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n). (1)

The first relation is immediate, as the sum on the left is equal to
(

2n

2k+1

)
= 2n

2k+1

(
2n−1
2k

)
, hence

is divisible by 2n. The second relation:

(
2n − 1

2k

)

=
2k∏

j=1

2n − j

j
=

k∏

i=1

2n − (2i−1)

2i − 1
·

k∏

i=1

2n−1 − i

i
≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n).

This prepares ground for a proof of the required result by induction on n. The base case
n = 1 is obvious. Assume the assertion is true for n − 1 and pass to n, denoting ak =

(
2n−1−1

k

)
,

bm =
(
2n−1

m

)
. The induction hypothesis is that all the numbers ak (0 ≤ k < 2n−2) are distinct

(mod 2n−1); the claim is that all the numbers bm (0 ≤ m < 2n−1) are distinct (mod 2n).
The congruence relations (1) are restated as

b2k ≡ (−1)kak ≡ −b2k+1 (mod 2n). (2)

Shifting the exponent in the first relation of (1) from n to n − 1 we also have the congruence
a2i+1 ≡ −a2i (mod 2n−1). We hence conclude:

If, for some j, k < 2n−2, ak ≡ −aj (mod 2n−1), then {j, k} = {2i, 2i+1} for some i. (3)

This is so because in the sequence (ak : k < 2n−2) each term aj is complemented to 0 (mod 2n−1)
by only one other term ak, according to the induction hypothesis.

From (2) we see that b4i ≡ a2i and b4i+3 ≡ a2i+1 (mod 2n). Let

M = {m : 0 ≤ m < 2n−1, m ≡ 0 or 3 (mod 4)}, L= {l : 0 ≤ l < 2n−1, l ≡ 1 or 2 (mod 4)}.
The last two congruences take on the unified form

bm ≡ abm/2c (mod 2n) for all m ∈ M. (4)

Thus all the numbers bm for m ∈ M are distinct (mod 2n) because so are the numbers ak (they
are distinct (mod 2n−1), hence also (mod 2n)).

Every l ∈ L is paired with a unique m ∈ M into a pair of the form {2k, 2k+1}. So (2) implies
that also all the bl for l ∈ L are distinct (mod 2n). It remains to eliminate the possibility that
bm ≡ bl (mod 2n) for some m ∈ M , l ∈ L.

Suppose that such a situation occurs. Let m′ ∈ M be such that {m′, l} is a pair of the form
{2k, 2k+1}, so that (see (2)) bm′ ≡ −bl (mod 2n). Hence bm′ ≡ −bm (mod 2n). Since both
m′ and m are in M , we have by (4) bm′ ≡ aj , bm ≡ ak (mod 2n) for j = bm′/2c, k = bm/2c.

Then aj ≡ −ak (mod 2n). Thus, according to (3), j = 2i, k = 2i + 1 for some i (or vice

versa). The equality a2i+1 ≡ −a2i (mod 2n) now means that
(
2n−1−1

2i

)
+

(
2n−1−1

2i+1

)
≡ 0 (mod 2n).

However, the sum on the left is equal to
(
2n−1

2i+1

)
. A number of this form cannot be divisible

by 2n. This is a contradiction which concludes the induction step and proves the result.
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Solution 2. We again proceed by induction, writing for brevity N = 2n−1 and keeping notation
ak =

(
N−1

k

)
, bm =

(
2N−1

m

)
. Assume that the result holds for the sequence (a0, a1, a2, . . . , aN/2−1).

In view of the symmetry aN−1−k = ak this sequence is a permutation of (a0, a2, a4, . . . , aN−2).
So the induction hypothesis says that this latter sequence, taken (mod N), is a permutation of
(1, 3, 5, . . . , N−1). Similarly, the induction claim is that (b0, b2, b4, . . . , b2N−2), taken (mod 2N),
is a permutation of (1, 3, 5, . . . , 2N−1).

In place of the congruence relations (2) we now use the following ones,

b4i ≡ a2i (mod N) and b4i+2 ≡ b4i + N (mod 2N). (5)

Given this, the conclusion is immediate: the first formula of (5) together with the induction
hypothesis tells us that (b0, b4, b8, . . . , b2N−4) (mod N) is a permutation of (1, 3, 5, . . . , N−1).
Then the second formula of (5) shows that (b2, b6, b10, . . . , b2N−2) (mod N) is exactly the same
permutation; moreover, this formula distinguishes (mod 2N) each b4i from b4i+2.

Consequently, these two sequences combined represent (mod 2N) a permutation of the
sequence (1, 3, 5, . . . , N−1, N+1, N+3, N+5, . . . , N+N−1), and this is precisely the induction
claim.

Now we prove formulas (5); we begin with the second one. Since bm+1 = bm · 2N−m−1
m+1

,

b4i+2 = b4i ·
2N − 4i − 1

4i + 1
· 2N − 4i − 2

4i + 2
= b4i ·

2N − 4i − 1

4i + 1
· N − 2i − 1

2i + 1
.

The desired congruence b4i+2 ≡ b4i + N may be multiplied by the odd number (4i + 1)(2i + 1),
giving rise to a chain of successively equivalent congruences:

b4i(2N − 4i − 1)(N − 2i − 1) ≡ (b4i + N)(4i + 1)(2i + 1) (mod 2N),

b4i(2i + 1 − N) ≡ (b4i + N)(2i + 1) (mod 2N),

(b4i + 2i + 1)N ≡ 0 (mod 2N);

and the last one is satisfied, as b4i is odd. This settles the second relation in (5).
The first one is proved by induction on i. It holds for i = 0. Assume b4i ≡ a2i (mod 2N)

and consider i + 1:

b4i+4 = b4i+2 ·
2N − 4i − 3

4i + 3
· 2N − 4i − 4

4i + 4
; a2i+2 = a2i ·

N − 2i − 1

2i + 1
· N − 2i − 2

2i + 2
.

Both expressions have the fraction N−2i−2
2i+2

as the last factor. Since 2i + 2 < N = 2n−1, this
fraction reduces to `/m with ` and m odd. In showing that b4i+4 ≡ a2i+2 (mod 2N), we may
ignore this common factor `/m. Clearing other odd denominators reduces the claim to

b4i+2(2N − 4i − 3)(2i + 1) ≡ a2i(N − 2i − 1)(4i + 3) (mod 2N).

By the inductive assumption (saying that b4i ≡ a2i (mod 2N)) and by the second relation of (5),
this is equivalent to

(b4i + N)(2i + 1) ≡ b4i(2i + 1 − N) (mod 2N),

a congruence which we have already met in the preceding proof a few lines above. This com-
pletes induction (on i) and the proof of (5), hence also the whole solution.

Comment. One can avoid the words congruent modulo in the problem statement by rephrasing the
assertion into: Show that these numbers leave distinct remainders in division by 2n.
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N5. For every n ∈ N let d(n) denote the number of (positive) divisors of n. Find all func-
tions f : N → N with the following properties:

(i) d(f(x)) = x for all x ∈ N;

(ii) f(xy) divides (x − 1)yxy−1f(x) for all x, y ∈ N.

Solution. There is a unique solution: the function f : N → N defined by f(1) = 1 and

f(n) = p
p

a1
1

−1
1 p

p
a2
2

−1
2 · · · pp

ak
k

−1

k where n = pa1

1 pa2

2 · · ·pak

k is the prime factorization of n > 1. (1)

Direct verification shows that this function meets the requirements.

Conversely, let f : N → N satisfy (i) and (ii). Applying (i) for x = 1 gives d(f(1)) = 1, so
f(1) = 1. In the sequel we prove that (1) holds for all n > 1. Notice that f(m) = f(n) implies

m = n in view of (i). The formula d
(

pb1
1 · · ·pbk

k

)

= (b1 +1) · · · (bk +1) will be used throughout.

Let p be a prime. Since d(f(p)) = p, the formula just mentioned yields f(p) = qp−1 for some
prime q; in particular f(2) = q2−1 = q is a prime. We prove that f(p) = pp−1 for all primes p.

Suppose that p is odd and f(p) = qp−1 for a prime q. Applying (ii) first with x = 2,
y = p and then with x = p, y = 2 shows that f(2p) divides both (2 − 1)p2p−1f(2) = p2p−1f(2)
and (p − 1)22p−1f(p) = (p − 1)22p−1qp−1. If q 6= p then the odd prime p does not divide
(p−1)22p−1qp−1, hence the greatest common divisor of p2p−1f(2) and (p−1)22p−1qp−1 is a divisor
of f(2). Thus f(2p) divides f(2) which is a prime. As f(2p) > 1, we obtain f(2p) = f(2) which
is impossible. So q = p, i. e. f(p) = pp−1.

For p = 2 the same argument with x = 2, y = 3 and x = 3, y = 2 shows that f(6)
divides both 35f(2) and 26f(3) = 2632. If the prime f(2) is odd then f(6) divides 32 = 9, so
f(6) ∈ {1, 3, 9}. However then 6 = d(f(6)) ∈ {d(1), d(3), d(9)} = {1, 2, 3} which is false. In
conclusion f(2) = 2.

Next, for each n > 1 the prime divisors of f(n) are among the ones of n. Indeed, let p be
the least prime divisor of n. Apply (ii) with x = p and y = n/p to obtain that f(n) divides
(p−1)yn−1f(p) = (p−1)yn−1pp−1. Write f(n) = `P where ` is coprime to n and P is a product
of primes dividing n. Since ` divides (p−1)yn−1pp−1 and is coprime to yn−1pp−1, it divides p−1;
hence d(`) ≤ ` < p. But (i) gives n = d(f(n)) = d(`P ), and d(`P ) = d(`)d(P ) as ` and P are
coprime. Therefore d(`) is a divisor of n less than p, meaning that ` = 1 and proving the claim.

Now (1) is immediate for prime powers. If p is a prime and a ≥ 1, by the above the
only prime factor of f (pa) is p (a prime factor does exist as f (pa) > 1). So f (pa) = pb for
some b ≥ 1, and (i) yields pa = d(f (pa)) = d

(
pb

)
= b + 1. Hence f (pa) = ppa−1, as needed.

Let us finally show that (1) is true for a general n > 1 with prime factorization n = pa1

1 · · · pak

k .
We saw that the prime factorization of f(n) has the form f(n) = pb1

1 · · · pbk

k . For i = 1, . . . , k,
set x = pai

i and y = n/x in (ii) to infer that f(n) divides (pai

i − 1) yn−1f (pai

i ). Hence pbi

i divides
(pai

i − 1) yn−1f (pai

i ), and because pbi

i is coprime to (pai

i − 1) yn−1, it follows that pbi

i divides

f (pai

i ) = p
p

ai
i
−1

i . So bi ≤ pai

i −1 for all i = 1, . . . , k. Combined with (i), these conclusions imply

pa1

1 · · ·pak

k = n = d(f(n)) = d
(

pb1
1 · · · pbk

k

)

= (b1 + 1) · · · (bk + 1) ≤ pa1

1 · · · pak

k .

Hence all inequalities bi ≤ pai

i −1 must be equalities, i = 1, . . . , k, implying that (1) holds true.
The proof is complete.
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N6. Prove that there exist infinitely many positive integers n such that n2 + 1 has a prime
divisor greater than 2n +

√
2n.

Solution. Let p ≡ 1 (mod 8) be a prime. The congruence x2 ≡ −1 (mod p) has two solutions
in [1, p−1] whose sum is p. If n is the smaller one of them then p divides n2+1 and n ≤ (p−1)/2.
We show that p > 2n +

√
10n.

Let n = (p − 1)/2 − ` where ` ≥ 0. Then n2 ≡ −1 (mod p) gives

(
p − 1

2
− `

)2

≡ −1 (mod p) or (2` + 1)2 + 4 ≡ 0 (mod p).

Thus (2`+1)2 +4 = rp for some r ≥ 0. As (2`+1)2 ≡ 1 ≡ p (mod 8), we have r ≡ 5 (mod 8),
so that r ≥ 5. Hence (2` + 1)2 + 4 ≥ 5p, implying ` ≥

(√
5p − 4 − 1

)
/2. Set

√
5p − 4 = u for

clarity; then ` ≥ (u − 1)/2. Therefore

n =
p − 1

2
− ` ≤ 1

2

(
p − u

)
.

Combined with p = (u2 + 4)/5, this leads to u2 − 5u − 10n + 4 ≥ 0. Solving this quadratic
inequality with respect to u ≥ 0 gives u ≥

(
5 +

√
40n + 9

)
/2. So the estimate n ≤

(
p − u

)
/2

leads to

p ≥ 2n + u ≥ 2n +
1

2

(
5 +

√
40n + 9

)
> 2n +

√
10n.

Since there are infinitely many primes of the form 8k + 1, it follows easily that there are
also infinitely many n with the stated property.

Comment. By considering the prime factorization of the product

N∏

n=1

(n2 +1), it can be obtained that

its greatest prime divisor is at least cN log N . This could improve the statement as p > n log n.
However, the proof applies some advanced information about the distribution of the primes of the

form 4k + 1, which is inappropriate for high schools contests.
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Algebra Problem Shortlist 50th IMO 2009

Algebra
A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:

Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are
colored, such that one is blue, one is red and one is white. Now, for every color separately, let
us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides,

r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides,

and w1 ≤ w2≤ . . . ≤ w2009 the lengths of the white sides.

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths
bj, rj, wj.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such
that for all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that√
a2 + b2

a+ b
+

√
b2 + c2

b+ c
+

√
c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)
.

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove
that there exist real numbers x and y such that

f (x− f(y)) > yf(x) + x.

4



50th IMO 2009 Problem Shortlist Algebra

A6 USA (United States of America)

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the
subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that s1, s2, s3, . . . is itself an arithmetic progression.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for
all real x, y the identity

f(xf(x+ y)) = f(yf(x)) + x2.

5



Combinatorics Problem Shortlist 50th IMO 2009

Combinatorics
C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long
table. Initially all cards show their gold sides. Two players, standing by the same long side of
the table, play a game with alternating moves. Each move consists of choosing a block of 50
consecutive cards, the leftmost of which is showing gold, and turning them all over, so those
which showed gold now show black and vice versa. The last player who can make a legal move
wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting player?

C2 ROU (Romania)

For any integer n ≥ 2, let N(n) be the maximal number of triples (ai, bi, ci), i = 1, . . . , N(n),
consisting of nonnegative integers ai, bi and ci such that the following two conditions are satis-
fied:

(1) ai + bi + ci = n for all i = 1, . . . , N(n),

(2) If i 6= j, then ai 6= aj, bi 6= bj and ci 6= cj.

Determine N(n) for all n ≥ 2.

Comment. The original problem was formulated form-tuples instead for triples. The numbers
N(m,n) are then defined similarly to N(n) in the case m = 3. The numbers N(3, n) and
N(n, n) should be determined. The case m = 3 is the same as in the present problem. The
upper bound for N(n, n) can be proved by a simple generalization. The construction of a set
of triples attaining the bound can be easily done by induction from n to n+ 2.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each
i = 1, . . . , n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{
2ai−1 + 3ai, if εi = 0,

3ai−1 + ai, if εi = 1,
for each i = 1, . . . , n− 1,

bi+1 =

{
2bi−1 + 3bi, if εn−i = 0,

3bi−1 + bi, if εn−i = 1,
for each i = 1, . . . , n− 1.

Prove that an = bn.

C4 NLD (Netherlands)

For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting
of cells of the chessboard, in which each of the 2m cells along one diagonal forms a separate
rectangle of side length 1. Determine the smallest possible sum of rectangle perimeters in such
a partition.

6



50th IMO 2009 Problem Shortlist Combinatorics

C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon.
Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of
every round, the Stepmother takes one liter of water from the nearby river and distributes it
arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties
them into the river, and puts them back. Then the next round begins. The Stepmother’s goal
is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

C6 BGR (Bulgaria)

On a 999× 999 board a limp rook can move in the following way: From any square it can move
to any of its adjacent squares, i.e. a square having a common side with it, and every move
must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-
intersecting route of the limp rook consists of a sequence of pairwise different squares that the
limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting
route is called cyclic, if the limp rook can, after reaching the last square of the route, move
directly to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook
visit?

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009
jumps to the right with lengths 1, 2, . . . , 2009 in an arbitrary order. Let M be a set of 2008
positive integers less than 1005 · 2009. Prove that the grasshopper can arrange his jumps in
such a way that he never lands on a point from M .

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts
at point 0 and makes n+ 1 jumps to the right with pairwise different positive integral lengths
a1, a2, . . . , an+1 in an arbitrary order. Let M be a set of n positive integers in the interval (0, s),
where s = a1 + a2 + · · · + an+1. Prove that the grasshopper can arrange his jumps in such a
way that he never lands on a point from M .

C8 AUT (Austria)

For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its
decimal representation. Let r be the rightmost digit of n.

(1) If r = 0, then the decimal representation of h(n) results from the decimal representation
of n by removing this rightmost digit 0.

(2) If 1 ≤ r ≤ 9 we split the decimal representation of n into a maximal right part R that
solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the
decimal representation of L, followed by two copies of the decimal representation of R− 1.
For instance, for the number n = 17,151,345,543, we will have L = 17,151, R = 345,543
and h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the
integer 1 after finitely many steps.

7
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Geometry
G1 BEL (Belgium)

Let ABC be a triangle with AB = AC. The angle bisectors of A and B meet the sides BC
and AC in D and E, respectively. Let K be the incenter of triangle ADC. Suppose that
∠BEK = 45◦. Find all possible values of ∠BAC.

G2 RUS (Russian Federation)

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the
sides CA and AB, respectively. The circle k passes through the midpoints of the segments BP ,
CQ, and PQ. Prove that if the line PQ is tangent to circle k then OP = OQ.

G3 IRN (Islamic Republic of Iran)

Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z
and Y , respectively. Let G be the point where the lines BY and CZ meet, and let R and S be
points such that the two quadrilaterals BCY R and BCSZ are parallelograms.

Prove that GR = GS.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD
and BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF
is tangent at E to the circle through the points E, G, and H.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some
parallelogram R satisfying P ⊂ R we have

|R|
|P |
≤
√

2

where |R| and |P | denote the area of the sets R and P , respectively.

G6 UKR (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD)
intersect at point P . Points O1 and O2 are the circumcenters and points H1 and H2 are the
orthocenters of triangles ABP and DCP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD, the
perpendicular from E2 on AB and the line H1H2 are concurrent.

G7 IRN (Islamic Republic of Iran)

Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles
BIC, CIA and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is
equilateral too.

8
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G8 BGR (Bulgaria)

Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2, and I3 the incenters of 4ABM ,
4MNC, and 4NDA, respectively. Show that the orthocenter of 4I1I2I3 lies on g.

9
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Number Theory
N1 AUS (Australia)

A social club has n members. They have the membership numbers 1, 2, . . . , n, respectively.
From time to time members send presents to other members, including items they have already
received as presents from other members. In order to avoid the embarrassing situation that a
member might receive a present that he or she has sent to other members, the club adds the
following rule to its statutes at one of its annual general meetings:

“A member with membership number a is permitted to send a present to a member with
membership number b if and only if a(b− 1) is a multiple of n.”

Prove that, if each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices v1, v2, . . . , vn, such that
there is an edge going from va to vb if and only if a and b are distinct and a(b− 1) is a multiple
of n. Prove that this graph does not contain a directed cycle.

N2 PER (Peru)

A positive integer N is called balanced, if N = 1 or if N can be written as a product of an
even number of not necessarily distinct primes. Given positive integers a and b, consider the
polynomial P defined by P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the numbers P (1), P (2),
. . . , P (50) are balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers,
such that a− b divides f(a)− f(b) for all distinct positive integers a, b. Prove that there exist
infinitely many primes p such that p divides f(c) for some positive integer c.

N4 PRK (Democratic People’s Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . . , an
satisfying

ak+1 =
a2k + 1

ak−1 + 1
− 1

for every k with 2 ≤ k ≤ n− 1.

N5 HUN (Hungary)

Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function
T from the set of integers into the set of integers such that the number of integers x with
T n(x) = x is equal to P (n) for every n ≥ 1, where T n denotes the n-fold application of T .

10
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N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying
the condition

an =
an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such
that (an − 1)(bn − 1) is not a perfect square.

11
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Algebra
A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:

Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are
colored, such that one is blue, one is red and one is white. Now, for every color separately, let
us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides,

r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides,

and w1 ≤ w2≤ . . . ≤ w2009 the lengths of the white sides.

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths
bj, rj, wj.

Solution. We will prove that the largest possible number k of indices satisfying the given
condition is one.

Firstly we prove that b2009, r2009, w2009 are always lengths of the sides of a triangle. Without
loss of generality we may assume that w2009 ≥ r2009 ≥ b2009. We show that the inequality
b2009 + r2009 > w2009 holds. Evidently, there exists a triangle with side lengths w, b, r for the
white, blue and red side, respectively, such that w2009 = w. By the conditions of the problem
we have b+ r > w, b2009 ≥ b and r2009 ≥ r. From these inequalities it follows

b2009 + r2009 ≥ b+ r > w = w2009.

Secondly we will describe a sequence of triangles for which wj, bj, rj with j < 2009 are not the
lengths of the sides of a triangle. Let us define the sequence ∆j, j = 1, 2, . . . , 2009, of triangles,
where ∆j has

a blue side of length 2j,
a red side of length j for all j ≤ 2008 and 4018 for j = 2009,
and a white side of length j + 1 for all j ≤ 2007, 4018 for j = 2008 and 1 for j = 2009.

Since

(j + 1) + j > 2j ≥ j + 1> j, if j ≤ 2007,

2j + j > 4018 > 2j > j, if j = 2008,

4018 + 1 > 2j = 4018> 1, if j = 2009,

such a sequence of triangles exists. Moreover, wj = j, rj = j and bj = 2j for 1 ≤ j ≤ 2008.
Then

wj + rj = j + j = 2j = bj,

i.e., bj, rj and wj are not the lengths of the sides of a triangle for 1 ≤ j ≤ 2008.

12
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A2 EST (Estonia)

Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

Solution 1. For positive real numbers x, y, z, from the arithmetic-geometric-mean inequality,

2x+ y + z = (x+ y) + (x+ z) ≥ 2
√

(x+ y)(x+ z),

we obtain

1

(2x+ y + z)2
≤ 1

4(x+ y)(x+ z)
.

Applying this to the left-hand side terms of the inequality to prove, we get

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2

≤ 1

4(a+ b)(a+ c)
+

1

4(b+ c)(b+ a)
+

1

4(c+ a)(c+ b)

=
(b+ c) + (c+ a) + (a+ b)

4(a+ b)(b+ c)(c+ a)
=

a+ b+ c

2(a+ b)(b+ c)(c+ a)
. (1)

A second application of the inequality of the arithmetic-geometric mean yields

a2b+ a2c+ b2a+ b2c+ c2a+ c2b ≥ 6abc,

or, equivalently,

9(a+ b)(b+ c)(c+ a) ≥ 8(a+ b+ c)(ab+ bc+ ca). (2)

The supposition 1
a

+ 1
b

+ 1
c

= a+ b+ c can be written as

ab+ bc+ ca = abc(a+ b+ c). (3)

Applying the arithmetic-geometric-mean inequality x2y2 + x2z2 ≥ 2x2yz thrice, we get

a2b2 + b2c2 + c2a2 ≥ a2bc+ ab2c+ abc2,

which is equivalent to

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c). (4)

13
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Combining (1), (2), (3), and (4), we will finish the proof:

a+ b+ c

2(a+ b)(b+ c)(c+ a)
=

(a+ b+ c)(ab+ bc+ ca)

2(a+ b)(b+ c)(c+ a)
· ab+ bc+ ca

abc(a+ b+ c)
· abc(a+ b+ c)

(ab+ bc+ ca)2

≤ 9

2 · 8
· 1 · 1

3
=

3

16
.

Solution 2. Equivalently, we prove the homogenized inequality

(a+ b+ c)2

(2a+ b+ c)2
+

(a+ b+ c)2

(a+ 2b+ c)2
+

(a+ b+ c)2

(a+ b+ 2c)2
≤ 3

16
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
for all positive real numbers a, b, c. Without loss of generality we choose a+ b+ c = 1. Thus,
the problem is equivalent to prove for all a, b, c > 0, fulfilling this condition, the inequality

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
≤ 3

16

(
1

a
+

1

b
+

1

c

)
. (5)

Applying Jensen’s inequality to the function f(x) =
x

(1 + x)2
, which is concave for 0 ≤ x ≤ 2

and increasing for 0 ≤ x ≤ 1, we obtain

α
a

(1 + a)2
+ β

b

(1 + b)2
+ γ

c

(1 + c)2
≤ (α + β + γ)

A

(1 + A)2
, where A =

αa+ βb+ γc

α + β + γ
.

Choosing α =
1

a
, β =

1

b
, and γ =

1

c
, we can apply the harmonic-arithmetic-mean inequality

A =
3

1
a

+ 1
b

+ 1
c

≤ a+ b+ c

3
=

1

3
< 1.

Finally we prove (5):

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
≤
(

1

a
+

1

b
+

1

c

)
A

(1 + A)2

≤
(

1

a
+

1

b
+

1

c

) 1
3(

1 + 1
3

)2 =
3

16

(
1

a
+

1

b
+

1

c

)
.
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A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such
that for all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

Solution. The identity function f(x) = x is the only solution of the problem.

If f(x) = x for all positive integers x, the given three lengths are x, y = f(y) and z =
f (y + f(x)− 1) = x + y − 1. Because of x ≥ 1, y ≥ 1 we have z ≥ max{x, y} > |x − y| and
z < x + y. From this it follows that a triangle with these side lengths exists and does not
degenerate. We prove in several steps that there is no other solution.

Step 1. We show f(1) = 1.
If we had f(1) = 1+m > 1 we would conclude f(y) = f(y+m) for all y considering the triangle
with the side lengths 1, f(y) and f(y + m). Thus, f would be m-periodic and, consequently,
bounded. Let B be a bound, f(x) ≤ B. If we choose x > 2B we obtain the contradiction
x > 2B ≥ f(y) + f(y + f(x)− 1).

Step 2. For all positive integers z, we have f(f(z)) = z.
Setting x = z and y = 1 this follows immediately from Step 1.

Step 3. For all integers z ≥ 1, we have f(z) ≤ z.
Let us show, that the contrary leads to a contradiction. Assume w + 1 = f(z) > z for some
z. From Step 1 we know that w ≥ z ≥ 2. Let M = max{f(1), f(2), . . . , f(w)} be the largest
value of f for the first w integers. First we show, that no positive integer t exists with

f(t) >
z − 1

w
· t+M, (1)

otherwise we decompose the smallest value t as t = wr+s where r is an integer and 1 ≤ s ≤ w.
Because of the definition of M , we have t > w. Setting x = z and y = t − w we get from the
triangle inequality

z + f(t− w) > f((t− w) + f(z)− 1) = f(t− w + w) = f(t).

Hence,

f(t− w) ≥ f(t)− (z − 1) >
z − 1

w
(t− w) +M,

a contradiction to the minimality of t.

Therefore the inequality (1) fails for all t ≥ 1, we have proven

f(t) ≤ z − 1

w
· t+M, (2)

instead.
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Now, using (2), we finish the proof of Step 3. Because of z ≤ w we have
z − 1

w
< 1 and we can

choose an integer t sufficiently large to fulfill the condition(
z − 1

w

)2

t+

(
z − 1

w
+ 1

)
M < t.

Applying (2) twice we get

f (f(t)) ≤ z − 1

w
f(t) +M ≤ z − 1

w

(
z − 1

w
t+M

)
+M < t

in contradiction to Step 2, which proves Step 3.

Final step. Thus, following Step 2 and Step 3, we obtain

z = f(f(z)) ≤ f(z) ≤ z

and f(z) = z for all positive integers z is proven.
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A4 BLR (Belarus)

Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that√
a2 + b2

a+ b
+

√
b2 + c2

b+ c
+

√
c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)
.

Solution. Starting with the terms of the right-hand side, the quadratic-arithmetic-mean in-
equality yields

√
2
√
a+ b = 2

√
ab

a+ b

√
1

2

(
2 +

a2 + b2

ab

)
≥ 2

√
ab

a+ b
· 1

2

(
√

2 +

√
a2 + b2

ab

)
=

√
2ab

a+ b
+

√
a2 + b2

a+ b

and, analogously,

√
2
√
b+ c ≥

√
2bc

b+ c
+

√
b2 + c2

b+ c
,

√
2
√
c+ a ≥

√
2ca

c+ a
+

√
c2 + a2

c+ a
.

Applying the inequality between the arithmetic mean and the squared harmonic mean will
finish the proof:√

2ab

a+ b
+

√
2bc

b+ c
+

√
2ca

c+ a
≥ 3 ·

√√√√ 3√
a+b
2ab

2

+
√

b+c
2bc

2

+
√

c+a
2ca

2
= 3 ·

√
3abc

ab+ bc+ ca
≥ 3.
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A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove
that there exist real numbers x and y such that

f (x− f(y)) > yf(x) + x.

Solution 1. Assume that

f(x− f(y)) ≤ yf(x) + x for all real x, y. (1)

Let a = f(0). Setting y = 0 in (1) gives f(x− a) ≤ x for all real x and, equivalently,

f(y) ≤ y + a for all real y. (2)

Setting x = f(y) in (1) yields in view of (2)

a = f(0) ≤ yf(f(y)) + f(y) ≤ yf(f(y)) + y + a.

This implies 0 ≤ y(f(f(y)) + 1) and thus

f(f(y)) ≥ −1 for all y > 0. (3)

From (2) and (3) we obtain −1 ≤ f(f(y)) ≤ f(y) + a for all y > 0, so

f(y) ≥ −a− 1 for all y > 0. (4)

Now we show that
f(x) ≤ 0 for all real x. (5)

Assume the contrary, i.e. there is some x such that f(x) > 0. Take any y such that

y < x− a and y <
−a− x− 1

f(x)
.

Then in view of (2)
x− f(y) ≥ x− (y + a) > 0

and with (1) and (4) we obtain

yf(x) + x ≥ f(x− f(y)) ≥ −a− 1,

whence

y ≥ −a− x− 1

f(x)

contrary to our choice of y. Thereby, we have established (5).

Setting x = 0 in (5) leads to a = f(0) ≤ 0 and (2) then yields

f(x) ≤ x for all real x. (6)

Now choose y such that y > 0 and y > −f(−1) − 1 and set x = f(y) − 1. From (1), (5) and
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(6) we obtain

f(−1) = f(x− f(y)) ≤ yf(x) + x = yf(f(y)− 1) + f(y)− 1 ≤ y(f(y)− 1)− 1 ≤ −y − 1,

i.e. y ≤ −f(−1)− 1, a contradiction to the choice of y.

Solution 2. Assume that

f(x− f(y)) ≤ yf(x) + x for all real x, y. (7)

Let a = f(0). Setting y = 0 in (7) gives f(x− a) ≤ x for all real x and, equivalently,

f(y) ≤ y + a for all real y. (8)

Now we show that
f(z) ≥ 0 for all z ≥ 1. (9)

Let z ≥ 1 be fixed, set b = f(z) and assume that b < 0. Setting x = w + b and y = z in (7)
gives

f(w)− zf(w + b) ≤ w + b for all real w. (10)

Applying (10) to w,w + b, . . . , w + (n− 1)b, where n = 1, 2, . . . , leads to

f(w)− znf(w + nb) = (f(w)− zf(w + b)) + z (f(w + b)− zf(w + 2b))

+ · · · + zn−1 (f(w + (n− 1)b)− zf(w + nb))

≤(w + b) + z(w + 2b) + · · · + zn−1(w + nb).

From (8) we obtain
f(w + nb) ≤ w + nb+ a

and, thus, we have for all positive integers n

f(w) ≤ (1 + z + · · ·+ zn−1 + zn)w + (1 + 2z + · · ·+ nzn−1 + nzn)b+ zna. (11)

With w = 0 we get
a ≤ (1 + 2z + · · ·+ nzn−1 + nzn)b+ azn. (12)

In view of the assumption b < 0 we find some n such that

a > (nb+ a)zn (13)

because the right hand side tends to −∞ as n → ∞. Now (12) and (13) give the desired
contradiction and (9) is established. In addition, we have for z = 1 the strict inequality

f(1) > 0. (14)

Indeed, assume that f(1) = 0. Then setting w = −1 and z = 1 in (11) leads to

f(−1) ≤ −(n+ 1) + a

which is false if n is sufficiently large.

To complete the proof we set t = min{−a,−2/f(1)}. Setting x = 1 and y = t in (7) gives

f(1− f(t)) ≤ tf(1) + 1 ≤ −2 + 1 = −1. (15)
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On the other hand, by (8) and the choice of t we have f(t) ≤ t+ a ≤ 0 and hence 1− f(t) ≥ 1.
The inequality (9) yields

f(1− f(t)) ≥ 0,

which contradicts (15).
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A6 USA (United States of America)

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the
subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that s1, s2, s3, . . . is itself an arithmetic progression.

Solution 1. Let D be the common difference of the progression ss1 , ss2 , . . . . Let for n =
1, 2, . . .

dn = sn+1 − sn.

We have to prove that dn is constant. First we show that the numbers dn are bounded. Indeed,
by supposition dn ≥ 1 for all n. Thus, we have for all n

dn = sn+1 − sn ≤ dsn + dsn+1 + · · ·+ dsn+1−1 = ssn+1 − ssn = D.

The boundedness implies that there exist

m = min{dn : n = 1, 2, . . . } and M = max{dn : n = 1, 2, . . . }.

It suffices to show that m = M . Assume that m < M . Choose n such that dn = m. Considering
a telescoping sum of m = dn = sn+1 − sn items not greater than M leads to

D = ssn+1 − ssn = ssn+m − ssn = dsn + dsn+1 + · · ·+ dsn+m−1 ≤ mM (1)

and equality holds if and only if all items of the sum are equal to M . Now choose n such that
dn = M . In the same way, considering a telescoping sum of M items not less than m we obtain

D = ssn+1 − ssn = ssn+M − ssn = dsn + dsn+1 + · · ·+ dsn+M−1 ≥Mm (2)

and equality holds if and only if all items of the sum are equal to m. The inequalities (1) and
(2) imply that D = Mm and that

dsn = dsn+1 = · · · = dsn+1−1 = M if dn = m,

dsn = dsn+1 = · · · = dsn+1−1 = m if dn = M.

Hence, dn = m implies dsn = M . Note that sn ≥ s1 +(n−1) ≥ n for all n and moreover sn > n
if dn = n, because in the case sn = n we would have m = dn = dsn = M in contradiction to
the assumption m < M . In the same way dn = M implies dsn = m and sn > n. Consequently,
there is a strictly increasing sequence n1, n2, . . . such that

dsn1
= M, dsn2

= m, dsn3
= M, dsn4

= m, . . . .

The sequence ds1 , ds2 , . . . is the sequence of pairwise differences of ss1+1, ss2+1, . . . and ss1 , ss2 , . . . ,
hence also an arithmetic progression. Thus m = M .
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Solution 2. Let the integersD and E be the common differences of the progressions ss1 , ss2 , . . .
and ss1+1, ss2+1, . . . , respectively. Let briefly A = ss1 − D and B = ss1+1 − E. Then, for all
positive integers n,

ssn = A+ nD, ssn+1 = B + nE.

Since the sequence s1, s2, . . . is strictly increasing, we have for all positive integers n

ssn < ssn+1 ≤ ssn+1 ,

which implies
A+ nD < B + nE ≤ A+ (n+ 1)D,

and thereby
0 < B − A+ n(E −D) ≤ D,

which implies D − E = 0 and thus

0 ≤ B − A ≤ D. (3)

Let m = min{sn+1 − sn : n = 1, 2, . . . }. Then

B − A = (ss1+1 − E)− (ss1 −D) = ss1+1 − ss1 ≥ m (4)

and
D = A+ (s1 + 1)D − (A+ s1D) = sss1+1 − sss1 = sB+D − sA+D ≥ m(B − A). (5)

From (3) we consider two cases.

Case 1. B − A = D.
Then, for each positive integer n, ssn+1 = B+nD = A+ (n+ 1)D = ssn+1 , hence sn+1 = sn + 1
and s1, s2, . . . is an arithmetic progression with common difference 1.

Case 2. B − A < D. Choose some positive integer N such that sN+1 − sN = m. Then

m(A−B +D − 1) = m((A+ (N + 1)D)− (B +ND + 1))

≤ sA+(N+1)D − sB+ND+1 = sssN+1
− sssN+1+1

= (A+ sN+1D)− (B + (sN + 1)D) = (sN+1 − sN)D + A−B −D
= mD + A−B −D,

i.e.,
(B − A−m) + (D −m(B − A)) ≤ 0. (6)

The inequalities (4)-(6) imply that

B − A = m and D = m(B − A).

Assume that there is some positive integer n such that sn+1 > sn +m. Then

m(m+ 1) ≤ m(sn+1− sn) ≤ ssn+1 − ssn = (A+ (n+ 1)D)− (A+nD)) = D = m(B−A) = m2,

a contradiction. Hence s1, s2, . . . is an arithmetic progression with common difference m.
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A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for
all real x, y the identity

f(xf(x+ y)) = f(yf(x)) + x2.

Solution 1. It is no hard to see that the two functions given by f(x) = x and f(x) = −x for
all real x respectively solve the functional equation. In the sequel, we prove that there are no
further solutions.
Let f be a function satisfying the given equation. It is clear that f cannot be a constant. Let us
first show that f(0) = 0. Suppose that f(0) 6= 0. For any real t, substituting (x, y) = (0, t

f(0)
)

into the given functional equation, we obtain

f(0) = f(t), (1)

contradicting the fact that f is not a constant function. Therefore, f(0) = 0. Next for any t,
substituting (x, y) = (t, 0) and (x, y) = (t,−t) into the given equation, we get

f (tf(t)) = f(0) + t2 = t2,

and
f(tf(0)) = f(−tf(t)) + t2,

respectively. Therefore, we conclude that

f(tf(t)) = t2, f(−tf(t)) = −t2, for every real t. (2)

Consequently, for every real v, there exists a real u, such that f(u) = v. We also see that if
f(t) = 0, then 0 = f(tf(t)) = t2 so that t = 0, and thus 0 is the only real number satisfying
f(t) = 0.
We next show that for any real number s,

f(−s) = −f(s). (3)

This is clear if f(s) = 0. Suppose now f(s) < 0, then we can find a number t for which
f(s) = −t2. As t 6= 0 implies f(t) 6= 0, we can also find number a such that af(t) = s.
Substituting (x, y) = (t, a) into the given equation, we get

f(tf(t+ a)) = f(af(t)) + t2 = f(s) + t2 = 0,

and therefore, tf(t + a) = 0, which implies t + a = 0, and hence s = −tf(t). Consequently,
f(−s) = f(tf(t)) = t2 = −(−t2) = −f(s) holds in this case.
Finally, suppose f(s) > 0 holds. Then there exists a real number t 6= 0 for which f(s) = t2.
Choose a number a such that tf(a) = s. Substituting (x, y) = (t, a− t) into the given equation,
we get f(s) = f(tf(a)) = f((a−t)f(t))+t2 = f((a−t)f(t))+f(s). So we have f((a−t)f(t)) = 0,
from which we conclude that (a − t)f(t) = 0. Since f(t) 6= 0, we get a = t so that s = tf(t)
and thus we see f(−s) = f(−tf(t)) = −t2 = −f(s) holds in this case also. This observation
finishes the proof of (3).
By substituting (x, y) = (s, t), (x, y) = (t,−s−t) and (x, y) = (−s−t, s) into the given equation,
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we obtain

f(sf(s+ t))) = f(tf(s)) + s2,

f(tf(−s)) = f((−s− t)f(t)) + t2,

and
f((−s− t)f(−t)) = f(sf(−s− t)) + (s+ t)2,

respectively. Using the fact that f(−x) = −f(x) holds for all x to rewrite the second and the
third equation, and rearranging the terms, we obtain

f(tf(s))− f(sf(s+ t)) = −s2,
f(tf(s))− f((s+ t)f(t)) = −t2,

f((s+ t)f(t)) + f(sf(s+ t)) = (s+ t)2.

Adding up these three equations now yields 2f(tf(s)) = 2ts, and therefore, we conclude that
f(tf(s)) = ts holds for every pair of real numbers s, t. By fixing s so that f(s) = 1, we obtain
f(x) = sx. In view of the given equation, we see that s = ±1. It is easy to check that both
functions f(x) = x and f(x) = −x satisfy the given functional equation, so these are the desired
solutions.

Solution 2. As in Solution 1 we obtain (1), (2) and (3).

Now we prove that f is injective. For this purpose, let us assume that f(r) = f(s) for some
r 6= s. Then, by (2)

r2 = f(rf(r)) = f(rf(s)) = f((s− r)f(r)) + r2,

where the last statement follows from the given functional equation with x = r and y = s− r.
Hence, h = (s− r)f(r) satisfies f(h) = 0 which implies h2 = f(hf(h)) = f(0) = 0, i.e., h = 0.
Then, by s 6= r we have f(r) = 0 which implies r = 0, and finally f(s) = f(r) = f(0) = 0.
Analogously, it follows that s = 0 which gives the contradiction r = s.

To prove |f(1)| = 1 we apply (2) with t = 1 and also with t = f(1) and obtain f(f(1)) = 1 and
(f(1))2 = f(f(1) · f(f(1))) = f(f(1)) = 1.

Now we choose η ∈ {−1, 1} with f(1) = η. Using that f is odd and the given equation with
x = 1, y = z (second equality) and with x = −1, y = z + 2 (fourth equality) we obtain

f(z) + 2η = η(f(zη) + 2) = η(f(f(z + 1)) + 1) = η(−f(−f(z + 1)) + 1)

= −ηf((z + 2)f(−1)) = −ηf((z + 2)(−η)) = ηf((z + 2)η) = f(z + 2). (4)

Hence,
f(z + 2η) = ηf(ηz + 2) = η(f(ηz) + 2η) = f(z) + 2.

Using this argument twice we obtain

f(z + 4η) = f(z + 2η) + 2 = f(z) + 4.

Substituting z = 2f(x) we have

f(2f(x)) + 4 = f(2f(x) + 4η) = f(2f(x+ 2)),
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where the last equality follows from (4). Applying the given functional equation we proceed to

f(2f(x+ 2)) = f(xf(2)) + 4 = f(2ηx) + 4

where the last equality follows again from (4) with z = 0, i.e., f(2) = 2η. Finally, f(2f(x)) =
f(2ηx) and by injectivity of f we get 2f(x) = 2ηx and hence the two solutions.
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Combinatorics
C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long
table. Initially all cards show their gold sides. Two players, standing by the same long side of
the table, play a game with alternating moves. Each move consists of choosing a block of 50
consecutive cards, the leftmost of which is showing gold, and turning them all over, so those
which showed gold now show black and vice versa. The last player who can make a legal move
wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting player?

Solution. (a) We interpret a card showing black as the digit 0 and a card showing gold as the
digit 1. Thus each position of the 2009 cards, read from left to right, corresponds bijectively to
a nonnegative integer written in binary notation of 2009 digits, where leading zeros are allowed.
Each move decreases this integer, so the game must end.

(b) We show that there is no winning strategy for the starting player. We label the cards from
right to left by 1, . . . , 2009 and consider the set S of cards with labels 50i, i = 1, 2, . . . , 40. Let
gn be the number of cards from S showing gold after n moves. Obviously, g0 = 40. Moreover,
|gn − gn+1| = 1 as long as the play goes on. Thus, after an odd number of moves, the non-
starting player finds a card from S showing gold and hence can make a move. Consequently,
this player always wins.

26



50th IMO 2009 Combinatorics C2

C2 ROU (Romania)

For any integer n ≥ 2, let N(n) be the maximal number of triples (ai, bi, ci), i = 1, . . . , N(n),
consisting of nonnegative integers ai, bi and ci such that the following two conditions are satis-
fied:

(1) ai + bi + ci = n for all i = 1, . . . , N(n),

(2) If i 6= j, then ai 6= aj, bi 6= bj and ci 6= cj.

Determine N(n) for all n ≥ 2.

Comment. The original problem was formulated form-tuples instead for triples. The numbers
N(m,n) are then defined similarly to N(n) in the case m = 3. The numbers N(3, n) and
N(n, n) should be determined. The case m = 3 is the same as in the present problem. The
upper bound for N(n, n) can be proved by a simple generalization. The construction of a set
of triples attaining the bound can be easily done by induction from n to n+ 2.

Solution. Let n ≥ 2 be an integer and let {T1, . . . , TN} be any set of triples of nonnegative
integers satisfying the conditions (1) and (2). Since the a-coordinates are pairwise distinct we
have

N∑
i=1

ai ≥
N∑
i=1

(i− 1) =
N(N − 1)

2
.

Analogously,
N∑
i=1

bi ≥
N(N − 1)

2
and

N∑
i=1

ci ≥
N(N − 1)

2
.

Summing these three inequalities and applying (1) yields

3
N(N − 1)

2
≤

N∑
i=1

ai +
N∑
i=1

bi +
N∑
i=1

ci =
N∑
i=1

(ai + bi + ci) = nN,

hence 3N−1
2
≤ n and, consequently,

N ≤
⌊

2n

3

⌋
+ 1.

By constructing examples, we show that this upper bound can be attained, so N(n) = b2n
3
c+1.
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We distinguish the cases n = 3k− 1, n = 3k and n = 3k+ 1 for k ≥ 1 and present the extremal
examples in form of a table.

n = 3k − 1⌊
2n
3

⌋
+ 1 = 2k

ai bi ci
0 k + 1 2k − 2
1 k + 2 2k − 4
...

...
...

k − 1 2k 0
k 0 2k − 1

k + 1 1 2k − 3
...

...
...

2k − 1 k − 1 1

n = 3k⌊
2n
3

⌋
+ 1 = 2k + 1

ai bi ci
0 k 2k
1 k + 1 2k − 2
...

...
...

k 2k 0
k + 1 0 2k − 1
k + 2 1 2k − 3

...
...

...
2k k − 1 1

n = 3k + 1⌊
2n
3

⌋
+ 1 = 2k + 1

ai bi ci
0 k 2k + 1
1 k + 1 2k − 1
...

...
...

k 2k 1
k + 1 0 2k
k + 2 1 2k − 2

...
...

...
2k k − 1 2

It can be easily seen that the conditions (1) and (2) are satisfied and that we indeed have
b2n

3
c+ 1 triples in each case.

Comment. A cute combinatorial model is given by an equilateral triangle, partitioned into
n2 congruent equilateral triangles by n− 1 equidistant parallels to each of its three sides. Two
chess-like bishops placed at any two vertices of the small triangles are said to menace one
another if they lie on a same parallel. The problem is to determine the largest number of
bishops that can be placed so that none menaces another. A bishop may be assigned three
coordinates a, b, c, namely the numbers of sides of small triangles they are off each of the sides
of the big triangle. It is readily seen that the sum of these coordinates is always n, therefore
fulfilling the requirements.
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C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each
i = 1, . . . , n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{
2ai−1 + 3ai, if εi = 0,

3ai−1 + ai, if εi = 1,
for each i = 1, . . . , n− 1,

bi+1 =

{
2bi−1 + 3bi, if εn−i = 0,

3bi−1 + bi, if εn−i = 1,
for each i = 1, . . . , n− 1.

Prove that an = bn.

Solution. For a binary word w = σ1 . . . σn of length n and a letter σ ∈ {0, 1} let wσ =
σ1 . . . σnσ and σw = σσ1 . . . σn. Moreover let w = σn . . . σ1 and let ∅ be the empty word (of
length 0 and with ∅ = ∅). Let (u, v) be a pair of two real numbers. For binary words w we
define recursively the numbers (u, v)w as follows:

(u, v)∅ = v, (u, v)0 = 2u+ 3v, (u, v)1 = 3u+ v,

(u, v)wσε =

{
2(u, v)w + 3(u, v)wσ, if ε = 0,

3(u, v)w + (u, v)wσ, if ε = 1.

It easily follows by induction on the length of w that for all real numbers u1, v1, u2, v2, λ1 and
λ2

(λ1u1 + λ2u2, λ1v1 + λ2v2)
w = λ1(u1, v1)

w + λ2(u2, v2)
w (1)

and that for ε ∈ {0, 1}
(u, v)εw = (v, (u, v)ε)w. (2)

Obviously, for n ≥ 1 and w = ε1 . . . εn−1, we have an = (1, 7)w and bn = (1, 7)w. Thus it is
sufficient to prove that

(1, 7)w = (1, 7)w (3)

for each binary word w. We proceed by induction on the length of w. The assertion is obvious
if w has length 0 or 1. Now let wσε be a binary word of length n ≥ 2 and suppose that the
assertion is true for all binary words of length at most n− 1.

Note that (2, 1)σ = 7 = (1, 7)∅ for σ ∈ {0, 1}, (1, 7)0 = 23, and (1, 7)1 = 10.

First let ε = 0. Then in view of the induction hypothesis and the equalities (1) and (2), we
obtain

(1, 7)wσ0 = 2(1, 7)w + 3(1, 7)wσ = 2(1, 7)w + 3(1, 7)σw = 2(2, 1)σw + 3(1, 7)σw

= (7, 23)σw = (1, 7)0σw.
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Now let ε = 1. Analogously, we obtain

(1, 7)wσ1 = 3(1, 7)w + (1, 7)wσ = 3(1, 7)w + (1, 7)σw = 3(2, 1)σw + (1, 7)σw

= (7, 10)σw = (1, 7)1σw.

Thus the induction step is complete, (3) and hence also an = bn are proved.

Comment. The original solution uses the relation

(1, 7)αβw = ((1, 7)w, (1, 7)βw)α, α, β ∈ {0, 1},

which can be proved by induction on the length of w. Then (3) also follows by induction on
the length of w:

(1, 7)αβw = ((1, 7)w, (1, 7)βw)α = ((1, 7)w, (1, 7)wβ)α = (1, 7)wβα.

Here w may be the empty word.
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C4 NLD (Netherlands)

For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting
of cells of the chessboard, in which each of the 2m cells along one diagonal forms a separate
rectangle of side length 1. Determine the smallest possible sum of rectangle perimeters in such
a partition.

Solution 1. For a k×k chessboard, we introduce in a standard way coordinates of the vertices
of the cells and assume that the cell Cij in row i and column j has vertices (i− 1, j − 1), (i−
1, j), (i, j−1), (i, j), where i, j ∈ {1, . . . , k}. Without loss of generality assume that the cells Cii,
i = 1, . . . , k, form a separate rectangle. Then we may consider the boards Bk =

⋃
1≤i<j≤k Cij

below that diagonal and the congruent board B′k =
⋃

1≤j<i≤k Cij above that diagonal separately
because no rectangle can simultaneously cover cells from Bk and B′k. We will show that for
k = 2m the smallest total perimeter of a rectangular partition of Bk is m2m+1. Then the overall
answer to the problem is 2 ·m2m+1 + 4 · 2m = (m+ 1)2m+2.

First we inductively construct for m ≥ 1 a partition of B2m with total perimeter m2m+1. If
m = 0, the boardB2m is empty and the total perimeter is 0. Form ≥ 0, the board B2m+1 consists
of a 2m × 2m square in the lower right corner with vertices (2m, 2m), (2m, 2m+1), (2m+1, 2m),
(2m+1, 2m+1) to which two boards congruent to B2m are glued along the left and the upper
margin. The square together with the inductive partitions of these two boards yield a partition
with total perimeter 4 · 2m + 2 ·m2m+1 = (m+ 1)2m+2 and the induction step is complete.

Let
Dk = 2k log2 k.

Note that Dk = m2m+1 if k = 2m. Now we show by induction on k that the total perimeter of
a rectangular partition of Bk is at least Dk. The case k = 1 is trivial (see m = 0 from above).
Let the assertion be true for all positive integers less than k. We investigate a fixed rectangular
partition of Bk that attains the minimal total perimeter. Let R be the rectangle that covers the
cell C1k in the lower right corner. Let (i, j) be the upper left corner of R. First we show that
i = j. Assume that i < j. Then the line from (i, j) to (i+ 1, j) or from (i, j) to (i, j − 1) must
belong to the boundary of some rectangle in the partition. Without loss of generality assume
that this is the case for the line from (i, j) to (i+ 1, j).

Case 1. No line from (i, l) to (i + 1, l) where j < l < k belongs to the boundary of some
rectangle of the partition.
Then there is some rectangle R′ of the partition that has with R the common side from (i, j)
to (i, k). If we join these two rectangles to one rectangle we get a partition with smaller total
perimeter, a contradiction.

Case 2. There is some l such that j < l < k and the line from (i, l) to (i+ 1, l) belongs to the
boundary of some rectangle of the partition.
Then we replace the upper side of R by the line (i + 1, j) to (i + 1, k) and for the rectangles
whose lower side belongs to the line from (i, j) to (i, k) we shift the lower side upwards so that
the new lower side belongs to the line from (i + 1, j) to (i + 1, k). In such a way we obtain a
rectangular partition of Bk with smaller total perimeter, a contradiction.

Now the fact that the upper left corner of R has the coordinates (i, i) is established. Conse-
quently, the partition consists of R, of rectangles of a partition of a board congruent to Bi and
of rectangles of a partition of a board congruent to Bk−i. By the induction hypothesis, its total
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perimeter is at least

2(k − i) + 2i+Di +Dk−i ≥ 2k + 2i log2 i+ 2(k − i) log2(k − i). (1)

Since the function f(x) = 2x log2 x is convex for x > 0, Jensen’s inequality immediately shows
that the minimum of the right hand sight of (1) is attained for i = k/2. Hence the total
perimeter of the optimal partition of Bk is at least 2k+ 2k/2 log2 k/2 + 2(k/2) log2(k/2) = Dk.

Solution 2. We start as in Solution 1 and present another proof that m2m+1 is a lower bound
for the total perimeter of a partition of B2m into n rectangles. Let briefly M = 2m. For
1 ≤ i ≤ M , let ri denote the number of rectangles in the partition that cover some cell from
row i and let cj be the number of rectangles that cover some cell from column j. Note that the
total perimeter p of all rectangles in the partition is

p = 2

(
M∑
i=1

ri +
M∑
i=1

ci

)
.

No rectangle can simultaneously cover cells from row i and from column i since otherwise it
would also cover the cell Cii. We classify subsets S of rectangles of the partition as follows.
We say that S is of type i, 1 ≤ i ≤M , if S contains all ri rectangles that cover some cell from
row i, but none of the ci rectangles that cover some cell from column i. Altogether there are
2n−ri−ci subsets of type i. Now we show that no subset S can be simultaneously of type i and of
type j if i 6= j. Assume the contrary and let without loss of generality i < j. The cell Cij must
be covered by some rectangle R. The subset S is of type i, hence R is contained in S. S is of
type j, thus R does not belong to S, a contradiction. Since there are 2n subsets of rectangles
of the partition, we infer

2n ≥
M∑
i=1

2n−ri−ci = 2n
M∑
i=1

2−(ri+ci). (2)

By applying Jensen’s inequality to the convex function f(x) = 2−x we derive

1

M

M∑
i=1

2−(ri+ci) ≥ 2−
1
M

∑M
i=1(ri+ci) = 2−

p
2M . (3)

From (2) and (3) we obtain
1 ≥M2−

p
2M

and equivalently
p ≥ m2m+1.
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Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon.
Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of
every round, the Stepmother takes one liter of water from the nearby river and distributes it
arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties
them into the river, and puts them back. Then the next round begins. The Stepmother’s goal
is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

Solution 1. No, the Stepmother cannot enforce a bucket overflow and Cinderella can keep
playing forever. Throughout we denote the five buckets by B0, B1, B2, B3, and B4, where Bk

is adjacent to bucket Bk−1 and Bk+1 (k = 0, 1, 2, 3, 4) and all indices are taken modulo 5.
Cinderella enforces that the following three conditions are satisfied at the beginning of every
round:

(1) Two adjacent buckets (say B1 and B2) are empty.

(2) The two buckets standing next to these adjacent buckets (here B0 and B3) have total
contents at most 1.

(3) The remaining bucket (here B4) has contents at most 1.

These conditions clearly hold at the beginning of the first round, when all buckets are empty.

Assume that Cinderella manages to maintain them until the beginning of the r-th round (r ≥ 1).
Denote by xk (k = 0, 1, 2, 3, 4) the contents of bucket Bk at the beginning of this round and
by yk the corresponding contents after the Stepmother has distributed her liter of water in this
round.

By the conditions, we can assume x1 = x2 = 0, x0 + x3 ≤ 1 and x4 ≤ 1. Then, since the
Stepmother adds one liter, we conclude y0 +y1 +y2 +y3 ≤ 2. This inequality implies y0 +y2 ≤ 1
or y1 + y3 ≤ 1. For reasons of symmetry, we only consider the second case.

Then Cinderella empties buckets B0 and B4.

At the beginning of the next round B0 and B4 are empty (condition (1) is fulfilled), due to
y1 +y3 ≤ 1 condition (2) is fulfilled and finally since x2 = 0 we also must have y2 ≤ 1 (condition
(3) is fulfilled).

Therefore, Cinderella can indeed manage to maintain the three conditions (1)–(3) also at the
beginning of the (r + 1)-th round. By induction, she thus manages to maintain them at the
beginning of every round. In particular she manages to keep the contents of every single bucket
at most 1 liter. Therefore, the buckets of 2-liter capacity will never overflow.

Solution 2. We prove that Cinderella can maintain the following two conditions and hence
she can prevent the buckets from overflow:

(1′) Every two non-adjacent buckets contain a total of at most 1.

(2′) The total contents of all five buckets is at most 3
2
.

We use the same notations as in the first solution. The two conditions again clearly hold at
the beginning. Assume that Cinderella maintained these two conditions until the beginning of
the r-th round. A pair of non-neighboring buckets (Bi, Bi+2), i = 0, 1, 2, 3, 4 is called critical
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if yi + yi+2 > 1. By condition (2′), after the Stepmother has distributed her water we have
y0 + y1 + y2 + y3 + y4 ≤ 5

2
. Therefore,

(y0 + y2) + (y1 + y3) + (y2 + y4) + (y3 + y0) + (y4 + y1) = 2(y0 + y1 + y2 + y3 + y4) ≤ 5,

and hence there is a pair of non-neighboring buckets which is not critical, say (B0, B2). Now,
if both of the pairs (B3, B0) and (B2, B4) are critical, we must have y1 <

1
2

and Cinderella
can empty the buckets B3 and B4. This clearly leaves no critical pair of buckets and the total
contents of all the buckets is then y1 + (y0 + y2) ≤ 3

2
. Therefore, conditions (1′) and (2′) are

fulfilled.

Now suppose that without loss of generality the pair (B3, B0) is not critical. If in this case
y0 ≤ 1

2
, then one of the inequalities y0 + y1 + y2 ≤ 3

2
and y0 + y3 + y4 ≤ 3

2
must hold. But then

Cinderella can empty B3 and B4 or B1 and B2, respectively and clearly fulfill the conditions.

Finally consider the case y0 >
1
2
. By y0 +y1 +y2 +y3 +y4 ≤ 5

2
, at least one of the pairs (B1, B3)

and (B2, B4) is not critical. Without loss of generality let this be the pair (B1, B3). Since the
pair (B3, B0) is not critical and y0 >

1
2
, we must have y3 ≤ 1

2
. But then, as before, Cinderella

can maintain the two conditions at the beginning of the next round by either emptying B1 and
B2 or B4 and B0.

Comments on GREEDY approaches. A natural approach for Cinderella would be a GREEDY
strategy as for example: Always remove as much water as possible from the system. It is
straightforward to prove that GREEDY can avoid buckets of capacity 5

2
from overflowing: If

before the Stepmothers move one has x0 + x1 + x2 + x3 + x4 ≤ 3
2

then after her move the
inequality Y = y0 + y1 + y2 + y3 + y4 ≤ 5

2
holds. If now Cinderella removes the two adjacent

buckets with maximum total contents she removes at least 2Y
5

and thus the remaining buckets
contain at most 3

5
· Y ≤ 3

2
.

But GREEDY is in general not strong enough to settle this problem as can be seen in the
following example:

• In an initial phase, the Stepmother brings all the buckets (after her move) to contents
of at least 1

2
− 2ε, where ε is an arbitrary small positive number. This can be done

by always splitting the 1 liter she has to distribute so that all buckets have the same
contents. After her r-th move the total contents of each of the buckets is then cr with
c1 = 1 and cr+1 = 1 + 3

5
· cr and hence cr = 5

2
− 3

2
·
(
3
5

)r−1
. So the contents of each

single bucket indeed approaches 1
2

(from below). In particular, any two adjacent buckets
have total contents strictly less than 1 which enables the Stepmother to always refill the
buckets that Cinderella just emptied and then distribute the remaining water evenly over
all buckets.

• After that phase GREEDY faces a situation like this (1
2
− 2ε, 1

2
− 2ε, 1

2
− 2ε, 1

2
− 2ε, 1

2
− 2ε)

and leaves a situation of the form (x0, x1, x2, x3, x4) = (1
2
− 2ε, 1

2
− 2ε, 1

2
− 2ε, 0, 0).

• Then the Stepmother can add the amounts (0, 1
4

+ ε, ε, 3
4
− 2ε, 0) to achieve a situation

like this: (y0, y1, y2, y3, y4) = (1
2
− 2ε, 3

4
− ε, 1

2
− ε, 3

4
− 2ε, 0).

• Now B1 and B2 are the adjacent buckets with the maximum total contents and thus
GREEDY empties them to yield (x0, x1, x2, x3, x4) = (1

2
− 2ε, 0, 0, 3

4
− 2ε, 0).

• Then the Stepmother adds (5
8
, 0, 0, 3

8
, 0), which yields (9

8
− 2ε, 0, 0, 9

8
− 2ε, 0).

• Now GREEDY can only empty one of the two nonempty buckets and in the next step the
Stepmother adds her liter to the other bucket and brings it to 17

8
− 2ε, i.e. an overflow.
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A harder variant. Five identical empty buckets of capacity b stand at the vertices of a regular
pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the
beginning of every round, the Stepmother takes one liter of water from the nearby river and
distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring
buckets, empties them into the river, and puts them back. Then the next round begins. The
Stepmother’s goal is to make one of these buckets overflow. Cinderella’s goal is to prevent this.
Determine all bucket capacities b for which the Stepmother can enforce a bucket to overflow.

Solution to the harder variant. The answer is b < 2.

The previous proof shows that for all b ≥ 2 the Stepmother cannot enforce overflowing. Now if
b < 2, let R be a positive integer such that b < 2− 21−R. In the first R rounds the Stepmother
now ensures that at least one of the (nonadjacent) buckets B1 and B3 have contents of at
least 1 − 21−r at the beginning of round r (r = 1, 2, . . . , R). This is trivial for r = 1 and if it
holds at the beginning of round r, she can fill the bucket which contains at least 1− 21−r liters
with another 2−r liters and put the rest of her water – 1 − 2−r liters – in the other bucket.
As Cinderella now can remove the water of at most one of the two buckets, the other bucket
carries its contents into the next round.

At the beginning of the R-th round there are 1− 21−R liters in B1 or B3. The Stepmother puts
the entire liter into that bucket and produces an overflow since b < 2− 21−R.
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C6 BGR (Bulgaria)

On a 999× 999 board a limp rook can move in the following way: From any square it can move
to any of its adjacent squares, i.e. a square having a common side with it, and every move
must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-
intersecting route of the limp rook consists of a sequence of pairwise different squares that the
limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting
route is called cyclic, if the limp rook can, after reaching the last square of the route, move
directly to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook
visit?

Solution. The answer is 9982 − 4 = 4 · (4992 − 1) squares.

First we show that this number is an upper bound for the number of cells a limp rook can
visit. To do this we color the cells with four colors A, B, C and D in the following way: for
(i, j) ≡ (0, 0) mod 2 use A, for (i, j) ≡ (0, 1) mod 2 use B, for (i, j) ≡ (1, 0) mod 2 use C and
for (i, j) ≡ (1, 1) mod 2 use D. From an A-cell the rook has to move to a B-cell or a C-cell. In
the first case, the order of the colors of the cells visited is given by A,B,D,C,A,B,D,C,A, . . .,
in the second case it is A,C,D,B,A,C,D,B,A, . . .. Since the route is closed it must contain
the same number of cells of each color. There are only 4992 A-cells. In the following we will
show that the rook cannot visit all the A-cells on its route and hence the maximum possible
number of cells in a route is 4 · (4992 − 1).

Assume that the route passes through every single A-cell. Color the A-cells in black and white
in a chessboard manner, i.e. color any two A-cells at distance 2 in different color. Since the
number of A-cells is odd the rook cannot always alternate between visiting black and white
A-cells along its route. Hence there are two A-cells of the same color which are four rook-steps
apart that are visited directly one after the other. Let these two A-cells have row and column
numbers (a, b) and (a+ 2, b+ 2) respectively.

There is up to reflection only one way the rook can take from (a, b) to (a + 2, b + 2). Let this
way be (a, b) → (a, b + 1) → (a + 1, b + 1) → (a + 1, b + 2) → (a + 2, b + 2). Also let without
loss of generality the color of the cell (a, b+ 1) be B (otherwise change the roles of columns and
rows).

Now consider the A-cell (a, b+2). The only way the rook can pass through it is via (a−1, b+2)→
(a, b + 2) → (a, b + 3) in this order, since according to our assumption after every A-cell the
rook passes through a B-cell. Hence, to connect these two parts of the path, there must be
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a path connecting the cell (a, b + 3) and (a, b) and also a path connecting (a + 2, b + 2) and
(a− 1, b+ 2).

But these four cells are opposite vertices of a convex quadrilateral and the paths are outside of
that quadrilateral and hence they must intersect. This is due to the following fact:

The path from (a, b) to (a, b+ 3) together with the line segment joining these two cells form a
closed loop that has one of the cells (a− 1, b+ 2) and (a+ 2, b+ 2) in its inside and the other
one on the outside. Thus the path between these two points must cross the previous path.

But an intersection is only possible if a cell is visited twice. This is a contradiction.

Hence the number of cells visited is at most 4 · (4992 − 1).

The following picture indicates a recursive construction for all n × n-chessboards with n ≡ 3
mod 4 which clearly yields a path that misses exactly one A-cell (marked with a dot, the center
cell of the 15× 15-chessboard) and hence, in the case of n = 999 crosses exactly 4 · (4992 − 1)
cells.

37



C7 Combinatorics 50th IMO 2009

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009
jumps to the right with lengths 1, 2, . . . , 2009 in an arbitrary order. Let M be a set of 2008
positive integers less than 1005 · 2009. Prove that the grasshopper can arrange his jumps in
such a way that he never lands on a point from M .

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts
at point 0 and makes n+ 1 jumps to the right with pairwise different positive integral lengths
a1, a2, . . . , an+1 in an arbitrary order. Let M be a set of n positive integers in the interval (0, s),
where s = a1 + a2 + · · · + an+1. Prove that the grasshopper can arrange his jumps in such a
way that he never lands on a point from M .

Solution of Variant 1. We construct the set of landing points of the grasshopper.

Case 1. M does not contain numbers divisible by 2009.
We fix the numbers 2009k as landing points, k = 1, 2, . . . , 1005. Consider the open intervals
Ik = (2009(k − 1), 2009k), k = 1, 2, . . . , 1005. We show that we can choose exactly one point
outside of M as a landing point in 1004 of these intervals such that all lengths from 1 to 2009
are realized. Since there remains one interval without a chosen point, the length 2009 indeed
will appear. Each interval has length 2009, hence a new landing point in an interval yields
with a length d also the length 2009− d. Thus it is enough to implement only the lengths from
D = {1, 2, . . . , 1004}. We will do this in a greedy way. Let nk, k = 1, 2, . . . , 1005, be the number
of elements of M that belong to the interval Ik. We order these numbers in a decreasing way,
so let p1, p2, . . . , p1005 be a permutation of {1, 2, . . . , 1005} such that np1 ≥ np2 ≥ · · · ≥ np1005 .
In Ip1 we do not choose a landing point. Assume that landing points have already been chosen
in the intervals Ip2 , . . . , Ipm and the lengths d2, . . . , dm from D are realized, m = 1, . . . , 1004.
We show that there is some d ∈ D \ {d2, . . . , dm} that can be implemented with a new landing
point in Ipm+1 . Assume the contrary. Then the 1004− (m− 1) other lengths are obstructed by
the npm+1 points of M in Ipm+1 . Each length d can be realized by two landing points, namely
2009(pm+1 − 1) + d and 2009pm+1 − d, hence

npm+1 ≥ 2(1005−m). (1)

Moreover, since |M | = 2008 = n1 + · · ·+ n1005,

2008 ≥ np1 + np2 + · · ·+ npm+1 ≥ (m+ 1)npm+1 . (2)

Consequently, by (1) and (2),

2008 ≥ 2(m+ 1)(1005−m).

The right hand side of the last inequality obviously attains its minimum for m = 1004 and this
minimum value is greater than 2008, a contradiction.

Case 2. M does contain a number µ divisible by 2009.
By the pigeonhole principle there exists some r ∈ {1, . . . , 2008} such that M does not contain
numbers with remainder r modulo 2009. We fix the numbers 2009(k− 1) + r as landing points,
k = 1, 2, . . . , 1005. Moreover, 1005 · 2009 is a landing point. Consider the open intervals
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Ik = (2009(k − 1) + r, 2009k + r), k = 1, 2, . . . , 1004. Analogously to Case 1, it is enough to
show that we can choose in 1003 of these intervals exactly one landing point outside of M \{µ}
such that each of the lengths of D = {1, 2, . . . , 1004} \ {r} are implemented. Note that r
and 2009 − r are realized by the first and last jump and that choosing µ would realize these
two differences again. Let nk, k = 1, 2, . . . , 1004, be the number of elements of M \ {µ} that
belong to the interval Ik and p1, p2, . . . , p1004 be a permutation of {1, 2, . . . , 1004} such that
np1 ≥ np2 ≥ · · · ≥ np1004 . With the same reasoning as in Case 1 we can verify that a greedy
choice of the landing points in Ip2 , Ip3 , . . . , Ip1004 is possible. We only have to replace (1) by

npm+1 ≥ 2(1004−m)

(D has one element less) and (2) by

2007 ≥ np1 + np2 + · · ·+ npm+1 ≥ (m+ 1)npm+1 .

Comment. The cardinality 2008 of M in the problem is the maximum possible value. For
M = {1, 2, . . . , 2009}, the grasshopper necessarily lands on a point from M .

Solution of Variant 2. First of all we remark that the statement in the problem implies a
strengthening of itself: Instead of |M | = n it is sufficient to suppose that |M ∩ (0, s− a]| ≤ n,
where a = min{a1, a2, . . . , an+1}. This fact will be used in the proof.

We prove the statement by induction on n. The case n = 0 is obvious. Let n > 0 and let the
assertion be true for all nonnegative integers less than n. Moreover let a1, a2, . . . , an+1, s and
M be given as in the problem. Without loss of generality we may assume that an+1 < an <
· · · < a2 < a1. Set

Tk =
k∑
i=1

ai for k = 0, 1, . . . , n+ 1.

Note that 0 = T0 < T1 < · · · < Tn+1 = s. We will make use of the induction hypothesis as
follows:

Claim 1. It suffices to show that for some m ∈ {1, 2, . . . , n + 1} the grasshopper is able to do
at least m jumps without landing on a point of M and, in addition, after these m jumps he
has jumped over at least m points of M .

Proof. Note that m = n+ 1 is impossible by |M | = n. Now set n′ = n−m. Then 0 ≤ n′ < n.
The remaining n′ + 1 jumps can be carried out without landing on one of the remaining at
most n′ forbidden points by the induction hypothesis together with a shift of the origin. This
proves the claim.

An integer k ∈ {1, 2, . . . , n+ 1} is called smooth, if the grasshopper is able to do k jumps with
the lengths a1, a2, . . . , ak in such a way that he never lands on a point of M except for the very
last jump, when he may land on a point of M .

Obviously, 1 is smooth. Thus there is a largest number k∗, such that all the numbers 1, 2, . . . , k∗

are smooth. If k∗ = n+ 1, the proof is complete. In the following let k∗ ≤ n.

Claim 2. We have
Tk∗ ∈M and |M ∩ (0, Tk∗)| ≥ k∗. (3)

Proof. In the case Tk∗ 6∈ M any sequence of jumps that verifies the smoothness of k∗ can be
extended by appending ak∗+1, which is a contradiction to the maximality of k∗. Therefore we
have Tk∗ ∈M . If |M ∩ (0, Tk∗)| < k∗, there exists an l ∈ {1, 2, . . . , k∗} with Tk∗+1−al 6∈M . By
the induction hypothesis with k∗ − 1 instead of n, the grasshopper is able to reach Tk∗+1 − al
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with k∗ jumps of lengths from {a1, a2, . . . , ak∗+1} \ {al} without landing on any point of M .
Therefore k∗+1 is also smooth, which is a contradiction to the maximality of k∗. Thus Claim 2
is proved.

Now, by Claim 2, there exists a smallest integer k ∈ {1, 2, . . . , k∗} with

Tk ∈M and |M ∩ (0, Tk)| ≥ k.

Claim 3. It is sufficient to consider the case

|M ∩ (0, Tk−1]| ≤ k − 1. (4)

Proof. If k = 1, then (4) is clearly satisfied. In the following let k > 1. If Tk−1 ∈ M , then

(4) follows immediately by the minimality of k. If Tk−1 6∈ M , by the smoothness of k − 1, we

obtain a situation as in Claim 1 with m = k − 1 provided that |M ∩ (0, Tk−1]| ≥ k − 1. Hence,

we may even restrict ourselves to |M ∩ (0, Tk−1]| ≤ k − 2 in this case and Claim 3 is proved.

Choose an integer v ≥ 0 with |M ∩ (0, Tk)| = k + v. Let r1 > r2 > · · · > rl be exactly those
indices r from {k + 1, k + 2, . . . , n+ 1} for which Tk + ar 6∈M . Then

n = |M | = |M ∩ (0, Tk)|+ 1 + |M ∩ (Tk, s)| ≥ k + v + 1 + (n+ 1− k − l)

and consequently l ≥ v + 2. Note that

Tk + ar1 − a1 < Tk + ar1 − a2 < · · · < Tk + ar1 − ak < Tk + ar2 − ak < · · · < Tk + arv+2 − ak < Tk

and that this are k + v + 1 numbers from (0, Tk). Therefore we find some r ∈ {k + 1, k +
2, . . . , n+ 1} and some s ∈ {1, 2, . . . , k} with Tk + ar 6∈M and Tk + ar − as 6∈M . Consider the
set of jump lengths B = {a1, a2, . . . , ak, ar} \ {as}. We have∑

x∈B

x = Tk + ar − as

and
Tk + ar − as −min(B) = Tk − as ≤ Tk−1.

By (4) and the strengthening, mentioned at the very beginning with k − 1 instead of n, the
grasshopper is able to reach Tk + ar − as by k jumps with lengths from B without landing on
any point of M . From there he is able to jump to Tk + ar and therefore we reach a situation as
in Claim 1 with m = k + 1, which completes the proof.
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C8 AUT (Austria)

For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its
decimal representation. Let r be the rightmost digit of n.

(1) If r = 0, then the decimal representation of h(n) results from the decimal representation
of n by removing this rightmost digit 0.

(2) If 1 ≤ r ≤ 9 we split the decimal representation of n into a maximal right part R that
solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the
decimal representation of L, followed by two copies of the decimal representation of R− 1.
For instance, for the number n = 17,151,345,543, we will have L = 17,151, R = 345,543
and h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the
integer 1 after finitely many steps.

Solution 1. We identify integers n ≥ 2 with the digit-strings, briefly strings, of their decimal
representation and extend the definition of h to all non-empty strings with digits from 0 to
9. We recursively define ten functions f0, . . . , f9 that map some strings into integers for k =
9, 8, . . . , 1, 0. The function f9 is only defined on strings x (including the empty string ε) that
entirely consist of nines. If x consists of m nines, then f9(x) = m+ 1, m = 0, 1, . . . . For k ≤ 8,
the domain of fk(x) is the set of all strings consisting only of digits that are ≥ k. We write x
in the form x0kx1kx2k . . . xm−1kxm where the strings xs only consist of digits ≥ k + 1. Note
that some of these strings might equal the empty string ε and that m = 0 is possible, i.e. the
digit k does not appear in x. Then we define

fk(x) =
m∑
s=0

4fk+1(xs).

We will use the following obvious fact:

Fact 1. If x does not contain digits smaller than k, then fi(x) = 4fi+1(x) for all i = 0, . . . , k− 1.
In particular, fi(ε) = 49−i for all i = 0, 1, . . . , 9.

Moreover, by induction on k = 9, 8, . . . , 0 it follows easily:

Fact 2. If the nonempty string x does not contain digits smaller than k, then fi(x) > fi(ε) for
all i = 0, . . . , k.

We will show the essential fact:

Fact 3. f0(n) > f0(h(n)).

Then the empty string will necessarily be reached after a finite number of applications of
h. But starting from a string without leading zeros, ε can only be reached via the strings
1→ 00→ 0→ ε. Hence also the number 1 will appear after a finite number of applications of
h.

Proof of Fact 3. If the last digit r of n is 0, then we write n = x00 . . . 0xm−10ε where the xi do
not contain the digit 0. Then h(n) = x00 . . . 0xm−1 and f0(n)− f0(h(n)) = f0(ε) > 0.

So let the last digit r of n be at least 1. Let L = yk and R = zr be the corresponding left and
right parts where y is some string, k ≤ r − 1 and the string z consists only of digits not less
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than r. Then n = ykzr and h(n) = ykz(r− 1)z(r− 1). Let d(y) be the smallest digit of y. We
consider two cases which do not exclude each other.

Case 1. d(y) ≥ k.
Then

fk(n)− fk(h(n)) = fk(zr)− fk(z(r − 1)z(r − 1)).

In view of Fact 1 this difference is positive if and only if

fr−1(zr)− fr−1(z(r − 1)z(r − 1)) > 0.

We have, using Fact 2,

fr−1(zr) = 4fr(zr) = 4fr(z)+4fr+1(ε) ≥ 4 · 4fr(z) > 4fr(z) + 4fr(z) + 4fr(ε) = fr−1(z(r − 1)z(r − 1)).

Here we use the additional definition f10(ε) = 0 if r = 9. Consequently, fk(n) − fk(h(n)) > 0
and according to Fact 1, f0(n)− f0(h(n)) > 0.

Case 2. d(y) ≤ k.
We prove by induction on d(y) = k, k−1, . . . , 0 that fi(n)−fi(h(n)) > 0 for all i = 0, . . . , d(y).
By Fact 1, it suffices to do so for i = d(y). The initialization d(y) = k was already treated in
Case 1. Let t = d(y) < k. Write y in the form utv where v does not contain digits ≤ t. Then,
in view of the induction hypothesis,

ft(n)− ft(h(n)) = ft(vkzr)− ft(vkz(r − 1)z(r − 1)) = 4ft+1(vkzr) − 4ft+1(vkz(r−1)z(r−1)) > 0.

Thus the inequality fd(y)(n) − fd(y)(h(n)) > 0 is established and from Fact 1 it follows that
f0(n)− f0(h(n)) > 0.

Solution 2. We identify integers n ≥ 2 with the digit-strings, briefly strings, of their decimal
representation and extend the definition of h to all non-empty strings with digits from 0 to
9. Moreover, let us define that the empty string, ε, is being mapped to the empty string. In
the following all functions map the set of strings into the set of strings. For two functions f
and g let g ◦ f be defined by (g ◦ f)(x) = g(f(x)) for all strings x and let, for non-negative
integers n, fn denote the n-fold application of f . For any string x let s(x) be the smallest digit
of x, and for the empty string let s(ε) =∞. We define nine functions g1, . . . , g9 as follows: Let
k ∈ {1, . . . , 9} and let x be a string. If x = ε then gk(x) = ε. Otherwise, write x in the form
x = yzr where y is either the empty string or ends with a digit smaller than k, s(z) ≥ k and r
is the rightmost digit of x. Then gk(x) = zr.

Lemma 1. We have gk ◦ h = gk ◦ h ◦ gk for all k = 1, . . . , 9.

Proof of Lemma 1. Let x = yzr be as in the definition of gk. If y = ε, then gk(x) = x, whence

gk(h(x)) = gk(h(gk(x)). (1)

So let y 6= ε.

Case 1. z contains a digit smaller than r.
Let z = uav where a < r and s(v) ≥ r. Then

h(x) =

{
yuav if r = 0,

yuav(r − 1)v(r − 1) if r > 0
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and

h(gk(x)) = h(zr) = h(uavr) =

{
uav if r = 0,

uav(r − 1)v(r − 1) if r > 0.

Since y ends with a digit smaller than k, (1) is obviously true.

Case 2. z does not contain a digit smaller than r.
Let y = uv where u is either the empty string or ends with a digit smaller than r and s(v) ≥ r.
We have

h(x) =

{
uvz if r = 0,

uvz(r − 1)vz(r − 1) if r > 0

and

h(gk(x)) = h(zr) =

{
z if r = 0,

z(r − 1)z(r − 1) if r > 0.

Recall that y and hence v ends with a digit smaller than k, but all digits of v are at least r.
Now if r > k, then v = ε, whence the terminal digit of u is smaller than k, which entails

gk(h(x)) = z(r − 1)z(r − 1) = gk(h(gk(x))).

If r ≤ k, then
gk(h(x)) = z(r − 1) = gk(h(gk(x))) ,

so that in both cases (1) is true. Thus Lemma 1 is proved.

Lemma 2. Let k ∈ {1, . . . , 9}, let x be a non-empty string and let n be a positive integer. If
hn(x) = ε then (gk ◦ h)n(x) = ε.

Proof of Lemma 2. We proceed by induction on n. If n = 1 we have

ε = h(x) = gk(h(x)) = (gk ◦ h)(x).

Now consider the step from n − 1 to n where n ≥ 2. Let hn(x) = ε and let y = h(x). Then
hn−1(y) = ε and by the induction hypothesis (gk ◦ h)n−1(y) = ε. In view of Lemma 1,

ε = (gk ◦ h)n−2((gk ◦ h)(y)) = (gk ◦ h)n−2(gk(h(y))

= (gk ◦ h)n−2(gk(h(gk(y))) = (gk ◦ h)n−2(gk(h(gk(h(x)))) = (gk ◦ h)n(x).

Thus the induction step is complete and Lemma 2 is proved.

We say that the non-empty string x terminates if hn(x) = ε for some non-negative integer n.

Lemma 3. Let x = yzr where s(y) ≥ k, s(z) ≥ k, y ends with the digit k and z is possibly
empty. If y and zr terminate then also x terminates.

Proof of Lemma 3. Suppose that y and zr terminate. We proceed by induction on k. Let k = 0.
Obviously, h(yw) = yh(w) for any non-empty string w. Let hn(zr) = ε. It follows easily by
induction on m that hm(yzr) = yhm(zr) for m = 1, . . . , n. Consequently, hn(yzr) = y. Since y
terminates, also x = yzr terminates.

Now let the assertion be true for all nonnegative integers less than k and let us prove it for k
where k ≥ 1. It turns out that it is sufficient to prove that ygk(h(zr)) terminates. Indeed:

Case 1. r = 0.
Then h(yzr) = yz = ygk(h(zr)).

Case 2. 0 < r ≤ k.
We have h(zr) = z(r − 1)z(r − 1) and gk(h(zr)) = z(r − 1). Then h(yzr) = yz(r − 1)yz(r −
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1) = ygk(h(zr))ygk(h(zr)) and we may apply the induction hypothesis to see that if ygkh(zr))
terminates, then h(yzr) terminates.

Case 3. r > k.
Then h(yzr) = yh(zr) = ygk(h(zr)).

Note that ygk(h(zr)) has the form yz′r′ where s(z′) ≥ k. By the same arguments it is sufficient
to prove that ygk(h(z′r′)) = y(gk ◦ h)2(zr) terminates and, by induction, that y(gk ◦ h)m(zr)
terminates for some positive integer m. In view of Lemma 2 there is some m such that (gk ◦
h)m(zr) = ε, so x = yzr terminates if y terminates. Thus Lemma 3 is proved.

Now assume that there is some string x that does not terminate. We choose x minimal. If
x ≥ 10, we can write x in the form x = yzr of Lemma 3 and by this lemma x terminates since
y and zr are smaller than x. If x ≤ 9, then h(x) = (x − 1)(x − 1) and h(x) terminates again
by Lemma 3 and the minimal choice of x.

Solution 3. We commence by introducing some terminology. Instead of integers, we will
consider the set S of all strings consisting of the digits 0, 1, . . . , 9, including the empty string
ε. If (a1, a2, . . . , an) is a nonempty string, we let ρ(a) = an denote the terminal digit of a and
λ(a) be the string with the last digit removed. We also define λ(ε) = ε and denote the set of
non-negative integers by N0.

Now let k ∈ {0, 1, 2, . . . , 9} denote any digit. We define a function fk : S −→ S on the set of
strings: First, if the terminal digit of n belongs to {0, 1, . . . , k}, then fk(n) is obtained from n
by deleting this terminal digit, i.e fk(n) = λ(n). Secondly, if the terminal digit of n belongs to
{k+ 1, . . . , 9}, then fk(n) is obtained from n by the process described in the problem. We also
define fk(ε) = ε. Note that up to the definition for integers n ≤ 1, the function f0 coincides with
the function h in the problem, through interpreting integers as digit strings. The argument will
be roughly as follows. We begin by introducing a straightforward generalization of our claim
about f0. Then it will be easy to see that f9 has all these stronger properties, which means
that is suffices to show for k ∈ {0, 1, . . . , 8} that fk possesses these properties provided that
fk+1 does.

We continue to use k to denote any digit. The operation fk is said to be separating, if the
followings holds: Whenever a is an initial segment of b, there is some N ∈ N0 such that
fNk (b) = a. The following two notions only apply to the case where fk is indeed separating,
otherwise they remain undefined. For every a ∈ S we denote the least N ∈ N0 for which
fNk (a) = ε occurs by gk(a) (because ε is an initial segment of a, such an N exists if fk is
separating). If for every two strings a and b such that a is a terminal segment of b one has
gk(a) ≤ gk(b), we say that fk is coherent. In case that fk is separating and coherent we call the
digit k seductive.

As f9(a) = λ(a) for all a, it is obvious that 9 is seductive. Hence in order to show that 0 is seduc-
tive, which clearly implies the statement of the problem, it suffices to take any k ∈ {0, 1, . . . , 8}
such that k+ 1 is seductive and to prove that k has to be seductive as well. Note that in doing
so, we have the function gk+1 at our disposal. We have to establish two things and we begin with

Step 1. fk is separating.

Before embarking on the proof of this, we record a useful observation which is easily proved by
induction on M .
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Claim 1. For any strings A, B and any positive integer M such that fM−1k (B) 6= ε, we have

fMk (AkB) = AkfMk (B).

Now we call a pair (a, b) of strings wicked provided that a is an initial segment of b, but there
is no N ∈ N0 such that fNk (b) = a. We need to show that there are none, so assume that
there were such pairs. Choose a wicked pair (a, b) for which gk+1(b) attains its minimal possible
value. Obviously b 6= ε for any wicked pair (a, b). Let z denote the terminal digit of b. Observe
that a 6= b, which means that a is also an initial segment of λ(b). To facilitate the construction
of the eventual contradiction, we prove

Claim 2. There cannot be an N ∈ N0 such that

fNk (b) = λ(b).

Proof of Claim 2. For suppose that such an N existed. Because gk+1(λ(b)) < gk+1(b) in view
of the coherency of fk+1, the pair (a, λ(b)) is not wicked. But then there is some N ′ for which
fN

′

k (λ(b)) = a which entails fN+N ′

k (b) = a, contradiction. Hence Claim 2 is proved.

It follows that z ≤ k is impossible, for otherwise N = 1 violated Claim 2.

Also z > k+1 is impossible: Set B = fk(b). Then also fk+1(b) = B, but gk+1(B) < gk+1(b) and
a is an initial segment of B. Thus the pair (a,B) is not wicked. Hence there is some N ∈ N0

with a = fNk (B), which, however, entails a = fN+1
k (b).

We are left with the case z = k + 1. Let L denote the left part and R = R∗(k + 1) the right
part of b. Then we have symbolically

fk(b) = LR∗kR∗k , f 2
k (b) = LR∗kR∗ and fk+1(b) = LR∗.

Using that R∗ is a terminal segment of LR∗ and the coherency of fk+1, we infer

gk+1(R
∗) ≤ gk+1(LR

∗) < gk+1(b).

Hence the pair (ε, R∗) is not wicked, so there is some minimal M ∈ N0 with fMk (R∗) = ε and
by Claim 1 it follows that f 2+M

k (b) = LR∗k. Finally, we infer that λ(b) = LR∗ = fk(LR
∗k) =

f 3+M
k (b), which yields a contradiction to Claim 2.

This final contradiction establishes that fk is indeed separating.

Step 2. fk is coherent.

To prepare the proof of this, we introduce some further pieces of terminology. A nonempty
string (a1, a2, . . . , an) is called a hypostasis, if an < ai for all i = 1, . . . , n − 1. Reading an
arbitrary string a backwards, we easily find a, possibly empty, sequence (A1, A2, . . . , Am) of
hypostases such that ρ(A1) ≤ ρ(A2) ≤ · · · ≤ ρ(Am) and, symbolically, a = A1A2 . . . Am.
The latter sequence is referred to as the decomposition of a. So, for instance, (20, 0, 9) is the
decomposition of 2009 and the string 50 is a hypostasis. Next we explain when we say about
two strings a and b that a is injectible into b. The definition is by induction on the length
of b. Let (B1, B2, . . . , Bn) be the decomposition of b into hypostases. Then a is injectible
into b if for the decomposition (A1, A2, . . . , Am) of a there is a strictly increasing function
H : {1, 2, . . . ,m} −→ {1, 2, . . . , n} satisfying

ρ(Ai) = ρ(BH(i)) for all i = 1, . . . ,m;
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λ(Ai) is injectible into λ(BH(i)) for all i = 1, . . . ,m.

If one can choose H with H(m) = n, then we say that a is strongly injectible into b. Obviously,
if a is a terminal segment of b, then a is strongly injectible into b.

Claim 3. If a and b are two nonempty strings such that a is strongly injectible into b, then λ(a)
is injectible into λ(b).

Proof of Claim 3. Let (B1, B2, . . . , Bn) be the decomposition of b and let (A1, A2, . . . , Am) be
the decomposition of a. Take a function H exemplifying that a is strongly injectible into b.
Let (C1, C2, . . . , Cr) be the decomposition of λ(Am) and let (D1, D2, . . . , Ds) be the decompo-
sition of λ(Bn). Choose a strictly increasing H ′ : {1, 2, . . . , r} −→ {1, 2, . . . s} witnessing that
λ(Am) is injectible into λ(Bn). Clearly, (A1, A2, . . . , Am−1, C1, C2, . . . , Cr) is the decomposition
of λ(a) and (B1, B2, . . . , Bn−1, D1, D2, . . . , Ds) is the decomposition of λ(b). Then the function
H ′′ : {1, 2, . . . ,m+ r−1} −→ {1, 2, . . . , n+ s−1} given by H ′′(i) = H(i) for i = 1, 2, . . . ,m−1
and H ′′(m − 1 + i) = n − 1 + H ′(i) for i = 1, 2, . . . , r exemplifies that λ(a) is injectible into
λ(b), which finishes the proof of the claim.

A pair (a, b) of strings is called aggressive if a is injectible into b and nevertheless gk(a) > gk(b).
Observe that if fk was incoherent, which we shall assume from now on, then such pairs existed.
Now among all aggressive pairs we choose one, say (a, b), for which gk(b) attains its least possible
value. Obviously fk(a) cannot be injectible into fk(b), for otherwise the pair (fk(a), fk(b)) was
aggressive and contradicted our choice of (a, b). Let (A1, A2, . . . , Am) and (B1, B2, . . . , Bn)
be the decompositions of a and b and take a function H : {1, 2, . . . ,m} −→ {1, 2, . . . , n}
exemplifying that a is indeed injectible into b. If we had H(m) < n, then a was also injectible
into the number b′ whose decomposition is (B1, B2, . . . , Bn−1) and by separativity of fk we
obtained gk(b

′) < gk(b), whence the pair (a, b′) was also aggressive, contrary to the minimality
condition imposed on b. Therefore a is strongly injectible into b. In particular, a and b have a
common terminal digit, say z. If we had z ≤ k, then fk(a) = λ(a) and fk(b) = λ(b), so that by
Claim 3, fk(a) was injectible into fk(b), which is a contradiction. Hence, z ≥ k + 1.

Now let r be the minimal element of {1, 2, . . . ,m} for which ρ(Ar) = z. Then the maximal
right part of a consisting of digits ≥ z is equal to Ra, the string whose decomposition is
(Ar, Ar+1, . . . , Am). Then Ra − 1 is a hypostasis and (A1, . . . , Ar−1, Ra − 1, Ra − 1) is the
decomposition of fk(a). Defining s and Rb in a similar fashion with respect to b, we see that
(B1, . . . , Bs−1, Rb − 1, Rb − 1) is the decomposition of fk(b). The definition of injectibility then
easily entails that Ra is strongly injectible into Rb. It follows from Claim 3 that λ(Ra) =
λ(Ra − 1) is injectible into λ(Rb) = λ(Rb − 1), whence the function H ′ : {1, 2, . . . , r + 1} −→
{1, 2, . . . , s+ 1}, given by H ′(i) = H(i) for i = 1, 2, . . . , r− 1, H ′(r) = s and H ′(r + 1) = s+ 1
exemplifies that fk(a) is injectible into fk(b), which yields a contradiction as before.

This shows that aggressive pairs cannot exist, whence fk is indeed coherent, which finishes the
proof of the seductivity of k, whereby the problem is finally solved.
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Geometry
G1 BEL (Belgium)

Let ABC be a triangle with AB = AC. The angle bisectors of A and B meet the sides BC
and AC in D and E, respectively. Let K be the incenter of triangle ADC. Suppose that
∠BEK = 45◦. Find all possible values of ∠BAC.

Solution 1. Answer: ∠BAC = 60◦ or ∠BAC = 90◦ are possible values and the only possible
values.

Let I be the incenter of triangle ABC, then K lies on the line CI. Let F be the point, where
the incircle of triangle ABC touches the side AC; then the segments IF and ID have the same
length and are perpendicular to AC and BC, respectively.

A

B CD

E=F

I

KP

Q

R
S

A

B CD

E
F

I

KP

Q

RS

Figure 1 Figure 2

Let P , Q and R be the points where the incircle of triangle ADC touches the sides AD, DC
and CA, respectively. Since K and I lie on the angle bisector of ∠ACD, the segments ID and
IF are symmetric with respect to the line IC. Hence there is a point S on IF where the incircle
of triangle ADC touches the segment IF . Then segments KP , KQ, KR and KS all have the
same length and are perpendicular to AD, DC, CA and IF , respectively. So – regardless of
the value of ∠BEK – the quadrilateral KRFS is a square and ∠SFK = ∠KFC = 45◦.

Consider the case ∠BAC = 60◦ (see Figure 1). Then triangle ABC is equilateral. Furthermore
we have F = E, hence ∠BEK = ∠IFK = ∠SEK = 45◦. So 60◦ is a possible value for ∠BAC.

Now consider the case ∠BAC = 90◦ (see Figure 2). Then ∠CBA = ∠ACB = 45◦. Fur-
thermore, ∠KIE = 1

2
∠CBA + 1

2
∠ACB = 45◦, ∠AEB = 180◦ − 90◦ − 22.5◦ = 67.5◦ and

∠EIA = ∠BID = 180◦− 90◦− 22.5◦ = 67.5◦. Hence triangle IEA is isosceles and a reflection
of the bisector of ∠IAE takes I to E and K to itself. So triangle IKE is symmetric with
respect to this axis, i.e. ∠KIE = ∠IEK = ∠BEK = 45◦. So 90◦ is a possible value for
∠BAC, too.

If, on the other hand, ∠BEK = 45◦ then ∠BEK = ∠IEK = ∠IFK = 45◦. Then

• either F = E, which makes the angle bisector BI be an altitude, i.e., which makes triangle
ABC isosceles with base AC and hence equilateral and so ∠BAC = 60◦,

• or E lies between F and C, which makes the points K, E, F and I concyclic, so 45◦ =
∠KFC = ∠KFE = ∠KIE = ∠CBI + ∠ICB = 2 · ∠ICB = 90◦ − 1

2
∠BAC, and so

∠BAC = 90◦,
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• or F lies between E and C, then again, K, E, F and I are concyclic, so 45◦ = ∠KFC =
180◦ − ∠KFE = ∠KIE, which yields the same result ∠BAC = 90◦. (However, for
∠BAC = 90◦ E lies, in fact, between F and C, see Figure 2. So this case does not
occur.)

This proves 90◦ and 60◦ to be the only possible values for ∠BAC.

Solution 2. Denote angles at A, B and C as usual by α, β and γ. Since triangle ABC is
isosceles, we have β = γ = 90◦ − α

2
< 90◦, so ∠ECK = 45◦ − α

4
= ∠KCD. Since K is the

incenter of triangle ADC, we have ∠CDK = ∠KDA = 45◦; furthermore ∠DIC = 45◦ + α
4
.

Now, if ∠BEK = 45◦, easy calculations within triangles BCE and KCE yield

∠KEC = 180◦− β
2
− 45◦− β = 135◦− 3

2
β = 3

2
(90◦− β) = 3

4
α,

∠IKE = 3
4
α + 45◦− α

4
= 45◦+ α

2
.

So in triangles ICE, IKE, IDK and IDC we have (see Figure 3)

IC

IE
=

sin∠IEC
sin∠ECI

=
sin(45◦+ 3

4
α)

sin(45◦− α
4
)
,

IE

IK
=

sin∠EKI
sin∠IEK

=
sin(45◦+ α

2
)

sin 45◦
,

IK

ID
=

sin∠KDI
sin∠IKD

=
sin 45◦

sin(90◦− α
4
)
,

ID

IC
=

sin∠ICD
sin∠CDI

=
sin(45◦− α

4
)

sin 90◦
.

A

B CD

E

I

K

α
2

3
α
4

45˚

45˚ α
4

45˚
45˚

45˚ α
4

45˚ α
2

β

Figure 3

Multiplication of these four equations yields

1 =
sin(45◦+ 3

4
α) sin(45◦+ α

2
)

sin(90◦− α
4
)

.

But, since

sin (90◦− α
4
) = cos α

4
= cos

(
(45◦+ 3

4
α)− (45◦+ α

2
)
)

= cos
(
45◦+ 3

4
α
)

cos (45◦+ α
2
) + sin (45◦+ 3

4
α) sin (45◦+ α

2
),

this is equivalent to

sin(45◦+ 3
4
α) sin(45◦+ α

2
) = cos (45◦+ 3

4
α) cos (45◦+ α

2
) + sin (45◦+ 3

4
α) sin (45◦+ α

2
)

and finally
cos (45◦+ 3

4
α) cos (45◦+ α

2
) = 0.
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But this means cos (45◦+ 3
4
α) = 0, hence 45◦ + 3

4
α = 90◦, i.e. α = 60◦ or cos (45◦+ α

2
) = 0,

hence 45◦+ α
2

= 90◦, i.e. α = 90◦. So these values are the only two possible values for α.

On the other hand, both α = 90◦ and α = 60◦ yield ∠BEK = 45◦, this was shown in
Solution 1.
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G2 RUS (Russian Federation)

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the
sides CA and AB, respectively. The circle k passes through the midpoints of the segments BP ,
CQ, and PQ. Prove that if the line PQ is tangent to circle k then OP = OQ.

Solution 1. Let K, L, M , B′, C ′ be the midpoints of BP , CQ, PQ, CA, and AB, respectively
(see Figure 1). Since CA ‖ LM , we have ∠LMP = ∠QPA. Since k touches the segment PQ
at M , we find ∠LMP = ∠LKM . Thus ∠QPA = ∠LKM . Similarly it follows from AB ‖MK
that ∠PQA = ∠KLM . Therefore, triangles APQ and MKL are similar, hence

AP

AQ
=
MK

ML
=

QB
2
PC
2

=
QB

PC
. (1)

Now (1) is equivalent to AP · PC = AQ ·QB which means that the power of points P and Q
with respect to the circumcircle of 4ABC are equal, hence OP = OQ.

A

B

B ′

C

C ′

K

L

M

O

P

Q

k

Figure 1

Comment. The last argument can also be established by the following calculation:

OP 2 −OQ2 = OB′2 +B′P 2 −OC ′2 − C ′Q2

= (OA2 − AB′2) +B′P 2 − (OA2 − AC ′2)− C ′Q2

= (AC ′2 − C ′Q2)− (AB′2 −B′P 2)

= (AC ′ − C ′Q)(AC ′ + C ′Q)− (AB′ −B′P )(AB′ +B′P )

= AQ ·QB − AP · PC.

With (1), we conclude OP 2 −OQ2 = 0, as desired.
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Solution 2. Again, denote by K, L, M the midpoints of segments BP , CQ, and PQ, respec-
tively. Let O, S, T be the circumcenters of triangles ABC, KLM , and APQ, respectively (see
Figure 2). Note that MK and LM are the midlines in triangles BPQ and CPQ, respectively, so
−−→
MK = 1

2

−−→
QB and

−−→
ML = 1

2

−→
PC. Denote by prl(

−→v ) the projection of vector −→v onto line l. Then

prAB(
−→
OT ) = prAB(

−→
OA−

−→
TA) = 1

2

−→
BA− 1

2

−→
QA = 1

2

−−→
BQ =

−−→
KM and prAB(

−−→
SM) = prMK(

−−→
SM) =

1
2

−−→
KM = 1

2
prAB(

−→
OT ). Analogously we get prCA(

−−→
SM) = 1

2
prCA(

−→
OT ). Since AB and CA are not

parallel, this implies that
−−→
SM = 1

2

−→
OT .

A

B C

K

L

M

O

P

Q

S

T

k

Figure 2

Now, since the circle k touches PQ at M , we get SM ⊥ PQ, hence OT ⊥ PQ. Since T is
equidistant from P and Q, the line OT is a perpendicular bisector of segment PQ, and hence
O is equidistant from P and Q which finishes the proof.
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G3 IRN (Islamic Republic of Iran)

Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z
and Y , respectively. Let G be the point where the lines BY and CZ meet, and let R and S be
points such that the two quadrilaterals BCY R and BCSZ are parallelograms.

Prove that GR = GS.

Solution 1. Denote by k the incircle and by ka the excircle opposite to A of triangle ABC.
Let k and ka touch the side BC at the points X and T , respectively, let ka touch the lines AB
and AC at the points P and Q, respectively. We use several times the fact that opposing sides
of a parallelogram are of equal length, that points of contact of the excircle and incircle to a
side of a triangle lie symmetric with respect to the midpoint of this side and that segments on
two tangents to a circle defined by the points of contact and their point of intersection have
the same length. So we conclude

ZP = ZB +BP = XB +BT = BX + CX = ZS and

CQ = CT = BX = BZ = CS.

A

B C

G

Ia

P

Q

R
S

TX

Y
Z

k

ka

p

q

xx

y

y

y
z

z

y+z

So for each of the points Z, C, their distances to S equal the length of a tangent segment from
this point to ka. It is well-known, that all points with this property lie on the line ZC, which
is the radical axis of S and ka. Similar arguments yield that BY is the radical axis of R and
ka. So the point of intersection of ZC and BY , which is G by definition, is the radical center
of R, S and ka, from which the claim GR = GS follows immediately.

Solution 2. Denote x = AZ = AY , y = BZ = BX, z = CX = CY , p = ZG, q = GC.
Several lengthy calculations (Menelaos’ theorem in triangle AZC, law of Cosines in triangles
ABC and AZC and Stewart’s theorem in triangle ZCS) give four equations for p, q, cosα
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and GS in terms of x, y, and z that can be resolved for GS. The result is symmetric in y and
z, so GR = GS. More in detail this means:

The line BY intersects the sides of triangle AZC, so Menelaos’ theorem yields p
q
· z
x
· x+y

y
= 1,

hence
p

q
=

xy

yz + zx
. (1)

Since we only want to show that the term for GS is symmetric in y and z, we abbreviate terms
that are symmetric in y and z by capital letters, starting with N = xy+yz+zx. So (1) implies

p

p+ q
=

xy

xy + yz + zx
=
xy

N
and

q

p+ q
=

yz + zx

xy + yz + zx
=
yz + zx

N
. (2)

Now the law of Cosines in triangle ABC yields

cosα =
(x+ y)2 + (x+ z)2 − (y + z)2

2(x+ y)(x+ z)
=

2x2 + 2xy + 2xz − 2yz

2(x+ y)(x+ z)
= 1− 2yz

(x+ y)(x+ z)
.

We use this result to apply the law of Cosines in triangle AZC:

(p+ q)2 = x2 + (x+ z)2 − 2x(x+ z) cosα

= x2 + (x+ z)2 − 2x(x+ z) ·
(

1− 2yz

(x+ y)(x+ z)

)
= z2 +

4xyz

x+ y
. (3)

Now in triangle ZCS the segment GS is a cevian, so with Stewart’s theorem we have
py2 + q(y + z)2 = (p+ q)(GS2 + pq), hence

GS2 =
p

p+ q
· y2 +

q

p+ q
· (y + z)2 − p

p+ q
· q

p+ q
· (p+ q)2.

Replacing the p’s and q’s herein by (2) and (3) yields

GS2 =
xy

N
y2 +

yz + zx

N
(y + z)2 − xy

N
· yz + zx

N
·
(
z2 +

4xyz

x+ y

)
=
xy3

N
+
yz(y + z)2

N︸ ︷︷ ︸
M1

+
zx(y + z)2

N
− xyz3(x+ y)

N2
− 4x2y2z2

N2︸ ︷︷ ︸
M2

=
xy3 + zx(y + z)2

N
− xyz3(x+ y)

N2
+M1 −M2

=
x(y3 + y2z + yz2 + z3)

N︸ ︷︷ ︸
M3

+
xyz2N

N2
− xyz3(x+ y)

N2
+M1 −M2

=
x2y2z2 + xy2z3 + x2yz3 − x2yz3 − xy2z3

N2
+M1 −M2 +M3

=
x2y2z2

N2
+M1 −M2 +M3,

a term that is symmetric in y and z, indeed.

Comment. G is known as Gergonne’s point of 4ABC.
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G4 UNK (United Kingdom)

Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD
and BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF
is tangent at E to the circle through the points E, G, and H.

Solution 1. It suffices to show that ∠HEF = ∠HGE (see Figure 1), since in circle EGH the
angle over the chord EH at G equals the angle between the tangent at E and EH.

First, ∠BAD = 180◦−∠DCB = ∠FCD. Since triangles FAB and FCD have also a common
interior angle at F , they are similar.

A

B

C

D

E F
G

H M

X

Y

Figure 1

Denote by T the transformation consisting of a reflection at the bisector of ∠DFC followed
by a dilation with center F and factor of FA

FC
. Then T maps F to F , C to A, D to B, and H

to G. To see this, note that 4FCA ∼ 4FDB, so FA
FC

= FB
FD

. Moreover, as ∠ADB = ∠ACB,
the image of the line DE under T is parallel to AC (and passes through B) and similarly the
image of CE is parallel to DB and passes through A. Hence E is mapped to the point X which
is the fourth vertex of the parallelogram BEAX. Thus, in particular ∠HEF = ∠FXG.

As G is the midpoint of the diagonal AB of the parallelogram BEAX, it is also the midpoint
of EX. In particular, E, G, X are collinear, and EX = 2 · EG.

Denote by Y the fourth vertex of the parallelogram DECY . By an analogous reasoning as
before, it follows that T maps Y to E, thus E, H, Y are collinear with EY = 2 · EH.
Therefore, by the intercept theorem, HG ‖ XY .

From the construction of T it is clear that the lines FX and FE are symmetric with respect
to the bisector of ∠DFC, as are FY and FE. Thus, F , X, Y are collinear, which together
with HG ‖ XY implies ∠FXE = ∠HGE. This completes the proof.
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Solution 2. We use the following

Lemma (Gauß). Let ABCD be a quadrilateral. Let AB and CD intersect at P , and BC
and DA intersect at Q. Then the midpoints K, L, M of AC, BD, and PQ, respectively, are
collinear.

Proof: Let us consider the points Z that fulfill the equation

(ABZ) + (CDZ) = (BCZ) + (DAZ), (1)

where (RST ) denotes the oriented area of the triangle RST (see Figure 2).

A

B
C

DK

L

M

P

Q

Figure 2

As (1) is linear in Z, it can either characterize a line, or be contradictory, or be trivially fulfilled
for all Z in the plane. If (1) was fulfilled for all Z, then it would hold for Z = A, Z = B, which
gives (CDA) = (BCA), (CDB) = (DAB), respectively, i.e. the diagonals of ABCD would
bisect each other, thus ABCD would be a parallelogram. This contradicts the hypothesis that
AD and BC intersect. Since E,F,G fulfill (1), it is the equation of a line which completes the
proof of the lemma.

Now consider the parallelograms EAXB and ECYD (see Figure 1). Then G, H are the
midpoints of EX, EY , respectively. Let M be the midpoint of EF . By applying the Lemma to
the (re-entrant) quadrilateral ADBC, it is evident that G, H, and M are collinear. A dilation
by a factor of 2 with center E shows that X, Y , F are collinear. Since AX ‖ DE and BX ‖ CE,
we have pairwise equal interior angles in the quadrilaterals FDEC and FBXA. Since we have
also ∠EBA = ∠DCA = ∠CDY , the quadrilaterals are similar. Thus, ∠FXA = ∠CEF .

Clearly the parallelograms ECYD and EBXA are similar, too, thus ∠EXA = ∠CEY . Con-
sequently, ∠FXE = ∠FXA − ∠EXA = ∠CEF − ∠CEY = ∠Y EF . By the converse of the
tangent-chord angle theorem EF is tangent to the circle XEY . A dilation by a factor of 1

2

completes the proof.
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Solution 3. As in Solution 2, G, H, M are proven to be collinear. It suffices to show that

ME2 = MG ·MH. If p =
−→
OP denotes the vector from circumcenter O to point P , the claim

becomes (
e− f

2

)2

=

(
e + f

2
− a + b

2

)(
e + f

2
− c + d

2

)
,

or equivalently
4 ef − (e + f)(a + b + c + d) + (a + b)(c + d) = 0. (2)

With R as the circumradius of ABCD, we obtain for the powers P(E) and P(F ) of E and F ,
respectively, with respect to the circumcircle

P(E) = (e− a)(e− c) = (e− b)(e− d) = e2 −R2,

P(F ) = (f − a)(f − d) = (f − b)(f − c) = f 2 −R2,

hence

(e− a)(e− c) = e2 −R2, (3)

(e− b)(e− d) = e2 −R2, (4)

(f − a)(f − d) = f 2 −R2, (5)

(f − b)(f − c) = f 2 −R2. (6)

Since F lies on the polar to E with respect to the circumcircle, we have

4 ef = 4R2. (7)

Adding up (3) to (7) yields (2), as desired.
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G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some
parallelogram R satisfying P ⊂ R we have

|R|
|P |
≤
√

2

where |R| and |P | denote the area of the sets R and P , respectively.

Solution 1. We will construct two parallelograms R1 and R3, each of them containing P , and
prove that at least one of the inequalities |R1| ≤

√
2 |P | and |R3| ≤

√
2 |P | holds (see Figure 1).

First we will construct a parallelogram R1 ⊇ P with the property that the midpoints of the
sides of R1 are points of the boundary of P .

Choose two points A and B of P such that the triangle OAB has maximal area. Let a be the
line through A parallel to OB and b the line through B parallel to OA. Let A′, B′, a′ and b′ be
the points or lines, that are symmetric to A, B, a and b, respectively, with respect to O. Now
let R1 be the parallelogram defined by a, b, a′ and b′.

A

A′

BB ′

C

D

O

X

X ′
X

Y
Y ′

a

a ′
bb ′

a

R1

R2

R3

*

*

Figure 1

Obviously, A and B are located on the boundary of the polygon P , and A, B, A′ and B′ are
midpoints of the sides of R1. We note that P ⊆ R1. Otherwise, there would be a point Z ∈ P
but Z /∈ R1, i.e., one of the lines a, b, a′ or b′ were between O and Z. If it is a, we have
|OZB| > |OAB|, which is contradictory to the choice of A and B. If it is one of the lines b, a′

or b′ almost identical arguments lead to a similar contradiction.

Let R2 be the parallelogram ABA′B′. Since A and B are points of P , segment AB ⊂ P and
so R2 ⊂ R1. Since A, B, A′ and B′ are midpoints of the sides of R1, an easy argument yields

|R1| = 2 · |R2|. (1)

Let R3 be the smallest parallelogram enclosing P defined by lines parallel to AB and BA′.
Obviously R2 ⊂ R3 and every side of R3 contains at least one point of the boundary of P .
Denote by C the intersection point of a and b, by X the intersection point of AB and OC, and
by X ′ the intersection point of XC and the boundary of R3. In a similar way denote by D
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the intersection point of b and a′, by Y the intersection point of A′B and OD, and by Y ′ the
intersection point of Y D and the boundary of R3.

Note that OC = 2 ·OX and OD = 2 ·OY , so there exist real numbers x and y with 1 ≤ x, y ≤ 2
and OX ′ = x · OX and OY ′ = y · OY . Corresponding sides of R3 and R2 are parallel which
yields

|R3| = xy · |R2|. (2)

The side of R3 containing X ′ contains at least one point X∗ of P ; due to the convexity of
P we have AX∗B ⊂ P . Since this side of the parallelogram R3 is parallel to AB we have
|AX∗B| = |AX ′B|, so |OAX ′B| does not exceed the area of P confined to the sector defined
by the rays OB and OA. In a similar way we conclude that |OB′Y ′A′| does not exceed the
area of P confined to the sector defined by the rays OB and OA′. Putting things together we
have |OAX ′B| = x · |OAB|, |OBDA′| = y · |OBA′|. Since |OAB| = |OBA′|, we conclude that
|P | ≥ 2 · |AX ′BY ′A′| = 2 · (x · |OAB|+ y · |OBA′|) = 4 · x+y

2
· |OAB| = x+y

2
·R2; this is in short

x+ y

2
· |R2| ≤ |P |. (3)

Since all numbers concerned are positive, we can combine (1)–(3). Using the arithmetic-
geometric-mean inequality we obtain

|R1| · |R3| = 2 · |R2| · xy · |R2| ≤ 2 · |R2|2
(
x+ y

2

)2

≤ 2 · |P |2.

This implies immediately the desired result |R1| ≤
√

2 · |P | or |R3| ≤
√

2 · |P |.

Solution 2. We construct the parallelograms R1, R2 and R3 in the same way as in Solution
1 and will show that |R1|

|P | ≤
√

2 or |R3|
|P | ≤

√
2.

A

A′

BB ′

R1

R2

R3

a

bc

Figure 2

Recall that affine one-to-one maps of the plane preserve the ratio of areas of subsets of the
plane. On the other hand, every parallelogram can be transformed with an affine map onto
a square. It follows that without loss of generality we may assume that R1 is a square (see
Figure 2).

Then R2, whose vertices are the midpoints of the sides of R1, is a square too, and R3, whose
sides are parallel to the diagonals of R1, is a rectangle.

Let a > 0, b ≥ 0 and c ≥ 0 be the distances introduced in Figure 2. Then |R1| = 2a2 and
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|R3| = (a+ 2b)(a+ 2c).

Points A,A′, B and B′ are in the convex polygon P . Hence the square ABA′B′ is a subset of
P . Moreover, each of the sides of the rectangle R3 contains a point of P , otherwise R3 would
not be minimal. It follows that

|P | ≥ a2 + 2 · ab
2

+ 2 · ac
2

= a(a+ b+ c).

Now assume that both |R1|
|P | >

√
2 and |R3|

|P | >
√

2, then

2a2 = |R1| >
√

2 · |P | ≥
√

2 · a(a+ b+ c)

and
(a+ 2b)(a+ 2c) = |R3| >

√
2 · |P | ≥

√
2 · a(a+ b+ c).

All numbers concerned are positive, so after multiplying these inequalities we get

2a2(a+ 2b)(a+ 2c) > 2a2(a+ b+ c)2.

But the arithmetic-geometric-mean inequality implies the contradictory result

2a2(a+ 2b)(a+ 2c) ≤ 2a2
(

(a+ 2b) + (a+ 2c)

2

)2

= 2a2(a+ b+ c)2.

Hence |R1|
|P | ≤

√
2 or |R3|

|P | ≤
√

2, as desired.
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G6 UKR (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD)
intersect at point P . Points O1 and O2 are the circumcenters and points H1 and H2 are the
orthocenters of triangles ABP and DCP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD, the
perpendicular from E2 on AB and the line H1H2 are concurrent.

Solution 1. We keep triangle ABP fixed and move the line CD parallel to itself uniformly,
i.e. linearly dependent on a single parameter λ (see Figure 1). Then the points C and D also
move uniformly. Hence, the points O2, H2 and E2 move uniformly, too. Therefore also the
perpendicular from E2 on AB moves uniformly. Obviously, the points O1, H1, E1 and the
perpendicular from E1 on CD do not move at all. Hence, the intersection point S of these
two perpendiculars moves uniformly. Since H1 does not move, while H2 and S move uniformly
along parallel lines (both are perpendicular to CD), it is sufficient to prove their collinearity
for two different positions of CD.
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Figure 1

Let CD pass through either point A or point B. Note that by hypothesis these two cases
are different. We will consider the case A ∈ CD, i.e. A = D. So we have to show that the
perpendiculars from E1 on AC and from E2 on AB intersect on the altitude AH of triangle
ABC (see Figure 2).
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Figure 2

To this end, we consider the midpoints A1, B1, C1 of BC, CA, AB, respectively. As E1 is the
center of Feuerbach’s circle (nine-point circle) of 4ABP , we have E1C1 = E1H. Similarly,
E2B1 = E2H. Note further that a point X lies on the perpendicular from E1 on A1C1 if and
only if

XC2
1 −XA2

1 = E1C
2
1 − E1A

2
1.

Similarly, the perpendicular from E2 on A1B1 is characterized by

XA2
1 −XB2

1 = E2A
2
1 − E2B

2
1 .

The line H1H2, which is perpendicular to B1C1 and contains A, is given by

XB2
1 −XC2

1 = AB2
1 − AC2

1 .

The three lines are concurrent if and only if

0 = XC2
1 −XA2

1 +XA2
1 −XB2

1 +XB2
1 −XC2

1

= E1C
2
1 − E1A

2
1 + E2A

2
1 − E2B

2
1 + AB2

1 − AC2
1

= −E1A
2
1 + E2A

2
1 + E1H

2 − E2H
2 + AB2

1 − AC2
1 ,

i.e. it suffices to show that

E1A
2
1 − E2A

2
1 − E1H

2 + E2H
2 =

AC2 − AB2

4
.

We have

AC2 − AB2

4
=
HC2 −HB2

4
=

(HC +HB)(HC −HB)

4
=
HA1 ·BC

2
.

Let F1, F2 be the projections of E1, E2 on BC. Obviously, these are the midpoints of HP1,
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HP2, where P1, P2 are the midpoints of PB and PC respectively. Then

E1A
2
1 − E2A

2
1 − E1H

2 + E2H
2

= F1A
2
1 − F1H

2 − F2A
2
1 + F2H

2

= (F1A1 − F1H)(F1A1 + F1H)− (F2A1 − F2H)(F2A1 + F2H)

= A1H · (A1P1 − A1P2)

=
A1H ·BC

2

=
AC2 − AB2

4
,

which proves the claim.

Solution 2. Let the perpendicular from E1 on CD meet PH1 at X, and the perpendicular
from E2 on AB meet PH2 at Y (see Figure 3). Let ϕ be the intersection angle of AB and CD.
Denote by M , N the midpoints of PH1, PH2 respectively.
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Figure 3

We will prove now that triangles E1XM and E2Y N have equal angles at E1, E2, and supple-
mentary angles at X, Y .

In the following, angles are understood as oriented, and equalities of angles modulo 180◦.

Let α = ∠H2PD, ψ = ∠DPC, β = ∠CPH1. Then α+ ψ + β = ϕ, ∠E1XH1 = ∠H2Y E2 = ϕ,
thus ∠MXE1 + ∠NY E2 = 180◦.

By considering the Feuerbach circle of4ABP whose center is E1 and which goes through M ,
we have ∠E1MH1 = ψ+ 2β. Analogous considerations with the Feuerbach circle of 4DCP
yield ∠H2NE2 = ψ + 2α. Hence indeed ∠XE1M = ϕ− (ψ + 2β) = (ψ + 2α)− ϕ = ∠Y E2N .

It follows now that
XM

ME1

=
Y N

NE2

.

Furthermore, ME1 is half the circumradius of 4ABP , while PH1 is the distance of P to the
orthocenter of that triangle, which is twice the circumradius times the cosine of ψ. Together
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with analogous reasoning for 4DCP we have

ME1

PH1

=
1

4 cosψ
=
NE2

PH2

.

By multiplication,
XM

PH1

=
Y N

PH2

,

and therefore
PX

XH1

=
H2Y

Y P
.

Let E1X, E2Y meet H1H2 in R, S respectively.

Applying the intercept theorem to the parallels E1X, PH2 and center H1 gives

H2R

RH1

=
PX

XH1

,

while with parallels E2Y , PH1 and center H2 we obtain

H2S

SH1

=
H2Y

Y P
.

Combination of the last three equalities yields that R and S coincide.
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G7 IRN (Islamic Republic of Iran)

Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles
BIC, CIA and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is
equilateral too.

Solution. AZ, AI and AY divide ∠BAC into four equal angles; denote them by α. In
the same way we have four equal angles β at B and four equal angles γ at C. Obviously
α + β + γ = 180◦

4
= 45◦; and 0◦ < α, β, γ < 45◦.

A

B C

I

X

YZ

α

β

γ

Easy calculations in various triangles yield ∠BIC = 180◦ − 2β − 2γ = 180◦ − (90◦ − 2α) =
90◦+ 2α, hence (for X is the incenter of triangle BCI, so IX bisects ∠BIC) we have ∠XIC =
∠BIX = 1

2
∠BIC = 45◦ + α and with similar aguments ∠CIY = ∠Y IA = 45◦ + β and

∠AIZ = ∠ZIB = 45◦ + γ. Furthermore, we have ∠XIY = ∠XIC + ∠CIY = (45◦ + α) +
(45◦+ β) = 135◦− γ, ∠Y IZ = 135◦− α, and ∠ZIX = 135◦− β.

Now we calculate the lengths of IX, IY and IZ in terms of α, β and γ. The perpendicular
from I on CX has length IX · sin∠CXI = IX · sin (90◦+ β) = IX · cos β. But CI bisects
∠Y CX, so the perpendicular from I on CY has the same length, and we conclude

IX · cos β = IY · cosα.

To make calculations easier we choose a length unit that makes IX = cosα. Then IY = cos β
and with similar arguments IZ = cos γ.

Since XY Z is equilateral we have ZX = ZY . The law of Cosines in triangles XY I, Y ZI yields

ZX2 = ZY 2

=⇒ IZ2 + IX2 − 2 · IZ · IX · cos∠ZIX = IZ2 + IY 2 − 2 · IZ · IY · cos∠Y IZ

=⇒ IX2 − IY 2 = 2 · IZ · (IX · cos∠ZIX − IY · cos∠Y IZ)

=⇒ cos 2α− cos 2β︸ ︷︷ ︸
L.H.S.

= 2 · cos γ · (cosα · cos (135◦ − β)− cos β · cos (135◦ − α))︸ ︷︷ ︸
R.H.S.

.

A transformation of the left-hand side (L.H.S.) yields

L.H.S. = cos 2α ·
(
sin 2β + cos 2β

)
− cos 2β ·

(
sin 2α + cos 2α

)
= cos 2α · sin 2β − cos 2β · sin 2α
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= (cosα · sin β + cos β · sinα) · (cosα · sin β − cos β · sinα)

= sin (β + α) · sin (β − α) = sin (45◦ − γ) · sin (β − α)

whereas a transformation of the right-hand side (R.H.S.) leads to

R.H.S. = 2 · cos γ · (cosα · (− cos (45◦ + β))− cos β · (− cos (45◦ + α)))

= 2 ·
√

2

2
· cos γ · (cosα · (sin β − cos β) + cos β · (cosα− sinα))

=
√

2 · cos γ · (cosα · sin β − cos β · sinα)

=
√

2 · cos γ · sin (β − α).

Equating L.H.S. and R.H.S. we obtain

sin (45◦ − γ) · sin (β − α) =
√

2 · cos γ · sin (β − α)

=⇒ sin (β − α) ·
(√

2 · cos γ − sin (45◦ − γ)
)

= 0

=⇒ α = β or
√

2 · cos γ = sin (45◦ − γ).

But γ < 45◦; so
√

2 · cos γ > cos γ > cos 45◦ = sin 45◦ > sin(45◦− γ). This leaves α = β.

With similar reasoning we have α = γ, which means triangle ABC must be equilateral.
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G8 BGR (Bulgaria)

Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2, and I3 the incenters of 4ABM ,
4MNC, and 4NDA, respectively. Show that the orthocenter of 4I1I2I3 lies on g.

Solution 1. Let k1, k2 and k3 be the incircles of triangles ABM , MNC, and NDA, respec-
tively (see Figure 1). We shall show that the tangent h from C to k1 which is different from
CB is also tangent to k3.
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Figure 1

To this end, let X denote the point of intersection of g and h. Then ABCX and ABCD are
circumscribed quadrilaterals, whence

CD − CX = (AB + CD)− (AB + CX) = (BC + AD)− (BC + AX) = AD − AX,

i.e.
AX + CD = CX + AD

which in turn reveals that the quadrilateral AXCD is also circumscribed. Thus h touches
indeed the circle k3.

Moreover, we find that ∠I3CI1 = ∠I3CX + ∠XCI1 = 1
2
(∠DCX + ∠XCB) = 1

2
∠DCB =

1
2
(180◦ − ∠MCN) = 180◦ − ∠MI2N = ∠I3I2I1, from which we conclude that C, I1, I2, I3 are

concyclic.

Let now L1 and L3 be the reflection points of C with respect to the lines I2I3 and I1I2 respec-
tively. Since I1I2 is the angle bisector of ∠NMC, it follows that L3 lies on g. By analogous
reasoning, L1 lies on g.

Let H be the orthocenter of 4I1I2I3. We have ∠I2L3I1 = ∠I1CI2 = ∠I1I3I2 = 180◦−∠I1HI2,
which entails that the quadrilateral I2HI1L3 is cyclic. Analogously, I3HL1I2 is cyclic.
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Then, working with oriented angles modulo 180◦, we have

∠L3HI2 = ∠L3I1I2 = ∠I2I1C = ∠I2I3C = ∠L1I3I2 = ∠L1HI2,

whence L1, L3, and H are collinear. By L1 6= L3, the claim follows.

Comment. The last part of the argument essentially reproves the following fact: The Simson
line of a point P lying on the circumcircle of a triangle ABC with respect to that triangle bisects
the line segment connecting P with the orthocenter of ABC.

Solution 2. We start by proving that C, I1, I2, and I3 are concyclic.
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δ

Figure 2

To this end, notice first that I2, M , I1 are collinear, as are N , I2, I3 (see Figure 2). Denote by
α, β, γ, δ the internal angles of ABCD. By considerations in triangle CMN , it follows that
∠I3I2I1 = γ

2
. We will show that ∠I3CI1 = γ

2
, too. Denote by I the incenter of ABCD. Clearly,

I1 ∈ BI, I3 ∈ DI, ∠I1AI3 = α
2
.

Using the abbreviation [X, Y Z] for the distance from point X to the line Y Z, we have because
of ∠BAI1 = ∠IAI3 and ∠I1AI = ∠I3AD that

[I1, AB]

[I1, AI]
=

[I3, AI]

[I3, AD]
.

Furthermore, consideration of the angle sums in AIB, BIC, CID and DIA implies ∠AIB +
∠CID = ∠BIC + ∠DIA = 180◦, from which we see

[I1, AI]

[I3, CI]
=
I1I

I3I
=

[I1, CI]

[I3, AI]
.

Because of [I1, AB] = [I1, BC], [I3, AD] = [I3, CD], multiplication yields

[I1, BC]

[I3, CI]
=

[I1, CI]

[I3, CD]
.

By ∠DCI = ∠ICB = γ/2 it follows that ∠I1CB = ∠I3CI which concludes the proof of the
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above statement.

Let the perpendicular from I1 on I2I3 intersect g at Z. Then ∠MI1Z = 90◦ − ∠I3I2I1 =
90◦ − γ/2 = ∠MCI2. Since we have also ∠ZMI1 = ∠I2MC, triangles MZI1 and MI2C are
similar. From this one easily proves that also MI2Z and MCI1 are similar. Because C, I1, I2,
and I3 are concyclic, ∠MZI2 = ∠MI1C = ∠NI3C, thus NI2Z and NCI3 are similar, hence
NCI2 and NI3Z are similar. We conclude ∠ZI3I2 = ∠I2CN = 90◦ − γ/2, hence I1I2 ⊥ ZI3.
This completes the proof.
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Number Theory
N1 AUS (Australia)

A social club has n members. They have the membership numbers 1, 2, . . . , n, respectively.
From time to time members send presents to other members, including items they have already
received as presents from other members. In order to avoid the embarrassing situation that a
member might receive a present that he or she has sent to other members, the club adds the
following rule to its statutes at one of its annual general meetings:

“A member with membership number a is permitted to send a present to a member with
membership number b if and only if a(b− 1) is a multiple of n.”

Prove that, if each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices v1, v2, . . . , vn, such that
there is an edge going from va to vb if and only if a and b are distinct and a(b− 1) is a multiple
of n. Prove that this graph does not contain a directed cycle.

Solution 1. Suppose there is an edge from vi to vj. Then i(j − 1) = ij − i = kn for some
integer k, which implies i = ij−kn. If gcd(i, n) = d and gcd(j, n) = e, then e divides ij−kn = i
and thus e also divides d. Hence, if there is an edge from vi to vj, then gcd(j, n)| gcd(i, n).

If there is a cycle in G, say vi1 → vi2 → · · · → vir → vi1 , then we have

gcd(i1, n)| gcd(ir, n)| gcd(ir−1, n)| . . . | gcd(i2, n)| gcd(i1, n),

which implies that all these greatest common divisors must be equal, say be equal to t.

Now we pick any of the ik, without loss of generality let it be i1. Then ir(i1−1) is a multiple of
n and hence also (by dividing by t), i1 − 1 is a multiple of n

t
. Since i1 and i1 − 1 are relatively

prime, also t and n
t

are relatively prime. So, by the Chinese remainder theorem, the value of
i1 is uniquely determined modulo n = t · n

t
by the value of t. But, as i1 was chosen arbitrarily

among the ik, this implies that all the ik have to be equal, a contradiction.

Solution 2. If a, b, c are integers such that ab − a and bc − b are multiples of n, then also
ac − a = a(bc − b) + (ab − a) − (ab − a)c is a multiple of n. This implies that if there is an
edge from va to vb and an edge from vb to vc, then there also must be an edge from va to vc.
Therefore, if there are any cycles at all, the smallest cycle must have length 2. But suppose
the vertices va and vb form such a cycle, i. e., ab− a and ab− b are both multiples of n. Then
a− b is also a multiple of n, which can only happen if a = b, which is impossible.

Solution 3. Suppose there was a cycle vi1 → vi2 → · · · → vir → vi1 . Then i1(i2 − 1)
is a multiple of n, i. e., i1 ≡ i1i2 mod n. Continuing in this manner, we get i1 ≡ i1i2 ≡
i1i2i3 ≡ i1i2i3 . . . ir mod n. But the same holds for all ik, i. e., ik ≡ i1i2i3 . . . ir mod n. Hence
i1 ≡ i2 ≡ · · · ≡ ir mod n, which means i1 = i2 = · · · = ir, a contradiction.
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Solution 4. Let n = k be the smallest value of n for which the corresponding graph has a
cycle. We show that k is a prime power.
If k is not a prime power, it can be written as a product k = de of relatively prime integers
greater than 1. Reducing all the numbers modulo d yields a single vertex or a cycle in the
corresponding graph on d vertices, because if a(b− 1) ≡ 0 mod k then this equation also holds
modulo d. But since the graph on d vertices has no cycles, by the minimality of k, we must
have that all the indices of the cycle are congruent modulo d. The same holds modulo e and
hence also modulo k = de. But then all the indices are equal, which is a contradiction.
Thus k must be a prime power k = pm. There are no edges ending at vk, so vk is not contained
in any cycle. All edges not starting at vk end at a vertex belonging to a non-multiple of p, and
all edges starting at a non-multiple of p must end at v1. But there is no edge starting at v1.
Hence there is no cycle.

Solution 5. Suppose there was a cycle vi1 → vi2 → · · · → vir → vi1 . Let q = pm be a prime
power dividing n. We claim that either i1 ≡ i2 ≡ · · · ≡ ir ≡ 0 mod q or i1 ≡ i2 ≡ · · · ≡ ir ≡
1 mod q.

Suppose that there is an is not divisible by q. Then, as is(is+1 − 1) is a multiple of q, is+1 ≡
1 mod p. Similarly, we conclude is+2 ≡ 1 mod p and so on. So none of the labels is divisible by
p, but since is(is+1 − 1) is a multiple of q = pm for all s, all is+1 are congruent to 1 modulo q.
This proves the claim.

Now, as all the labels are congruent modulo all the prime powers dividing n, they must all be
equal by the Chinese remainder theorem. This is a contradiction.
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N2 PER (Peru)

A positive integer N is called balanced, if N = 1 or if N can be written as a product of an
even number of not necessarily distinct primes. Given positive integers a and b, consider the
polynomial P defined by P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the numbers P (1), P (2),
. . . , P (50) are balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

Solution. Define a function f on the set of positive integers by f(n) = 0 if n is balanced and
f(n) = 1 otherwise. Clearly, f(nm) ≡ f(n) + f(m) mod 2 for all positive integers n,m.

(a) Now for each positive integer n consider the binary sequence (f(n+1), f(n+2), . . . , f(n+
50)). As there are only 250 different such sequences there are two different positive integers
a and b such that

(f(a+ 1), f(a+ 2), . . . , f(a+ 50)) = (f(b+ 1), f(b+ 2), . . . , f(b+ 50)).

But this implies that for the polynomial P (x) = (x+a)(x+b) all the numbers P (1), P (2),
. . . , P (50) are balanced, since for all 1 ≤ k ≤ 50 we have f(P (k)) ≡ f(a+k)+f(b+k) ≡
2f(a+ k) ≡ 0 mod 2.

(b) Now suppose P (n) is balanced for all positive integers n and a < b. Set n = k(b− a)− a
for sufficiently large k, such that n is positive. Then P (n) = k(k + 1)(b − a)2, and this
number can only be balanced, if f(k) = f(k + 1) holds. Thus, the sequence f(k) must
become constant for sufficiently large k. But this is not possible, as for every prime p we
have f(p) = 1 and for every square t2 we have f(t2) = 0.

Hence a = b.

Comment. Given a positive integer k, a computer search for the pairs of positive integers
(a, b), for which P (1), P (2), . . . , P (k) are all balanced yields the following results with
minimal sum a+ b and a < b:

k 3 4 5 10 20

(a, b) (2, 4) (6, 11) (8, 14) (20, 34) (1751, 3121)

Therefore, trying to find a and b in part (a) of the problem cannot be done by elementary
calculations.
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N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers,
such that a− b divides f(a)− f(b) for all distinct positive integers a, b. Prove that there exist
infinitely many primes p such that p divides f(c) for some positive integer c.

Solution 1. Denote by vp(a) the exponent of the prime p in the prime decomposition of a.

Assume that there are only finitely many primes p1, p2, . . . , pm that divide some function value
produced of f .

There are infinitely many positive integers a such that vpi(a) > vpi(f(1)) for all i = 1, 2, . . . ,m,
e.g. a = (p1p2 . . . pm)α with α sufficiently large. Pick any such a. The condition of the problem
then yields a| (f(a+ 1)− f(1)). Assume f(a+ 1) 6= f(1). Then we must have vpi(f(a+ 1)) 6=
vpi(f(1)) for at least one i. This yields vpi(f(a+ 1)− f(1)) = min {vpi(f(a+ 1)), vpi(f(1))} ≤
vp1(f(1)) < vpi(a). But this contradicts the fact that a| (f(a+ 1)− f(1)).

Hence we must have f(a+ 1) = f(1) for all such a.

Now, for any positive integer b and all such a, we have (a + 1 − b)|(f(a + 1) − f(b)), i.e.,
(a+ 1− b)|(f(1)− f(b)). Since this is true for infinitely many positive integers a we must have
f(b) = f(1). Hence f is a constant function, a contradiction. Therefore, our initial assumption
was false and there are indeed infinitely many primes p dividing f(c) for some positive integer
c.

Solution 2. Assume that there are only finitely many primes p1, p2, . . . , pm that divide some
function value of f . Since f is not identically 1, we must have m ≥ 1.

Then there exist non-negative integers α1, . . . , αm such that

f(1) = pα1
1 p

α2
2 . . . pαm

m .

We can pick a positive integer r such that f(r) 6= f(1). Let

M = 1 + pα1+1
1 pα2+1

2 . . . pαm+1
m · (f(r) + r).

Then for all i ∈ {1, . . . ,m} we have that pαi+1
i divides M − 1 and hence by the condition of the

problem also f(M)− f(1). This implies that f(M) is divisible by pαi
i but not by pαi+1

i for all i
and therefore f(M) = f(1).

Hence

M − r > pα1+1
1 pα2+1

2 . . . pαm+1
m · (f(r) + r)− r

≥ pα1+1
1 pα2+1

2 . . . pαm+1
m + (f(r) + r)− r

> pα1
1 p

α2
2 . . . pαm

m + f(r)

≥ |f(M)− f(r)|.

But since M − r divides f(M) − f(r) this can only be true if f(r) = f(M) = f(1), which
contradicts the choice of r.

Comment. In the case that f is a polynomial with integer coefficients the result is well-known,
see e.g. W. Schwarz, Einführung in die Methoden der Primzahltheorie, 1969.
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N4 PRK (Democratic People’s Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . . , an
satisfying

ak+1 =
a2k + 1

ak−1 + 1
− 1

for every k with 2 ≤ k ≤ n− 1.

Solution 1. Such a sequence exists for n = 1, 2, 3, 4 and no other n. Since the existence of
such a sequence for some n implies the existence of such a sequence for all smaller n, it suffices
to prove that n = 5 is not possible and n = 4 is possible.

Assume first that for n = 5 there exists a sequence of positive integers a1, a2, . . . , a5 satisfying
the conditions

a22 + 1 = (a1 + 1)(a3 + 1),

a23 + 1 = (a2 + 1)(a4 + 1),

a24 + 1 = (a3 + 1)(a5 + 1).

Assume a1 is odd, then a2 has to be odd as well and as then a22 + 1 ≡ 2 mod 4, a3 has to be
even. But this is a contradiction, since then the even number a2 + 1 cannot divide the odd
number a23 + 1.

Hence a1 is even.

If a2 is odd, a23 + 1 is even (as a multiple of a2 + 1) and hence a3 is odd, too. Similarly we must
have a4 odd as well. But then a23 + 1 is a product of two even numbers (a2 + 1)(a4 + 1) and
thus is divisible by 4, which is a contradiction as for odd a3 we have a23 + 1 ≡ 2 mod 4.

Hence a2 is even. Furthermore a3+1 divides the odd number a22+1 and so a3 is even. Similarly,
a4 and a5 are even as well.

Now set x = a2 and y = a3. From the given condition we get (x+1)|(y2+1) and (y+1)|(x2+1).
We will prove that there is no pair of positive even numbers (x, y) satisfying these two conditions,
thus yielding a contradiction to the assumption.

Assume there exists a pair (x0, y0) of positive even numbers satisfying the two conditions
(x0 + 1)|(y20 + 1) and (y0 + 1)|(x20 + 1).

Then one has (x0 + 1)|(y20 + 1 + x20− 1), i.e., (x0 + 1)|(x20 + y20), and similarly (y0 + 1)|(x20 + y20).
Any common divisor d of x0 + 1 and y0 + 1 must hence also divide the number
(x20 + 1) + (y20 + 1)− (x20 + y20) = 2. But as x0 + 1 and y0 + 1 are both odd, we must have d = 1.
Thus x0 + 1 and y0 + 1 are relatively prime and therefore there exists a positive integer k such
that

k(x+ 1)(y + 1) = x2 + y2

has the solution (x0, y0). We will show that the latter equation has no solution (x, y) in positive
even numbers.

Assume there is a solution. Pick the solution (x1, y1) with the smallest sum x1 +y1 and assume
x1 ≥ y1. Then x1 is a solution to the quadratic equation

x2 − k(y1 + 1)x+ y21 − k(y1 + 1) = 0.
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Let x2 be the second solution, which by Vieta’s theorem fulfills x1 + x2 = k(y1 + 1) and
x1x2 = y21 − k(y1 + 1). If x2 = 0, the second equation implies y21 = k(y1 + 1), which is
impossible, as y1 + 1 > 1 cannot divide the relatively prime number y21. Therefore x2 6= 0.

Also we get (x1 + 1)(x2 + 1) = x1x2 + x1 + x2 + 1 = y21 + 1 which is odd, and hence x2 must

be even and positive. Also we have x2 + 1 =
y21+1

x1+1
≤ y21+1

y1+1
≤ y1 ≤ x1. But this means that the

pair (x′, y′) with x′ = y1 and y′ = x2 is another solution of k(x + 1)(y + 1) = x2 + y2 in even
positive numbers with x′ + y′ < x1 + y1, a contradiction.

Therefore we must have n ≤ 4.

When n = 4, a possible example of a sequence is a1 = 4, a2 = 33, a3 = 217 and a4 = 1384.

Solution 2. It is easy to check that for n = 4 the sequence a1 = 4, a2 = 33, a3 = 217 and
a4 = 1384 is possible.

Now assume there is a sequence with n ≥ 5. Then we have in particular

a22 + 1 = (a1 + 1)(a3 + 1),

a23 + 1 = (a2 + 1)(a4 + 1),

a24 + 1 = (a3 + 1)(a5 + 1).

Also assume without loss of generality that among all such quintuples (a1, a2, a3, a4, a5) we have
chosen one with minimal a1.

One shows quickly the following fact:

If three positive integers x, y, z fulfill y2 + 1 = (x+ 1)(z + 1) and if y is even, then
x and z are even as well and either x < y < z or z < y < x holds. (1)

Indeed, the first part is obvious and from x < y we conclude

z + 1 =
y2 + 1

x+ 1
≥ y2 + 1

y
> y,

and similarly in the other case.

Now, if a3 was odd, then (a2 + 1)(a4 + 1) = a23 + 1 ≡ 2 mod 4 would imply that one of a2 or
a4 is even, this contradicts (1). Thus a3 and hence also a1, a2, a4 and a5 are even. According
to (1), one has a1 < a2 < a3 < a4 < a5 or a1 > a2 > a3 > a4 > a5 but due to the minimality of
a1 the first series of inequalities must hold.

Consider the identity

(a3+1)(a1+a3) = a23−1+(a1+1)(a3+1) = a22+a23 = a22−1+(a2+1)(a4+1) = (a2+1)(a2+a4).

Any common divisor of the two odd numbers a2 + 1 and a3 + 1 must also divide (a2 + 1)(a4 +
1)− (a3 + 1)(a3 − 1) = 2, so these numbers are relatively prime. Hence the last identity shows
that a1 + a3 must be a multiple of a2 + 1, i.e. there is an integer k such that

a1 + a3 = k(a2 + 1). (2)

Now set a0 = k(a1 + 1)− a2. This is an integer and we have

(a0 + 1)(a2 + 1) = k(a1 + 1)(a2 + 1)− (a2 − 1)(a2 + 1)

= (a1 + 1)(a1 + a3)− (a1 + 1)(a3 + 1) + 2

= (a1 + 1)(a1 − 1) + 2 = a21 + 1.
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Thus a0 ≥ 0. If a0 > 0, then by (1) we would have a0 < a1 < a2 and then the quintuple
(a0, a1, a2, a3, a4) would contradict the minimality of a1.

Hence a0 = 0, implying a2 = a21. But also a2 = k(a1 + 1), which finally contradicts the fact
that a1 + 1 > 1 is relatively prime to a21 and thus cannot be a divisior of this number.

Hence n ≥ 5 is not possible.

Comment 1. Finding the example for n = 4 is not trivial and requires a tedious calculation,
but it can be reduced to checking a few cases. The equations (a1 + 1)(a3 + 1) = a22 + 1 and
(a2 + 1)(a4 + 1) = a23 + 1 imply, as seen in the proof, that a1 is even and a2, a3, a4 are odd. The
case a1 = 2 yields a22 ≡ −1 mod 3 which is impossible. Hence a1 = 4 is the smallest possibility.
In this case a22 ≡ −1 mod 5 and a2 is odd, which implies a2 ≡ 3 or a2 ≡ 7 mod 10. Hence we
have to start checking a2 = 7, 13, 17, 23, 27, 33 and in the last case we succeed.

Comment 2. The choice of a0 = k(a1 + 1)−a2 in the second solution appears more natural if
one considers that by the previous calculations one has a1 = k(a2+1)−a3 and a2 = k(a3+1)−a4.
Alternatively, one can solve the equation (2) for a3 and use a22 + 1 = (a1 + 1)(a3 + 1) to get
a22− k(a1 + 1)a2 + a21− k(a1 + 1) = 0. Now a0 is the second solution to this quadratic equation
in a2 (Vieta jumping).
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N5 HUN (Hungary)

Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function
T from the set of integers into the set of integers such that the number of integers x with
T n(x) = x is equal to P (n) for every n ≥ 1, where T n denotes the n-fold application of T .

Solution 1. Assume there is a polynomial P of degree at least 1 with the desired property
for a given function T . Let A(n) denote the set of all x ∈ Z such that T n(x) = x and let
B(n) denote the set of all x ∈ Z for which T n(x) = x and T k(x) 6= x for all 1 ≤ k < n. Both
sets are finite under the assumption made. For each x ∈ A(n) there is a smallest k ≥ 1 such
that T k(x) = x, i.e., x ∈ B(k). Let d = gcd(k, n). There are positive integers r, s such that
rk − sn = d and hence x = T rk(x) = T sn+d(x) = T d(T sn(x)) = T d(x). The minimality of k
implies d = k, i.e., k|n. On the other hand one clearly has B(k) ⊂ A(n) if k|n and thus we
have A(n) =

⋃
d|nB(d) as a disjoint union and hence

|A(n)| =
∑
d|n

|B(d)|.

Furthermore, for every x ∈ B(n) the elements x, T 1(x), T 2(x), . . . , T n−1(x) are n distinct
elements of B(n). The fact that they are in A(n) is obvious. If for some k < n and
some 0 ≤ i < n we had T k(T i(x)) = T i(x), i.e. T k+i(x) = T i(x), that would imply
x = T n(x) = T n−i(T i(x)) = T n−i(T k+i(x)) = T k(T n(x)) = T k(x) contradicting the minimality
of n. Thus T i(x) ∈ B(n) and T i(x) 6= T j(x) for 0 ≤ i < j ≤ n− 1.

So indeed, T permutes the elements of B(n) in (disjoint) cycles of length n and in particular
one has n

∣∣|B(n)|.

Now let P (x) =
∑k

i=0 aix
i, ai ∈ Z, k ≥ 1, ak 6= 0 and suppose that |A(n)| = P (n) for all n ≥ 1.

Let p be any prime. Then

p2
∣∣|B(p2)| = |A(p2)| − |A(p)| = a1(p

2 − p) + a2(p
4 − p2) + . . .

Hence p|a1 and since this is true for all primes we must have a1 = 0.

Now consider any two different primes p and q. Since a1 = 0 we have that

|A(p2q)| − |A(pq)| = a2(p
4q2 − p2q2) + a3(p

6q3 − p3q3) + . . .

is a multiple of p2q. But we also have

p2q
∣∣|B(p2q)| = |A(p2q)| − |A(pq)| − |B(p2)|.

This implies

p2q
∣∣|B(p2)| = |A(p2)| − |A(p)| = a2(p

4 − p2) + a3(p
6 − p3) + · · ·+ ak(p

2k − pk).

Since this is true for every prime q we must have a2(p
4−p2)+a3(p

6−p3)+ · · ·+ak(p
2k−pk) = 0

for every prime p. Since this expression is a polynomial in p of degree 2k (because ak 6= 0) this
is a contradiction, as such a polynomial can have at most 2k zeros.
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Comment. The last contradiction can also be reached via

ak = lim
p→∞

1

p2k
(
a2(p

4 − p2) + a3(p
6 − p3) + · · ·+ ak(p

2k − pk)
)

= 0.

Solution 2. As in the first solution define A(n) and B(n) and assume that a polynomial P
with the required property exists. This again implies that |A(n)| and |B(n)| is finite for all
positive integers n and that

P (n) = |A(n)| =
∑
d|n

|B(d)| and n
∣∣|B(n)|.

Now, for any two distinct primes p and q, we have

P (0) ≡ P (pq) ≡ |B(1)|+ |B(p)|+ |B(q)|+ |B(pq)| ≡ |B(1)|+ |B(p)| mod q.

Thus, for any fixed p, the expression P (0) − |B(1)| − |B(p)| is divisible by arbitrarily large
primes q which means that P (0) = |B(1)| + |B(p)| = P (p) for any prime p. This implies that
the polynomial P is constant, a contradiction.
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N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying
the condition

an =
an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

Solution 1. Part A. For each positive integer k, there exists a polynomial Pk of degree k − 1
with integer coefficients, i. e., Pk ∈ Z[x], and an integer qk such that the polynomial identity

xPk(x) = xk + Pk(x− 1) + qk (Ik)

is satisfied. To prove this, for fixed k we write

Pk(x) = bk−1x
k−1 + · · ·+ b1x+ b0

and determine the coefficients bk−1, bk−2, . . . , b0 and the number qk successively. Obviously, we
have bk−1 = 1. For m = k− 1, k− 2, . . . , 1, comparing the coefficients of xm in the identity (Ik)
results in an expression of bm−1 as an integer linear combination of bk−1, . . . , bm, and finally
qk = −Pk(−1).

Part B. Let k be a positive integer, and let a0, a1, . . . be a sequence of real numbers satisfying
the recursion given in the problem. This recursion can be written as

an − Pk(n) =
an−1 − Pk(n− 1)

n
− qk
n

for all n ≥ 1,

which by induction gives

an − Pk(n) =
a0 − Pk(0)

n!
− qk

n−1∑
i=0

i!

n!
for all n ≥ 1.

Therefore, the numbers an are integers for all n ≥ 1 only if

a0 = Pk(0) and qk = 0.

Part C. Multiplying the identity (Ik) by x2 +x and subtracting the identities (Ik+1), (Ik+2) and
qkx

2 = qkx
2 therefrom, we obtain

xTk(x) = Tk(x− 1) + 2x
(
Pk(x− 1) + qk

)
− (qk+2 + qk+1 + qk),

where the polynomials Tk ∈ Z[x] are defined by Tk(x) = (x2+x)Pk(x)−Pk+1(x)−Pk+2(x)−qkx.
Thus

xTk(x) ≡ Tk(x− 1) + qk+2 + qk+1 + qk mod 2, k = 1, 2, . . .
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Comparing the degrees, we easily see that this is only possible if Tk is the zero polynomial
modulo 2, and

qk+2 ≡ qk+1 + qk mod 2 for k = 1, 2, . . .

Since q1 = −1 and q2 = 0, these congruences finish the proof.

Solution 2. Part A and B. Let k be a positive integer, and suppose there is a sequence
a0, a1, . . . as required. We prove: There exists a polynomial P ∈ Z[x], i. e., with integer
coefficients, such that an = P (n), n = 0, 1, . . . , and xP (x) = xk + P (x− 1).
To prove this, we write P (x) = bk−1x

k−1 + · · · + b1x + b0 and determine the coefficients
bk−1, bk−2, . . . , b0 successively such that

xP (x)− xk − P (x− 1) = q,

where q = qk is an integer. Comparing the coefficients of xm results in an expression of bm−1
as an integer linear combination of bk−1, . . . , bm.
Defining cn = an − P (n), we get

P (n) + cn =
P (n− 1) + cn−1 + nk

n
, i. e.,

q + ncn = cn−1,

hence

cn =
c0
n!
− q · 0! + 1! + · · ·+ (n− 1)!

n!
.

We conclude limn→∞ cn = 0, which, using cn ∈ Z, implies cn = 0 for sufficiently large n.
Therefore, we get q = 0 and cn = 0, n = 0, 1, . . . .

Part C. Suppose that q = qk = 0, i. e. xP (x) = xk + P (x − 1). To consider this identity for
arguments x ∈ F4, we write F4 = {0, 1, α, α + 1}. Then we get

αPk(α) = αk + Pk(α + 1) and

(α + 1)Pk(α + 1) = (α + 1)k + Pk(α),

hence

Pk(α) = 1 · Pk(α) = (α + 1)αPk(α)

= (α + 1)Pk(α + 1) + (α + 1)αk

= Pk(α) + (α + 1)k + (α + 1)αk.

Now, (α + 1)k−1 = αk implies k ≡ 2 mod 3.

Comment 1. For k = 2, the sequence given by an = n+1, n = 0, 1, . . . , satisfies the conditions
of the problem.
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Comment 2. The first few polynomials Pk and integers qk are

P1(x) = 1, q1 = −1,

P2(x) = x+ 1, q2 = 0,

P3(x) = x2 + x− 1, q3 = 1,

P4(x) = x3 + x2 − 2x− 1, q4 = −1,

P5(x) = x4 + x3 − 3x2 + 5, q5 = −2,

P6(x) = x5 + x4 − 4x3 + 2x2 + 10x− 5, q6 = 9,

q7 = −9, q8 = −50, q9 = 267, q10 = −413, q11 = −2180.

A lookup in the On-Line Encyclopedia of Integer Sequences (A000587) reveals that the sequence
q1,−q2, q3,−q4, q5, . . . is known as Uppuluri-Carpenter numbers. The result that qk = 0
implies k ≡ 2 mod 3 is contained in
Murty, Summer: On the p-adic series

∑∞
n=0 n

k · n!. CRM Proc. and Lecture Notes 36, 2004.
As shown by Alexander (Non-Vanishing of Uppuluri-Carpenter Numbers, Preprint 2006),
Uppuluri-Carpenter numbers are zero at most twice.

Comment 3. The numbers qk can be written in terms of the Stirling numbers of the second
kind. To show this, we fix the notation such that

xk =Sk−1,k−1x(x− 1) · · · (x− k + 1)

+ Sk−1,k−2x(x− 1) · · · (x− k + 2) (∗)
+ · · ·+ Sk−1,0x,

e. g., S2,2 = 1, S2,1 = 3, S2,0 = 1, and we define

Ωk = Sk−1,k−1 − Sk−1,k−2 +− · · · .

Replacing x by −x in (∗) results in

xk =Sk−1,k−1x(x+ 1) · · · (x+ k − 1)

− Sk−1,k−2x(x+ 1) · · · (x+ k − 2)

+− · · · ± Sk−1,0x.

Defining

P (x) =Sk−1,k−1(x+ 1) · · · (x+ k − 1)

+ (Sk−1,k−1 − Sk−1,k−2)(x+ 1) · · · (x+ k − 2)

+ (Sk−1,k−1 − Sk−1,k−2 + Sk−1,k−3)(x+ 1) · · · (x+ k − 3)

+ · · ·+ Ωk,

we obtain

xP (x)− P (x− 1) = Sk−1,k−1x(x+ 1) · · · (x+ k − 1)

− Sk−1,k−2x(x+ 1) · · · (x+ k − 2)

+− · · · ± Sk−1,0x− Ωk

= xk − Ωk,

hence qk = −Ωk.
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N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such
that (an − 1)(bn − 1) is not a perfect square.

Solution 1. At first we notice that

(1− α)
1
2 (1− β)

1
2 =

(
1− 1

2
· α− 1

8
· α2 − · · ·

)(
1− 1

2
· β − 1

8
· β2 − · · ·

)
=
∑
k,`≥0

ck,` · αkβ` for all α, β ∈ (0, 1), (1)

where c0,0 = 1 and ck,` are certain coefficients.

For an indirect proof, we suppose that xn =
√

(an − 1)(bn − 1) ∈ Z for all positive integers n.
Replacing a by a2 and b by b2 if necessary, we may assume that a and b are perfect squares,
hence

√
ab is an integer.

At first we shall assume that aµ 6= bν for all positive integers µ, ν. We have

xn = (
√
ab)n

(
1− 1

an

) 1
2
(

1− 1

bn

) 1
2

=
∑
k,`≥0

ck,`

(√
ab

akb`

)n
. (2)

Choosing k0 and `0 such that ak0 >
√
ab, b`0 >

√
ab, we define the polynomial

P (x) =

k0−1,`0−1∏
k=0,`=0

(akb`x−
√
ab) =:

k0·`0∑
i=0

dix
i

with integer coefficients di. By our assumption, the zeros

√
ab

akb`
, k = 0, . . . , k0 − 1, ` = 0, . . . , `0 − 1,

of P are pairwise distinct.

Furthermore, we consider the integer sequence

yn =

k0·`0∑
i=0

dixn+i, n = 1, 2, . . . (3)

By the theory of linear recursions, we obtain

yn =
∑
k,`≥0

k≥k0 or `≥`0

ek,`

(√
ab

akb`

)n
, n = 1, 2, . . . , (4)

with real numbers ek,`. We have

|yn| ≤
∑
k,`≥0

k≥k0 or `≥`0

|ek,`|
(√

ab

akb`

)n
=: Mn.
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Because the series in (4) is obtained by a finite linear combination of the absolutely convergent
series (1), we conclude that in particular M1 <∞. Since

√
ab

akb`
≤ λ := max

{√
ab

ak0
,

√
ab

b`0

}
for all k, ` ≥ 0 such that k ≥ k0 or ` ≥ `0,

we get the estimates Mn+1 ≤ λMn, n = 1, 2, . . . Our choice of k0 and `0 ensures λ < 1, which
implies Mn → 0 and consequently yn → 0 as n→∞. It follows that yn = 0 for all sufficiently
large n.

So, equation (3) reduces to
∑k0·`0

i=0 dixn+i = 0.

Using the theory of linear recursions again, for sufficiently large n we have

xn =

k0−1,`0−1∑
k=0,`=0

fk,`

(√
ab

akb`

)n
for certain real numbers fk,`.

Comparing with (2), we see that fk,` = ck,` for all k, ` ≥ 0 with k < k0, ` < `0, and ck,` = 0 if
k ≥ k0 or ` ≥ `0, since we assumed that aµ 6= bν for all positive integers µ, ν.

In view of (1), this means

(1− α)
1
2 (1− β)

1
2 =

k0−1,`0−1∑
k=0,`=0

ck,` · αkβ` (5)

for all real numbers α, β ∈ (0, 1). We choose k∗ < k0 maximal such that there is some i
with ck∗,i 6= 0. Squaring (5) and comparing coefficients of α2k∗β2i∗ , where i∗ is maximal with
ck∗,i∗ 6= 0, we see that k∗ = 0. This means that the right hand side of (5) is independent of α,
which is clearly impossible.

We are left with the case that aµ = bν for some positive integers µ and ν. We may assume
that µ and ν are relatively prime. Then there is some positive integer c such that a = cν and
b = cµ. Now starting with the expansion (2), i. e.,

xn =
∑
j≥0

gj

(√
cµ+ν

cj

)n
for certain coefficients gj, and repeating the arguments above, we see that gj = 0 for sufficiently
large j, say j > j0. But this means that

(1− xµ)
1
2 (1− xν)

1
2 =

j0∑
j=0

gjx
j

for all real numbers x ∈ (0, 1). Squaring, we see that

(1− xµ)(1− xν)

is the square of a polynomial in x. In particular, all its zeros are of order at least 2, which
implies µ = ν by looking at roots of unity. So we obtain µ = ν = 1, i. e., a = b, a contradiction.
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Solution 2. We set a2 = A, b2 = B, and zn =
√

(An − 1)(Bn − 1). Let us assume that zn
is an integer for n = 1, 2, . . . Without loss of generality, we may suppose that b < a. We
determine an integer k ≥ 2 such that bk−1 ≤ a < bk, and define a sequence γ1, γ2, . . . of rational
numbers such that

2γ1 = 1 and 2γn+1 =
n∑
i=1

γiγn−i for n = 1, 2, . . .

It could easily be shown that γn = 1·1·3...(2n−3)
2·4·6...2n , for instance by reading Vandermondes con-

volution as an equation between polynomials, but we shall have no use for this fact.

Using Landaus O–Notation in the usual way, we have{
(ab)n − γ1

(a
b

)n
− γ2

( a
b3

)n
− · · · − γk

( a

b2k−1

)n
+O

(
b

a

)n}2

= AnBn − 2γ1A
n −

k∑
i=2

(
2γi −

i−1∑
j=1

γjγi−j

)(
A

Bi−1

)n
+O

(
A

Bk

)n
+O (Bn)

= AnBn − An +O (Bn) ,

whence

zn = (ab)n − γ1
(a
b

)n
− γ2

( a
b3

)n
− · · · − γk

( a

b2k−1

)n
+O

(
b

a

)n
.

Now choose rational numbers r1, r2, . . . , rk+1 such that

(x− ab) · (x− a
b
) . . . (x− a

b2k−1 ) = xk+1 − r1xk +− · · · ± rk+1,

and then a natural number M for which Mr1,Mr2, . . .Mrk+1 are integers. For known reasons,

M(zn+k+1 − r1zn+k +− · · · ± rk+1zn) = O

(
b

a

)n
for all n ∈ N and thus there is a natural number N which is so large, that

zn+k+1 = r1zn+k − r2zn+k−1 +− · · · ∓ rk+1zn

holds for all n > N . Now the theory of linear recursions reveals that there are some rational
numbers δ0, δ1, δ2, . . . , δk such that

zn = δ0(ab)
n − δ1

(a
b

)n
− δ2

( a
b3

)n
− · · · − δk

( a

b2k−1

)n
for sufficiently large n, where δ0 > 0 as zn > 0. As before, one obtains

AnBn − An −Bn + 1 = z2n

=
{
δ0(ab)

n − δ1
(a
b

)n
− δ2

( a
b3

)n
− · · · − δk

( a

b2k−1

)n}2

= δ20A
nBn − 2δ0δ1A

n −
i=k∑
i=2

(
2δ0δi −

j=i−1∑
j=1

δjδi−j

)(
A

Bi−1

)n
+O

(
A

Bk

)n
.

Easy asymptotic calculations yield δ0 = 1, δ1 = 1
2
, δi = 1

2

∑j=i−1
j=1 δjδi−j for i = 2, 3, . . . , k−2, and

then a = bk−1. It follows that k > 2 and there is some P ∈ Q[X] for which (X−1)(Xk−1−1) =
P (X)2. But this cannot occur, for instance as Xk−1 − 1 has no double zeros. Thus our
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assumption that zn was an integer for n = 1, 2, . . . turned out to be wrong, which solves the
problem.

Original formulation of the problem. a, b are positive integers such that a·b is not a square of
an integer. Prove that there exists a (infinitely many) positive integer n such that (an−1)(bn−1)
is not a square of an integer.

Solution. Lemma. Let c be a positive integer, which is not a perfect square. Then there exists
an odd prime p such that c is not a quadratic residue modulo p.
Proof. Denoting the square-free part of c by c′, we have the equality

(
c′

p

)
=
(
c
p

)
of the corre-

sponding Legendre symbols. Suppose that c′ = q1 · · · qm, where q1 < · · · < qm are primes.
Then we have (c′

p

)
=
(q1
p

)
· · ·
(qm
p

)
.

Case 1. Let q1 be odd. We choose a quadratic nonresidue r1 modulo q1 and quadratic residues
ri modulo qi for i = 2, . . . ,m. By the Chinese remainder theorem and the Dirichlet theorem,
there exists a (infinitely many) prime p such that

p ≡ r1 mod q1,

p ≡ r2 mod q2,

...
...

p ≡ rm mod qm,

p ≡ 1 mod 4.

By our choice of the residues, we obtain

( p
qi

)
=
(ri
qi

)
=

{
−1, i = 1,

1, i = 2, . . . ,m.

The congruence p ≡ 1 mod 4 implies that
(
qi
p

)
=
(
p
qi

)
, i = 1, . . . ,m, by the law of quadratic

reciprocity. Thus (c′
p

)
=
(q1
p

)
· · ·
(qm
p

)
= −1.

Case 2. Suppose q1 = 2. We choose quadratic residues ri modulo qi for i = 2, . . . ,m. Again,
by the Chinese remainder theorem and the Dirichlet theorem, there exists a prime p such
that

p ≡ r2 mod q2,

...
...

p ≡ rm mod qm,

p ≡ 5 mod 8.

By the choice of the residues, we obtain
(
p
qi

)
=
(
ri
qi

)
= 1 for i = 2, . . . ,m. Since p ≡ 1 mod 4 we

have
(
qi
p

)
=
(
p
qi

)
, i = 2, . . . ,m, by the law of quadratic reciprocity. The congruence p ≡ 5 mod 8
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implies that
(
2
p

)
= −1. Thus (c′

p

)
=
(2

p

)(q2
p

)
· · ·
(qm
p

)
= −1,

and the lemma is proved.

Applying the lemma for c = a · b, we find an odd prime p such that(ab
p

)
=
(a
p

)
·
( b
p

)
= −1.

This implies either

a
p−1
2 ≡ 1 mod p, b

p−1
2 ≡ −1 mod p, or a

p−1
2 ≡ −1 mod p, b

p−1
2 ≡ 1 mod p.

Without loss of generality, suppose that a
p−1
2 ≡ 1 mod p and b

p−1
2 ≡ −1 mod p. The second

congruence implies that b
p−1
2 −1 is not divisible by p. Hence, if the exponent νp(a

p−1
2 −1) of p in

the prime decomposition of (a
p−1
2 − 1) is odd, then (a

p−1
2 − 1)(b

p−1
2 − 1) is not a perfect square.

If νp(a
p−1
2 − 1) is even, then νp(a

p−1
2
p − 1) is odd by the well-known power lifting property

νp

(
a

p−1
2
p − 1

)
= νp

(
a

p−1
2 − 1

)
+ 1.

In this case, (a
p−1
2
p − 1)(b

p−1
2
p − 1) is not a perfect square.

Comment 1. In 1998, the following problem appeared in Crux Mathematicorum:
Problem 2344. Find all positive integers N that are quadratic residues modulo all primes
greater than N .
The published solution (Crux Mathematicorum, 25(1999)4) is the same as the proof of the
lemma given above, see also http://www.mathlinks.ro/viewtopic.php?t=150495.

Comment 2. There is also an elementary proof of the lemma. We cite Theorem 3 of Chapter 5
and its proof from the book
Ireland, Rosen: A Classical Introduction to Modern Number Theory, Springer 1982.

Theorem. Let a be a nonsquare integer. Then there are infinitely many primes p for which a is
a quadratic nonresidue.

Proof. It is easily seen that we may assume that a is square-free. Let a = 2eq1q2 · · · qn, where
qi are distinct odd primes and e = 0 or 1. The case a = 2 has to be dealt with separately. We
shall assume to begin with that n ≥ 1, i. e., that a is divisible by an odd prime.

Let `1, `2, . . . , `k be a finite set of odd primes not including any qi. Let s be any quadratic
nonresidue modqn, and find a simultaneous solution to the congruences

x ≡ 1 mod `i, i = 1, . . . , k,

x ≡ 1 mod 8,

x ≡ 1 mod qi, i = 1, . . . , n− 1,

x ≡ s mod qn.

Call the solution b. b is odd. Suppose that b = p1p2 · · · pm is its prime decomposition. Since
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b ≡ 1 mod 8 we have
(
2
b

)
= 1 and

(
qi
b

)
=
(
b
qi

)
by a result on Jacobi symbols. Thus(a

b

)
=
(2

b

)e(q1
b

)
· · ·
(qn−1

b

)(qn
b

)
=
( b
q1

)
· · ·
( b

qn−1

)( b
qn

)
=
( 1

q1

)
· · ·
( 1

qn−1

)( s
qn

)
= −1.

On the other hand, by the definition of
(
a
b

)
, we have

(
a
b

)
=
(
a
p1

)(
a
p2

)
· · ·
(
a
pm

)
. It follows that(

a
pi

)
= −1 for some i.

Notice that `j does not divide b. Thus pi /∈ {`1, `2, . . . , `k}.
To summarize, if a is a nonsquare, divisible by an odd prime, we have found a prime p, outside
of a given finite set of primes {2, `1, `2, . . . , `k}, such that

(
a
p

)
= −1. This proves the theorem

in this case.

It remains to consider the case a = 2. Let `1, `2, . . . , `k be a finite set of primes, excluding 3, for
which

(
2
`i

)
= −1. Let b = 8`1`2 · · · `k + 3. b is not divisible by 3 or any `i. Since b ≡ 3 mod 8

we have
(
2
b

)
= (−1)

b2−1
8 = −1. Suppose that b = p1p2 · · · pm is the prime decomposition of

b. Then, as before, we see that
(

2
pi

)
= −1 for some i. pi /∈ {3, `1, `2, . . . , `k}. This proves the

theorem for a = 2.

This proof has also been posted to mathlinks, see http://www.mathlinks.ro/viewtopic.

php?t=150495 again.
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Algebra

A1. Determine all functions f : R Ñ R such that the equality

fprxsyq � fpxqrfpyqs. (1)

holds for all x, y P R. Here, by rxs we denote the greatest integer not exceeding x.

(France)

Answer. fpxq � const � C, where C � 0 or 1 ¨ C   2.

Solution 1. First, setting x � 0 in (1) we get

fp0q � fp0qrfpyqs (2)

for all y P R. Now, two cases are possible.

Case 1. Assume that fp0q � 0. Then from (2) we conclude that rfpyqs � 1 for all
y P R. Therefore, equation (1) becomes fprxsyq � fpxq, and substituting y � 0 we have
fpxq � fp0q � C � 0. Finally, from rfpyqs � 1 � rCs we obtain that 1 ¨ C   2.

Case 2. Now we have fp0q � 0. Here we consider two subcases.
Subcase 2a. Suppose that there exists 0   α   1 such that fpαq � 0. Then setting x � α

in (1) we obtain 0 � fp0q � fpαqrfpyqs for all y P R. Hence, rfpyqs � 0 for all y P R. Finally,
substituting x � 1 in (1) provides fpyq � 0 for all y P R, thus contradicting the condition
fpαq � 0.

Subcase 2b. Conversely, we have fpαq � 0 for all 0 ¨ α   1. Consider any real z; there

exists an integer N such that α � z

N
P r0, 1q (one may set N � rzs�1 if z © 0 and N � rzs�1

otherwise). Now, from (1) we get fpzq � fprNsαq � fpNqrfpαqs � 0 for all z P R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that rfpyqs � 0 for some y; then the substitution x � 1 provides
fpyq � fp1qrfpyqs � 0. Hence, if rfpyqs � 0 for all y, then fpyq � 0 for all y. This function
obviously satisfies the problem conditions.

So we are left to consider the case when rfpaqs � 0 for some a. Then we have

fprxsaq � fpxqrfpaqs, or fpxq � fprxsaqrfpaqs . (3)

This means that fpx1q � fpx2q whenever rx1s � rx2s, hence fpxq � fprxsq, and we may assume
that a is an integer.

Now we have
fpaq � f

�
2a � 1

2

� � fp2aq �f �1
2

�� � fp2aqrfp0qs;
this implies rfp0qs � 0, so we may even assume that a � 0. Therefore equation (3) provides

fpxq � fp0qrfp0qs � C � 0

for each x. Now, condition (1) becomes equivalent to the equation C � CrCs which holds
exactly when rCs � 1.
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A2. Let the real numbers a, b, c, d satisfy the relations a�b�c�d � 6 and a2�b2�c2�d2 � 12.
Prove that

36 ¨ 4pa3 � b3 � c3 � d3q � pa4 � b4 � c4 � d4q ¨ 48.

(Ukraine)

Solution 1. Observe that

4pa3 � b3 � c3 � d3q � pa4 � b4 � c4 � d4q � � �pa� 1q4 � pb� 1q4 � pc� 1q4 � pd� 1q4�� 6pa2 � b2 � c2 � d2q � 4pa� b� c� dq � 4� � �pa� 1q4 � pb� 1q4 � pc� 1q4 � pd� 1q4�� 52.

Now, introducing x � a� 1, y � b� 1, z � c� 1, t � d� 1, we need to prove the inequalities

16 © x4 � y4 � z4 � t4 © 4,

under the constraint

x2 � y2 � z2 � t2 � pa2 � b2 � c2 � d2q � 2pa� b� c� dq � 4 � 4 (1)

(we will not use the value of x� y � z � t though it can be found).
Now the rightmost inequality in (1) follows from the power mean inequality:

x4 � y4 � z4 � t4 © px2 � y2 � z2 � t2q2
4

� 4.

For the other one, expanding the brackets we note thatpx2 � y2 � z2 � t2q2 � px4 � y4 � z4 � t4q � q,

where q is a nonnegative number, so

x4 � y4 � z4 � t4 ¨ px2 � y2 � z2 � t2q2 � 16,

and we are done.

Comment 1. The estimates are sharp; the lower and upper bounds are attained at p3, 1, 1, 1q andp0, 2, 2, 2q, respectively.

Comment 2. After the change of variables, one can finish the solution in several different ways.
The latter estimate, for instance, it can be performed by moving the variables – since we need only
the second of the two shifted conditions.

Solution 2. First, we claim that 0 ¨ a, b, c, d ¨ 3. Actually, we have

a� b� c � 6� d, a2 � b2 � c2 � 12� d2,

hence the power mean inequality

a2 � b2 � c2 © pa� b� cq2
3

rewrites as

12� d2 © p6� dq2
3

ðñ 2dpd� 3q ¨ 0,
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which implies the desired inequalities for d; since the conditions are symmetric, we also have
the same estimate for the other variables.

Now, to prove the rightmost inequality, we use the obvious inequality x2px� 2q2 © 0 for
each real x; this inequality rewrites as 4x3 � x4 ¨ 4x2. It follows thatp4a3 � a4q � p4b3 � b4q � p4c3 � c4q � p4d3 � d4q ¨ 4pa2 � b2 � c2 � d2q � 48,

as desired.
Now we prove the leftmost inequality in an analogous way. For each x P r0, 3s, we havepx� 1qpx� 1q2px� 3q ¨ 0 which is equivalent to 4x3 � x4 © 2x2 � 4x� 3. This implies thatp4a3�a4q�p4b3� b4q�p4c3� c4q�p4d3�d4q © 2pa2� b2� c2�d2q�4pa� b� c�dq�12 � 36,

as desired.

Comment. It is easy to guess the extremal points p0, 2, 2, 2q and p3, 1, 1, 1q for this inequality. This
provides a method of finding the polynomials used in Solution 2. Namely, these polynomials should
have the form x4 � 4x3 � ax2 � bx� c; moreover, the former polynomial should have roots at 2 (with
an even multiplicity) and 0, while the latter should have roots at 1 (with an even multiplicity) and 3.
These conditions determine the polynomials uniquely.

Solution 3. First, expanding 48 � 4pa2 � b2 � c2 � d2q and applying the AM–GM inequality,
we have

a4 � b4 � c4 � d4 � 48 � pa4 � 4a2q � pb4 � 4b2q � pc4 � 4c2q � pd4 � 4d2q© 2
�?

a4 � 4a2 �?b4 � 4b2 �?c4 � 4c2 �?d4 � 4d2
	� 4p|a3| � |b3| � |c3| � |d3|q © 4pa3 � b3 � c3 � d3q,

which establishes the rightmost inequality.
To prove the leftmost inequality, we first show that a, b, c, d P r0, 3s as in the previous

solution. Moreover, we can assume that 0 ¨ a ¨ b ¨ c ¨ d. Then we have a � b ¨ b � c ¨
2
3
pb� c� dq ¨ 2

3
� 6 � 4.

Next, we show that 4b�b2 ¨ 4c�c2. Actually, this inequality rewrites as pc�bqpb�c�4q ¨ 0,
which follows from the previous estimate. The inequality 4a � a2 ¨ 4b � b2 can be proved
analogously.

Further, the inequalities a ¨ b ¨ c together with 4a � a2 ¨ 4b � b2 ¨ 4c � c2 allow us to
apply the Chebyshev inequality obtaining

a2p4a� a2q � b2p4b� b2q � c2p4c� c2q © 1

3
pa2 � b2 � c2q �4pa� b� cq � pa2 � b2 � c2q�� p12� d2qp4p6� dq � p12� d2qq

3
.

This implies thatp4a3 � a4q � p4b3 � b4q � p4c3 � c4q � p4d3 � d4q © p12� d2qpd2 � 4d� 12q
3

� 4d3 � d4� 144� 48d� 16d3 � 4d4

3
� 36� 4

3
p3� dqpd� 1qpd2 � 3q. (2)

Finally, we have d2 © 1
4
pa2 � b2 � c2 � d2q � 3 (which implies d ¡ 1); so, the expression

4
3
p3� dqpd� 1qpd2 � 3q in the right-hand part of (2) is nonnegative, and the desired inequality

is proved.

Comment. The rightmost inequality is easier than the leftmost one. In particular, Solutions 2 and 3
show that only the condition a2 � b2 � c2 � d2 � 12 is needed for the former one.
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A3. Let x1, . . . , x100 be nonnegative real numbers such that xi � xi�1 � xi�2 ¨ 1 for all
i � 1, . . . , 100 (we put x101 � x1, x102 � x2). Find the maximal possible value of the sum

S � 100̧

i�1

xixi�2.

(Russia)

Answer.
25

2
.

Solution 1. Let x2i � 0, x2i�1 � 1
2

for all i � 1, . . . , 50. Then we have S � 50 � �1
2

�2 � 25
2
. So,

we are left to show that S ¨ 25
2

for all values of xi’s satisfying the problem conditions.

Consider any 1 ¨ i ¨ 50. By the problem condition, we get x2i�1 ¨ 1 � x2i � x2i�1 and
x2i�2 ¨ 1� x2i � x2i�1. Hence by the AM–GM inequality we get

x2i�1x2i�1 � x2ix2i�2 ¨ p1� x2i � x2i�1qx2i�1 � x2ip1� x2i � x2i�1q� px2i � x2i�1qp1� x2i � x2i�1q ¨ �px2i � x2i�1q � p1� x2i � x2i�1q
2


2 � 1

4
.

Summing up these inequalities for i � 1, 2, . . . , 50, we get the desired inequality

50̧

i�1

px2i�1x2i�1 � x2ix2i�2q ¨ 50 � 1

4
� 25

2
.

Comment. This solution shows that a bit more general fact holds. Namely, consider 2n nonnegative
numbers x1, . . . , x2n in a row (with no cyclic notation) and suppose that xi � xi�1 � xi�2 ¨ 1 for all

i � 1, 2, . . . , 2n � 2. Then
2n�2

i̧�1

xixi�2 ¨ n� 1

4
.

The proof is the same as above, though if might be easier to find it (for instance, applying
induction). The original estimate can be obtained from this version by considering the sequence
x1, x2, . . . , x100, x1, x2.

Solution 2. We present another proof of the estimate. From the problem condition, we get

S � 100̧

i�1

xixi�2 ¨ 100̧

i�1

xip1� xi � xi�1q � 100̧

i�1

xi � 100̧

i�1

x2
i � 100̧

i�1

xixi�1� 100̧

i�1

xi � 1

2

100̧

i�1

pxi � xi�1q2.
By the AM–QM inequality, we have

°pxi � xi�1q2 © 1
100

�°pxi � xi�1q�2, so

S ¨ 100̧

i�1

xi � 1

200

�
100̧

i�1

pxi � xi�1q�2 � 100̧

i�1

xi � 2

100

�
100̧

i�1

xi

�2� 2

100

�
100̧

i�1

xi

��
100

2
� 100̧

i�1

xi

�
.

And finally, by the AM–GM inequality

S ¨ 2

100
��1

2

�
100̧

i�1

xi � 100

2
� 100̧

i�1

xi

��2 � 2

100
� �100

4


2 � 25

2
.
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Comment. These solutions are not as easy as they may seem at the first sight. There are two
different optimal configurations in which the variables have different values, and not all of sums of
three consecutive numbers equal 1. Although it is easy to find the value 25

2 , the estimates must be
done with care to preserve equality in the optimal configurations.
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A4. A sequence x1, x2, . . . is defined by x1 � 1 and x2k � �xk, x2k�1 � p�1qk�1xk for all
k © 1. Prove that x1 � x2 � � � � � xn © 0 for all n © 1.

(Austria)

Solution 1. We start with some observations. First, from the definition of xi it follows that
for each positive integer k we have

x4k�3 � x2k�1 � �x4k�2 and x4k�1 � x4k � �x2k � xk. (1)

Hence, denoting Sn � °n
i�1 xi, we have

S4k � ķ

i�1

�px4k�3 � x4k�2q � px4k�1 � x4kq� � ķ

i�1

p0� 2xkq � 2Sk, (2)

S4k�2 � S4k � px4k�1 � x4k�2q � S4k. (3)

Observe also that Sn � °n
i�1 xi � °n

i�1 1 � n pmod 2q.
Now we prove by induction on k that Si © 0 for all i ¨ 4k. The base case is valid since

x1 � x3 � x4 � 1, x2 � �1. For the induction step, assume that Si © 0 for all i ¨ 4k. Using
the relations (1)–(3), we obtain

S4k�4 � 2Sk�1 © 0, S4k�2 � S4k © 0, S4k�3 � S4k�2 � x4k�3 � S4k�2 � S4k�4

2
© 0.

So, we are left to prove that S4k�1 © 0. If k is odd, then S4k � 2Sk © 0; since k is odd, Sk

is odd as well, so we have S4k © 2 and hence S4k�1 � S4k � x4k�1 © 1.
Conversely, if k is even, then we have x4k�1 � x2k�1 � xk�1, hence S4k�1 � S4k � x4k�1 �

2Sk � xk�1 � Sk � Sk�1 © 0. The step is proved.

Solution 2. We will use the notation of Sn and the relations (1)–(3) from the previous
solution.

Assume the contrary and consider the minimal n such that Sn�1   0; surely n © 1, and
from Sn © 0 we get Sn � 0, xn�1 � �1. Hence, we are especially interested in the set
M � tn : Sn � 0u; our aim is to prove that xn�1 � 1 whenever n P M thus coming to a
contradiction.

For this purpose, we first describe the set M inductively. We claim that (i) M consists only
of even numbers, (ii) 2 P M , and (iii) for every even n © 4 we have n P M ðñ rn{4s P M .
Actually, (i) holds since Sn � n pmod 2q, (ii) is straightforward, while (iii) follows from the
relations S4k�2 � S4k � 2Sk.

Now, we are left to prove that xn�1 � 1 if n P M . We use the induction on n. The base
case is n � 2, that is, the minimal element of M ; here we have x3 � 1, as desired.

For the induction step, consider some 4 ¨ n P M and let m � rn{4s P M ; then m is even,
and xm�1 � 1 by the induction hypothesis. We prove that xn�1 � xm�1 � 1. If n � 4m then we
have xn�1 � x2m�1 � xm�1 since m is even; otherwise, n � 4m�2, and xn�1 � �x2m�2 � xm�1,
as desired. The proof is complete.

Comment. Using the inductive definition of set M , one can describe it explicitly. Namely, M consists
exactly of all positive integers not containing digits 1 and 3 in their 4-base representation.
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A5. Denote by Q
� the set of all positive rational numbers. Determine all functions f : Q

� Ñ Q
�

which satisfy the following equation for all x, y P Q
�:

f
�
fpxq2y� � x3fpxyq. (1)

(Switzerland)

Answer. The only such function is fpxq � 1

x
.

Solution. By substituting y � 1, we get

f
�
fpxq2� � x3fpxq. (2)

Then, whenever fpxq � fpyq, we have

x3 � f
�
fpxq2�
fpxq � f

�
fpyq2�
fpyq � y3

which implies x � y, so the function f is injective.

Now replace x by xy in (2), and apply (1) twice, second time to
�
y, fpxq2� instead of px, yq:

f
�
fpxyq2� � pxyq3fpxyq � y3f

�
fpxq2y� � f

�
fpxq2fpyq2�.

Since f is injective, we get

fpxyq2 � fpxq2fpyq2,
fpxyq � fpxqfpyq.

Therefore, f is multiplicative. This also implies fp1q � 1 and fpxnq � fpxqn for all integers n.

Then the function equation (1) can be re-written as

f
�
fpxq�2fpyq � x3fpxqfpyq,

f
�
fpxq� �ax3fpxq. (3)

Let gpxq � xfpxq. Then, by (3), we have

g
�
gpxq� � g

�
xfpxq� � xfpxq � f�xfpxq� � xfpxq2f�fpxq� �� xfpxq2ax3fpxq � �xfpxq�5{2 � �gpxq�5{2,

and, by induction,

g
�
g
�
. . . gloooomoooon

n�1

pxq . . . �	 � �gpxq�p5{2qn (4)

for every positive integer n.

Consider (4) for a fixed x. The left-hand side is always rational, so
�
gpxq�p5{2qn must be

rational for every n. We show that this is possible only if gpxq � 1. Suppose that gpxq � 1,
and let the prime factorization of gpxq be gpxq � pα1

1 . . . pαk

k where p1, . . . , pk are distinct primes
and α1, . . . , αk are nonzero integers. Then the unique prime factorization of (4) is

g
�
g
�
. . . gloooomoooon

n�1

pxq . . . �	 � �gpxq�p5{2qn � p
p5{2qnα1

1 � � � pp5{2qnαk

k
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where the exponents should be integers. But this is not true for large values of n, for examplep5
2
qnα1 cannot be a integer number when 2n � �� α1. Therefore, gpxq � 1 is impossible.

Hence, gpxq � 1 and thus fpxq � 1

x
for all x.

The function fpxq � 1

x
satisfies the equation (1):

fpfpxq2yq � 1

fpxq2y � 1�
1
x

�2
y
� x3

xy
� x3fpxyq.

Comment. Among R
� Ñ R

� functions, fpxq � 1

x
is not the only solution. Another solution is

f1pxq � x3{2. Using transfinite tools, infinitely many other solutions can be constructed.
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A6. Suppose that f and g are two functions defined on the set of positive integers and taking
positive integer values. Suppose also that the equations fpgpnqq � fpnq � 1 and gpfpnqq �
gpnq � 1 hold for all positive integers. Prove that fpnq � gpnq for all positive integer n.

(Germany)

Solution 1. Throughout the solution, by N we denote the set of all positive integers. For
any function h : N Ñ N and for any positive integer k, define hkpxq � h

�
h
�
. . . hloooomoooon

k

pxq . . . �� (in

particular, h0pxq � x).
Observe that f

�
gkpxq� � f

�
gk�1pxq� � 1 � � � � � fpxq � k for any positive integer k, and

similarly g
�
fkpxq� � gpxq � k. Now let a and b are the minimal values attained by f and g,

respectively; say fpnfq � a, gpngq � b. Then we have f
�
gkpnfq� � a� k, g

�
fkpngq� � b� k, so

the function f attains all values from the set Nf � ta, a� 1, . . . u, while g attains all the values
from the set Ng � tb, b� 1, . . . u.

Next, note that fpxq � fpyq implies gpxq � g
�
fpxq� � 1 � g

�
fpyq�� 1 � gpyq; surely, the

converse implication also holds. Now, we say that x and y are similar (and write x � y) if
fpxq � fpyq (equivalently, gpxq � gpyq). For every x P N, we define rxs � ty P N : x � yu;
surely, y1 � y2 for all y1, y2 P rxs, so rxs � rys whenever y P rxs.

Now we investigate the structure of the sets rxs.
Claim 1. Suppose that fpxq � fpyq; then x � y, that is, fpxq � fpyq. Consequently, each
class rxs contains at most one element from Nf , as well as at most one element from Ng.

Proof. If fpxq � fpyq, then we have gpxq � g
�
fpxq� � 1 � g

�
fpyq�� 1 � gpyq, so x � y. The

second statement follows now from the sets of values of f and g. l
Next, we clarify which classes do not contain large elements.

Claim 2. For any x P N, we have rxs � t1, 2, . . . , b� 1u if and only if fpxq � a. Analogously,rxs � t1, 2, . . . , a� 1u if and only if gpxq � b.

Proof. We will prove that rxs � t1, 2, . . . , b � 1u ðñ fpxq ¡ a; the proof of the second
statement is similar.

Note that fpxq ¡ a implies that there exists some y satisfying fpyq � fpxq�1, so f
�
gpyq� �

fpyq�1 � fpxq, and hence x � gpyq © b. Conversely, if b ¨ c � x then c � gpyq for some y P N,
which in turn follows fpxq � f

�
gpyq� � fpyq � 1 © a� 1, and hence fpxq ¡ a. l

Claim 2 implies that there exists exactly one class contained in t1, . . . , a� 1u (that is, the
class rngs), as well as exactly one class contained in t1, . . . , b�1u (the class rnf s). Assume for a
moment that a ¨ b; then rngs is contained in t1, . . . , b� 1u as well, hence it coincides with rngs.
So, we get that

fpxq � a ðñ gpxq � b ðñ x � nf � ng. (1)

Claim 3. a � b.

Proof. By Claim 2, we have ras � rnf s, so ras should contain some element a1 © b by Claim 2
again. If a � a1, then ras contains two elements © a which is impossible by Claim 1. Therefore,
a � a1 © b. Similarly, b © a. l

Now we are ready to prove the problem statement. First, we establish the following

Claim 4. For every integer d © 0, fd�1pnfq � gd�1pnf q � a� d.

Proof. Induction on d. For d � 0, the statement follows from (1) and Claim 3. Next, for d ¡ 1
from the induction hypothesis we have fd�1pnfq � f

�
fdpnfq� � f

�
gdpnf q� � fpnf q�d � a�d.

The equality gd�1pnfq � a� d is analogous. l
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Finally, for each x P N, we have fpxq � a � d for some d © 0, so fpxq � f
�
gdpnf q� and

hence x � gdpnf q. It follows that gpxq � g
�
gdpnfq� � gd�1pnf q � a� d � fpxq by Claim 4.

Solution 2. We start with the same observations, introducing the relation � and proving
Claim 1 from the previous solution.

Note that fpaq ¡ a since otherwise we have fpaq � a and hence gpaq � g
�
fpaq� � gpaq � 1,

which is false.

Claim 21. a � b.

Proof. We can assume that a ¨ b. Since fpaq © a � 1, there exists some x P N such that
fpaq � fpxq � 1, which is equivalent to fpaq � f

�
gpxq� and a � gpxq. Since gpxq © b © a, by

Claim 1 we have a � gpxq © b, which together with a ¨ b proves the Claim. l
Now, almost the same method allows to find the values fpaq and gpaq.

Claim 31. fpaq � gpaq � a� 1.

Proof. Assume the contrary; then fpaq © a � 2, hence there exist some x, y P N such that
fpxq � fpaq � 2 and fpyq � gpxq (as gpxq © a � b). Now we get fpaq � fpxq � 2 � f

�
g2pxq�,

so a � g2pxq © a, and by Claim 1 we get a � g2pxq � g
�
fpyq� � 1 � gpyq © 1 � a; this is

impossible. The equality gpaq � a� 1 is similar.

Now, we are prepared for the proof of the problem statement. First, we prove it for n © a.

Claim 41. For each integer x © a, we have fpxq � gpxq � x� 1.

Proof. Induction on x. The base case x � a is provided by Claim 31, while the induction
step follows from fpx � 1q � f

�
gpxq� � fpxq � 1 � px � 1q � 1 and the similar computation

for gpx� 1q.
Finally, for an arbitrary n P N we have gpnq © a, so by Claim 41 we have fpnq � 1 �

f
�
gpnq� � gpnq � 1, hence fpnq � gpnq.

Comment. It is not hard now to describe all the functions f : N Ñ N satisfying the property fpfpnqq �
fpnq � 1. For each such function, there exists n0 P N such that fpnq � n� 1 for all n © n0, while for
each n   n0, fpnq is an arbitrary number greater than of equal to n0 (these numbers may be different
for different n   n0).
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A7. Let a1, . . . , ar be positive real numbers. For n ¡ r, we inductively define

an � max
1¨k¨n�1

pak � an�kq. (1)

Prove that there exist positive integers ℓ ¨ r and N such that an � an�ℓ � aℓ for all n © N .

(Iran)

Solution 1. First, from the problem conditions we have that each an (n ¡ r) can be expressed
as an � aj1 � aj2 with j1, j2   n, j1 � j2 � n. If, say, j1 ¡ r then we can proceed in the same
way with aj1 , and so on. Finally, we represent an in a form

an � ai1 � � � � � aik , (2)

1 ¨ ij ¨ r, i1 � � � � � ik � n. (3)

Moreover, if ai1 and ai2 are the numbers in (2) obtained on the last step, then i1 � i2 ¡ r.
Hence we can adjust (3) as

1 ¨ ij ¨ r, i1 � � � � � ik � n, i1 � i2 ¡ r. (4)

On the other hand, suppose that the indices i1, . . . , ik satisfy the conditions (4). Then,
denoting sj � i1 � � � � � ij , from (1) we have

an � ask
© ask�1

� aik © ask�2
� aik�1

� aik © � � � © ai1 � � � � � aik .

Summarizing these observations we get the following

Claim. For every n ¡ r, we have

an � maxtai1 � � � � � aik : the collection pi1, . . . , ikq satisfies (4)u. l
Now we denote

s � max
1¨i¨r

ai

i

and fix some index ℓ ¨ r such that s � aℓ

ℓ
.

Consider some n © r2ℓ�2r and choose an expansion of an in the form (2), (4). Then we have
n � i1�� � ��ik ¨ rk, so k © n{r © rℓ�2. Suppose that none of the numbers i3, . . . , ik equals ℓ.
Then by the pigeonhole principle there is an index 1 ¨ j ¨ r which appears among i3, . . . , ik
at least ℓ times, and surely j � ℓ. Let us delete these ℓ occurrences of j from pi1, . . . , ikq, and
add j occurrences of ℓ instead, obtaining a sequence pi1, i2, i13, . . . , i1k1q also satisfying (4). By
Claim, we have

ai1 � � � � � aik � an © ai1 � ai2 � ai1
3
� � � � � ai1

k1 ,
or, after removing the coinciding terms, ℓaj © jaℓ, so

aℓ

ℓ
¨ aj

j
. By the definition of ℓ, this

means that ℓaj � jaℓ, hence

an � ai1 � ai2 � ai1
3
� � � � � ai1

k1 .
Thus, for every n © r2ℓ � 2r we have found a representation of the form (2), (4) with ij � ℓ
for some j © 3. Rearranging the indices we may assume that ik � ℓ.

Finally, observe that in this representation, the indices pi1, . . . , ik�1q satisfy the condi-
tions (4) with n replaced by n � ℓ. Thus, from the Claim we get

an�ℓ � aℓ © pai1 � � � � � aik�1
q � aℓ � an,

which by (1) implies
an � an�ℓ � aℓ for each n © r2ℓ � 2r,

as desired.
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Solution 2. As in the previous solution, we involve the expansion (2), (3), and we fix some
index 1 ¨ ℓ ¨ r such that

aℓ

ℓ
� s � max

1¨i¨r

ai

i
.

Now, we introduce the sequence pbnq as bn � an � sn; then bℓ � 0.
We prove by induction on n that bn ¨ 0, and pbnq satisfies the same recurrence relation

as panq. The base cases n ¨ r follow from the definition of s. Now, for n ¡ r from the
induction hypothesis we have

bn � max
1¨k¨n�1

pak � an�kq � ns � max
1¨k¨n�1

pbk � bn�k � nsq � ns � max
1¨k¨n�1

pbk � bn�kq ¨ 0,

as required.

Now, if bk � 0 for all 1 ¨ k ¨ r, then bn � 0 for all n, hence an � sn, and the statement is
trivial. Otherwise, define

M � max
1¨i¨r

|bi|, ε � mint|bi| : 1 ¨ i ¨ r, bi   0u.
Then for n ¡ r we obtain

bn � max
1¨k¨n�1

pbk � bn�kq © bℓ � bn�ℓ � bn�ℓ,

so
0 © bn © bn�ℓ © bn�2ℓ © � � � © �M.

Thus, in view of the expansion (2), (3) applied to the sequence pbnq, we get that each bn is
contained in a set

T � tbi1 � bi2 � � � � � bik : i1, . . . , ik ¨ ru X r�M, 0s
We claim that this set is finite. Actually, for any x P T , let x � bi1 � � � � � bik (i1, . . . , ik ¨ r).

Then among bij ’s there are at most
M

ε
nonzero terms (otherwise x   M

ε
� p�εq   �M). Thus

x can be expressed in the same way with k ¨ M

ε
, and there is only a finite number of such

sums.

Finally, for every t � 1, 2, . . . , ℓ we get that the sequence

br�t, br�t�ℓ, br�t�2ℓ, . . .

is non-decreasing and attains the finite number of values; therefore it is constant from some
index. Thus, the sequence pbnq is periodic with period ℓ from some index N , which means that

bn � bn�ℓ � bn�ℓ � bℓ for all n ¡ N � ℓ,

and hence

an � bn � ns � pbn�ℓ � pn� ℓqsq � pbℓ � ℓsq � an�ℓ � aℓ for all n ¡ N � ℓ,

as desired.
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A8. Given six positive numbers a, b, c, d, e, f such that a   b   c   d   e   f . Let a�c�e � S
and b� d� f � T . Prove that

2ST ¡b3pS � T q�Spbd� bf � dfq � T pac� ae� ceq�. (1)

(South Korea)

Solution 1. We define also σ � ac� ce� ae, τ � bd� bf � df . The idea of the solution is to
interpret (1) as a natural inequality on the roots of an appropriate polynomial.

Actually, consider the polynomial

P pxq � pb� d� fqpx� aqpx� cqpx� eq � pa� c� eqpx� bqpx� dqpx� fq� T px3 � Sx2 � σx� aceq � Spx3 � Tx2 � τx� bdfq. (2)

Surely, P is cubic with leading coefficient S � T ¡ 0. Moreover, we have

P paq � Spa� bqpa� dqpa� fq   0, P pcq � Spc� bqpc � dqpc� fq ¡ 0,

P peq � Spe� bqpe� dqpe� fq   0, P pfq � T pf � aqpf � cqpf � eq ¡ 0.

Hence, each of the intervals pa, cq, pc, eq, pe, fq contains at least one root of P pxq. Since there
are at most three roots at all, we obtain that there is exactly one root in each interval (denote
them by α P pa, cq, β P pc, eq, γ P pe, fq). Moreover, the polynomial P can be factorized as

P pxq � pT � Sqpx� αqpx� βqpx� γq. (3)

Equating the coefficients in the two representations (2) and (3) of P pxq provides

α � β � γ � 2TS

T � S
, αβ � αγ � βγ � Sτ � Tσ

T � S
.

Now, since the numbers α, β, γ are distinct, we have

0   pα� βq2 � pα � γq2 � pβ � γq2 � 2pα� β � γq2 � 6pαβ � αγ � βγq,
which implies

4S2T 2pT � Sq2 � pα� β � γq2 ¡ 3pαβ � αγ � βγq � 3pSτ � Tσq
T � S

,

or
4S2T 2 ¡ 3pT � SqpTσ � Sτq,

which is exactly what we need.

Comment 1. In fact, one can locate the roots of P pxq more narrowly: they should lie in the intervalspa, bq, pc, dq, pe, fq.
Surely, if we change all inequality signs in the problem statement to non-strict ones, the (non-strict)

inequality will also hold by continuity. One can also find when the equality is achieved. This happens
in that case when P pxq is a perfect cube, which immediately implies that b � c � d � ep� α � β � γq,
together with the additional condition that P 2pbq � 0. Algebraically,

6pT � Sqb� 4TS � 0 ðñ 3bpa� 4b� fq � 2pa� 2bqp2b � fqðñ f � bp4b� aq
2a� b

� b

�
1� 3pb� aq

2a� b


 ¡ b.

This means that for every pair of numbers a, b such that 0   a   b, there exists f ¡ b such that the
point pa, b, b, b, b, fq is a point of equality.
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Solution 2. Let

U � 1

2

�pe� aq2 � pc� aq2 � pe� cq2� � S2 � 3pac� ae� ceq
and

V � 1

2

�pf � bq2 � pf � dq2 � pd� bq2� � T 2 � 3pbd� bf � dfq.
ThenpL.H.S.q2 � pR.H.S.q2 � p2ST q2 � pS � T q�S � 3pbd� bf � dfq � T � 3pac� ae� ceq� �� 4S2T 2 � pS � T q�SpT 2 � V q � T pS2 � Uq� � pS � T qpSV � TUq � ST pT � Sq2,
and the statement is equivalent withpS � T qpSV � TUq ¡ ST pT � Sq2. (4)

By the Cauchy-Schwarz inequality,pS � T qpTU � SV q © �?S � TU �?T � SV
�2 � ST

�?
U �?V

�2
. (5)

Estimate the quantities
?

U and
?

V by the QM–AM inequality with the positive terms pe�cq2
and pd� bq2 being omitted:?

U �?V ¡pe� aq2 � pc� aq2
2

�pf � bq2 � pf � dq2
2¡ pe� aq � pc� aq

2
� pf � bq � pf � dq

2
� �f � d

2
� b

2


� �e

2
� c

2
� a
	� pT � Sq � 3

2
pe� dq � 3

2
pc � bq ¡ T � S. (6)

The estimates (5) and (6) prove (4) and hence the statement.

Solution 3. We keep using the notations σ and τ from Solution 1. Moreover, let s � c � e.
Note that pc� bqpc � dq � pe� fqpe� dq � pe� fqpc� bq   0,

since each summand is negative. This rewrites aspbd� bf � dfq � pac � ce� aeq   pc� eqpb� d� f � a� c� eq, or

τ � σ   spT � Sq. (7)

Then we have

Sτ � Tσ � Spτ � σq � pS � T qσ   SspT � Sq � pS � T qpce� asq¨ SspT � Sq � pS � T q�s2

4
� pS � sqs
 � s

�
2ST � 3

4
pS � T qs
 .

Using this inequality together with the AM–GM inequality we get
3

4
pS � T qpSτ � Tσq  d3

4
pS � T qs�2ST � 3

4
pS � T qs
¨ 3

4
pS � T qs� 2ST � 3

4
pS � T qs

2
� ST.

Hence,

2ST ¡b3pS � T q�Spbd� bf � dfq � T pac� ae� ceq�.
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Comment 2. The expression (7) can be found by considering the sum of the roots of the quadratic
polynomial qpxq � px� bqpx� dqpx� fq � px� aqpx� cqpx� eq.
Solution 4. We introduce the expressions σ and τ as in the previous solutions. The idea of
the solution is to change the values of variables a, . . . , f keeping the left-hand side unchanged
and increasing the right-hand side; it will lead to a simpler inequality which can be proved in
a direct way.

Namely, we change the variables (i) keeping the (non-strict) inequalities a ¨ b ¨ c ¨ d ¨
e ¨ f ; (ii) keeping the values of sums S and T unchanged; and finally (iii) increasing the
values of σ and τ . Then the left-hand side of (1) remains unchanged, while the right-hand
side increases. Hence, the inequality (1) (and even a non-strict version of (1)) for the changed
values would imply the same (strict) inequality for the original values.

First, we find the sufficient conditions for (ii) and (iii) to be satisfied.

Lemma. Let x, y, z ¡ 0; denote Upx, y, zq � x� y � z, υpx, y, zq � xy � xz � yz. Suppose that
x1 � y1 � x � y but |x� y| © |x1 � y1|; then we have Upx1, y1, zq � Upx, y, zq and υpx1, y1, zq ©
υpx, y, zq with equality achieved only when |x� y| � |x1 � y1|.
Proof. The first equality is obvious. For the second, we have

υpx1, y1, zq � zpx1 � y1q � x1y1 � zpx1 � y1q � px1 � y1q2 � px1 � y1q2
4© zpx � yq � px� yq2 � px� yq2

4
� υpx, y, zq,

with the equality achieved only for px1 � y1q2 � px � yq2 ðñ |x1 � y1| � |x � y|, as desired.l
Now, we apply Lemma several times making the following changes. For each change, we

denote the new values by the same letters to avoid cumbersome notations.

1. Let k � d� c

2
. Replace pb, c, d, eq by pb� k, c� k, d� k, e� kq. After the change we have

a   b   c � d   e   f , the values of S, T remain unchanged, but σ, τ strictly increase by
Lemma.

2. Let ℓ � e� d

2
. Replace pc, d, e, fq by pc� ℓ, d� ℓ, e� ℓ, f � ℓq. After the change we have

a   b   c � d � e   f , the values of S, T remain unchanged, but σ, τ strictly increase by the
Lemma.

3. Finally, let m � c� b

3
. Replace pa, b, c, d, e, fq by pa�2m, b�2m, c�m, d�m, e�m, f�mq.

After the change, we have a   b � c � d � e   f and S, T are unchanged. To check (iii),
we observe that our change can be considered as a composition of two changes: pa, b, c, dq Ñpa�m, b�m, c�m, d�mq and pa, b, e, fq Ñ pa�m, b�m, e�m, f �mq. It is easy to see that
each of these two consecutive changes satisfy the conditions of the Lemma, hence the values
of σ and τ increase.

Finally, we come to the situation when a   b � c � d � e   f , and we need to prove the
inequality

2pa� 2bqp2b� fq ©b3pa� 4b� fq�pa� 2bqpb2 � 2bfq � p2b� fqp2ab� b2q��b3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2b� fqp2a� bq�. (8)

Now, observe that

2 � 2pa� 2bqp2b� fq � 3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2a� bqp2b� fq�.
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Hence p4q rewrites as

3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2a� bqp2b� fq�© 2
b

3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2b� fqp2a� bq�,
which is simply the AM–GM inequality.

Comment 3. Here, we also can find all the cases of equality. Actually, it is easy to see that if
some two numbers among b, c, d, e are distinct then one can use Lemma to increase the right-hand side
of (1). Further, if b � c � d � e, then we need equality in p4q; this means that we apply AM–GM to
equal numbers, that is,

3bpa� 4b� fq � pa� 2bqpb� 2fq � p2a� bqp2b � fq,
which leads to the same equality as in Comment 1.



Combinatorics

C1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of
other singers such that he wishes to perform later than all the singers from that set. Can it
happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?

(Austria)

Answer. Yes, such an example exists.

Solution. We say that an order of singers is good if it satisfied all their wishes. Next, we
say that a number N is realizable by k singers (or k-realizable) if for some set of wishes of
these singers there are exactly N good orders. Thus, we have to prove that a number 2010 is
20-realizable.

We start with the following simple

Lemma. Suppose that numbers n1, n2 are realizable by respectively k1 and k2 singers. Then
the number n1n2 is pk1 � k2q-realizable.

Proof. Let the singers A1, . . . , Ak1
(with some wishes among them) realize n1, and the singers B1,

. . . , Bk2
(with some wishes among them) realize n2. Add to each singer Bi the wish to perform

later than all the singers Aj . Then, each good order of the obtained set of singers has the formpAi1 , . . . , Aik1
, Bj1, . . . , Bjk2

q, where pAi1 , . . . , Aik1
q is a good order for Ai’s and pBj1, . . . , Bjk2

q
is a good order for Bj ’s. Conversely, each order of this form is obviously good. Hence, the
number of good orders is n1n2. l

In view of Lemma, we show how to construct sets of singers containing 4, 3 and 13 singers
and realizing the numbers 5, 6 and 67, respectively. Thus the number 2010 � 6 � 5 � 67 will be
realizable by 4 � 3 � 13 � 20 singers. These companies of singers are shown in Figs. 1–3; the
wishes are denoted by arrows, and the number of good orders for each Figure stands below in
the brackets.

a b

c d
(5)

Fig. 1

(3)

Fig. 2

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

x

y

(67)

Fig. 3

For Fig. 1, there are exactly 5 good orders pa, b, c, dq, pa, b, d, cq, pb, a, c, dq, pb, a, d, cq,pb, d, a, cq. For Fig. 2, each of 6 orders is good since there are no wishes.
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Finally, for Fig. 3, the order of a1, . . . , a11 is fixed; in this line, singer x can stand before
each of ai (i ¨ 9), and singer y can stand after each of aj (j © 5), thus resulting in 9 � 7 � 63
cases. Further, the positions of x and y in this line determine the whole order uniquely unless
both of them come between the same pair pai, ai�1q (thus 5 ¨ i ¨ 8); in the latter cases, there
are two orders instead of 1 due to the order of x and y. Hence, the total number of good orders
is 63� 4 � 67, as desired.

Comment. The number 20 in the problem statement is not sharp and is put there to respect the
original formulation. So, if necessary, the difficulty level of this problem may be adjusted by replac-
ing 20 by a smaller number. Here we present some improvements of the example leading to a smaller
number of singers.

Surely, each example with   20 singers can be filled with some “super-stars” who should perform
at the very end in a fixed order. Hence each of these improvements provides a different solution for
the problem. Moreover, the large variety of ideas standing behind these examples allows to suggest
that there are many other examples.

1. Instead of building the examples realizing 5 and 6, it is more economic to make an example
realizing 30; it may seem even simpler. Two possible examples consisting of 5 and 6 singers are shown
in Fig. 4; hence the number 20 can be decreased to 19 or 18.

For Fig. 4a, the order of a1, . . . , a4 is fixed, there are 5 ways to add x into this order, and there
are 6 ways to add y into the resulting order of a1, . . . , a4, x. Hence there are 5 � 6 � 30 good orders.

On Fig. 4b, for 5 singers a, b1, b2, c1, c2 there are 5! � 120 orders at all. Obviously, exactly one half
of them satisfies the wish b1 � b2, and exactly one half of these orders satisfies another wish c1 � c2;
hence, there are exactly 5!{4 � 30 good orders.

a4

a3

a2

a1

x

y

(30)

b2

b1

c2

c1

a

(30)

a)

b)

b1
b2 b3

b4 b5

a6

a7

a8

a9

a10

a11

x
y

(2010)

b1 b2

b3 b4
a5

a6

a7

a8

c9 c10

c11

x
y

(2010)

Fig. 4 Fig. 5 Fig. 6

2. One can merge the examples for 30 and 67 shown in Figs. 4b and 3 in a smarter way, obtaining
a set of 13 singers representing 2010. This example is shown in Fig. 5; an arrow from/to grouptb1, . . . , b5u means that there exists such arrow from each member of this group.

Here, as in Fig. 4b, one can see that there are exactly 30 orders of b1, . . . , b5, a6, . . . , a11 satisfying
all their wishes among themselves. Moreover, one can prove in the same way as for Fig. 3 that each
of these orders can be complemented by x and y in exactly 67 ways, hence obtaining 30 � 67 � 2010
good orders at all.

Analogously, one can merge the examples in Figs. 1–3 to represent 2010 by 13 singers as is shown
in Fig. 6.
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b3

b2

b1

b6

b5

b4
a4

a3

a2

a1

(67)

a6

a5

a4

a3

a2

a1

b4b3

b2

b1

(2010)

Fig. 7 Fig. 8

3. Finally, we will present two other improvements; the proofs are left to the reader. The graph in
Fig. 7 shows how 10 singers can represent 67. Moreover, even a company of 10 singers representing 2010
can be found; this company is shown in Fig. 8.
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C2. On some planet, there are 2N countries (N © 4). Each country has a flag N units wide
and one unit high composed of N fields of size 1� 1, each field being either yellow or blue. No
two countries have the same flag.

We say that a set of N flags is diverse if these flags can be arranged into an N�N square so
that all N fields on its main diagonal will have the same color. Determine the smallest positive
integer M such that among any M distinct flags, there exist N flags forming a diverse set.

(Croatia)

Answer. M � 2N�2 � 1.

Solution. When speaking about the diagonal of a square, we will always mean the main
diagonal.

Let MN be the smallest positive integer satisfying the problem condition. First, we show
that MN ¡ 2N�2. Consider the collection of all 2N�2 flags having yellow first squares and blue
second ones. Obviously, both colors appear on the diagonal of each N � N square formed by
these flags.

We are left to show that MN ¨ 2N�2� 1, thus obtaining the desired answer. We start with
establishing this statement for N � 4.

Suppose that we have 5 flags of length 4. We decompose each flag into two parts of 2 squares
each; thereby, we denote each flag as LR, where the 2� 1 flags L, R P S � tBB, BY, YB, YYu
are its left and right parts, respectively. First, we make two easy observations on the flags 2�1
which can be checked manually.

(i) For each A P S, there exists only one 2 � 1 flag C P S (possibly C � A) such that A
and C cannot form a 2 � 2 square with monochrome diagonal (for part BB, that is YY, and
for BY that is YB).

(ii) Let A1, A2, A3 P S be three distinct elements; then two of them can form a 2� 2 square
with yellow diagonal, and two of them can form a 2� 2 square with blue diagonal (for all parts
but BB, a pair (BY, YB) fits for both statements, while for all parts but BY, these pairs are
(YB, YY) and (BB, YB)).

Now, let ℓ and r be the numbers of distinct left and right parts of our 5 flags, respectively.
The total number of flags is 5 ¨ rℓ, hence one of the factors (say, r) should be at least 3. On
the other hand, ℓ, r ¨ 4, so there are two flags with coinciding right part; let them be L1R1

and L2R1 (L1 � L2).
Next, since r © 3, there exist some flags L3R3 and L4R4 such that R1, R3, R4 are distinct.

Let L1R1 be the remaining flag. By (i), one of the pairs pL1, L1q and pL1, L2q can form a
2� 2 square with monochrome diagonal; we can assume that L1, L2 form a square with a blue
diagonal. Finally, the right parts of two of the flags L1R1, L3R3, L4R4 can also form a 2 � 2
square with a blue diagonal by (ii). Putting these 2 � 2 squares on the diagonal of a 4 � 4
square, we find a desired arrangement of four flags.

We are ready to prove the problem statement by induction on N ; actually, above we have
proved the base case N � 4. For the induction step, assume that N ¡ 4, consider any 2N�2� 1
flags of length N , and arrange them into a large flag of size p2N�2� 1q �N . This flag contains
a non-monochrome column since the flags are distinct; we may assume that this column is the

first one. By the pigeonhole principle, this column contains at least

R
2N�2 � 1

2

V � 2N�3 � 1

squares of one color (say, blue). We call the flags with a blue first square good.
Consider all the good flags and remove the first square from each of them. We obtain at

least 2N�3 � 1 © MN�1 flags of length N � 1; by the induction hypothesis, N � 1 of them
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can form a square Q with the monochrome diagonal. Now, returning the removed squares, we
obtain a rectangle pN � 1q �N , and our aim is to supplement it on the top by one more flag.

If Q has a yellow diagonal, then we can take each flag with a yellow first square (it exists
by a choice of the first column; moreover, it is not used in Q). Conversely, if the diagonal of Q
is blue then we can take any of the © 2N�3� 1�pN � 1q ¡ 0 remaining good flags. So, in both
cases we get a desired N �N square.

Solution 2. We present a different proof of the estimate MN ¨ 2N�2 � 1. We do not use the
induction, involving Hall’s lemma on matchings instead.

Consider arbitrary 2N�2 � 1 distinct flags and arrange them into a large p2N�2 � 1q � N
flag. Construct two bipartite graphs Gy � pV Y V 1, Eyq and Gb � pV Y V 1, Ebq with the
common set of vertices as follows. Let V and V 1 be the set of columns and the set of flags
under consideration, respectively. Next, let the edge pc, fq appear in Ey if the intersection of
column c and flag f is yellow, and pc, fq P Eb otherwise. Then we have to prove exactly that
one of the graphs Gy and Gb contains a matching with all the vertices of V involved.

Assume that these matchings do not exist. By Hall’s lemma, it means that there exist
two sets of columns Sy, Sb � V such that |EypSyq| ¨ |Sy| � 1 and |EbpSbq| ¨ |Sb| � 1 (in the
left-hand sides, EypSyq and EbpSbq denote respectively the sets of all vertices connected to Sy

and Sb in the corresponding graphs). Our aim is to prove that this is impossible. Note that
Sy, Sb � V since N ¨ 2N�2 � 1.

First, suppose that Sy X Sb � ∅, so there exists some c P Sy X Sb. Note that each
flag is connected to c either in Gy or in Gb, hence EypSyq Y EbpSbq � V 1. Hence we have
2N�2 � 1 � |V 1| ¨ |EypSyq| � |EbpSbq| ¨ |Sy| � |Sb| � 2 ¨ 2N � 4; this is impossible for N © 4.

So, we have Sy X Sb � ∅. Let y � |Sy|, b � |Sb|. From the construction of our graph,
we have that all the flags in the set V 2 � V 1z�EypSyq Y EbpSbq� have blue squares in the
columns of Sy and yellow squares in the columns of Sb. Hence the only undetermined positions
in these flags are the remaining N �y� b ones, so 2N�y�b © |V 2| © |V 1|� |EypSyq|� |EbpSbq| ©
2N�2 � 1 � py � 1q � pb � 1q, or, denoting c � y � b, 2N�c � c ¡ 2N�2 � 2. This is impossible
since N © c © 2.
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C3. 2500 chess kings have to be placed on a 100� 100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing

a common vertex);
(ii) each row and each column contains exactly 25 kings.
Find the number of such arrangements. (Two arrangements differing by rotation or sym-

metry are supposed to be different.)

(Russia)

Answer. There are two such arrangements.

Solution. Suppose that we have an arrangement satisfying the problem conditions. Divide the
board into 2� 2 pieces; we call these pieces blocks. Each block can contain not more than one
king (otherwise these two kings would attack each other); hence, by the pigeonhole principle
each block must contain exactly one king.

Now assign to each block a letter T or B if a king is placed in its top or bottom half,
respectively. Similarly, assign to each block a letter L or R if a king stands in its left or right
half. So we define T-blocks, B-blocks, L-blocks, and R-blocks. We also combine the letters; we call
a block a TL-block if it is simultaneously T-block and L-block. Similarly we define TR-blocks,
BL-blocks, and BR-blocks. The arrangement of blocks determines uniquely the arrangement of
kings; so in the rest of the solution we consider the 50 � 50 system of blocks (see Fig. 1). We
identify the blocks by their coordinate pairs; the pair pi, jq, where 1 ¨ i, j ¨ 50, refers to the
jth block in the ith row (or the ith block in the jth column). The upper-left block is p1, 1q.

The system of blocks has the following properties..
(i1) If pi, jq is a B-block then pi� 1, jq is a B-block: otherwise the kings in these two blocks

can take each other. Similarly: if pi, jq is a T-block then pi � 1, jq is a T-block; if pi, jq is an
L-block then pi, j � 1q is an L-block; if pi, jq is an R-block then pi, j � 1q is an R-block.

(ii1) Each column contains exactly 25 L-blocks and 25 R-blocks, and each row contains
exactly 25 T-blocks and 25 B-blocks. In particular, the total number of L-blocks (or R-blocks,
or T-blocks, or B-blocks) is equal to 25 � 50 � 1250.

Consider any B-block of the form p1, jq. By (i1), all blocks in the jth column are B-blocks;
so we call such a column B-column. By (ii1), we have 25 B-blocks in the first row, so we obtain
25 B-columns. These 25 B-columns contain 1250 B-blocks, hence all blocks in the remaining
columns are T-blocks, and we obtain 25 T-columns. Similarly, there are exactly 25 L-rows and
exactly 25 R-rows.

Now consider an arbitrary pair of a T-column and a neighboring B-column (columns with
numbers j and j � 1).

kkk kkk kkk BL

TL

TL1

1

BL

BR

BL

2

2

TR

TR

TL

3

3 ki

i+1

j j+1

L

T B

Fig. 1 Fig. 2

Case 1. Suppose that the jth column is a T-column, and the pj � 1qth column is a B-
column. Consider some index i such that the ith row is an L-row; then pi, j � 1q is a BL-block.
Therefore, pi� 1, jq cannot be a TR-block (see Fig. 2), hence pi� 1, jq is a TL-block, thus the



29pi� 1qth row is an L-row. Now, choosing the ith row to be the topmost L-row, we successively
obtain that all rows from the ith to the 50th are L-rows. Since we have exactly 25 L-rows, it
follows that the rows from the 1st to the 25th are R-rows, and the rows from the 26th to the
50th are L-rows.

Now consider the neighboring R-row and L-row (that are the rows with numbers 25 and
26). Replacing in the previous reasoning rows by columns and vice versa, the columns from the
1st to the 25th are T-columns, and the columns from the 26th to the 50th are B-columns. So
we have a unique arrangement of blocks that leads to the arrangement of kings satisfying the
condition of the problem (see Fig. 3).
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Case 2. Suppose that the jth column is a B-column, and the pj�1qth column is a T-column.
Repeating the arguments from Case 1, we obtain that the rows from the 1st to the 25th are
L-rows (and all other rows are R-rows), the columns from the 1st to the 25th are B-columns
(and all other columns are T-columns), so we find exactly one more arrangement of kings (see
Fig. 4).
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C4. Six stacks S1, . . . , S6 of coins are standing in a row. In the beginning every stack contains
a single coin. There are two types of allowed moves:

Move 1 : If stack Sk with 1 ¨ k ¨ 5 contains at least one coin, you may remove one coin
from Sk and add two coins to Sk�1.

Move 2 : If stack Sk with 1 ¨ k ¨ 4 contains at least one coin, then you may remove
one coin from Sk and exchange stacks Sk�1 and Sk�2.

Decide whether it is possible to achieve by a sequence of such moves that the first five stacks
are empty, whereas the sixth stack S6 contains exactly 201020102010

coins.

C41. Same as Problem C4, but the constant 201020102010

is replaced by 20102010.

(Netherlands)

Answer. Yes (in both variants of the problem). There exists such a sequence of moves.

Solution. Denote by pa1, a2, . . . , anq Ñ pa11, a12, . . . , a1nq the following: if some consecutive stacks
contain a1, . . . , an coins, then it is possible to perform several allowed moves such that the stacks
contain a11, . . . , a1n coins respectively, whereas the contents of the other stacks remain unchanged.

Let A � 20102010 or A � 201020102010

, respectively. Our goal is to show thatp1, 1, 1, 1, 1, 1q Ñ p0, 0, 0, 0, 0, Aq.
First we prove two auxiliary observations.

Lemma 1. pa, 0, 0q Ñ p0, 2a, 0q for every a © 1.

Proof. We prove by induction that pa, 0, 0q Ñ pa � k, 2k, 0q for every 1 ¨ k ¨ a. For k � 1,
apply Move 1 to the first stack:pa, 0, 0q Ñ pa� 1, 2, 0q � pa� 1, 21, 0q.

Now assume that k   a and the statement holds for some k   a. Starting from pa�k, 2k, 0q,
apply Move 1 to the middle stack 2k times, until it becomes empty. Then apply Move 2 to the
first stack:pa� k, 2k, 0q Ñ pa� k, 2k � 1, 2q Ñ � � � Ñ pa� k, 0, 2k�1q Ñ pa� k � 1, 2k�1, 0q.
Hence, pa, 0, 0q Ñ pa� k, 2k, 0q Ñ pa � k � 1, 2k�1, 0q. l
Lemma 2. For every positive integer n, let Pn � 22..

.2loomoon
n

(e.g. P3 � 222 � 16). Thenpa, 0, 0, 0q Ñ p0, Pa, 0, 0q for every a © 1.

Proof. Similarly to Lemma 1, we prove that pa, 0, 0, 0q Ñ pa� k, Pk, 0, 0q for every 1 ¨ k ¨ a.
For k � 1, apply Move 1 to the first stack:pa, 0, 0, 0q Ñ pa� 1, 2, 0, 0q � pa� 1, P1, 0, 0q.
Now assume that the lemma holds for some k   a. Starting from pa � k, Pk, 0, 0q, apply

Lemma 1, then apply Move 1 to the first stack:pa� k, Pk, 0, 0q Ñ pa � k, 0, 2Pk, 0q � pa� k, 0, Pk�1, 0q Ñ pa� k � 1, Pk�1, 0, 0q.
Therefore, pa, 0, 0, 0q Ñ pa� k, Pk, 0, 0q Ñ pa� k � 1, Pk�1, 0, 0q. l
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Now we prove the statement of the problem.
First apply Move 1 to stack 5, then apply Move 2 to stacks S4, S3, S2 and S1 in this order.

Then apply Lemma 2 twice:p1, 1, 1, 1, 1, 1q Ñ p1, 1, 1, 1, 0, 3q Ñ p1, 1, 1, 0, 3, 0q Ñ p1, 1, 0, 3, 0, 0q Ñ p1, 0, 3, 0, 0, 0q ÑÑ p0, 3, 0, 0, 0, 0q Ñ p0, 0, P3, 0, 0, 0q � p0, 0, 16, 0, 0, 0q Ñ p0, 0, 0, P16, 0, 0q.
We already have more than A coins in stack S4, since

A ¨ 201020102010   p211q20102010 � 211�20102010   220102011   2p211q2011 � 2211�2011   222
15   P16.

To decrease the number of coins in stack S4, apply Move 2 to this stack repeatedly until its
size decreases to A{4. (In every step, we remove a coin from S4 and exchange the empty stacks
S5 and S6.) p0, 0, 0, P16, 0, 0q Ñ p0, 0, 0, P16 � 1, 0, 0q Ñ p0, 0, 0, P16 � 2, 0, 0q ÑÑ � � � Ñ p0, 0, 0, A{4, 0, 0q.

Finally, apply Move 1 repeatedly to empty stacks S4 and S5:p0, 0, 0, A{4, 0, 0q Ñ � � � Ñ p0, 0, 0, 0, A{2, 0q Ñ � � � Ñ p0, 0, 0, 0, 0, Aq.
Comment 1. Starting with only 4 stack, it is not hard to check manually that we can achieve at
most 28 coins in the last position. However, around 5 and 6 stacks the maximal number of coins
explodes. With 5 stacks it is possible to achieve more than 2214

coins. With 6 stacks the maximum is
greater than PP214

.

It is not hard to show that the numbers 20102010 and 201020102010

in the problem can be replaced
by any nonnegative integer up to PP

214
.

Comment 2. The simpler variant C41 of the problem can be solved without Lemma 2:p1, 1, 1, 1, 1, 1q Ñ p0, 3, 1, 1, 1, 1q Ñ p0, 1, 5, 1, 1, 1q Ñ p0, 1, 1, 9, 1, 1q ÑÑ p0, 1, 1, 1, 17, 1q Ñ p0, 1, 1, 1, 0, 35q Ñ p0, 1, 1, 0, 35, 0q Ñ p0, 1, 0, 35, 0, 0q ÑÑ p0, 0, 35, 0, 0, 0q Ñ p0, 0, 1, 234 , 0, 0q Ñ p0, 0, 1, 0, 2234

, 0q Ñ p0, 0, 0, 2234

, 0, 0qÑ p0, 0, 0, 2234 � 1, 0, 0q Ñ . . . Ñ p0, 0, 0, A{4, 0, 0q Ñ p0, 0, 0, 0, A{2, 0q Ñ p0, 0, 0, 0, 0, Aq.
For this reason, the PSC suggests to consider the problem C4 as well. Problem C4 requires more
invention and technical care. On the other hand, the problem statement in C41 hides the fact that the
resulting amount of coins can be such incredibly huge and leaves this discovery to the students.
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C5. n © 4 players participated in a tennis tournament. Any two players have played exactly
one game, and there was no tie game. We call a company of four players bad if one player
was defeated by the other three players, and each of these three players won a game and lost
another game among themselves. Suppose that there is no bad company in this tournament.
Let wi and ℓi be respectively the number of wins and losses of the ith player. Prove that

ņ

i�1

pwi � ℓiq3 © 0. (1)

(South Korea)

Solution. For any tournament T satisfying the problem condition, denote by SpT q sum under
consideration, namely

SpT q � ņ

i�1

pwi � ℓiq3.
First, we show that the statement holds if a tournament T has only 4 players. Actually, let

A � pa1, a2, a3, a4q be the number of wins of the players; we may assume that a1 © a2 © a3 © a4.
We have a1 � a2 � a3 � a4 � �

4
2

� � 6, hence a4 ¨ 1. If a4 � 0, then we cannot have
a1 � a2 � a3 � 2, otherwise the company of all players is bad. Hence we should have
A � p3, 2, 1, 0q, and SpT q � 33 � 13 � p�1q3 � p�3q3 � 0. On the other hand, if a4 � 1, then
only two possibilities, A � p3, 1, 1, 1q and A � p2, 2, 1, 1q can take place. In the former case we
have SpT q � 33 � 3 � p�2q3 ¡ 0, while in the latter one SpT q � 13 � 13 � p�1q3 � p�1q3 � 0, as
desired.

Now we turn to the general problem. Consider a tournament T with no bad companies and
enumerate the players by the numbers from 1 to n. For every 4 players i1, i2, i3, i4 consider a
“sub-tournament” Ti1i2i3i4 consisting of only these players and the games which they performed
with each other. By the abovementioned, we have SpTi1i2i3i4q © 0. Our aim is to prove that

SpT q � ¸
i1,i2,i3,i4

SpTi1i2i3i4q, (2)

where the sum is taken over all 4-tuples of distinct numbers from the set t1, . . . , nu. This way
the problem statement will be established.

We interpret the number pwi � ℓiq3 as following. For i � j, let εij � 1 if the ith player wins
against the jth one, and εij � �1 otherwise. Thenpwi � ℓiq3 � �

j̧�i

εij

�3 � ¸
j1,j2,j3�i

εij1εij2εij3.

Hence,
SpT q � ¸

iRtj1,j2,j3u εij1εij2εij3.

To simplify this expression, consider all the terms in this sum where two indices are equal.
If, for instance, j1 � j2, then the term contains ε2

ij1
� 1, so we can replace this term by εij3.

Make such replacements for each such term; obviously, after this change each term of the form
εij3 will appear P pT q times, hence

SpT q � ¸|ti,j1,j2,j3u|�4

εij1εij2εij3 � P pT q
i̧�j

εij � S1pT q � P pT qS2pT q.



33

We show that S2pT q � 0 and hence SpT q � S1pT q for each tournament. Actually, note that
εij � �εji, and the whole sum can be split into such pairs. Since the sum in each pair is 0, so
is S2pT q.

Thus the desired equality (2) rewrites as

S1pT q � ¸
i1,i2,i3,i4

S1pTi1i2i3i4q. (3)

Now, if all the numbers j1, j2, j3 are distinct, then the set ti, j1, j2, j3u is contained in exactly
one 4-tuple, hence the term εij1εij2εij3 appears in the right-hand part of (3) exactly once, as
well as in the left-hand part. Clearly, there are no other terms in both parts, so the equality is
established.

Solution 2. Similarly to the first solution, we call the subsets of players as companies, and
the k-element subsets will be called as k-companies .

In any company of the players, call a player the local champion of the company if he defeated
all other members of the company. Similarly, if a player lost all his games against the others
in the company then call him the local loser of the company . Obviously every company has
at most one local champion and at most one local loser. By the condition of the problem,
whenever a 4-company has a local loser, then this company has a local champion as well.

Suppose that k is some positive integer, and let us count all cases when a player is the local
champion of some k-company. The ith player won against wi other player. To be the local
champion of a k-company, he must be a member of the company, and the other k� 1 members
must be chosen from those whom he defeated. Therefore, the ith player is the local champion

of

�
wi

k � 1



k-companies. Hence, the total number of local champions of all k-companies is

ņ

i�1

�
wi

k � 1



.

Similarly, the total number of local losers of the k-companies is
ņ

i�1

�
ℓi

k � 1



.

Now apply this for k � 2, 3 and 4.

Since every game has a winner and a loser, we have
ņ

i�1

wi � ņ

i�1

ℓi � �n

2



, and hence

ņ

i�1

�
wi � ℓi

� � 0. (4)

In every 3-company, either the players defeated one another in a cycle or the company has
both a local champion and a local loser. Therefore, the total number of local champions and

local losers in the 3-companies is the same,
ņ

i�1

�
wi

2


 � ņ

i�1

�
ℓi

2



. So we have

ņ

i�1

��
wi

2


 � �ℓi

2


� � 0. (5)

In every 4-company, by the problem’s condition, the number of local losers is less than or
equal to the number of local champions. Then the same holds for the total numbers of local
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champions and local losers in all 4-companies, so
ņ

i�1

�
wi

3


 © ņ

i�1

�
ℓi

3



. Hence,

ņ

i�1

��
wi

3


 � �ℓi

3


� © 0. (6)

Now we establish the problem statement (1) as a linear combination of (4), (5) and (6). It
is easy check thatpx� yq3 � 24

��
x

3


��y

3


�� 24

��
x

2


��y

2


�� �3px� yq2 � 4
�px� yq.

Apply this identity to x � w1 and y � ℓi. Since every player played n � 1 games, we have
wi � ℓi � n� 1, and thuspwi � ℓiq3 � 24

��
wi

3


��ℓi

3


�� 24

��
wi

2


��ℓi

2


�� �3pn� 1q2 � 4
��

wi � ℓi

	
.

Then

ņ

i�1

pwi � ℓiq3 � 24
ņ

i�1

��
wi

3


��ℓi

3


�looooooooomooooooooon©0

�24
ņ

i�1

��
wi

2


��ℓi

2


�looooooooomooooooooon
0

��3pn� 1q2 � 4
� ņ

i�1

�
wi�ℓi

	looooomooooon
0

© 0.
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C6. Given a positive integer k and other two integers b ¡ w ¡ 1. There are two strings of
pearls, a string of b black pearls and a string of w white pearls. The length of a string is the
number of pearls on it.

One cuts these strings in some steps by the following rules. In each step:

(i) The strings are ordered by their lengths in a non-increasing order. If there are some
strings of equal lengths, then the white ones precede the black ones. Then k first ones (if they
consist of more than one pearl) are chosen; if there are less than k strings longer than 1, then
one chooses all of them.

(ii) Next, one cuts each chosen string into two parts differing in length by at most one.

(For instance, if there are strings of 5, 4, 4, 2 black pearls, strings of 8, 4, 3 white pearls and
k � 4, then the strings of 8 white, 5 black, 4 white and 4 black pearls are cut into the partsp4, 4q, p3, 2q, p2, 2q and p2, 2q, respectively.)

The process stops immediately after the step when a first isolated white pearl appears.
Prove that at this stage, there will still exist a string of at least two black pearls.

(Canada)

Solution 1. Denote the situation after the ith step by Ai; hence A0 is the initial situation, and
Ai�1 Ñ Ai is the ith step. We call a string containing m pearls an m-string; it is an m-w-string
or a m-b-string if it is white or black, respectively.

We continue the process until every string consists of a single pearl. We will focus on three
moments of the process: (a) the first stage As when the first 1-string (no matter black or
white) appears; (b) the first stage At where the total number of strings is greater than k (if
such moment does not appear then we put t � 8); and (c) the first stage Af when all black
pearls are isolated. It is sufficient to prove that in Af�1 (or earlier), a 1-w-string appears.

We start with some easy properties of the situations under consideration. Obviously, we
have s ¨ f . Moreover, all b-strings from Af�1 become single pearls in the fth step, hence all
of them are 1- or 2-b-strings.

Next, observe that in each step Ai Ñ Ai�1 with i ¨ t � 1, all p¡1q-strings were cut since
there are not more than k strings at all; if, in addition, i   s, then there were no 1-string, so
all the strings were cut in this step.

Now, let Bi and bi be the lengths of the longest and the shortest b-strings in Ai, and
let Wi and wi be the same for w-strings. We show by induction on i ¨ mints, tu that (i) the
situation Ai contains exactly 2i black and 2i white strings, (ii) Bi © Wi, and (iii) bi © wi.
The base case i � 0 is obvious. For the induction step, if i ¨ mints, tu then in the ith step,
each string is cut, thus the claim (i) follows from the induction hypothesis; next, we have
Bi � rBi�1{2s © rWi�1{2s � Wi and bi � tbi�1{2u © twi�1{2u � wi, thus establishing (ii)
and (iii).

For the numbers s, t, f , two cases are possible.

Case 1. Suppose that s ¨ t or f ¨ t � 1 (and hence s ¨ t � 1); in particular, this is true
when t � 8. Then in As�1 we have Bs�1 © Ws�1, bs�1 © ws�1 ¡ 1 as s � 1 ¨ mints, tu.
Now, if s � f , then in As�1, there is no 1-w-string as well as no p¡2q-b-string. That is,
2 � Bs�1 © Ws�1 © bs�1 © ws�1 ¡ 1, hence all these numbers equal 2. This means that
in As�1, all strings contain 2 pearls, and there are 2s�1 black and 2s�1 white strings, which
means b � 2 � 2s�1 � w. This contradicts the problem conditions.

Hence we have s ¨ f � 1 and thus s ¨ t. Therefore, in the sth step each string is cut
into two parts. Now, if a 1-b-string appears in this step, then from ws�1 ¨ bs�1 we see that a
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1-w-string appears as well; so, in each case in the sth step a 1-w-string appears, while not all
black pearls become single, as desired.

Case 2. Now assume that t � 1 ¨ s and t � 2 ¨ f . Then in At we have exactly 2t white
and 2t black strings, all being larger than 1, and 2t�1 ¡ k © 2t (the latter holds since 2t is the
total number of strings in At�1). Now, in the pt� 1qst step, exactly k strings are cut, not more
than 2t of them being black; so the number of w-strings in At�1 is at least 2t � pk � 2tq � k.
Since the number of w-strings does not decrease in our process, in Af�1 we have at least k
white strings as well.

Finally, in Af�1, all b-strings are not larger than 2, and at least one 2-b-string is cut in
the fth step. Therefore, at most k � 1 white strings are cut in this step, hence there exists a
w-string W which is not cut in the fth step. On the other hand, since a 2-b-string is cut, allp©2q-w-strings should also be cut in the fth step; hence W should be a single pearl. This is
exactly what we needed.

Comment. In this solution, we used the condition b � w only to avoid the case b � w � 2t. Hence,
if a number b � w is not a power of 2, then the problem statement is also valid.

Solution 2. We use the same notations as introduced in the first paragraph of the previous
solution. We claim that at every stage, there exist a u-b-string and a v-w-string such that
either

(i) u ¡ v © 1, or
(ii) 2 ¨ u ¨ v   2u, and there also exist k � 1 of p¡v{2q-strings other than considered

above.

First, we notice that this statement implies the problem statement. Actually, in both
cases (i) and (ii) we have u ¡ 1, so at each stage there exists a p©2q-b-string, and for the last
stage it is exactly what we need.

Now, we prove the claim by induction on the number of the stage. Obviously, for A0 the
condition (i) holds since b ¡ w. Further, we suppose that the statement holds for Ai, and prove
it for Ai�1. Two cases are possible.

Case 1. Assume that in Ai, there are a u-b-string and a v-w-string with u ¡ v. We can
assume that v is the length of the shortest w-string in Ai; since we are not at the final stage,
we have v © 2. Now, in the pi� 1qst step, two subcases may occur.

Subcase 1a. Suppose that either no u-b-string is cut, or both some u-b-string and some
v-w-string are cut. Then in Ai�1, we have either a u-b-string and a p¨vq-w-string (and (i) is
valid), or we have a ru{2s-b-string and a tv{2u-w-string. In the latter case, from u ¡ v we getru{2s ¡ tv{2u, and (i) is valid again.

Subcase 1b. Now, some u-b-string is cut, and no v-w-string is cut (and hence all the strings
which are cut are longer than v). If u1 � ru{2s ¡ v, then the condition (i) is satisfied since we
have a u1-b-string and a v-w-string in Ai�1. Otherwise, notice that the inequality u ¡ v © 2
implies u1 © 2. Furthermore, besides a fixed u-b-string, other k � 1 of p©v � 1q-strings should
be cut in the pi � 1qst step, hence providing at least k � 1 of p©rpv � 1q{2sq-strings, andrpv � 1q{2s ¡ v{2. So, we can put v1 � v, and we have u1 ¨ v   u ¨ 2u1, so the condition (ii)
holds for Ai�1.

Case 2. Conversely, assume that in Ai there exist a u-b-string, a v-w-string (2 ¨ u ¨ v   2u)
and a set S of k � 1 other strings larger than v{2 (and hence larger than 1). In the pi � 1qst
step, three subcases may occur.

Subcase 2a. Suppose that some u-b-string is not cut, and some v-w-string is cut. The latter
one results in a tv{2u-w-string, we have v1 � tv{2u   u, and the condition (i) is valid.
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Subcase 2b. Next, suppose that no v-w-string is cut (and therefore no u-b-string is cut as
u ¨ v). Then all k strings which are cut have the length ¡ v, so each one results in a p¡v{2q-
string. Hence in Ai�1, there exist k © k� 1 of p¡v{2q-strings other than the considered u- and
v-strings, and the condition (ii) is satisfied.

Subcase 2c. In the remaining case, all u-b-strings are cut. This means that all p©uq-strings
are cut as well, hence our v-w-string is cut. Therefore in Ai�1 there exists a ru{2s-b-string
together with a tv{2u-w-string. Now, if u1 � ru{2s ¡ tv{2u � v1 then the condition (i) is
fulfilled. Otherwise, we have u1 ¨ v1   u ¨ 2u1. In this case, we show that u1 © 2. If, to the
contrary, u1 � 1 (and hence u � 2), then all black and white p©2q-strings should be cut in thepi� 1qst step, and among these strings there are at least a u-b-string, a v-w-string, and k � 1
strings in S (k � 1 strings altogether). This is impossible.

Hence, we get 2 ¨ u1 ¨ v1   2u1. To reach (ii), it remains to check that in Ai�1, there exists
a set S 1 of k� 1 other strings larger than v1{2. These will be exactly the strings obtained from
the elements of S. Namely, each s P S was either cut in the pi�1qst step, or not. In the former
case, let us include into S 1 the largest of the strings obtained from s; otherwise we include s
itself into S 1. All k � 1 strings in S 1 are greater than v{2 © v1, as desired.
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C7. Let P1, . . . , Ps be arithmetic progressions of integers, the following conditions being
satisfied:

(i) each integer belongs to at least one of them;
(ii) each progression contains a number which does not belong to other progressions.
Denote by n the least common multiple of steps of these progressions; let n � pα1

1 . . . pαk

k be
its prime factorization. Prove that

s © 1� ķ

i�1

αippi � 1q.
(Germany)

Solution 1. First, we prove the key lemma, and then we show how to apply it to finish the
solution.

Let n1, . . . , nk be positive integers. By an n1 � n2 � � � � � nk grid we mean the set N �tpa1, . . . , akq : ai P Z, 0 ¨ ai ¨ ni � 1u; the elements of N will be referred to as points. In this
grid, we define a subgrid as a subset of the form

L � tpb1, . . . , bkq P N : bi1 � xi1 , . . . , bit � xitu, (1)

where I � ti1, . . . , itu is an arbitrary nonempty set of indices, and xij P r0, nij � 1s (1 ¨ j ¨ t)
are fixed integer numbers. Further, we say that a subgrid (1) is orthogonal to the ith coordinate
axis if i P I, and that it is parallel to the ith coordinate axis otherwise.

Lemma. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls (this means N � �s
i�1 Li)

so that
(ii1) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Then

s © 1� ķ

i�1

pni � 1q.
Proof. Assume to the contrary that s ¨ °ipni � 1q � s1. Our aim is to find a point that is not
covered by L1, . . . , Ls.

The idea of the proof is the following. Imagine that we expand each subgrid to some maximal
subgrid so that for the ith axis, there will be at most ni � 1 maximal subgrids orthogonal to
this axis. Then the desired point can be found easily: its ith coordinate should be that not
covered by the maximal subgrids orthogonal to the ith axis. Surely, the conditions for existence
of such expansion are provided by Hall’s lemma on matchings. So, we will follow this direction,
although we will apply Hall’s lemma to some subgraph instead of the whole graph.

Construct a bipartite graph G � pV Y V 1, Eq as follows. Let V � tL1, . . . , Lsu, and let
V 1 � tvij : 1 ¨ i ¨ s, 1 ¨ j ¨ ni� 1u be some set of s1 elements. Further, let the edge pLm, vijq
appear iff Lm is orthogonal to the ith axis.

For each subset W � V , denote

fpW q � tv P V 1 : pL, vq P E for some L P W u.
Notice that fpV q � V 1 by (iii).

Now, consider the set W � V containing the maximal number of elements such that |W | ¡|fpW q|; if there is no such set then we set W � ∅. Denote W 1 � fpW q, U � V zW , U 1 � V 1zW 1.
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By our assumption and the Lemma condition, |fpV q| � |V 1| © |V |, hence W � V and U � ∅.
Permuting the coordinates, we can assume that U 1 � tvij : 1 ¨ i ¨ ℓu, W 1 � tvij : ℓ�1 ¨ i ¨ ku.

Consider the induced subgraph G1 of G on the vertices U Y U 1. We claim that for every
X � U , we get |fpXqXU 1| © |X| (so G1 satisfies the conditions of Hall’s lemma). Actually, we
have |W | © |fpW q|, so if |X| ¡ |fpXq X U 1| for some X � U , then we have|W YX| � |W | � |X| ¡ |fpW q| � |fpXq X U 1| � |fpW q Y pfpXq X U 1q| � |fpW YXq|.
This contradicts the maximality of |W |.

Thus, applying Hall’s lemma, we can assign to each L P U some vertex vij P U 1 so that to
distinct elements of U , distinct vertices of U 1 are assigned. In this situation, we say that L P U
corresponds to the ith axis, and write gpLq � i. Since there are ni � 1 vertices of the form vij ,
we get that for each 1 ¨ i ¨ ℓ, not more than ni � 1 subgrids correspond to the ith axis.

Finally, we are ready to present the desired point. Since W � V , there exists a point
b � pb1, b2, . . . , bkq P NzpYLPW Lq. On the other hand, for every 1 ¨ i ¨ ℓ, consider any subgrid
L P U with gpLq � i. This means exactly that L is orthogonal to the ith axis, and hence all
its elements have the same ith coordinate cL. Since there are at most ni � 1 such subgrids,
there exists a number 0 ¨ ai ¨ ni � 1 which is not contained in a set tcL : gpLq � iu. Choose
such number for every 1 ¨ i ¨ ℓ. Now we claim that point a � pa1, . . . , aℓ, bℓ�1, . . . , bkq is not
covered, hence contradicting the Lemma condition.

Surely, point a cannot lie in some L P U , since all the points in L have gpLqth coordinate
cL � agpLq. On the other hand, suppose that a P L for some L P W ; recall that b R L. But the
points a and b differ only at first ℓ coordinates, so L should be orthogonal to at least one of
the first ℓ axes, and hence our graph contains some edge pL, vijq for i ¨ ℓ. It contradicts the
definition of W 1. The Lemma is proved. l

Now we turn to the problem. Let dj be the step of the progression Pj . Note that since
n � l.c.m.pd1, . . . , dsq, for each 1 ¨ i ¨ k there exists an index jpiq such that pαi

i

�� djpiq. We
assume that n ¡ 1; otherwise the problem statement is trivial.

For each 0 ¨ m ¨ n � 1 and 1 ¨ i ¨ k, let mi be the residue of m modulo pαi

i , and let
mi � riαi

. . . ri1 be the base pi representation of mi (possibly, with some leading zeroes). Now,
we put into correspondence to m the sequence rpmq � pr11, . . . , r1α1

, r21, . . . , rkαk
q. Hence rpmq

lies in a p1 � � � � � p1loooooomoooooon
α1 times

� � � � � pk � � � � � pkloooooomoooooon
αk times

grid N .

Surely, if rpmq � rpm1q then pαi

i

�� mi � m1
i, which follows pαi

i

�� m � m1 for all 1 ¨ i ¨ k;
consequently, n

�� m�m1. So, when m runs over the set t0, . . . , n� 1u, the sequences rpmq do
not repeat; since |N | � n, this means that r is a bijection between t0, . . . , n� 1u and N . Now
we will show that for each 1 ¨ i ¨ s, the set Li � trpmq : m P Piu is a subgrid, and that for
each axis there exists a subgrid orthogonal to this axis. Obviously, these subgrids cover N , and
the condition (ii1) follows directly from (ii). Hence the Lemma provides exactly the estimate
we need.

Consider some 1 ¨ j ¨ s and let dj � pγ1

1 . . . pγk

k . Consider some q P Pj and let rpqq �pr11, . . . , rkαk
q. Then for an arbitrary q1, setting rpq1q � pr111, . . . , r1kαk

q we have

q1 P Pj ðñ pγi

i

�� q � q1 for each 1 ¨ i ¨ k ðñ ri,t � r1i,t for all t ¨ γi.

Hence Lj � tpr111, . . . , r1kαk
q P N : ri,t � r1i,t for all t ¨ γiu which means that Lj is a subgrid

containing rpqq. Moreover, in Ljpiq, all the coordinates corresponding to pi are fixed, so it is
orthogonal to all of their axes, as desired.
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Comment 1. The estimate in the problem is sharp for every n. One of the possible examples is the
following one. For each 1 ¨ i ¨ k, 0 ¨ j ¨ αi � 1, 1 ¨ k ¨ p� 1, let

Pi,j,k � kpj
i � pj�1

i Z,

and add the progression P0 � nZ. One can easily check that this set satisfies all the problem conditions.
There also exist other examples.

On the other hand, the estimate can be adjusted in the following sense. For every 1 ¨ i ¨ k, let
0 � αi0, αi1, . . . , αihi

be all the numbers of the form ordpi
pdjq in an increasing order (we delete the

repeating occurences of a number, and add a number 0 � αi0 if it does not occur). Then, repeating
the arguments from the solution one can obtain that

s © 1� ķ

i�1

hi̧

j�1

ppαj�αj�1 � 1q.
Note that pα � 1 © αpp � 1q, and the equality is achieved only for α � 1. Hence, for reaching the
minimal number of the progressions, one should have αi,j � j for all i, j. In other words, for each
1 ¨ j ¨ αi, there should be an index t such that ordpi

pdtq � j.

Solution 2. We start with introducing some notation. For positive integer r, we denoterrs � t1, 2, . . . , ru. Next, we say that a set of progressions P � tP1, . . . , Psu cover Z if each
integer belongs to some of them; we say that this covering is minimal if no proper subset of P
covers Z. Obviously, each covering contains a minimal subcovering.

Next, for a minimal covering tP1, . . . , Psu and for every 1 ¨ i ¨ s, let di be the step of
progression Pi, and hi be some number which is contained in Pi but in none of the other
progressions. We assume that n ¡ 1, otherwise the problem is trivial. This implies di ¡ 1,
otherwise the progression Pi covers all the numbers, and n � 1.

We will prove a more general statement, namely the following

Claim. Assume that the progressions P1, . . . , Ps and number n � pα1

1 . . . pαk

k ¡ 1 are chosen as
in the problem statement. Moreover, choose some nonempty set of indices I � ti1, . . . , itu � rks
and some positive integer βi ¨ αi for every i P I. Consider the set of indices

T � !j : 1 ¨ j ¨ s, and pαi�βi�1
i

�� dj for some i P I
)

.

Then |T | © 1�
i̧PI βippi � 1q. (2)

Observe that the Claim for I � rks and βi � αi implies the problem statement, since the
left-hand side in (2) is not greater than s. Hence, it suffices to prove the Claim.

1. First, we prove the Claim assuming that all dj’s are prime numbers. If for some 1 ¨ i ¨ k
we have at least pi progressions with the step pi, then they do not intersect and hence cover all
the integers; it means that there are no other progressions, and n � pi; the Claim is trivial in
this case.

Now assume that for every 1 ¨ i ¨ k, there are not more than pi � 1 progressions with
step pi; each such progression covers the numbers with a fixed residue modulo pi, therefore
there exists a residue qi mod pi which is not touched by these progressions. By the Chinese
Remainder Theorem, there exists a number q such that q � qi pmod piq for all 1 ¨ i ¨ k; this
number cannot be covered by any progression with step pi, hence it is not covered at all. A
contradiction.
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2. Now, we assume that the general Claim is not valid, and hence we consider a counterex-
ample tP1, . . . , Psu for the Claim; we can choose it to be minimal in the following sense: the number n is minimal possible among all the counterexamples; the sum

°
i di is minimal possible among all the counterexamples having the chosen value

of n.

As was mentioned above, not all numbers di are primes; hence we can assume that d1 is
composite, say p1

�� d1 and d11 � d1

p1
¡ 1. Consider a progression P 1

1 having the step d11, and
containing P1. We will focus on two coverings constructed as follows.

(i) Surely, the progressions P 1
1, P2, . . . , Ps cover Z, though this covering in not necessarily

minimal. So, choose some minimal subcovering P 1 in it; surely P 1
1 P P 1 since h1 is not covered

by P2, . . . , Ps, so we may assume that P 1 � tP 1
1, P2, . . . , Ps1u for some s1 ¨ s. Furthermore, the

period of the covering P 1 can appear to be less than n; so we denote this period by

n1 � pα1�σ1

1 . . . pαk�σk

k � l.c.m.
�
d11, d2, . . . , ds1�.

Observe that for each Pj R P 1, we have hj P P 1
1, otherwise hj would not be covered by P.

(ii) On the other hand, each nonempty set of the form Ri � Pi X P 1
1 (1 ¨ i ¨ s) is also a

progression with a step ri � l.c.m.pdi, d
1
1q, and such sets cover P 1

1. Scaling these progressions
with the ratio 1{d11, we obtain the progressions Qi with steps qi � ri{d11 which cover Z. Now we
choose a minimal subcovering Q of this covering; again we should have Q1 P Q by the reasons
of h1. Now, denote the period of Q by

n2 � l.c.m.tqi : Qi P Qu � l.c.m.tri : Qi P Qu
d11 � pγ1

1 . . . pγk

k

d11 .

Note that if hj P P 1
1, then the image of hj under the scaling can be covered by Qj only; so, in

this case we have Qj P Q.

Our aim is to find the desired number of progressions in coverings P and Q. First, we have
n © n1, and the sum of the steps in P 1 is less than that in P; hence the Claim is valid for P 1.
We apply it to the set of indices I 1 � ti P I : βi ¡ σiu and the exponents β 1

i � βi � σi; hence
the set under consideration is

T 1 � !j : 1 ¨ j ¨ s1, and p
pαi�σiq�β1

i�1
i � pαi�βi�1

i

�� dj for some i P I 1) � T X rs1s,
and we obtain that|T X rs1s| © |T 1| © 1�

i̧PI 1pβi � σiqppi � 1q � 1�
i̧PI pβi � σiq�ppi � 1q,

where pxq� � maxtx, 0u; the latter equality holds as for i R I 1 we have βi ¨ σi.
Observe that x � px� yq� �mintx, yu for all x, y. So, if we find at least

G �
i̧PI mintβi, σiuppi � 1q

indices in T X ts1 � 1, . . . , su, then we would have|T | � |TXrs1s|�|TXts1�1, . . . , su| © 1�
i̧PI�pβi�σiq��mintβi, σiu�ppi�1q � 1�

i̧PI βippi�1q,
thus leading to a contradiction with the choice of P. We will find those indices among the
indices of progressions in Q.
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3. Now denote I2 � ti P I : σi ¡ 0u and consider some i P I2; then pαi

i � �� n1. On the
other hand, there exists an index jpiq such that pαi

i

�� djpiq; this means that djpiq � �� n1 and hence
Pjpiq cannot appear in P 1, so jpiq ¡ s1. Moreover, we have observed before that in this case
hjpiq P P 1

1, hence Qjpiq P Q. This means that qjpiq �� n2, therefore γi � αi for each i P I2 (recall
here that qi � ri{d11 and hence djpiq �� rjpiq �� d11n2).

Let d11 � pτ1
1 . . . pτk

k . Then n2 � pγ1�τ1
1 . . . pγi�τi

k . Now, if i P I2, then for every β the condition

p
pγi�τiq�β�1
i

�� qj is equivalent to pαi�β�1
i

�� rj.
Note that n2 ¨ n{d11   n, hence we can apply the Claim to the covering Q. We perform

this with the set of indices I2 and the exponents β2
i � mintβi, σiu ¡ 0. So, the set under

consideration is

T 2 � !j : Qj P Q, and p
pγi�τiq�mintβi,σiu�1
i

�� qj for some i P I2)� !j : Qj P Q, and p
αi�mintβi,σiu�1
i

�� rj for some i P I2) ,

and we obtain |T 2| © 1 �G. Finally, we claim that T 2 � T X �t1u Y ts1 � 1, . . . , su�; then we
will obtain |T X ts1 � 1, . . . , su| © G, which is exactly what we need.

To prove this, consider any j P T 2. Observe first that αi �mintβi, σiu � 1 ¡ αi � σi © τi,

hence from p
αi�mintβi,σiu�1
i

�� rj � l.c.m.pd11, djq we have p
αi�mintβi,σiu�1
i

�� dj, which means that
j P T . Next, the exponent of pi in dj is greater than that in n1, which means that Pj R P 1. This
may appear only if j � 1 or j ¡ s1, as desired. This completes the proof.

Comment 2. A grid analogue of the Claim is also valid. It reads as following.

Claim. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls so that
(ii1) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Choose some set of indices I � ti1, . . . , itu � rks, and consider the set of indices

T � tj : 1 ¨ j ¨ s, and Lj is orthogonal to the ith axis for some i P Iu .

Then |T | © 1�
i̧PIpni � 1q.

This Claim may be proved almost in the same way as in Solution 1.
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Geometry

G1. Let ABC be an acute triangle with D, E, F the feet of the altitudes lying on BC, CA, AB
respectively. One of the intersection points of the line EF and the circumcircle is P . The
lines BP and DF meet at point Q. Prove that AP � AQ.

(United Kingdom)

Solution 1. The line EF intersects the circumcircle at two points. Depending on the choice
of P , there are two different cases to consider.

Case 1 : The point P lies on the ray EF (see Fig. 1).
Let =CAB � α, =ABC � β and =BCA � γ. The quadrilaterals BCEF and CAFD are

cyclic due to the right angles at D, E and F . So,=BDF � 180� �=FDC � =CAF � α,=AFE � 180� �=EFB � =BCE � γ,=DFB � 180� �=AFD � =DCA � γ.

Since P lies on the arc AB of the circumcircle, =PBA   =BCA � γ. Hence, we have=PBD �=BDF � =PBA �=ABD �=BDF   γ � β � α � 180�,
and the point Q must lie on the extensions of BP and DF beyond the points P and F ,
respectively.

From the cyclic quadrilateral APBC we get=QPA � 180� �=APB � =BCA � γ � =DFB � =QFA.

Hence, the quadrilateral AQPF is cyclic. Then =AQP � 180� �=PFA � =AFE � γ.
We obtained that =AQP � =QPA � γ, so the triangle AQP is isosceles, AP � AQ.
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Fig. 1 Fig. 2
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Case 2 : The point P lies on the ray FE (see Fig. 2). In this case the point Q lies inside
the segment FD.

Similarly to the first case, we have=QPA � =BCA � γ � =DFB � 180� �=AFQ.

Hence, the quadrilateral AFQP is cyclic.
Then =AQP � =AFP � =AFE � γ � =QPA. The triangle AQP is isosceles again,=AQP � =QPA and thus AP � AQ.

Comment. Using signed angles, the two possible configurations can be handled simultaneously, with-
out investigating the possible locations of P and Q.

Solution 2. For arbitrary points X, Y on the circumcircle, denote by �XY the central angle
of the arc XY .

Let P and P 1 be the two points where the line EF meets the circumcircle; let P lie on
the arc AB and let P 1 lie on the arc CA. Let BP and BP 1 meet the line DF and Q and Q1,
respectively (see Fig. 3). We will prove that AP � AP 1 � AQ � AQ1.

B

A

Q

CD

E

γ

γ
γ

γ
P ′

P
F

Q′

Fig. 3

Like in the first solution, we have =AFE � =BFP � =DFB � =BCA � γ from the
cyclic quadrilaterals BCEF and CAFD.

By �PB � �P 1A � 2=AFP 1 � 2γ � 2=BCA ��AP ��PB, we have�AP � �P 1A, =PBA � =ABP 1 and AP � AP 1. p1q
Due to �AP � �P 1A, the lines BP and BQ1 are symmetrical about line AB.
Similarly, by =BFP � =Q1FB, the lines FP and FQ1 are symmetrical about AB. It

follows that also the points P and P 1 are symmetrical to Q1 and Q, respectively. Therefore,

AP � AQ1 and AP 1 � AQ. p2q
The relations (1) and (2) together prove AP � AP 1 � AQ � AQ1.
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G2. Point P lies inside triangle ABC. Lines AP , BP , CP meet the circumcircle of ABC
again at points K, L, M , respectively. The tangent to the circumcircle at C meets line AB
at S. Prove that SC � SP if and only if MK � ML.

(Poland)

Solution 1. We assume that CA ¡ CB, so point S lies on the ray AB.

From the similar triangles △PKM � △PCA and △PLM � △PCB we get
PM

KM
� PA

CA

and
LM

PM
� CB

PB
. Multiplying these two equalities, we get

LM

KM
� CB

CA
� PA

PB
.

Hence, the relation MK � ML is equivalent to
CB

CA
� PB

PA
.

Denote by E the foot of the bisector of angle B in triangle ABC. Recall that the locus of

points X for which
XA

XB
� CA

CB
is the Apollonius circle Ω with the center Q on the line AB,

and this circle passes through C and E. Hence, we have MK � ML if and only if P lies on Ω,
that is QP � QC.
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E

Ω

Fig. 1

Now we prove that S � Q, thus establishing the problem statement. We have =CES �=CAE �=ACE � =BCS �=ECB � =ECS, so SC � SE. Hence, the point S lies on AB
as well as on the perpendicular bisector of CE and therefore coincides with Q.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

1. Let P be an arbitrary point inside both the circumcircle ω of the triangle ABC and the
angle ASC, the points K, L, M defined as in the problem. We claim that SP � SC implies
MK � ML.

Let E and F be the points of intersection of the line SP with ω, point E lying on the
segment SP (see Fig. 2).



47

A B

C

S

K

L

M

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

E

F

ω

Fig. 2

We have SP 2 � SC2 � SA � SB, so
SP

SB
� SA

SP
, and hence △PSA � △BSP . Then=BPS � =SAP . Since 2=BPS ��BE � �LF and 2=SAP ��BE ��EK we have�LF � �EK. (1)

On the other hand, from =SPC � =SCP we have �EC � �MF ��EC � �EM , or�MF � �EM. (2)

From (1) and (2) we get ǑMFL � �MF � �FL � �ME ��EK � ǑMEK and hence MK � ML.
The claim is proved.

2. We are left to prove the converse. So, assume that MK � ML, and introduce the
points E and F as above. We have SC2 � SE � SF ; hence, there exists a point P 1 lying on the
segment EF such that SP 1 � SC (see Fig. 3).
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Assume that P � P 1. Let the lines AP 1, BP 1, CP 1 meet ω again at points K 1, L1, M 1
respectively. Now, if P 1 lies on the segment PF then by the first part of the solution we haveǑM 1FL1 � ǑM 1EK 1. On the other hand, we have ǑMFL ¡ ǑM 1FL1 � ǑM 1EK 1 ¡ ǑMEK, thereforeǑMFL ¡ ǑMEK which contradicts MK � ML.

Similarly, if point P 1 lies on the segment EP then we get ǑMFL   ǑMEK which is impossible.
Therefore, the points P and P 1 coincide and hence SP � SP 1 � SC.

Solution 3. We present a different proof of the converse direction, that is, MK � ML ñ
SP � SC. As in the previous solutions we assume that CA ¡ CB, and the line SP meets ω
at E and F .

From ML � MK we get ǑMEK �ǑMFL. Now we claim that �ME � �MF and �EK � �FL.
To the contrary, suppose first that �ME ¡ �MF ; then �EK � ǑMEK��ME  ǑMFL��MF ��FL. Now, the inequality �ME ¡ �MF implies 2=SCM ��EC � �ME ¡�EC � �MF � 2=SPC

and hence SP ¡ SC. On the other hand, the inequality �EK   �FL implies 2=SPK ��EK ��AF   �FL��AF � 2=ABL, hence=SPA � 180� �=SPK ¡ 180� �=ABL � =SBP.
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Consider the point A1 on the ray SA for which =SPA1 � =SBP ; in our case, this point lies
on the segment SA (see Fig. 4). Then △SBP � △SPA1 and SP 2 � SB �SA1   SB �SA � SC2.
Therefore, SP   SC which contradicts SP ¡ SC.

Similarly, one can prove that the inequality �ME   �MF is also impossible. So, we get�ME � �MF and therefore 2=SCM � �EC � �ME � �EC � �MF � 2=SPC, which implies
SC � SP .
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G3. Let A1A2 . . . An be a convex polygon. Point P inside this polygon is chosen so that its
projections P1, . . . , Pn onto lines A1A2, . . . , AnA1 respectively lie on the sides of the polygon.
Prove that for arbitrary points X1, . . . , Xn on sides A1A2, . . . , AnA1 respectively,

max

"
X1X2

P1P2
, . . . ,

XnX1

PnP1

* © 1.

(Armenia)

Solution 1. Denote Pn�1 � P1, Xn�1 � X1, An�1 � A1.

Lemma. Let point Q lies inside A1A2 . . . An. Then it is contained in at least one of the circum-
circles of triangles X1A2X2, . . . , XnA1X1.

Proof. If Q lies in one of the triangles X1A2X2, . . . , XnA1X1, the claim is obvious. Otherwise
Q lies inside the polygon X1X2 . . .Xn (see Fig. 1). Then we havep=X1A2X2 �=X1QX2q � � � � � p=XnA1X1 �=XnQX1q� p=X1A1X2 � � � � �=XnA1X1q � p=X1QX2 � � � � �=XnQX1q � pn � 2qπ � 2π � nπ,

hence there exists an index i such that =XiAi�1Xi�1 � =XiQXi�1 © πn
n
� π. Since the

quadrilateral QXiAi�1Xi�1 is convex, this means exactly that Q is contained the circumcircle
of △XiAi�1Xi�1, as desired. l

Now we turn to the solution. Applying lemma, we get that P lies inside the circumcircle of
triangle XiAi�1Xi�1 for some i. Consider the circumcircles ω and Ω of triangles PiAi�1Pi�1 and
XiAi�1Xi�1 respectively (see Fig. 2); let r and R be their radii. Then we get 2r � Ai�1P ¨ 2R
(since P lies inside Ω), hence

PiPi�1 � 2r sin=PiAi�1Pi�1 ¨ 2R sin=XiAi�1Xi�1 � XiXi�1,

QED.
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Solution 2. As in Solution 1, we assume that all indices of points are considered modulo n.
We will prove a bit stronger inequality, namely

max

"
X1X2

P1P2
cos α1, . . . ,

XnX1

PnP1
cos αn

* © 1,

where αi (1 ¨ i ¨ n) is the angle between lines XiXi�1 and PiPi�1. We denote βi � =AiPiPi�1

and γi � =Ai�1PiPi�1 for all 1 ¨ i ¨ n.
Suppose that for some 1 ¨ i ¨ n, point Xi lies on the segment AiPi, while point Xi�1 lies on

the segment Pi�1Ai�2. Then the projection of the segment XiXi�1 onto the line PiPi�1 contains
segment PiPi�1, since γi and βi�1 are acute angles (see Fig. 3). Therefore, XiXi�1 cos αi ©
PiPi�1, and in this case the statement is proved.

So, the only case left is when point Xi lies on segment PiAi�1 for all 1 ¨ i ¨ n (the case
when each Xi lies on segment AiPi is completely analogous).

Now, assume to the contrary that the inequality

XiXi�1 cos αi   PiPi�1 (1)

holds for every 1 ¨ i ¨ n. Let Yi and Y 1
i�1 be the projections of Xi and Xi�1 onto PiPi�1. Then

inequality (1) means exactly that YiY
1
i�1   PiPi�1, or PiYi ¡ Pi�1Y

1
i�1 (again since γi and βi�1

are acute; see Fig. 4). Hence, we have

XiPi cos γi ¡ Xi�1Pi�1 cos βi�1, 1 ¨ i ¨ n.

Multiplying these inequalities, we get

cos γ1 cos γ2 � � � cos γn ¡ cos β1 cos β2 � � � cos βn. (2)

On the other hand, the sines theorem applied to triangle PPiPi�1 provides

PPi

PPi�1
� sin

�
π
2
� βi�1

�
sin
�

π
2
� γi

� � cos βi�1

cos γi
.

Multiplying these equalities we get

1 � cos β2

cos γ1
� cos β3

cos γ2
� � � cos β1

cos γn

which contradicts (2).
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G4. Let I be the incenter of a triangle ABC and Γ be its circumcircle. Let the line AI
intersect Γ at a point D � A. Let F and E be points on side BC and arc BDC respectively
such that =BAF � =CAE   1

2
=BAC. Finally, let G be the midpoint of the segment IF .

Prove that the lines DG and EI intersect on Γ.

(Hong Kong)

Solution 1. Let X be the second point of intersection of line EI with Γ, and L be the foot
of the bisector of angle BAC. Let G1 and T be the points of intersection of segment DX with
lines IF and AF , respectively. We are to prove that G � G1, or IG1 � G1F . By the Menelaus
theorem applied to triangle AIF and line DX, it means that we need the relation

1 � G1F
IG1 � TF

AT
� AD

ID
, or

TF

AT
� ID

AD
.

Let the line AF intersect Γ at point K � A (see Fig. 1); since =BAK � =CAE we have�BK ��CE, hence KE ‖ BC. Notice that =IAT � =DAK � =EAD � =EXD � =IXT , so
the points I, A, X, T are concyclic. Hence we have =ITA � =IXA � =EXA � =EKA, so

IT ‖ KE ‖ BC. Therefore we obtain
TF

AT
� IL

AI
.

Since CI is the bisector of =ACL, we get
IL

AI
� CL

AC
. Furthermore, =DCL � =DCB �=DAB � =CAD � 1

2
=BAC, hence the triangles DCL and DAC are similar; therefore we get

CL

AC
� DC

AD
. Finally, it is known that the midpoint D of arc BC is equidistant from points I,

B, C, hence
DC

AD
� ID

AD
.

Summarizing all these equalities, we get

TF

AT
� IL

AI
� CL

AC
� DC

AD
� ID

AD
,

as desired.
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Comment. The equality
AI

IL
� AD

DI
is known and can be obtained in many different ways. For

instance, one can consider the inversion with center D and radius DC � DI. This inversion takesǑBAC to the segment BC, so point A goes to L. Hence
IL

DI
� AI

AD
, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that
it suffice to prove the equality

TF

AT
� DI

AD
ðñ TF � AT

AT
� DI � AD

AD
ðñ AT

AD
� AF

DI � AD
.

Since =FAD � =EAI and =TDA � =XDA � =XEA � =IEA, we get that the trian-

gles ATD and AIE are similar, therefore
AT

AD
� AI

AE
.

Next, we also use the relation DB � DC � DI. Let J be the point on the extension
of segment AD over point D such that DJ � DI � DC (see Fig. 2). Then =DJC �=JCD � 1

2
pπ �=JDCq � 1

2
=ADC � 1

2
=ABC � =ABI. Moreover, =BAI � =JAC, hence

triangles ABI and AJC are similar, so
AB

AJ
� AI

AC
, or AB �AC � AJ �AI � pDI �ADq � AI.

On the other hand, we get =ABF � =ABC � =AEC and =BAF � =CAE, so trian-

gles ABF and AEC are also similar, which implies
AF

AC
� AB

AE
, or AB � AC � AF � AE.

Summarizing we getpDI � ADq � AI � AB � AC � AF � AE ñ AI

AE
� AF

AD �DI
ñ AT

AD
� AF

AD �DI
,

as desired.

Comment. In fact, point J is an excenter of triangle ABC.
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G5. Let ABCDE be a convex pentagon such that BC ‖ AE, AB � BC�AE, and =ABC �=CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given
that =DMO � 90�, prove that 2=BDA � =CDE.

(Ukraine)

Solution 1. Choose point T on ray AE such that AT � AB; then from AE ‖ BC we have=CBT � =ATB � =ABT , so BT is the bisector of =ABC. On the other hand, we have
ET � AT � AE � AB � AE � BC, hence quadrilateral BCTE is a parallelogram, and the
midpoint M of its diagonal CE is also the midpoint of the other diagonal BT .

Next, let point K be symmetrical to D with respect to M . Then OM is the perpendicular
bisector of segment DK, and hence OD � OK, which means that point K lies on the cir-
cumcircle of triangle BCD. Hence we have =BDC � =BKC. On the other hand, the angles
BKC and TDE are symmetrical with respect to M , so =TDE � =BKC � =BDC.

Therefore, =BDT � =BDE �=EDT � =BDE �=BDC � =CDE � =ABC � 180� �=BAT . This means that the points A, B, D, T are concyclic, and hence =ADB � =ATB �
1
2
=ABC � 1

2
=CDE, as desired.
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α

β
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2ϕ − β − γ

2ϕ
− α− β

2ϕ − α − β − γ

α
+

β
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D

E

Solution 2. Let=CBD � α, =BDC � β, =ADE � γ, and =ABC � =CDE � 2ϕ. Then
we have =ADB � 2ϕ� β � γ, =BCD � 180� � α � β, =AED � 360� �=BCD �=CDE �
180� � 2ϕ� α � β, and finally =DAE � 180� �=ADE �=AED � 2ϕ� α � β � γ.
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Let N be the midpoint of CD; then =DNO � 90� � =DMO, hence points M , N lie on
the circle with diameter OD. Now, if points O and M lie on the same side of CD, we have=DMN � =DON � 1

2
=DOC � α; in the other case, we have =DMN � 180��=DON � α;
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so, in both cases =DMN � α (see Figures). Next, since MN is a midline in triangle CDE,
we have =MDE � =DMN � α and =NDM � 2ϕ� α.

Now we apply the sine rule to the triangles ABD, ADE (twice), BCD and MND obtaining

AB

AD
� sinp2ϕ� β � γq

sinp2ϕ� αq ,
AE

AD
� sin γ

sinp2ϕ� α � βq , DE

AD
� sinp2ϕ� α � β � γq

sinp2ϕ� α � βq ,

BC

CD
� sin β

sin α
,

CD

DE
� CD{2

DE{2 � ND

NM
� sin α

sinp2ϕ� αq ,
which implies

BC

AD
� BC

CD
� CD

DE
� DE

AD
� sin β � sinp2ϕ� α � β � γq

sinp2ϕ� αq � sinp2ϕ� α � βq .
Hence, the condition AB � AE �BC, or equivalently

AB

AD
� AE �BC

AD
, after multiplying

by the common denominator rewrites as

sinp2ϕ� α � βq � sinp2ϕ� β � γq � sin γ � sinp2ϕ� αq � sin β � sinp2ϕ� α � β � γqðñ cospγ � αq � cosp4ϕ� 2β � α � γq � cosp2ϕ� α � 2β � γq � cosp2ϕ� γ � αqðñ cospγ � αq � cosp2ϕ� γ � αq � cosp2ϕ� α � 2β � γq � cosp4ϕ� 2β � α � γqðñ cos ϕ � cospϕ� γ � αq � cos ϕ � cosp3ϕ� 2β � α � γqðñ cos ϕ � �cospϕ� γ � αq � cosp3ϕ� 2β � α � γq� � 0ðñ cos ϕ � sinp2ϕ� β � αq � sinpϕ� β � γq � 0.

Since 2ϕ�β�α � 180��=AED   180� and ϕ � 1
2
=ABC   90�, it follows that ϕ � β�γ,

hence =BDA � 2ϕ� β � γ � ϕ � 1
2
=CDE, as desired.



56

G6. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides BC,
CA, AB of an acute-angled triangle ABC. Prove that the incenter of triangle ABC lies inside
triangle XY Z.

G61. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides
BC, CA, AB of a triangle ABC. Prove that if the incenter of triangle ABC lies outside
triangle XY Z, then one of the angles of triangle ABC is greater than 120�.

(Bulgaria)

Solution 1 for G6. We will prove a stronger fact; namely, we will show that the incenter I of
triangle ABC lies inside the incircle of triangle XY Z (and hence surely inside triangle XY Z
itself). We denote by dpU, V W q the distance between point U and line V W .

Denote by O the incenter of △XY Z and by r, r1 and R1 the inradii of triangles ABC, XY Z
and the circumradius of XY Z, respectively. Then we have R1 � 2r1, and the desired inequality
is OI ¨ r1. We assume that O � I; otherwise the claim is trivial.

Let the incircle of △ABC touch its sides BC, AC, AB at points A1, B1, C1 respectively.
The lines IA1, IB1, IC1 cut the plane into 6 acute angles, each one containing one of the
points A1, B1, C1 on its border. We may assume that O lies in an angle defined by lines IA1,
IC1 and containing point C1 (see Fig. 1). Let A1 and C 1 be the projections of O onto lines IA1

and IC1, respectively.
Since OX � R1, we have dpO, BCq ¨ R1. Since OA1 ‖ BC, it follows that dpA1, BCq �

A1I � r ¨ R1, or A1I ¨ R1 � r. On the other hand, the incircle of △XY Z lies inside △ABC,
hence dpO, ABq © r1, and analogously we get dpO, ABq � C 1C1 � r� IC 1 © r1, or IC 1 ¨ r� r1.

A
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C
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C1
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A′

C ′
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Fig. 1 Fig. 2

Finally, the quadrilateral IA1OC 1 is circumscribed due to the right angles at A1 and C 1
(see Fig. 2). On its circumcircle, we have ǑA1OC 1 � 2=A1IC 1   180� � �OC 1I, hence 180� ©�IC 1 ¡ �A1O. This means that IC 1 ¡ A1O. Finally, we have OI ¨ IA1 � A1O   IA1 � IC 1 ¨pR1 � rq � pr � r1q � R1 � r1 � r1, as desired.

Solution 2 for G6. Assume the contrary. Then the incenter I should lie in one of trian-
gles AY Z, BXZ, CXY — assume that it lies in △AY Z. Let the incircle ω of △ABC touch
sides BC, AC at point A1, B1 respectively. Without loss of generality, assume that point A1

lies on segment CX. In this case we will show that =C ¡ 90� thus leading to a contradiction.
Note that ω intersects each of the segments XY and Y Z at two points; let U , U 1 and V ,

V 1 be the points of intersection of ω with XY and Y Z, respectively (UY ¡ U 1Y , V Y ¡ V 1Y ;
see Figs. 3 and 4). Note that 60� � =XY Z � 1

2
p�UV ��U 1V 1q ¨ 1

2
�UV , hence �UV © 120�.



57

On the other hand, since I lies in △AY Z, we get ǑV UV 1   180�, hence ǑUA1U 1 ¨ ǑUA1V 1  
180� ��UV ¨ 60�.

Now, two cases are possible due to the order of points Y , B1 on segment AC.
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Case 1. Let point Y lie on the segment AB1 (see Fig. 3). Then we have =Y XC �
1
2

��A1U 1 ��A1U
� ¨ 1

2
ǑUA1U 1   30�; analogously, we get =XY C ¨ 1

2
ǑUA1U 1   30�. Therefore,=Y CX � 180� �=Y XC �=XY C ¡ 120�, as desired.

Case 2. Now let point Y lie on the segment CB1 (see Fig. 4). Analogously, we obtain=Y XC   30�. Next, =IY X ¡ =ZY X � 60�, but =IY X   =IY B1, since Y B1 is a tangent
and Y X is a secant line to circle ω from point Y . Hence, we get 120�   =IY B1 � =IY X �=B1Y X � =Y XC �=Y CX   30� �=Y CX, hence =Y CX ¡ 120� � 30� � 90�, as desired.

Comment. In the same way, one can prove a more general

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, and α is the
least angle of △XY Z. Then one of the angles of triangle ABC is greater than 3α� 90�.
Solution for G61. Assume the contrary. As in Solution 2, we assume that the incenter I of
△ABC lies in △AY Z, and the tangency point A1 of ω and BC lies on segment CX. Surely,=Y ZA ¨ 180� � =Y ZX � 120�, hence points I and Y lie on one side of the perpendicular
bisector to XY ; therefore IX ¡ IY . Moreover, ω intersects segment XY at two points, and
therefore the projection M of I onto XY lies on the segment XY . In this case, we will prove
that =C ¡ 120�.

Let Y K, Y L be two tangents from point Y to ω (points K and A1 lie on one side of XY ;
if Y lies on ω, we say K � L � Y ); one of the points K and L is in fact a tangency point B1

of ω and AC. From symmetry, we have =Y IK � =Y IL. On the other hand, since IX ¡ IY ,
we get XM   XY which implies =A1XY   =KY X.

Next, we have =MIY � 90��=IY X   90��=ZY X � 30�. Since IA1 K A1X, IM K XY ,
IK K Y K we get =MIA1 � =A1XY   =KY X � =MIK. Finally, we get=A1IK   =A1IL � p=A1IM �=MIKq � p=KIY �=Y ILq  2=MIK � 2=KIY � 2=MIY   60�.
Hence, =A1IB1   60�, and therefore =ACB � 180� �=A1IB1 ¡ 120�, as desired.
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Comment 1. The estimate claimed in G61 is sharp. Actually, if =BAC ¡ 120�, one can consider an
equilateral triangle XY Z with Z � A, Y P AC, X P BC (such triangle exists since =ACB   60�). It
intersects with the angle bisector of =BAC only at point A, hence it does not contain I.

Comment 2. As in the previous solution, there is a generalization for an arbitrary triangle XY Z,
but here we need some additional condition. The statement reads as follows.

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, α is the least
angle of △XY Z, and all sides of triangle XY Z are greater than 2r cot α, where r is the inradius
of △ABC. Then one of the angles of triangle ABC is greater than 2α.

The additional condition is needed to verify that XM ¡ Y M since it cannot be shown in the
original way. Actually, we have =MY I ¡ α, IM   r, hence Y M   r cot α. Now, if we have
XY � XM � Y M ¡ 2r cot α, then surely XM ¡ Y M .

On the other hand, this additional condition follows easily from the conditions of the original
problem. Actually, if I P △AY Z, then the diameter of ω parallel to Y Z is contained in △AY Z and
is thus shorter than Y Z. Hence Y Z ¡ 2r ¡ 2r cot 60�.
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G7. Three circular arcs γ1, γ2, and γ3 connect the points A and C. These arcs lie in the same
half-plane defined by line AC in such a way that arc γ2 lies between the arcs γ1 and γ3. Point
B lies on the segment AC. Let h1, h2, and h3 be three rays starting at B, lying in the same
half-plane, h2 being between h1 and h3. For i, j � 1, 2, 3, denote by Vij the point of intersection
of hi and γj (see the Figure below).

Denote by ǑVijVkj
ǑVkℓViℓ the curved quadrilateral, whose sides are the segments VijViℓ, VkjVkℓ

and arcs VijVkj and ViℓVkℓ. We say that this quadrilateral is circumscribed if there exists a circle
touching these two segments and two arcs.

Prove that if the curved quadrilaterals ǑV11V21
ǑV22V12, ǑV12V22

ǑV23V13, ǑV21V31
ǑV32V22 are circum-

scribed, then the curved quadrilateral ǑV22V32
ǑV33V23 is circumscribed, too.

A C

h3

h2

h1

V13
V33

V12

V11

V32

B

V22

γ3

V23

γ2

γ1

V21 V31

Fig. 1

(Hungary)

Solution. Denote by Oi and Ri the center and the radius of γi, respectively. Denote also by H
the half-plane defined by AC which contains the whole configuration. For every point P in
the half-plane H , denote by dpP q the distance between P and line AC. Furthermore, for any
r ¡ 0, denote by ΩpP, rq the circle with center P and radius r.

Lemma 1. For every 1 ¨ i   j ¨ 3, consider those circles ΩpP, rq in the half-plane H which
are tangent to hi and hj .

(a) The locus of the centers of these circles is the angle bisector βij between hi and hj .
(b) There is a constant uij such that r � uij � dpP q for all such circles.

Proof. Part (a) is obvious. To prove part (b), notice that the circles which are tangent to hi

and hj are homothetic with the common homothety center B (see Fig. 2). Then part (b) also
becomes trivial. l
Lemma 2. For every 1 ¨ i   j ¨ 3, consider those circles ΩpP, rq in the half-plane H which
are externally tangent to γi and internally tangent to γj.

(a) The locus of the centers of these circles is an ellipse arc εij with end-points A and C.
(b) There is a constant vij such that r � vij � dpP q for all such circles.

Proof. (a) Notice that the circle ΩpP, rq is externally tangent to γi and internally tangent to γj

if and only if OiP � Ri � r and Oj � Rj � r. Therefore, for each such circle we have

OiP �OjP � OiA�OjA � OiC �OjC � Ri �Rj .

Such points lie on an ellipse with foci Oi and Oj; the diameter of this ellipse is Ri �Rj , and it
passes through the points A and C. Let εij be that arc AC of the ellipse which runs inside the
half plane H (see Fig. 3.)

This ellipse arc lies between the arcs γi and γj. Therefore, if some point P lies on εij,
then OiP ¡ Ri and OjP   Rj . Now, we choose r � OiP � Ri � Rj � OjP ¡ 0; then the
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circle ΩpP, rq touches γi externally and touches γj internally, so P belongs to the locus under
investigation.

(b) Let ~ρ � ÝÑ
AP , ~ρi � ÝÝÑ

AOi, and ~ρj � ÝÝÑ
AOj; let dij � OiOj, and let ~v be a unit vector

orthogonal to AC and directed toward H . Then we have |~ρi| � Ri, |~ρj| � Rj, |ÝÝÑOiP | �|~ρ� ~ρi| � Ri � r, |ÝÝÑOjP | � |~ρ� ~ρj| � Rj � r, hencep~ρ� ~ρiq2 � p~ρ� ~ρjq2 � pRi � rq2 � pRj � rq2,p~ρ 2
i � ~ρ 2

j q � 2~ρ � p~ρj � ~ρiq � pR2
i �R2

j q � 2rpRi �Rjq,
dij � dpP q � dij~v � ~ρ � p~ρj � ~ρiq � ~ρ � rpRi �Rjq.

Therefore,

r � dij

Ri �Rj
� dpP q,

and the value vij � dij

Ri �Rj
does not depend on P . l

Lemma 3. The curved quadrilateral Qij � ǑVi,jVi�1,j
ǑVi�1,j�1Vi,j�1 is circumscribed if and only

if ui,i�1 � vj,j�1.

Proof. First suppose that the curved quadrilateral Qij is circumscribed and ΩpP, rq is its in-
scribed circle. By Lemma 1 and Lemma 2 we have r � ui,i�1 � dpP q and r � vj,j�1 � dpP q as
well. Hence, ui,i�1 � vj,j�1.

To prove the opposite direction, suppose ui,i�1 � vj,j�1. Let P be the intersection of the
angle bisector βi,i�1 and the ellipse arc εj,j�1. Choose r � ui,i�1 � dpP q � vj,j�1 � dpP q. Then
the circle ΩpP, rq is tangent to the half lines hi and hi�1 by Lemma 1, and it is tangent to the
arcs γj and γj�1 by Lemma 2. Hence, the curved quadrilateral Qij is circumscribed. l

By Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the
equalities u12 � v12, u12 � v23, and u23 � v12 hold, then u23 � v23 holds as well.
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Comment 1. Lemma 2(b) (together with the easy Lemma 1(b)) is the key tool in this solution.
If one finds this fact, then the solution can be finished in many ways. That is, one can find a circle
touching three of h2, h3, γ2, and γ3, and then prove that it is tangent to the fourth one in either
synthetic or analytical way. Both approaches can be successful.

Here we present some discussion about this key Lemma.

1. In the solution above we chose an analytic proof for Lemma 2(b) because we expect that most
students will use coordinates or vectors to examine the locus of the centers, and these approaches are
less case-sensitive.

Here we outline a synthetic proof. We consider only the case when P does not lie in the line OiOj .
The other case can be obtained as a limit case, or computed in a direct way.

Let S be the internal homothety center between the circles of γi and γj, lying on OiOj ; this point
does not depend on P . Let U and V be the points of tangency of circle σ � ΩpP, rq with γi and γj,
respectively (then r � PU � PV ); in other words, points U and V are the intersection points of
rays OiP , OjP with arcs γi, γj respectively (see Fig. 4).

Due to the theorem on three homothety centers (or just to the Menelaus theorem applied to
triangle OiOjP ), the points U , V and S are collinear. Let T be the intersection point of line AC and
the common tangent to σ and γi at U ; then T is the radical center of σ, γi and γj, hence TV is the
common tangent to σ and γj.

Let Q be the projection of P onto the line AC. By the right angles, the points U , V and Q lie on
the circle with diameter PT . From this fact and the equality PU � PV we get =UQP � =UV P �=V UP � =SUOi. Since OiS ‖ PQ, we have =SOiU � =QPU . Hence, the triangles SOiU and UPQ

are similar and thus
r

dpP q � PU

PQ
� OiS

OiU
� OiS

Ri
; the last expression is constant since S is a constant

point. l
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2. Using some known facts about conics, the same statement can be proved in a very short way.
Denote by ℓ the directrix of ellipse of εij related to the focus Oj ; since εij is symmetrical about OiOj ,
we have ℓ ‖ AC. Recall that for each point P P εij , we have POj � ǫ � dℓpP q, where dℓpP q is the
distance from P to ℓ, and ǫ is the eccentricity of εij (see Fig. 5).

Now we have

r � Rj � pRj � rq � AOj � POj � ǫ
�
dℓpAq � dℓpP q� � ǫ

�
dpP q � dpAq� � ǫ � dpP q,

and ǫ does not depend on P . l
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Comment 2. One can find a spatial interpretations of the problem and the solution.
For every point px, yq and radius r ¡ 0, represent the circle Ω

�px, yq, r� by the point px, y, rq
in space. This point is the apex of the cone with base circle Ω

�px, yq, r� and height r. According to
Lemma 1, the circles which are tangent to hi and hj correspond to the points of a half line β1

ij , starting
at B.

Now we translate Lemma 2. Take some 1 ¨ i   j ¨ 3, and consider those circles which are
internally tangent to γj. It is easy to see that the locus of the points which represent these circles is
a subset of a cone, containing γj. Similarly, the circles which are externally tangent to γi correspond
to the points on the extension of another cone, which has its apex on the opposite side of the base
plane Π. (See Fig. 6; for this illustration, the z-coordinates were multiplied by 2.)

The two cones are symmetric to each other (they have the same aperture, and their axes are
parallel). As is well-known, it follows that the common points of the two cones are co-planar. So the
intersection of the two cones is a a conic section — which is an ellipse, according to Lemma 2(a). The
points which represent the circles touching γi and γj is an ellipse arc ε1ij with end-points A and C.

γi

ε′ij

γj

β′
12 β′

23

ε′12

ε′23

Π

Σ

Fig. 6 Fig. 7

Thus, the curved quadrilateral Qij is circumscribed if and only if β1
i,i�1 and ε1j,j�1 intersect, i.e. if

they are coplanar. If three of the four curved quadrilaterals are circumscribed, it means that ε112, ε123,
β1

12 and β1
23 lie in the same plane Σ, and the fourth intersection comes to existence, too (see Fig. 7).

A connection between mathematics and real life:
the Palace of Creativity “Shabyt” (“Inspiration”) in Astana



Number Theory

N1. Find the least positive integer n for which there exists a set ts1, s2, . . . , snu consisting of
n distinct positive integers such that�

1� 1

s1


�
1� 1

s2



. . .

�
1� 1

sn


 � 51

2010
.

N11. Same as Problem N1, but the constant
51

2010
is replaced by

42

2010
.

(Canada)

Answer for Problem N1. n � 39.

Solution for Problem N1. Suppose that for some n there exist the desired numbers; we

may assume that s1   s2   � � �   sn. Surely s1 ¡ 1 since otherwise 1 � 1

s1
� 0. So we have

2 ¨ s1 ¨ s2 � 1 ¨ � � � ¨ sn � pn� 1q, hence si © i� 1 for each i � 1, . . . , n. Therefore

51

2010
� �1� 1

s1


�
1� 1

s2



. . .

�
1� 1

sn


© �1� 1

2


�
1� 1

3



. . .

�
1� 1

n� 1


 � 1

2
� 2

3
� � � n

n� 1
� 1

n � 1
,

which implies

n � 1 © 2010

51
� 670

17
¡ 39,

so n © 39.
Now we are left to show that n � 39 fits. Consider the set t2, 3, . . . , 33, 35, 36, . . . , 40, 67u

which contains exactly 39 numbers. We have

1

2
� 2

3
� � � 32

33
� 34

35
� � � 39

40
� 66

67
� 1

33
� 34

40
� 66

67
� 17

670
� 51

2010
, p1q

hence for n � 39 there exists a desired example.

Comment. One can show that the example p1q is unique.

Answer for Problem N11. n � 48.

Solution for Problem N11. Suppose that for some n there exist the desired numbers. In
the same way we obtain that si © i � 1. Moreover, since the denominator of the fraction
42

2010
� 7

335
is divisible by 67, some of si’s should be divisible by 67, so sn © si © 67. This

means that
42

2010
© 1

2
� 2

3
� � � n � 1

n
� �1� 1

67


 � 66

67n
,
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which implies

n © 2010 � 66

42 � 67
� 330

7
¡ 47,

so n © 48.
Now we are left to show that n � 48 fits. Consider the set t2, 3, . . . , 33, 36, 37, . . . , 50, 67u

which contains exactly 48 numbers. We have

1

2
� 2

3
� � � 32

33
� 35

36
� � � 49

50
� 66

67
� 1

33
� 35

50
� 66

67
� 7

335
� 42

2010
,

hence for n � 48 there exists a desired example.

Comment 1. In this version of the problem, the estimate needs one more step, hence it is a bit
harder. On the other hand, the example in this version is not unique. Another example is

1

2
� 2

3
� � � 46

47
� 66

67
� 329

330
� 1

67
� 66

330
� 329

47
� 7

67 � 5 � 42

2010
.

Comment 2. N11 was the Proposer’s formulation of the problem. We propose N1 according to the
number of current IMO.
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N2. Find all pairs pm, nq of nonnegative integers for which

m2 � 2 � 3n � m
�
2n�1 � 1

�
. (1)

(Australia)

Answer. p6, 3q, p9, 3q, p9, 5q, p54, 5q.
Solution. For fixed values of n, the equation (1) is a simple quadratic equation in m. For
n ¨ 5 the solutions are listed in the following table.

case equation discriminant integer roots
n � 0 m2 �m� 2 � 0 �7 none
n � 1 m2 � 3m� 6 � 0 �15 none
n � 2 m2 � 7m� 18 � 0 �23 none
n � 3 m2 � 15m� 54 � 0 9 m � 6 and m � 9
n � 4 m2 � 31m� 162 � 0 313 none
n � 5 m2 � 63m� 486 � 0 2025 � 452 m � 9 and m � 54

We prove that there is no solution for n © 6.

Suppose that pm, nq satisfies (1) and n © 6. Since m
�� 2 � 3n � m

�
2n�1 � 1

� �m2, we have
m � 3p with some 0 ¨ p ¨ n or m � 2 � 3q with some 0 ¨ q ¨ n.

In the first case, let q � n� p; then

2n�1 � 1 � m� 2 � 3n

m
� 3p � 2 � 3q.

In the second case let p � n� q. Then

2n�1 � 1 � m� 2 � 3n

m
� 2 � 3q � 3p.

Hence, in both cases we need to find the nonnegative integer solutions of

3p � 2 � 3q � 2n�1 � 1, p� q � n. (2)

Next, we prove bounds for p, q. From (2) we get

3p   2n�1 � 8
n�1

3   9
n�1

3 � 3
2pn�1q

3

and
2 � 3q   2n�1 � 2 � 8n

3   2 � 9n
3 � 2 � 3 2n

3   2 � 3 2pn�1q
3 ,

so p, q   2pn�1q
3

. Combining these inequalities with p� q � n, we obtain

n� 2

3
  p, q   2pn� 1q

3
. (3)

Now let h � minpp, qq. By (3) we have h ¡ n�2
3

; in particular, we have h ¡ 1. On the
left-hand side of (2), both terms are divisible by 3h, therefore 9

�� 3h
�� 2n�1 � 1. It is easy check

that ord9p2q � 6, so 9
�� 2n�1� 1 if and only if 6

�� n� 1. Therefore, n� 1 � 6r for some positive
integer r, and we can write

2n�1 � 1 � 43r � 1 � p42r � 4r � 1qp2r � 1qp2r � 1q. (4)
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Notice that the factor 42r � 4r � 1 � p4r � 1q2 � 3 � 4r is divisible by 3, but it is never
divisible by 9. The other two factors in (4), 2r � 1 and 2r � 1 are coprime: both are odd and
their difference is 2. Since the whole product is divisible by 3h, we have either 3h�1

�� 2r � 1 or
3h�1

�� 2r � 1. In any case, we have 3h�1 ¨ 2r � 1. Then

3h�1 ¨ 2r � 1 ¨ 3r � 3
n�1

6 ,

n� 2

3
� 1   h � 1 ¨ n � 1

6
,

n   11.

But this is impossible since we assumed n © 6, and we proved 6
�� n � 1.
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N3. Find the smallest number n such that there exist polynomials f1, f2, . . . , fn with rational
coefficients satisfying

x2 � 7 � f1pxq2 � f2pxq2 � � � � � fnpxq2.
(Poland)

Answer. The smallest n is 5.

Solution 1. The equality x2 � 7 � x2 � 22 � 12 � 12 � 12 shows that n ¨ 5. It remains to
show that x2� 7 is not a sum of four (or less) squares of polynomials with rational coefficients.

Suppose by way of contradiction that x2 � 7 � f1pxq2 � f2pxq2 � f3pxq2 � f4pxq2, where the
coefficients of polynomials f1, f2, f3 and f4 are rational (some of these polynomials may be
zero).

Clearly, the degrees of f1, f2, f3 and f4 are at most 1. Thus fipxq � aix� bi for i � 1, 2, 3, 4
and some rationals a1, b1, a2, b2, a3, b3, a4, b4. It follows that x2 � 7 � °4

i�1paix � biq2 and
hence

4̧

i�1

a2
i � 1,

4̧

i�1

aibi � 0,
4̧

i�1

b2
i � 7. (1)

Let pi � ai � bi and qi � ai � bi for i � 1, 2, 3, 4. Then

4̧

i�1

p2
i � 4̧

i�1

a2
i � 2

4̧

i�1

aibi � 4̧

i�1

b2
i � 8,

4̧

i�1

q2
i � 4̧

i�1

a2
i � 2

4̧

i�1

aibi � 4̧

i�1

b2
i � 8

and
4̧

i�1

piqi � 4̧

i�1

a2
i � 4̧

i�1

b2
i � �6,

which means that there exist a solution in integers x1, y1, x2, y2, x3, y3, x4, y4 and m ¡ 0 of
the system of equations

(i)
4̧

i�1

x2
i � 8m2, (ii)

4̧

i�1

y2
i � 8m2, (iii)

4̧

i�1

xiyi � �6m2.

We will show that such a solution does not exist.
Assume the contrary and consider a solution with minimal m. Note that if an integer x is

odd then x2 � 1 pmod 8q. Otherwise (i.e., if x is even) we have x2 � 0 pmod 8q or x2 � 4pmod 8q. Hence, by (i), we get that x1, x2, x3 and x4 are even. Similarly, by (ii), we get that
y1, y2, y3 and y4 are even. Thus the LHS of (iii) is divisible by 4 and m is also even. It follows
that px1

2
, y1

2
, x2

2
, y2

2
, x3

2
, y3

2
, x4

2
, y4

2
, m

2
q is a solution of the system of equations (i), (ii) and (iii),

which contradicts the minimality of m.

Solution 2. We prove that n ¨ 4 is impossible. Define the numbers ai, bi for i � 1, 2, 3, 4 as
in the previous solution.

By Euler’s identity we havepa2
1 � a2

2 � a2
3 � a2

4qpb2
1 � b2

2 � b2
3 � b2

4q �pa1b1 � a2b2 � a3b3 � a4b4q2 � pa1b2 � a2b1 � a3b4 � a4b3q2�pa1b3 � a3b1 � a4b2 � a2b4q2 � pa1b4 � a4b1 � a2b3 � a3b2q2.
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So, using the relations (1) from the Solution 1 we get that

7 � �m1

m

	2 � �m2

m

	2 � �m3

m

	2

, (2)

where

m1

m
� a1b2 � a2b1 � a3b4 � a4b3,

m2

m
� a1b3 � a3b1 � a4b2 � a2b4,

m3

m
� a1b4 � a4b1 � a2b3 � a3b2

and m1, m2, m3 P Z, m P N.
Let m be a minimum positive integer number for which (2) holds. Then

8m2 � m2
1 �m2

2 �m2
3 �m2.

As in the previous solution, we get that m1, m2, m3, m are all even numbers. Then
�

m1

2
, m2

2
, m3

2
, m

2

�
is also a solution of (2) which contradicts the minimality of m. So, we have n © 5. The example
with n � 5 is already shown in Solution 1.
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N4. Let a, b be integers, and let P pxq � ax3 � bx. For any positive integer n we say that the
pair pa, bq is n-good if n

�� P pmq � P pkq implies n
�� m � k for all integers m, k. We say thatpa, bq is very good if pa, bq is n-good for infinitely many positive integers n.

(a) Find a pair pa, bq which is 51-good, but not very good.
(b) Show that all 2010-good pairs are very good.

(Turkey)

Solution. (a) We show that the pair p1,�512q is good but not very good. Let P pxq � x3�512x.
Since P p51q � P p0q, the pair p1,�512q is not n-good for any positive integer that does not
divide 51. Therefore, p1,�512q is not very good.

On the other hand, if P pmq � P pkq pmod 51q, then m3 � k3 pmod 51q. By Fermat’s
theorem, from this we obtain

m � m3 � k3 � k pmod 3q and m � m33 � k33 � k pmod 17q.
Hence we have m � k pmod 51q. Therefore p1,�512q is 51-good.

(b) We will show that if a pair pa, bq is 2010-good then pa, bq is 67i-good for all positive
integer i.

Claim 1. If pa, bq is 2010-good then pa, bq is 67-good.

Proof. Assume that P pmq � P pkq pmod 67q. Since 67 and 30 are coprime, there exist integers
m1 and k1 such that k1 � k pmod 67q, k1 � 0 pmod 30q, and m1 � m pmod 67q, m1 � 0pmod 30q. Then we have P pm1q � P p0q � P pk1q pmod 30q and P pm1q � P pmq � P pkq � P pk1qpmod 67q, hence P pm1q � P pk1q pmod 2010q. This implies m1 � k1 pmod 2010q as pa, bq is
2010-good. It follows that m � m1 � k1 � k pmod 67q. Therefore, pa, bq is 67-good. l
Claim 2. If pa, bq is 67-good then 67

�� a.

Proof. Suppose that 67 � �� a. Consider the sets tat2 pmod 67q : 0 ¨ t ¨ 33u and t�3as2 � b
mod 67 : 0 ¨ s ¨ 33u. Since a � 0 pmod 67q, each of these sets has 34 elements. Hence they
have at least one element in common. If at2 � �3as2� b pmod 67q then for m � t�s, k � 	2s
we have

P pmq � P pkq � apm3 � k3q � bpm� kq � pm� kq�apm2 �mk � k2q � b
�� pt� 3sqpat2 � 3as2 � bq � 0 pmod 67q.

Since pa, bq is 67-good, we must have m � k pmod 67q in both cases, that is, t � 3s pmod 67q
and t � �3s pmod 67q. This means t � s � 0 pmod 67q and b � �3as2 � at2 � 0 pmod 67q.
But then 67

�� P p7q�P p2q � 67 �5a�5b and 67 � �� 7�2, contradicting that pa, bq is 67-good. l
Claim 3. If pa, bq is 2010-good then pa, bq is 67i-good all i © 1.

Proof. By Claim 2, we have 67
�� a. If 67

�� b, then P pxq � P p0q pmod 67q for all x, contradicting
that pa, bq is 67-good. Hence, 67 � �� b.

Suppose that 67i
�� P pmq � P pkq � pm� kq�apm2 �mk � k2q � b

�
. Since 67

�� a and 67 � �� b,
the second factor apm2�mk� k2q� b is coprime to 67 and hence 67i

�� m� k. Therefore, pa, bq
is 67i-good. l
Comment 1. In the proof of Claim 2, the following reasoning can also be used. Since 3 is not
a quadratic residue modulo 67, either au2 � �b pmod 67q or 3av2 � �b pmod 67q has a solution.
The settings pm,kq � pu, 0q in the first case and pm,kq � pv,�2vq in the second case lead to b � 0pmod 67q.
Comment 2. The pair p67, 30q is n-good if and only if n � d � 67i, where d

�� 30 and i © 0. It shows
that in part (b), one should deal with the large powers of 67 to reach the solution. The key property
of number 67 is that it has the form 3k� 1, so there exists a nontrivial cubic root of unity modulo 67.
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N5. Let N be the set of all positive integers. Find all functions f : N Ñ N such that the
number

�
fpmq � n

��
m� fpnq� is a square for all m, n P N.

(U.S.A.)

Answer. All functions of the form fpnq � n � c, where c P NY t0u.
Solution. First, it is clear that all functions of the form fpnq � n� c with a constant nonneg-
ative integer c satisfy the problem conditions since

�
fpmq � n

��
fpnq �m

� � pn�m� cq2 is a
square.

We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that p
�� fpkq�fpℓq for some prime p and positive integers k, ℓ. Then p

�� k�ℓ.

Proof. Suppose first that p2
�� fpkq � fpℓq, so fpℓq � fpkq � p2a for some integer a. Take some

positive integer D ¡ maxtfpkq, fpℓqu which is not divisible by p and set n � pD � fpkq. Then
the positive numbers n � fpkq � pD and n � fpℓq � pD � �fpℓq � fpkq� � ppD � paq are
both divisible by p but not by p2. Now, applying the problem conditions, we get that both the
numbers

�
fpkq � n

��
fpnq � k

�
and

�
fpℓq � n

��
fpnq � ℓ

�
are squares divisible by p (and thus

by p2); this means that the multipliers fpnq � k and fpnq � ℓ are also divisible by p, therefore
p
�� �fpnq � k

�� �fpnq � ℓ
� � k � ℓ as well.

On the other hand, if fpkq � fpℓq is divisible by p but not by p2, then choose the same
number D and set n � p3D� fpkq. Then the positive numbers fpkq�n � p3D and fpℓq�n �
p3D � �fpℓq � fpkq� are respectively divisible by p3 (but not by p4) and by p (but not by p2).
Hence in analogous way we obtain that the numbers fpnq � k and fpnq � ℓ are divisible by p,
therefore p

�� �fpnq � k
�� �fpnq � ℓ

� � k � ℓ. l
We turn to the problem. First, suppose that fpkq � fpℓq for some k, ℓ P N. Then by Lemma

we have that k � ℓ is divisible by every prime number, so k � ℓ � 0, or k � ℓ. Therefore, the
function f is injective.

Next, consider the numbers fpkq and fpk � 1q. Since the number pk � 1q � k � 1 has no
prime divisors, by Lemma the same holds for fpk � 1q � fpkq; thus |fpk � 1q � fpkq| � 1.

Now, let fp2q� fp1q � q, |q| � 1. Then we prove by induction that fpnq � fp1q� qpn� 1q.
The base for n � 1, 2 holds by the definition of q. For the step, if n ¡ 1 we have fpn� 1q �
fpnq�q � fp1q�qpn�1q�q. Since fpnq � fpn�2q � fp1q�qpn�2q, we get fpnq � fp1q�qn,
as desired.

Finally, we have fpnq � fp1q�qpn�1q. Then q cannot be �1 since otherwise for n © fp1q�1
we have fpnq ¨ 0 which is impossible. Hence q � 1 and fpnq � pfp1q � 1q � n for each n P N,
and fp1q � 1 © 0, as desired.
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N6. The rows and columns of a 2n � 2n table are numbered from 0 to 2n � 1. The cells of the
table have been colored with the following property being satisfied: for each 0 ¨ i, j ¨ 2n � 1,
the jth cell in the ith row and the pi � jqth cell in the jth row have the same color. (The
indices of the cells in a row are considered modulo 2n.)

Prove that the maximal possible number of colors is 2n.

(Iran)

Solution. Throughout the solution we denote the cells of the table by coordinate pairs; pi, jq
refers to the jth cell in the ith row.

Consider the directed graph, whose vertices are the cells of the board, and the edges are
the arrows pi, jq Ñ pj, i� jq for all 0 ¨ i, j ¨ 2n � 1. From each vertex pi, jq, exactly one edge
passes (to pj, i � j mod 2nq); conversely, to each cell pj, kq exactly one edge is directed (from
the cell pk � j mod 2n, jqq. Hence, the graph splits into cycles.

Now, in any coloring considered, the vertices of each cycle should have the same color by
the problem condition. On the other hand, if each cycle has its own color, the obtained coloring
obviously satisfies the problem conditions. Thus, the maximal possible number of colors is the
same as the number of cycles, and we have to prove that this number is 2n.

Next, consider any cycle pi1, j1q, pi2, j2q, . . . ; we will describe it in other terms. Define a
sequence pa0, a1, . . . q by the relations a0 � i1, a1 � j1, an�1 � an � an�1 for all n © 1 (we
say that such a sequence is a Fibonacci-type sequence). Then an obvious induction shows
that ik � ak�1 pmod 2nq, jk � ak pmod 2nq. Hence we need to investigate the behavior of
Fibonacci-type sequences modulo 2n.

Denote by F0, F1, . . . the Fibonacci numbers defined by F0 � 0, F1 � 1, and Fn�2 �
Fn�1 � Fn for n © 0. We also set F�1 � 1 according to the recurrence relation.

For every positive integer m, denote by νpmq the exponent of 2 in the prime factorization
of m, i.e. for which 2νpmq �� m but 2νpmq�1 � �� m.

Lemma 1. For every Fibonacci-type sequence a0, a1, a2, . . . , and every k © 0, we have ak �
Fk�1a0 � Fka1.

Proof. Apply induction on k. The base cases k � 0, 1 are trivial. For the step, from the
induction hypothesis we get

ak�1 � ak � ak�1 � pFk�1a0 � Fka1q � pFk�2a0 � Fk�1a1q � Fka0 � Fk�1a1. l
Lemma 2. For every m © 3,

(a) we have νpF3�2m�2q � m;
(b) d � 3 � 2m�2 is the least positive index for which 2m

�� Fd;
(c) F3�2m�2�1 � 1� 2m�1 pmod 2mq.

Proof. Apply induction on m. In the base case m � 3 we have νpF3�2m�2q � F6 � 8, so
νpF3�2m�2q � νp8q � 3, the preceding Fibonacci-numbers are not divisible by 8, and indeed
F3�2m�2�1 � F7 � 13 � 1� 4 pmod 8q.

Now suppose that m ¡ 3 and let k � 3 � 2m�3. By applying Lemma 1 to the Fibonacci-type
sequence Fk, Fk�1, . . . we get

F2k � Fk�1Fk � FkFk�1 � pFk�1 � FkqFk � Fk�1Fk � 2Fk�1Fk � F 2
k ,

F2k�1 � Fk � Fk � Fk�1 � Fk�1 � F 2
k � F 2

k�1.

By the induction hypothesis, νpFkq � m � 1, and Fk�1 is odd. Therefore we get νpF 2
k q �

2pm� 1q ¡ pm � 1q � 1 � νp2FkFk�1q, which implies νpF2kq � m, establishing statement (a).
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Moreover, since Fk�1 � 1� 2m�2 � a2m�1 for some integer a, we get

F2k�1 � F 2
k � F 2

k�1 � 0� p1� 2m�2 � a2m�1q2 � 1� 2m�1 pmod 2mq,
as desired in statement (c).

We are left to prove that 2m � �� Fℓ for ℓ   2k. Assume the contrary. Since 2m�1
�� Fℓ, from

the induction hypothesis it follows that ℓ ¡ k. But then we have Fℓ � Fk�1Fℓ�k � FkFℓ�k�1,
where the second summand is divisible by 2m�1 but the first one is not (since Fk�1 is odd and
ℓ� k   k). Hence the sum is not divisible even by 2m�1. A contradiction. l

Now, for every pair of integers pa, bq � p0, 0q, let µpa, bq � mintνpaq, νpbqu. By an obvious in-
duction, for every Fibonacci-type sequence A � pa0, a1, . . . q we have µpa0, a1q � µpa1, a2q � . . .;
denote this common value by µpAq. Also denote by pnpAq the period of this sequence modulo
2n, that is, the least p ¡ 0 such that ak�p � ak pmod 2nq for all k © 0.

Lemma 3. Let A � pa0, a1, . . . q be a Fibonacci-type sequence such that µpAq � k   n. Then
pnpAq � 3 � 2n�1�k.

Proof. First, we note that the sequence pa0, a1, . . . q has period p modulo 2n if and only if the
sequence pa0{2k, a1{2k, . . . q has period p modulo 2n�k. Hence, passing to this sequence we can
assume that k � 0.

We prove the statement by induction on n. It is easy to see that for n � 1, 2 the claim
is true; actually, each Fibonacci-type sequence A with µpAq � 0 behaves as 0, 1, 1, 0, 1, 1, . . .
modulo 2, and as 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, . . . modulo 4 (all pairs of residues from which at
least one is odd appear as a pair of consecutive terms in this sequence).

Now suppose that n © 3 and consider an arbitrary Fibonacci-type sequence A � pa0, a1, . . . q
with µpAq � 0. Obviously we should have pn�1pAq �� pnpAq, or, using the induction hypothesis,
s � 3 � 2n�2

�� pnpAq. Next, we may suppose that a0 is even; hence a1 is odd, and a0 � 2b0,
a1 � 2b1 � 1 for some integers b0, b1.

Consider the Fibonacci-type sequence B � pb0, b1, . . . q starting with pb0, b1q. Since a0 �
2b0 � F0, a1 � 2b1 � F1, by an easy induction we get ak � 2bk � Fk for all k © 0. By
the induction hypothesis, we have pn�1pBq �� s, hence the sequence p2b0, 2b1, . . . q is s-periodic
modulo 2n. On the other hand, by Lemma 2 we have Fs�1 � 1 � 2n�1 pmod 2nq, F2s � 0pmod 2nq, F2s�1 � 1 pmod 2nq, hence

as�1 � 2bs�1 � Fs�1 � 2b1 � 1� 2n�1 � 2b1 � 1 � a1 pmod 2nq,
a2s � 2b2s � F2s � 2b0 � 0 � a0 pmod 2nq,

a2s�1 � 2b2s�1 � F2s�1 � 2b1 � 1 � a1 pmod 2nq.
The first line means that A is not s-periodic, while the other two provide that a2s � a0,
a2s�1 � a1 and hence a2s�t � at for all t © 0. Hence s

�� pnpAq �� 2s and pnpAq � s, which means
that pnpAq � 2s, as desired. l

Finally, Lemma 3 provides a straightforward method of counting the number of cycles.
Actually, take any number 0 ¨ k ¨ n� 1 and consider all the cells pi, jq with µpi, jq � k. The
total number of such cells is 22pn�kq�22pn�k�1q � 3 �22n�2k�2. On the other hand, they are split
into cycles, and by Lemma 3 the length of each cycle is 3 � 2n�1�k. Hence the number of cycles

consisting of these cells is exactly
3 � 22n�2k�2

3 � 2n�1�k
� 2n�k�1. Finally, there is only one cell p0, 0q

which is not mentioned in the previous computation, and it forms a separate cycle. So the total
number of cycles is

1� n�1̧

k�0

2n�1�k � 1� p1� 2� 4� � � � � 2n�1q � 2n.
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Comment. We outline a different proof for the essential part of Lemma 3. That is, we assume that
k � 0 and show that in this case the period of paiqmodulo 2n coincides with the period of the Fibonacci
numbers modulo 2n; then the proof can be finished by the arguments from Lemma 2..

Note that p is a (not necessarily minimal) period of the sequence paiq modulo 2n if and only if we
have a0 � ap pmod 2nq, a1 � ap�1 pmod 2nq, that is,

a0 � ap � Fp�1a0 � Fpa1 � Fppa1 � a0q � Fp�1a0 pmod 2nq,
a1 � ap�1 � Fpa0 � Fp�1a1 pmod 2nq. (1)

Now, If p is a period of pFiq then we have Fp � F0 � 0 pmod 2nq and Fp�1 � F1 � 1 pmod 2nq, which
by (1) implies that p is a period of paiq as well.

Conversely, suppose that p is a period of paiq. Combining the relations of (1) we get

0 � a1 � a0 � a0 � a1 � a1

�
Fppa1 � a0q � Fp�1a0

�� a0pFpa0 � Fp�1a1q� Fppa2
1 � a1a0 � a2

0q pmod 2nq,
a2

1 � a1a0 � a2
0 � pa1 � a0qa1 � a0 � a0 � pa1 � a0qpFpa0 � Fp�1a1q � a0

�
Fppa1 � a0q � Fp�1a0

�� Fp�1pa2
1 � a1a0 � a2

0q pmod 2nq.
Since at least one of the numbers a0, a1 is odd, the number a2

1�a1a0�a2
0 is odd as well. Therefore the

previous relations are equivalent with Fp � 0 pmod 2nq and Fp�1 � 1 pmod 2nq, which means exactly
that p is a period of pF0, F1, . . . q modulo 2n.

So, the sets of periods of paiq and pFiq coincide, and hence the minimal periods coincide as well.
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Algebra Problem shortlist 52nd IMO 2011

Algebra
A1

A1

For any set A = {a1, a2, a3, a4} of four distinct positive integers with sum sA = a1+a2+a3+a4,

let pA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai+aj divides sA. Among

all sets of four distinct positive integers, determine those sets A for which pA is maximal.

A2

A2

Determine all sequences (x1, x2, . . . , x2011) of positive integers such that for every positive inte-

ger n there is an integer a with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = an+1 + 1.

A3

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x+ y)) = f(x) + (2x+ y)g(y)

for all real numbers x and y.

A4

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

f g(n)+1(n) + gf(n)(n) = f(n+ 1)− g(n+ 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f
︸ ︷︷ ︸

k

(n) . . .)).

A5

A5

Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n + 1} can be partitioned into

n triples in such a way that the numbers from each triple are the lengths of the sides of some

obtuse triangle.
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A6

A6

Let f be a function from the set of real numbers to itself that satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

A7

A7

Let a, b, and c be positive real numbers satisfying min(a+b, b+c, c+a) >
√
2 and a2+b2+c2 = 3.

Prove that

a

(b+ c− a)2
+

b

(c + a− b)2
+

c

(a + b− c)2
≥ 3

(abc)2
.

5



Combinatorics Problem shortlist 52nd IMO 2011

Combinatorics
C1

C1

Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, . . . , 2n−1. In a

sequence of n moves we place all weights on the balance. In the first move we choose a weight

and put it on the left pan. In each of the following moves we choose one of the remaining

weights and we add it either to the left or to the right pan. Compute the number of ways in

which we can perform these n moves in such a way that the right pan is never heavier than the

left pan.

C2

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with

100 ≤ k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which

the first half contains the same number of girls as the second half.

C3

C3

Let S be a finite set of at least two points in the plane. Assume that no three points of S are

collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a

point P ∈ S. Rotate ℓ clockwise around the pivot P until the line contains another point Q

of S. The point Q now takes over as the new pivot. This process continues indefinitely, with

the pivot always being a point from S.

Show that for a suitable P ∈ S and a suitable starting line ℓ containing P , the resulting

windmill will visit each point of S as a pivot infinitely often.

C4

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive

integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and

all i ∈ {1, 2, . . . , k} there exist two distinct elements of Ai whose sum is n.

6
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C5

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares.

At the midpoints of some of these unit squares there is an ant. At time 0, each ant starts

moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in

opposite directions meet, they both turn 90◦ clockwise and continue moving with speed 1.

When more than two ants meet, or when two ants moving in perpendicular directions meet,

the ants continue moving in the same direction as before they met. When an ant reaches one

of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the

last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

C6

C6

Let n be a positive integer and let W = . . . x−1x0x1x2 . . . be an infinite periodic word consisting

of the letters a and b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ℓ such that

U = xkxk+1 . . . xℓ. A finite word U is called ubiquitous if the four words Ua, Ub, aU , and bU

all appear in W . Prove that there are at least n ubiquitous finite nonempty words.

C7

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover

a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we

record the maximal number k of cells that all contain the same nonzero number. Considering

all possible napkin configurations, what is the largest value of k?

7
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Geometry
G1

G1

Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC. Suppose

that ω is tangent to AB at B′ and to AC at C ′. Suppose also that the circumcenter O of the

triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC and ω

meet at two points.

G2

G2

Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcenter and the

circumradius of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove

that
1

O1A2
1 − r21

+
1

O2A2
2 − r22

+
1

O3A2
3 − r23

+
1

O4A2
4 − r24

= 0.

G3

G3

Let ABCD be a convex quadrilateral whose sides AD andBC are not parallel. Suppose that the

circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be

the circle through the feet of the perpendiculars from E to the lines AB, BC, and CD. Let ωF

be the circle through the feet of the perpendiculars from F to the lines CD, DA, and AB.

Prove that the midpoint of the segment EF lies on the line through the two intersection points

of ωE and ωF .

G4

G4

Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A, and let G be the centroid

of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at a

point X 6= A. Prove that the points D, G, and X are collinear.

G5

G5

Let ABC be a triangle with incenter I and circumcircle ω. Let D and E be the second

intersection points of ω with the lines AI and BI, respectively. The chord DE meets AC at a

point F , and BC at a point G. Let P be the intersection point of the line through F parallel to

AD and the line through G parallel to BE. Suppose that the tangents to ω at A and at B meet

at a point K. Prove that the three lines AE, BD, and KP are either parallel or concurrent.

8
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G6

G6

Let ABC be a triangle with AB = AC, and let D be the midpoint of AC. The angle bisector

of ∠BAC intersects the circle through D, B, and C in a point E inside the triangle ABC.

The line BD intersects the circle through A, E, and B in two points B and F . The lines AF

and BE meet at a point I, and the lines CI and BD meet at a point K. Show that I is the

incenter of triangle KAB.

G7

G7

Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with center O.

Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the

perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the

line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that

DJ = DL.

G8

G8

Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let ta, tb,

and tc be the lines obtained by reflecting t in the lines BC, CA, and AB, respectively. Show

that the circumcircle of the triangle determined by the lines ta, tb, and tc is tangent to the

circle ω.

9
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Number Theory
N1

N1

For any integer d > 0, let f(d) be the smallest positive integer that has exactly d positive

divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every

integer k ≥ 0 the number f(2k) divides f(2k+1).

N2

N2

Consider a polynomial P (x) = (x + d1)(x + d2) · . . . · (x + d9), where d1, d2, . . . , d9 are nine

distinct integers. Prove that there exists an integer N such that for all integers x ≥ N the

number P (x) is divisible by a prime number greater than 20.

N3

N3

Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself such

that for all integers x and y the difference f(x)− f(y) divides xn − yn.

N4

N4

For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive

integers a for which there exists a positive integer n such that all the differences

t(n+ a)− t(n), t(n+ a + 1)− t(n + 1), . . . , t(n+ 2a− 1)− t(n+ a− 1)

are divisible by 4.

N5

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for

any two integers m and n, the difference f(m)− f(n) is divisible by f(m− n). Prove that for

all integers m, n with f(m) ≤ f(n) the number f(n) is divisible by f(m).

N6

N6

Let P (x) and Q(x) be two polynomials with integer coefficients such that no nonconstant

polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for every

positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.

Prove that Q(x) is a constant polynomial.

10
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N7

N7

Let p be an odd prime number. For every integer a, define the number

Sa =
a

1
+

a2

2
+ · · ·+ ap−1

p− 1
.

Let m and n be integers such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.

N8

N8

Let k be a positive integer and set n = 2k + 1. Prove that n is a prime number if and only if

the following holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a

sequence of integers g1, g2, . . . , gn−1 such that n divides gaii −ai+1 for every i ∈ {1, 2, . . . , n−1},
where we set an = a1.

11
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A1

For any set A = {a1, a2, a3, a4} of four distinct positive integers with sum sA = a1+a2+a3+a4,

let pA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai+aj divides sA. Among

all sets of four distinct positive integers, determine those sets A for which pA is maximal.

Answer. The sets A for which pA is maximal are the sets the form {d, 5d, 7d, 11d} and

{d, 11d, 19d, 29d}, where d is any positive integer. For all these sets pA is 4.

Solution. Firstly, we will prove that the maximum value of pA is at most 4. Without loss

of generality, we may assume that a1 < a2 < a3 < a4. We observe that for each pair of

indices (i, j) with 1 ≤ i < j ≤ 4, the sum ai + aj divides sA if and only if ai + aj divides

sA − (ai + aj) = ak + al, where k and l are the other two indices. Since there are 6 distinct

pairs, we have to prove that at least two of them do not satisfy the previous condition. We

claim that two such pairs are (a2, a4) and (a3, a4). Indeed, note that a2 + a4 > a1 + a3 and

a3 + a4 > a1 + a2. Hence a2 + a4 and a3 + a4 do not divide sA. This proves pA ≤ 4.

Now suppose pA = 4. By the previous argument we have

a1 + a4
∣
∣ a2 + a3 and a2 + a3

∣
∣ a1 + a4,

a1 + a2
∣
∣ a3 + a4 and a3 + a4 6

∣
∣ a1 + a2,

a1 + a3
∣
∣ a2 + a4 and a2 + a4 6

∣
∣ a1 + a3.

Hence, there exist positive integers m and n with m > n ≥ 2 such that







a1 + a4 = a2 + a3

m(a1 + a2) = a3 + a4

n(a1 + a3) = a2 + a4.

Adding up the first equation and the third one, we get n(a1 + a3) = 2a2 + a3 − a1. If n ≥ 3,

then n(a1 + a3) > 3a3 > 2a2 + a3 > 2a2 + a3 − a1. This is a contradiction. Therefore n = 2. If

we multiply by 2 the sum of the first equation and the third one, we obtain

6a1 + 2a3 = 4a2,

while the sum of the first one and the second one is

(m+ 1)a1 + (m− 1)a2 = 2a3.

Adding up the last two equations we get

(m+ 7)a1 = (5−m)a2.

12
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It follows that 5 −m ≥ 1, because the left-hand side of the last equation and a2 are positive.

Since we have m > n = 2, the integer m can be equal only to either 3 or 4. Substituting

(3, 2) and (4, 2) for (m,n) and solving the previous system of equations, we find the families of

solutions {d, 5d, 7d, 11d} and {d, 11d, 19d, 29d}, where d is any positive integer.

13
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A2

Determine all sequences (x1, x2, . . . , x2011) of positive integers such that for every positive inte-

ger n there is an integer a with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = an+1 + 1.

Answer. The only sequence that satisfies the condition is

(x1, . . . , x2011) = (1, k, . . . , k) with k = 2 + 3 + · · ·+ 2011 = 2023065.

Solution. Throughout this solution, the set of positive integers will be denoted by Z+.

Put k = 2 + 3 + · · ·+ 2011 = 2023065. We have

1n + 2kn + · · · 2011kn = 1 + k · kn = kn+1 + 1

for all n, so (1, k, . . . , k) is a valid sequence. We shall prove that it is the only one.

Let a valid sequence (x1, . . . , x2011) be given. For each n ∈ Z+ we have some yn ∈ Z+ with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = yn+1

n + 1.

Note that xn
1 + 2xn

2 + · · · + 2011xn
2011 < (x1 + 2x2 + · · · + 2011x2011)

n+1, which implies that

the sequence (yn) is bounded. In particular, there is some y ∈ Z+ with yn = y for infinitely

many n.

Let m be the maximum of all the xi. Grouping terms with equal xi together, the sum xn
1 +

2xn
2 + · · ·+ 2011xn

2011 can be written as

xn
1 + 2xn

2 + · · ·+ xn
2011 = amm

n + am−1(m− 1)n + · · ·+ a1

with ai ≥ 0 for all i and a1 + · · · + am = 1 + 2 + · · · + 2011. So there exist arbitrarily large

values of n, for which

amm
n + · · ·+ a1 − 1− y · yn = 0. (1)

The following lemma will help us to determine the ai and y:

Lemma. Let integers b1, . . . , bN be given and assume that there are arbitrarily large positive

integers n with b1 + b22
n + · · ·+ bNN

n = 0. Then bi = 0 for all i.

Proof. Suppose that not all bi are zero. We may assume without loss of generality that bN 6= 0.

14
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Dividing through by Nn gives

|bN | =
∣
∣
∣
∣
bN−1

(
N − 1

N

)n

+ · · ·+ b1

(
1

N

)n∣
∣
∣
∣
≤ (|bN−1|+ · · ·+ |b1|)

(
N − 1

N

)n

.

The expression
(
N−1
N

)n
can be made arbitrarily small for n large enough, contradicting the

assumption that bN be non-zero. �

We obviously have y > 1. Applying the lemma to (1) we see that am = y = m, a1 = 1,

and all the other ai are zero. This implies (x1, . . . , x2011) = (1, m, . . . , m). But we also have

1 +m = a1 + · · ·+ am = 1 + · · ·+ 2011 = 1 + k so m = k, which is what we wanted to show.
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A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x+ y)) = f(x) + (2x+ y)g(y)

for all real numbers x and y.

Answer. Either both f and g vanish identically, or there exists a real number C such that

f(x) = x2 + C and g(x) = x for all real numbers x.

Solution. Clearly all these pairs of functions satisfy the functional equation in question, so it

suffices to verify that there cannot be any further ones. Substituting −2x for y in the given

functional equation we obtain

g(f(−x)) = f(x). (1)

Using this equation for −x− y in place of x we obtain

f(−x− y) = g(f(x+ y)) = f(x) + (2x+ y)g(y). (2)

Now for any two real numbers a and b, setting x = −b and y = a + b we get

f(−a) = f(−b) + (a− b)g(a+ b).

If c denotes another arbitrary real number we have similarly

f(−b) = f(−c) + (b− c)g(b+ c)

as well as

f(−c) = f(−a) + (c− a)g(c+ a).

Adding all these equations up, we obtain

(
(a+ c)− (b+ c)

)
g(a+ b) +

(
(a+ b)− (a+ c)

)
g(b+ c) +

(
(b+ c)− (a+ b)

)
g(a+ c) = 0.

Now given any three real numbers x, y, and z one may determine three reals a, b, and c such

that x = b+ c, y = c+ a, and z = a+ b, so that we get

(y − x)g(z) + (z − y)g(x) + (x− z)g(y) = 0.

This implies that the three points (x, g(x)), (y, g(y)), and (z, g(z)) from the graph of g are

collinear. Hence that graph is a line, i.e., g is either a constant or a linear function.

16
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Let us write g(x) = Ax + B, where A and B are two real numbers. Substituting (0,−y) for

(x, y) in (2) and denoting C = f(0), we have f(y) = Ay2 − By + C. Now, comparing the

coefficients of x2 in (1) we see that A2 = A, so A = 0 or A = 1.

If A = 0, then (1) becomes B = −Bx+C and thus B = C = 0, which provides the first of the

two solutions mentioned above.

Now suppose A = 1. Then (1) becomes x2 − Bx + C + B = x2 − Bx + C, so B = 0. Thus,

g(x) = x and f(x) = x2 + C, which is the second solution from above.

Comment. Another way to show that g(x) is either a constant or a linear function is the following.

If we interchange x and y in the given functional equation and subtract this new equation from the

given one, we obtain

f(x)− f(y) = (2y + x)g(x)− (2x+ y)g(y).

Substituting (x, 0), (1, x), and (0, 1) for (x, y), we get

f(x)− f(0) = xg(x)− 2xg(0),

f(1)− f(x) = (2x+ 1)g(1) − (x+ 2)g(x),

f(0)− f(1) = 2g(0) − g(1).

Taking the sum of these three equations and dividing by 2, we obtain

g(x) = x
(
g(1) − g(0)

)
+ g(0).

This proves that g(x) is either a constant of a linear function.

17
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A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

f g(n)+1(n) + gf(n)(n) = f(n+ 1)− g(n+ 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f
︸ ︷︷ ︸

k

(n) . . .)).

Answer. The only pair (f, g) of functions that satisfies the equation is given by f(n) = n and

g(n) = 1 for all n.

Solution. The given relation implies

f
(
f g(n)(n)

)
< f(n+ 1) for all n, (1)

which will turn out to be sufficient to determine f .

Let y1 < y2 < . . . be all the values attained by f (this sequence might be either finite or

infinite). We will prove that for every positive n the function f attains at least n values, and

we have (i)n: f(x) = yn if and only if x = n, and (ii)n: yn = n. The proof will follow the

scheme

(i)1, (ii)1, (i)2, (ii)2, . . . , (i)n, (ii)n, . . . (2)

To start, consider any x such that f(x) = y1. If x > 1, then (1) reads f
(
f g(x−1)(x− 1)

)
< y1,

contradicting the minimality of y1. So we have that f(x) = y1 is equivalent to x = 1, establish-

ing (i)1.

Next, assume that for some n statement (i)n is established, as well as all the previous statements

in (2). Note that these statements imply that for all k ≥ 1 and a < n we have fk(x) = a if

and only if x = a.

Now, each value yi with 1 ≤ i ≤ n is attained at the unique integer i, so yn+1 exists. Choose

an arbitrary x such that f(x) = yn+1; we necessarily have x > n. Substituting x − 1 into (1)

we have f
(
f g(x−1)(x− 1)

)
< yn+1, which implies

f g(x−1)(x− 1) ∈ {1, . . . , n} (3)

Set b = f g(x−1)(x − 1). If b < n then we would have x − 1 = b which contradicts x > n. So

b = n, and hence yn = n, which proves (ii)n. Next, from (i)n we now get f(k) = n ⇐⇒ k = n,

so removing all the iterations of f in (3) we obtain x− 1 = b = n, which proves (i)n+1.

So, all the statements in (2) are valid and hence f(n) = n for all n. The given relation between

f and g now reads n + gn(n) = n + 1 − g(n + 1) + 1 or gn(n) + g(n + 1) = 2, from which it

18



52nd IMO 2011 Algebra – solutions A4

immediately follows that we have g(n) = 1 for all n.

Comment. Several variations of the above solution are possible. For instance, one may first prove by

induction that the smallest n values of f are exactly f(1) < · · · < f(n) and proceed as follows. We

certainly have f(n) ≥ n for all n. If there is an n with f(n) > n, then f(x) > x for all x ≥ n. From

this we conclude f g(n)+1(n) > f g(n)(n) > · · · > f(n). But we also have f g(n)+1 < f(n + 1). Having

squeezed in a function value between f(n) and f(n+ 1), we arrive at a contradiction.

In any case, the inequality (1) plays an essential rôle.
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A5

Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n + 1} can be partitioned into

n triples in such a way that the numbers from each triple are the lengths of the sides of some

obtuse triangle.

Solution. Throughout the solution, we denote by [a, b] the set {a, a + 1, . . . , b}. We say that

{a, b, c} is an obtuse triple if a, b, c are the sides of some obtuse triangle.

We prove by induction on n that there exists a partition of [2, 3n+ 1] into n obtuse triples Ai

(2 ≤ i ≤ n + 1) having the form Ai = {i, ai, bi}. For the base case n = 1, one can simply set

A2 = {2, 3, 4}. For the induction step, we need the following simple lemma.

Lemma. Suppose that the numbers a < b < c form an obtuse triple, and let x be any positive

number. Then the triple {a, b+ x, c+ x} is also obtuse.

Proof. The numbers a < b + x < c + x are the sides of a triangle because (c + x) − (b + x) =

c−b < a. This triangle is obtuse since (c+x)2−(b+x)2 = (c−b)(c+b+2x) > (c−b)(c+b) > a2.

�

Now we turn to the induction step. Let n > 1 and put t = ⌊n/2⌋ < n. By the induction

hypothesis, there exists a partition of the set [2, 3t + 1] into t obtuse triples A′
i = {i, a′i, b′i}

(i ∈ [2, t + 1]). For the same values of i, define Ai = {i, a′i + (n − t), b′i + (n − t)}. The

constructed triples are obviously disjoint, and they are obtuse by the lemma. Moreover, we

have
t+1⋃

i=2

Ai = [2, t+ 1] ∪ [n+ 2, n+ 2t+ 1].

Next, for each i ∈ [t+2, n+1], define Ai = {i, n+ t+ i, 2n+ i}. All these sets are disjoint, and

n+1⋃

i=t+2

Ai = [t + 2, n+ 1] ∪ [n + 2t+ 2, 2n+ t+ 1] ∪ [2n+ t+ 2, 3n+ 1],

so
n+1⋃

i=2

Ai = [2, 3n+ 1].

Thus, we are left to prove that the triple Ai is obtuse for each i ∈ [t + 2, n+ 1].

Since (2n + i)− (n + t + i) = n− t < t + 2 ≤ i, the elements of Ai are the sides of a triangle.

Next, we have

(2n+ i)2 − (n+ t+ i)2 = (n− t)(3n+ t+2i) ≥ n

2
· (3n+3(t+1)+ 1) >

n

2
· 9n
2

≥ (n+1)2 ≥ i2,

so this triangle is obtuse. The proof is completed.
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A6

Let f be a function from the set of real numbers to itself that satisfies

f(x+ y) ≤ yf(x) + f(f(x)) (1)

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Solution 1. Substituting y = t− x, we rewrite (1) as

f(t) ≤ tf(x)− xf(x) + f(f(x)). (2)

Consider now some real numbers a, b and use (2) with t = f(a), x = b as well as with t = f(b),

x = a. We get

f(f(a))− f(f(b)) ≤ f(a)f(b)− bf(b),

f(f(b))− f(f(a)) ≤ f(a)f(b)− af(a).

Adding these two inequalities yields

2f(a)f(b) ≥ af(a) + bf(b).

Now, substitute b = 2f(a) to obtain 2f(a)f(b) ≥ af(a) + 2f(a)f(b), or af(a) ≤ 0. So, we get

f(a) ≥ 0 for all a < 0. (3)

Now suppose f(x) > 0 for some real number x. From (2) we immediately get that for every

t <
xf(x)− f(f(x))

f(x)
we have f(t) < 0. This contradicts (3); therefore

f(x) ≤ 0 for all real x, (4)

and by (3) again we get f(x) = 0 for all x < 0.

We are left to find f(0). Setting t = x < 0 in (2) we get

0 ≤ 0− 0 + f(0),

so f(0) ≥ 0. Combining this with (4) we obtain f(0) = 0.

Solution 2. We will also use the condition of the problem in form (2). For clarity we divide

the argument into four steps.
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Step 1. We begin by proving that f attains nonpositive values only. Assume that there

exist some real number z with f(z) > 0. Substituting x = z into (2) and setting A = f(z),

B = −zf(z) − f(f(z)) we get f(t) ≤ At + B for all real t. Hence, if for any positive real

number t we substitute x = −t, y = t into (1), we get

f(0) ≤ tf(−t) + f(f(−t)) ≤ t(−At +B) + Af(−t) +B

≤ −t(At− B) + A(−At +B) +B = −At2 − (A2 − B)t + (A+ 1)B.

But surely this cannot be true if we take t to be large enough. This contradiction proves that

we have indeed f(x) ≤ 0 for all real numbers x. Note that for this reason (1) entails

f(x+ y) ≤ yf(x) (5)

for all real numbers x and y.

Step 2. We proceed by proving that f has at least one zero. If f(0) = 0, we are done.

Otherwise, in view of Step 1 we get f(0) < 0. Observe that (5) tells us now f(y) ≤ yf(0) for all

real numbers y. Thus we can specify a positive real number a that is so large that f(a)2 > −f(0).

Put b = f(a) and substitute x = b and y = −b into (5); we learn −b2 < f(0) ≤ −bf(b), i.e.

b < f(b). Now we apply (2) to x = b and t = f(b), which yields

f(f(b)) ≤
(
f(b)− b

)
f(b) + f(f(b)),

i.e. f(b) ≥ 0. So in view of Step 1, b is a zero of f .

Step 3. Next we show that if f(a) = 0 and b < a, then f(b) = 0 as well. To see this, we just

substitute x = b and y = a− b into (5), thus getting f(b) ≥ 0, which suffices by Step 1.

Step 4. By Step 3, the solution of the problem is reduced to showing f(0) = 0. Pick any

zero r of f and substitute x = r and y = −1 into (1). Because of f(r) = f(r−1) = 0 this gives

f(0) ≥ 0 and hence f(0) = 0 by Step 1 again.

Comment 1. Both of these solutions also show f(x) ≤ 0 for all real numbers x. As one can see

from Solution 1, this task gets much easier if one already knows that f takes nonnegative values for

sufficiently small arguments. Another way of arriving at this statement, suggested by the proposer, is

as follows:

Put a = f(0) and substitute x = 0 into (1). This gives f(y) ≤ ay + f(a) for all real numbers y. Thus

if for any real number x we plug y = a− x into (1), we obtain

f(a) ≤ (a− x)f(x) + f(f(x)) ≤ (a− x)f(x) + af(x) + f(a)

and hence 0 ≤ (2a− x)f(x). In particular, if x < 2a, then f(x) ≥ 0.

Having reached this point, one may proceed almost exactly as in the first solution to deduce f(x) ≤ 0

for all x. Afterwards the problem can be solved in a few lines as shown in steps 3 and 4 of the second
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solution.

Comment 2. The original problem also contained the question whether a nonzero function satisfying

the problem condition exists. Here we present a family of such functions.

Notice first that if g : (0,∞) −→ [0,∞) denotes any function such that

g(x+ y) ≥ yg(x) (6)

for all positive real numbers x and y, then the function f given by

f(x) =







−g(x) if x > 0

0 if x ≤ 0
(7)

automatically satisfies (1). Indeed, we have f(x) ≤ 0 and hence also f(f(x)) = 0 for all real numbers x.

So (1) reduces to (5); moreover, this inequality is nontrivial only if x and y are positive. In this last

case it is provided by (6).

Now it is not hard to come up with a nonzero function g obeying (6). E.g. g(z) = Cez (where C is

a positive constant) fits since the inequality ey > y holds for all (positive) real numbers y. One may

also consider the function g(z) = ez − 1; in this case, we even have that f is continuous.
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A7

Let a, b, and c be positive real numbers satisfying min(a+b, b+c, c+a) >
√
2 and a2+b2+c2 = 3.

Prove that

a

(b+ c− a)2
+

b

(c + a− b)2
+

c

(a + b− c)2
≥ 3

(abc)2
. (1)

Throughout both solutions, we denote the sums of the form f(a, b, c) + f(b, c, a) + f(c, a, b)

by
∑

f(a, b, c).

Solution 1. The condition b + c >
√
2 implies b2 + c2 > 1, so a2 = 3 − (b2 + c2) < 2, i.e.

a <
√
2 < b + c. Hence we have b + c − a > 0, and also c + a − b > 0 and a + b − c > 0 for

similar reasons.

We will use the variant of Hölder’s inequality

xp+1
1

yp1
+

xp+1
1

yp1
+ . . .+

xp+1
n

ypn
≥ (x1 + x2 + . . .+ xn)

p+1

(y1 + y2 + . . .+ yn)p
,

which holds for all positive real numbers p, x1, x2, . . . , xn, y1, y2, . . . , yn. Applying it to the

left-hand side of (1) with p = 2 and n = 3, we get

∑ a

(b+ c− a)2
=
∑ (a2)3

a5(b+ c− a)2
≥ (a2 + b2 + c2)3
(∑

a5/2(b+ c− a)
)2 =

27
(∑

a5/2(b+ c− a)
)2 . (2)

To estimate the denominator of the right-hand part, we use an instance of Schur’s inequality,

namely
∑

a3/2(a− b)(a− c) ≥ 0,

which can be rewritten as

∑

a5/2(b+ c− a) ≤ abc(
√
a+

√
b+

√
c).

Moreover, by the inequality between the arithmetic mean and the fourth power mean we also

have (√
a+

√
b+

√
c

3

)4

≤ a2 + b2 + c2

3
= 1,

i.e.,
√
a+

√
b+

√
c ≤ 3. Hence, (2) yields

∑ a

(b+ c− a)2
≥ 27
(
abc(

√
a+

√
b+

√
c)
)2 ≥ 3

a2b2c2
,

thus solving the problem.
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Comment. In this solution, one may also start from the following version of Hölder’s inequality

(
n∑

i=1

a3i

)(
n∑

i=1

b3i

)(
n∑

i=1

c3i

)

≥
(

n∑

i=1

aibici

)3

applied as
∑ a

(b+ c− a)2
·
∑

a3(b+ c− a) ·
∑

a2(b+ c− a) ≥ 27.

After doing that, one only needs the slightly better known instances

∑

a3(b+ c− a) ≤ (a+ b+ c)abc and
∑

a2(b+ c− a) ≤ 3abc

of Schur’s Inequality.

Solution 2. As in Solution 1, we mention that all the numbers b+ c− a, a+ c− b, a+ b− c

are positive. We will use only this restriction and the condition

a5 + b5 + c5 ≥ 3, (3)

which is weaker than the given one. Due to the symmetry we may assume that a ≥ b ≥ c.

In view of (3), it suffices to prove the inequality

∑ a3b2c2

(b+ c− a)2
≥
∑

a5,

or, moving all the terms into the left-hand part,

∑ a3

(b+ c− a)2
(
(bc)2 − (a(b+ c− a))2

)
≥ 0. (4)

Note that the signs of the expressions (yz)2−(x(y + z − x))2 and yz−x(y+z−x) = (x−y)(x−z)

are the same for every positive x, y, z satisfying the triangle inequality. So the terms in (4)

corresponding to a and c are nonnegative, and hence it is sufficient to prove that the sum of

the terms corresponding to a and b is nonnegative. Equivalently, we need the relation

a3

(b+ c− a)2
(a− b)(a− c)(bc + a(b+ c− a)) ≥ b3

(a+ c− b)2
(a− b)(b− c)(ac + b(a+ c− b)).

Obviously, we have

a3 ≥ b3 ≥ 0, 0 < b+ c− a ≤ a+ c− b, and a− c ≥ b− c ≥ 0,

hence it suffices to prove that

ab+ ac+ bc− a2

b+ c− a
≥ ab+ ac+ bc− b2

c+ a− b
.

25



A7 Algebra – solutions 52nd IMO 2011

Since all the denominators are positive, it is equivalent to

(c+ a− b)(ab+ ac+ bc− a2)− (ab+ ac + bc− b2)(b+ c− a) ≥ 0,

or

(a− b)(2ab− a2 − b2 + ac+ bc) ≥ 0.

Since a ≥ b, the last inequality follows from

c(a + b) > (a− b)2

which holds since c > a− b ≥ 0 and a + b > a− b ≥ 0.
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C1

Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, . . . , 2n−1. In a

sequence of n moves we place all weights on the balance. In the first move we choose a weight

and put it on the left pan. In each of the following moves we choose one of the remaining

weights and we add it either to the left or to the right pan. Compute the number of ways in

which we can perform these n moves in such a way that the right pan is never heavier than the

left pan.

Answer. The number f(n) of ways of placing the n weights is equal to the product of all odd

positive integers less than or equal to 2n− 1, i.e. f(n) = (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Solution 1. Assume n ≥ 2. We claim

f(n) = (2n− 1)f(n− 1). (1)

Firstly, note that after the first move the left pan is always at least 1 heavier than the right

one. Hence, any valid way of placing the n weights on the scale gives rise, by not considering

weight 1, to a valid way of placing the weights 2, 22, . . . , 2n−1.

If we divide the weight of each weight by 2, the answer does not change. So these n−1 weights

can be placed on the scale in f(n − 1) valid ways. Now we look at weight 1. If it is put on

the scale in the first move, then it has to be placed on the left side, otherwise it can be placed

either on the left or on the right side, because after the first move the difference between the

weights on the left pan and the weights on the right pan is at least 2. Hence, there are exactly

2n− 1 different ways of inserting weight 1 in each of the f(n− 1) valid sequences for the n− 1

weights in order to get a valid sequence for the n weights. This proves the claim.

Since f(1) = 1, by induction we obtain for all positive integers n

f(n) = (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Comment 1. The word “compute” in the statement of the problem is probably too vague. An

alternative but more artificial question might ask for the smallest n for which the number of valid

ways is divisible by 2011. In this case the answer would be 1006.

Comment 2. It is useful to remark that the answer is the same for any set of weights where each weight

is heavier than the sum of the lighter ones. Indeed, in such cases the given condition is equivalent to

asking that during the process the heaviest weight on the balance is always on the left pan.

Comment 3. Instead of considering the lightest weight, one may also consider the last weight put on

the balance. If this weight is 2n−1 then it should be put on the left pan. Otherwise it may be put on
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any pan; the inequality would not be violated since at this moment the heaviest weight is already put

onto the left pan. In view of the previous comment, in each of these 2n− 1 cases the number of ways

to place the previous weights is exactly f(n− 1), which yields (1).

Solution 2. We present a different way of obtaining (1). Set f(0) = 1. Firstly, we find a

recurrent formula for f(n).

Assume n ≥ 1. Suppose that weight 2n−1 is placed on the balance in the i-th move with

1 ≤ i ≤ n. This weight has to be put on the left pan. For the previous moves we have
(
n−1
i−1

)

choices of the weights and from Comment 2 there are f(i − 1) valid ways of placing them on

the balance. For later moves there is no restriction on the way in which the weights are to be

put on the pans. Therefore, all (n− i)!2n−i ways are possible. This gives

f(n) =

n∑

i=1

(
n− 1

i− 1

)

f(i− 1)(n− i)!2n−i =

n∑

i=1

(n− 1)!f(i− 1)2n−i

(i− 1)!
. (2)

Now we are ready to prove (1). Using n− 1 instead of n in (2) we get

f(n− 1) =

n−1∑

i=1

(n− 2)!f(i− 1)2n−1−i

(i− 1)!
.

Hence, again from (2) we get

f(n) = 2(n− 1)
n−1∑

i=1

(n− 2)!f(i− 1)2n−1−i

(i− 1)!
+ f(n− 1)

= (2n− 2)f(n− 1) + f(n− 1) = (2n− 1)f(n− 1),

QED.

Comment. There exist different ways of obtaining the formula (2). Here we show one of them.

Suppose that in the first move we use weight 2n−i+1. Then the lighter n − i weights may be put

on the balance at any moment and on either pan. This gives 2n−i · (n − 1)!/(i − 1)! choices for the

moves (moments and choices of pan) with the lighter weights. The remaining i− 1 moves give a valid

sequence for the i − 1 heavier weights and this is the only requirement for these moves, so there are

f(i− 1) such sequences. Summing over all i = 1, 2, . . . , n we again come to (2).
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C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with

100 ≤ k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which

the first half contains the same number of girls as the second half.

Solution. Number the students consecutively from 1 to 1000. Let ai = 1 if the ith student

is a girl, and ai = 0 otherwise. We expand this notion for all integers i by setting ai+1000 =

ai−1000 = ai. Next, let

Sk(i) = ai + ai+1 + · · ·+ ai+k−1.

Now the statement of the problem can be reformulated as follows:

There exist an integer k with 100 ≤ k ≤ 300 and an index i such that Sk(i) = Sk(i+ k).

Assume now that this statement is false. Choose an index i such that S100(i) attains the maximal

possible value. In particular, we have S100(i−100)−S100(i) < 0 and S100(i)− S100(i+ 100) > 0,

for if we had an equality, then the statement would hold. This means that the function S(j)−
S(j + 100) changes sign somewhere on the segment [i − 100, i], so there exists some index j ∈
[i− 100, i− 1] such that

S100(j) ≤ S100(j + 100)− 1, but S100(j + 1) ≥ S100(j + 101) + 1. (1)

Subtracting the first inequality from the second one, we get aj+100−aj ≥ aj+200−aj+100+2, so

aj = 0, aj+100 = 1, aj+200 = 0.

Substituting this into the inequalities of (1), we also obtain S99(j+1) ≤ S99(j+101) ≤ S99(j+1),

which implies

S99(j + 1) = S99(j + 101). (2)

Now let k and ℓ be the least positive integers such that aj−k = 1 and aj+200+ℓ = 1. By

symmetry, we may assume that k ≥ ℓ. If k ≥ 200 then we have aj = aj−1 = · · · = aj−199 = 0,

so S100(j−199) = S100(j−99) = 0, which contradicts the initial assumption. Hence ℓ ≤ k ≤ 199.

Finally, we have

S100+ℓ(j − ℓ+ 1) = (aj−ℓ+1 + · · ·+ aj) + S99(j + 1) + aj+100 = S99(j + 1) + 1,

S100+ℓ(j + 101) = S99(j + 101) + (aj+200 + · · ·+ aj+200+ℓ−1) + aj+200+ℓ = S99(j + 101) + 1.

Comparing with (2) we get S100+ℓ(j − ℓ+ 1) = S100+ℓ(j + 101) and 100 + ℓ ≤ 299, which again

contradicts our assumption.

Comment. It may be seen from the solution that the number 300 from the problem statement can be
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replaced by 299. Here we consider some improvements of this result. Namely, we investigate which

interval can be put instead of [100, 300] in order to keep the problem statement valid.

First of all, the two examples

1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

167

, 1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

167

, 1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

165

and

1, 1, . . . , 1
︸ ︷︷ ︸

249

, 0, 0, . . . , 0
︸ ︷︷ ︸

251

, 1, 1, . . . , 1
︸ ︷︷ ︸

249

, 0, 0, . . . , 0
︸ ︷︷ ︸

251

show that the interval can be changed neither to [84, 248] nor to [126, 374].

On the other hand, we claim that this interval can be changed to [125, 250]. Note that this statement

is invariant under replacing all 1’s by 0’s and vice versa. Assume, to the contrary, that there is no

admissible k ∈ [125, 250]. The arguments from the solution easily yield the following lemma.

Lemma. Under our assumption, suppose that for some indices i < j we have S125(i) ≤ S125(i+ 125)

but S125(j) ≥ S125(j+125). Then there exists some t ∈ [i, j−1] such that at = at−1 = · · · = at−125 = 0

and at+250 = at+251 = · · · = at+375 = 0. �

Let us call a segment [i, j] of indices a crowd, if (a) ai = ai+1 = · · · = aj , but ai−1 6= ai 6= aj+1, and (b)

j − i ≥ 125. Now, using the lemma, one can get in the same way as in the solution that there exists

some crowd. Take all the crowds in the circle, and enumerate them in cyclic order as A1, . . . , Ad. We

also assume always that As+d = As−d = As.

Consider one of the crowds, say A1. We have A1 = [i, i + t] with 125 ≤ t ≤ 248 (if t ≥ 249, then

ai = ai+1 = · · · = ai+249 and therefore S125(i) = S125(i + 125), which contradicts our assumption).

We may assume that ai = 1. Then we have S125(i + t − 249) ≤ 125 = S125(i + t − 124) and

S125(i) = 125 ≥ S125(i + 125), so by the lemma there exists some index j ∈ [i + t − 249, i − 1] such

that the segments [j − 125, j] and [j + 250, j + 375] are contained in some crowds.

Let us fix such j and denote the segment [j + 1, j + 249] by B1. Clearly, A1 ⊆ B1. Moreover, B1

cannot contain any crowd other than A1 since |B1| = 249 < 2 · 126. Hence it is clear that j ∈ Ad and

j + 250 ∈ A2. In particular, this means that the genders of Ad and A2 are different from that of A1.

Performing this procedure for every crowd As, we find segments Bs = [js + 1, js + 249] such that

|Bs| = 249, As ⊆ Bs, and js ∈ As−1, js +250 ∈ As+1. So, Bs covers the whole segment between As−1

and As+1, hence the sets B1, . . . , Bd cover some 1000 consecutive indices. This implies 249d ≥ 1000,

and d ≥ 5. Moreover, the gender of Ai is alternating, so d is even; therefore d ≥ 6.

Consider now three segments A1 = [i1, i
′
1], B2 = [j2 + 1, j2 + 249], A3 = [i3, i

′
3]. By construction, we

have [j2 − 125, j2] ⊆ A1 and [j2 + 250, j2 + 375] ⊆ A3, whence i1 ≤ j2 − 125, i′3 ≥ j2 + 375. Therefore

i′3 − i1 ≥ 500. Analogously, if A4 = [i4, i
′
4], A6 = [i6, i

′
6] then i′6 − i4 ≥ 500. But from d ≥ 6 we get

i1 < i′3 < i4 < i′6 < i1 + 1000, so 1000 > (i′3 − i1) + (i′6 − i4) ≥ 500 + 500. This final contradiction

shows that our claim holds.

One may even show that the interval in the statement of the problem may be replaced by [125, 249]

(both these numbers cannot be improved due to the examples above). But a proof of this fact is a bit

messy, and we do not present it here.
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C3

Let S be a finite set of at least two points in the plane. Assume that no three points of S are

collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a

point P ∈ S. Rotate ℓ clockwise around the pivot P until the line contains another point Q

of S. The point Q now takes over as the new pivot. This process continues indefinitely, with

the pivot always being a point from S.

Show that for a suitable P ∈ S and a suitable starting line ℓ containing P , the resulting

windmill will visit each point of S as a pivot infinitely often.

Solution. Give the rotating line an orientation and distinguish its sides as the oranje side and

the blue side. Notice that whenever the pivot changes from some point T to another point U ,

after the change, T is on the same side as U was before. Therefore, the number of elements

of S on the oranje side and the number of those on the blue side remain the same throughout

the whole process (except for those moments when the line contains two points).

T

U

T

U U

T

First consider the case that |S| = 2n + 1 is odd. We claim that through any point T ∈ S,
there is a line that has n points on each side. To see this, choose an oriented line through T

containing no other point of S and suppose that it has n + r points on its oranje side. If

r = 0 then we have established the claim, so we may assume that r 6= 0. As the line rotates

through 180◦ around T , the number of points of S on its oranje side changes by 1 whenever

the line passes through a point; after 180◦, the number of points on the oranje side is n − r.

Therefore there is an intermediate stage at which the oranje side, and thus also the blue side,

contains n points.

Now select the point P arbitrarily, and choose a line through P that has n points of S on each

side to be the initial state of the windmill. We will show that during a rotation over 180◦,

the line of the windmill visits each point of S as a pivot. To see this, select any point T of S
and select a line ℓ through T that separates S into equal halves. The point T is the unique

point of S through which a line in this direction can separate the points of S into equal halves

(parallel translation would disturb the balance). Therefore, when the windmill line is parallel

to ℓ, it must be ℓ itself, and so pass through T .

Next suppose that |S| = 2n. Similarly to the odd case, for every T ∈ S there is an oriented
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line through T with n − 1 points on its oranje side and n points on its blue side. Select such

an oriented line through an arbitrary P to be the initial state of the windmill.

We will now show that during a rotation over 360◦, the line of the windmill visits each point

of S as a pivot. To see this, select any point T of S and an oriented line ℓ through T that

separates S into two subsets with n − 1 points on its oranje and n points on its blue side.

Again, parallel translation would change the numbers of points on the two sides, so when the

windmill line is parallel to ℓ with the same orientation, the windmill line must pass through T .

Comment. One may shorten this solution in the following way.

Suppose that |S| = 2n+ 1. Consider any line ℓ that separates S into equal halves; this line is unique

given its direction and contains some point T ∈ S. Consider the windmill starting from this line. When

the line has made a rotation of 180◦, it returns to the same location but the oranje side becomes blue

and vice versa. So, for each point there should have been a moment when it appeared as pivot, as this

is the only way for a point to pass from on side to the other.

Now suppose that |S| = 2n. Consider a line having n − 1 and n points on the two sides; it contains

some point T . Consider the windmill starting from this line. After having made a rotation of 180◦,

the windmill line contains some different point R, and each point different from T and R has changed

the color of its side. So, the windmill should have passed through all the points.
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C4

Determine the greatest positive integer k that satisfies the following property: The set of positive

integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and

all i ∈ {1, 2, . . . , k} there exist two distinct elements of Ai whose sum is n.

Answer. The greatest such number k is 3.

Solution 1. There are various examples showing that k = 3 does indeed have the property

under consideration. E.g. one can take

A1 = {1, 2, 3} ∪ {3m | m ≥ 4},
A2 = {4, 5, 6} ∪ {3m− 1 | m ≥ 4},
A3 = {7, 8, 9} ∪ {3m− 2 | m ≥ 4}.

To check that this partition fits, we notice first that the sums of two distinct elements of Ai

obviously represent all numbers n ≥ 1 + 12 = 13 for i = 1, all numbers n ≥ 4 + 11 = 15 for

i = 2, and all numbers n ≥ 7 + 10 = 17 for i = 3. So, we are left to find representations of the

numbers 15 and 16 as sums of two distinct elements of A3. These are 15 = 7+8 and 16 = 7+9.

Let us now suppose that for some k ≥ 4 there exist sets A1, A2, . . . , Ak satisfying the given

property. Obviously, the sets A1, A2, A3, A4 ∪ · · · ∪ Ak also satisfy the same property, so one

may assume k = 4.

Put Bi = Ai ∩ {1, 2, . . . , 23} for i = 1, 2, 3, 4. Now for any index i each of the ten numbers

15, 16, . . . , 24 can be written as sum of two distinct elements of Bi. Therefore this set needs

to contain at least five elements. As we also have |B1| + |B2| + |B3| + |B4| = 23, there has to

be some index j for which |Bj| = 5. Let Bj = {x1, x2, x3, x4, x5}. Finally, now the sums of

two distinct elements of Aj representing the numbers 15, 16, . . . , 24 should be exactly all the

pairwise sums of the elements of Bj . Calculating the sum of these numbers in two different

ways, we reach

4(x1 + x2 + x3 + x4 + x5) = 15 + 16 + . . .+ 24 = 195.

Thus the number 195 should be divisible by 4, which is false. This contradiction completes our

solution.

Comment. There are several variation of the proof that k should not exceed 3. E.g., one may consider

the sets Ci = Ai ∩ {1, 2, . . . , 19} for i = 1, 2, 3, 4. As in the previous solution one can show that for

some index j one has |Cj| = 4, and the six pairwise sums of the elements of Cj should represent all

numbers 15, 16, . . . , 20. Let Cj = {y1, y2, y3, y4} with y1 < y2 < y3 < y4. It is not hard to deduce
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Cj = {7, 8, 9, 11}, so in particular we have 1 6∈ Cj . Hence it is impossible to represent 21 as sum of

two distinct elements of Aj , which completes our argument.

Solution 2. Again we only prove that k ≤ 3. Assume that A1, A2, . . . , Ak is a partition

satisfying the given property. We construct a graph G on the set V = {1, 2, . . . , 18} of vertices

as follows. For each i ∈ {1, 2, . . . , k} and each d ∈ {15, 16, 17, 19} we choose one pair of distinct

elements a, b ∈ Ai with a+ b = d, and we draw an edge in the ith color connecting a with b. By

hypothesis, G has exactly 4 edges of each color.

Claim. The graph G contains at most one circuit.

Proof. Note that all the connected components of G are monochromatic and hence contain at

most four edges. Thus also all circuits of G are monochromatic and have length at most four.

Moreover, each component contains at most one circuit since otherwise it should contain at

least five edges.

Suppose that there is a 4-cycle in G, say with vertices a, b, c, and d in order. Then {a+ b, b+

c, c+ d, d+a} = {15, 16, 17, 19}. Taking sums we get 2(a+ b+ c+ d) = 15+16+17+19 which

is impossible for parity reasons. Thus all circuits of G are triangles.

Now if the vertices a, b, and c form such a triangle, then by a similar reasoning the set {a+b, b+

c, c + a} coincides with either {15, 16, 17}, or {15, 16, 19}, or {16, 17, 19}, or {15, 17, 19}. The
last of these alternatives can be excluded for parity reasons again, whilst in the first three cases

the set {a, b, c} appears to be either {7, 8, 9}, or {6, 9, 10}, or {7, 9, 10}, respectively. Thus, a

component containing a circuit should contain 9 as a vertex. Therefore there is at most one

such component and hence at most one circuit. �

By now we know that G is a graph with 4k edges, at least k components and at most one

circuit. Consequently, G must have at least 4k+k−1 vertices. Thus 5k−1 ≤ 18, and k ≤ 3.

34



52nd IMO 2011 Combinatorics – solutions C5

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares.

At the midpoints of some of these unit squares there is an ant. At time 0, each ant starts

moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in

opposite directions meet, they both turn 90◦ clockwise and continue moving with speed 1.

When more than two ants meet, or when two ants moving in perpendicular directions meet,

the ants continue moving in the same direction as before they met. When an ant reaches one

of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the

last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

Antswer. The latest possible moment for the last ant to fall off is 3m
2
− 1.

Solution. For m = 1 the answer is clearly correct, so assume m > 1. In the sequel, the word

collision will be used to denote meeting of exactly two ants, moving in opposite directions.

If at the beginning we place an ant on the southwest corner square facing east and an ant on

the southeast corner square facing west, then they will meet in the middle of the bottom row

at time m−1
2

. After the collision, the ant that moves to the north will stay on the board for

another m− 1
2
time units and thus we have established an example in which the last ant falls

off at time m−1
2

+ m − 1
2
= 3m

2
− 1. So, we are left to prove that this is the latest possible

moment.

Consider any collision of two ants a and a′. Let us change the rule for this collision, and enforce

these two ants to turn anticlockwise. Then the succeeding behavior of all the ants does not

change; the only difference is that a and a′ swap their positions. These arguments may be

applied to any collision separately, so we may assume that at any collision, either both ants

rotate clockwise or both of them rotate anticlockwise by our own choice.

For instance, we may assume that there are only two types of ants, depending on their initial

direction: NE-ants, which move only north or east, and SW-ants, moving only south and west.

Then we immediately obtain that all ants will have fallen off the board after 2m − 1 time

units. However, we can get a better bound by considering the last moment at which a given

ant collides with another ant.

Choose a coordinate system such that the corners of the checkerboard are (0, 0), (m, 0), (m,m)

and (0, m). At time t, there will be no NE-ants in the region {(x, y) : x + y < t + 1} and no

SW-ants in the region {(x, y) : x + y > 2m − t − 1}. So if two ants collide at (x, y) at time t,

we have

t+ 1 ≤ x+ y ≤ 2m− t− 1. (1)
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Analogously, we may change the rules so that each ant would move either alternatingly north

and west, or alternatingly south and east. By doing so, we find that apart from (1) we also

have |x− y| ≤ m− t− 1 for each collision at point (x, y) and time t.

To visualize this, put

B(t) =
{
(x, y) ∈ [0, m]2 : t+ 1 ≤ x+ y ≤ 2m− t− 1 and |x− y| ≤ m− t− 1

}
.

An ant can thus only collide with another ant at time t if it happens to be in the region B(t).

The following figure displays B(t) for t = 1
2
and t = 7

2
in the case m = 6:

Now suppose that an NE-ant has its last collision at time t and that it does so at the point (x, y)

(if the ant does not collide at all, it will fall off the board withinm− 1
2
< 3m

2
−1 time units, so this

case can be ignored). Then we have (x, y) ∈ B(t) and thus x+y ≥ t+1 and x−y ≥ −(m−t−1).

So we get

x ≥ (t + 1)− (m− t− 1)

2
= t + 1− m

2
.

By symmetry we also have y ≥ t+1− m
2
, and hence min{x, y} ≥ t+1− m

2
. After this collision,

the ant will move directly to an edge, which will take at most m−min{x, y} units of time. In

sum, the total amount of time the ant stays on the board is at most

t+ (m−min{x, y}) ≤ t +m−
(

t + 1− m

2

)

=
3m

2
− 1.

By symmetry, the same bound holds for SW-ants as well.
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C6

Let n be a positive integer and let W = . . . x−1x0x1x2 . . . be an infinite periodic word consisting

of the letters a and b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ℓ such that

U = xkxk+1 . . . xℓ. A finite word U is called ubiquitous if the four words Ua, Ub, aU , and bU

all appear in W . Prove that there are at least n ubiquitous finite nonempty words.

Solution. Throughout the solution, all the words are nonempty. For any word R of length m,

we call the number of indices i ∈ {1, 2, . . . , N} for which R coincides with the subword

xi+1xi+2 . . . xi+m of W the multiplicity of R and denote it by µ(R). Thus a word R appears

in W if and only if µ(R) > 0. Since each occurrence of a word in W is both succeeded by either

the letter a or the letter b and similarly preceded by one of those two letters, we have

µ(R) = µ(Ra) + µ(Rb) = µ(aR) + µ(bR) (1)

for all words R.

We claim that the condition that N is in fact the minimal period of W guarantees that each

word of length N has multiplicity 1 or 0 depending on whether it appears or not. Indeed, if

the words xi+1xi+2 . . . xi+N and xj+1 . . . xj+N are equal for some 1 ≤ i < j ≤ N , then we have

xi+a = xj+a for every integer a, and hence j − i is also a period.

Moreover, since N > 2n, at least one of the two words a and b has a multiplicity that is strictly

larger than 2n−1.

For each k = 0, 1, . . . , n − 1, let Uk be a subword of W whose multiplicity is strictly larger

than 2k and whose length is maximal subject to this property. Note that such a word exists in

view of the two observations made in the two previous paragraphs.

Fix some index k ∈ {0, 1, . . . , n− 1}. Since the word Ukb is longer than Uk, its multiplicity can

be at most 2k, so in particular µ(Ukb) < µ(Uk). Therefore, the word Uka has to appear by (1).

For a similar reason, the words Ukb, aUk, and bUk have to appear as well. Hence, the word Uk

is ubiquitous. Moreover, if the multiplicity of Uk were strictly greater than 2k+1, then by (1)

at least one of the two words Uka and Ukb would have multiplicity greater than 2k and would

thus violate the maximality condition imposed on Uk.

So we have µ(U0) ≤ 2 < µ(U1) ≤ 4 < . . . ≤ 2n−1 < µ(Un−1), which implies in particular that

the words U0, U1, . . . , Un−1 have to be distinct. As they have been proved to be ubiquitous as

well, the problem is solved.

Comment 1. There is an easy construction for obtaining ubiquitous words from appearing words

whose multiplicity is at least two. Starting with any such word U we may simply extend one of its

occurrences in W forwards and backwards as long as its multiplicity remains fixed, thus arriving at a

37



C6 Combinatorics – solutions 52nd IMO 2011

word that one might call the ubiquitous prolongation p(U) of U .

There are several variants of the argument in the second half of the solution using the concept of pro-

longation. For instance, one may just take all ubiquitous words U1, U2, . . . , Uℓ ordered by increasing

multiplicity and then prove for i ∈ {1, 2, . . . , ℓ} that µ(Ui) ≤ 2i. Indeed, assume that i is a mini-

mal counterexample to this statement; then by the arguments similar to those presented above, the

ubiquitous prolongation of one of the words Uia, Uib, aUi or bUi violates the definition of Ui.

Now the multiplicity of one of the two letters a and b is strictly greater than 2n−1, so passing to

ubiquitous prolongations once more we obtain 2n−1 < µ(Uℓ) ≤ 2ℓ, which entails ℓ ≥ n, as needed.

Comment 2. The bound n for the number of ubiquitous subwords in the problem statement is not

optimal, but it is close to an optimal one in the following sense. There is a universal constant C > 0

such that for each positive integer n there exists an infinite periodic word W whose minimal period is

greater than 2n but for which there exist fewer than Cn ubiquitous words.
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C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover

a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we

record the maximal number k of cells that all contain the same nonzero number. Considering

all possible napkin configurations, what is the largest value of k?

Answer. 20112 −
(
(522 − 352) · 39− 172

)
= 4044121− 57392 = 3986729.

Solution 1. Let m = 39, then 2011 = 52m − 17. We begin with an example showing that

there can exist 3986729 cells carrying the same positive number.

To describe it, we number the columns from the left to the right and the rows from the bottom

to the top by 1, 2, . . . , 2011. We will denote each napkin by the coordinates of its lower-

left cell. There are four kinds of napkins: first, we take all napkins (52i + 36, 52j + 1) with

0 ≤ j ≤ i ≤ m − 2; second, we use all napkins (52i + 1, 52j + 36) with 0 ≤ i ≤ j ≤ m − 2;

third, we use all napkins (52i+ 36, 52i+ 36) with 0 ≤ i ≤ m− 2; and finally the napkin (1, 1).

Different groups of napkins are shown by different types of hatchings in the picture.

Now except for those squares that carry two or more different hatchings, all squares have the

number 1 written into them. The number of these exceptional cells is easily computed to be

(522 − 352)m− 172 = 57392.

We are left to prove that 3986729 is an upper bound for the number of cells containing the same

number. Consider any configuration of napkins and any positive integer M . Suppose there are

g cells with a number different from M . Then it suffices to show g ≥ 57392. Throughout the

solution, a line will mean either a row or a column.

Consider any line ℓ. Let a1, . . . , a52m−17 be the numbers written into its consecutive cells.

For i = 1, 2, . . . , 52, let si =
∑

t≡i (mod 52) at. Note that s1, . . . , s35 have m terms each, while

s36, . . . , s52 have m−1 terms each. Every napkin intersecting ℓ contributes exactly 1 to each si;
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hence the number s of all those napkins satisfies s1 = · · · = s52 = s. Call the line ℓ rich if

s > (m− 1)M and poor otherwise.

Suppose now that ℓ is rich. Then in each of the sums s36, . . . , s52 there exists a term greater

than M ; consider all these terms and call the corresponding cells the rich bad cells for this line.

So, each rich line contains at least 17 cells that are bad for this line.

If, on the other hand, ℓ is poor, then certainly s < mM so in each of the sums s1, . . . , s35 there

exists a term less than M ; consider all these terms and call the corresponding cells the poor

bad cells for this line. So, each poor line contains at least 35 cells that are bad for this line.

Let us call all indices congruent to 1, 2, . . . , or 35 modulo 52 small, and all other indices,

i.e. those congruent to 36, 37, . . . , or 52 modulo 52, big. Recall that we have numbered the

columns from the left to the right and the rows from the bottom to the top using the numbers

1, 2, . . . , 52m − 17; we say that a line is big or small depending on whether its index is big or

small. By definition, all rich bad cells for the rows belong to the big columns, while the poor

ones belong to the small columns, and vice versa.

In each line, we put a strawberry on each cell that is bad for this line. In addition, for each

small rich line we put an extra strawberry on each of its (rich) bad cells. A cell gets the

strawberries from its row and its column independently.

Notice now that a cell with a strawberry on it contains a number different from M . If this cell

gets a strawberry by the extra rule, then it contains a number greater than M . Moreover, it

is either in a small row and in a big column, or vice versa. Suppose that it is in a small row,

then it is not bad for its column. So it has not more than two strawberries in this case. On

the other hand, if the extra rule is not applied to some cell, then it also has not more than two

strawberries. So, the total number N of strawberries is at most 2g.

We shall now estimate N in a different way. For each of the 2 · 35m small lines, we have

introduced at least 34 strawberries if it is rich and at least 35 strawberries if it is poor, so at

least 34 strawberries in any case. Similarly, for each of the 2 · 17(m − 1) big lines, we put at

least min(17, 35) = 17 strawberries. Summing over all lines we obtain

2g ≥ N ≥ 2(35m · 34 + 17(m− 1) · 17) = 2(1479m− 289) = 2 · 57392,

as desired.

Comment. The same reasoning applies also if we replace 52 by R and 2011 by Rm−H, where m, R,

and H are integers with m,R ≥ 1 and 0 ≤ H ≤ 1
3R. More detailed information is provided after the

next solution.

Solution 2. We present a different proof of the estimate which is the hard part of the problem.

Let S = 35, H = 17, m = 39; so the table size is 2011 = Sm+H(m−1), and the napkin size is

52 = S +H . Fix any positive integer M and call a cell vicious if it contains a number distinct
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from M . We will prove that there are at least H2(m− 1) + 2SHm vicious cells.

Firstly, we introduce some terminology. As in the previous solution, we number rows and

columns and we use the same notions of small and big indices and lines; so, an index is small if

it is congruent to one of the numbers 1, 2, . . . , S modulo (S+H). The numbers 1, 2, . . . , S+H

will be known as residues. For two residues i and j, we say that a cell is of type (i, j) if the

index of its row is congruent to i and the index of its column to j modulo (S+H). The number

of vicious cells of this type is denoted by vij .

Let s, s′ be two variables ranging over small residues and let h, h′ be two variables ranging over

big residues. A cell is said to be of class A, B, C, or D if its type is of shape (s, s′), (s, h), (h, s),

or (h, h′), respectively. The numbers of vicious cells belonging to these classes are denoted in

this order by a, b, c, and d. Observe that each cell belongs to exactly one class.

Claim 1. We have

m ≤ a

S2
+

b+ c

2SH
. (1)

Proof. Consider an arbitrary small row r. Denote the numbers of vicious cells on r belonging

to the classes A and B by α and β, respectively. As in the previous solution, we obtain that

α ≥ S or β ≥ H . So in each case we have α
S
+ β

H
≥ 1.

Performing this argument separately for each small row and adding up all the obtained inequal-

ities, we get a
S
+ b

H
≥ mS. Interchanging rows and columns we similarly get a

S
+ c

H
≥ mS.

Summing these inequalities and dividing by 2S we get what we have claimed. �

Claim 2. Fix two small residue s, s′ and two big residues h, h′. Then 2m−1 ≤ vss′+vsh′+vhh′.

Proof. Each napkin covers exactly one cell of type (s, s′). Removing all napkins covering a

vicious cell of this type, we get another collection of napkins, which covers each cell of type

(s, s′) either 0 or M times depending on whether the cell is vicious or not. Hence (m2 − vss′)M

napkins are left and throughout the proof of Claim 2 we will consider only these remaining

napkins. Now, using a red pen, write in each cell the number of napkins covering it. Notice

that a cell containing a red number greater than M is surely vicious.

We call two cells neighbors if they can be simultaneously covered by some napkin. So, each cell

of type (h, h′) has not more than four neighbors of type (s, s′), while each cell of type (s, h′) has

not more than two neighbors of each of the types (s, s′) and (h, h′). Therefore, each red number

at a cell of type (h, h′) does not exceed 4M , while each red number at a cell of type (s, h′) does

not exceed 2M .

Let x, y, and z be the numbers of cells of type (h, h′) whose red number belongs to (M, 2M ],

(2M, 3M ], and (3M, 4M ], respectively. All these cells are vicious, hence x+ y + z ≤ vhh′. The

red numbers appearing in cells of type (h, h′) clearly sum up to (m2 − vss′)M . Bounding each

of these numbers by a multiple of M we get

(m2 − vss′)M ≤
(
(m− 1)2 − (x+ y + z)

)
M + 2xM + 3yM + 4zM,

41



C7 Combinatorics – solutions 52nd IMO 2011

i.e.

2m− 1 ≤ vss′ + x+ 2y + 3z ≤ vss′ + vhh′ + y + 2z.

So, to prove the claim it suffices to prove that y + 2z ≤ vsh′.

For a cell δ of type (h, h′) and a cell β of type (s, h′) we say that δ forces β if there are more

than M napkins covering both of them. Since each red number in a cell of type (s, h′) does not

exceed 2M , it cannot be forced by more than one cell.

On the other hand, if a red number in a (h, h′)-cell belongs to (2M, 3M ], then it forces at

least one of its neighbors of type (s, h′) (since the sum of red numbers in their cells is greater

than 2M). Analogously, an (h, h′)-cell with the red number in (3M, 4M ] forces both its neigh-

bors of type (s, h′), since their red numbers do not exceed 2M . Therefore there are at least

y + 2z forced cells and clearly all of them are vicious, as desired. �

Claim 3. We have

2m− 1 ≤ a

S2
+

b+ c

2SH
+

d

H2
. (2)

Proof. Averaging the previous result over all S2H2 possibilities for the quadruple (s, s′, h, h′),

we get 2m − 1 ≤ a
S2 + b

SH
+ d

H2 . Due to the symmetry between rows and columns, the same

estimate holds with b replaced by c. Averaging these two inequalities we arrive at our claim.

�

Now let us multiply (2) by H2, multiply (1) by (2SH −H2) and add them; we get

H2(2m−1)+(2SH−H2)m ≤ a·H
2 + 2SH −H2

S2
+(b+c)

H2 + 2SH −H2

2SH
+d = a·2H

S
+b+c+d.

The left-hand side is exactly H2(m − 1) + 2SHm, while the right-hand side does not exceed

a + b+ c + d since 2H ≤ S. Hence we come to the desired inequality.

Comment 1. Claim 2 is the key difference between the two solutions, because it allows to get rid of

the notions of rich and poor cells. However, one may prove it by the “strawberry method” as well.

It suffices to put a strawberry on each cell which is bad for an s-row, and a strawberry on each cell

which is bad for an h′-column. Then each cell would contain not more than one strawberry.

Comment 2. Both solutions above work if the residue of the table size T modulo the napkin size R

is at least 2
3R, or equivalently if T = Sm+H(m− 1) and R = S +H for some positive integers S, H,

m such that S ≥ 2H. Here we discuss all other possible combinations.

Case 1. If 2H ≥ S ≥ H/2, then the sharp bound for the number of vicious cells is mS2 + (m− 1)H2;

it can be obtained by the same methods as in any of the solutions. To obtain an example showing

that the bound is sharp, one may simply remove the napkins of the third kind from the example in

Solution 1 (with an obvious change in the numbers).

Case 2. If 2S ≤ H, the situation is more difficult. If (S + H)2 > 2H2, then the answer and the

example are the same as in the previous case; otherwise the answer is (2m− 1)S2 +2SH(m− 1), and

the example is provided simply by (m− 1)2 nonintersecting napkins.
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Now we sketch the proof of both estimates for Case 2. We introduce a more appropriate notation

based on that from Solution 2. Denote by a− and a+ the number of cells of class A that contain the

number which is strictly less than M and strictly greater than M , respectively. The numbers b±, c±,

and d± are defined in a similar way. One may notice that the proofs of Claim 1 and Claims 2, 3 lead

in fact to the inequalities

m− 1 ≤ b− + c−
2SH

+
d+
H2

and 2m− 1 ≤ a

S2
+

b+ + c+
2SH

+
d+
H2

(to obtain the first one, one needs to look at the big lines instead of the small ones). Combining these

inequalities, one may obtain the desired estimates.

These estimates can also be proved in some different ways, e.g. without distinguishing rich and poor

cells.
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G1

Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC. Suppose

that ω is tangent to AB at B′ and to AC at C ′. Suppose also that the circumcenter O of the

triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC and ω

meet at two points.

Solution. The point B′, being the perpendicular foot of L, is an interior point of side AB.

Analogously, C ′ lies in the interior of AC. The point O is located inside the triangle AB′C ′,

hence ∠COB < ∠C ′OB′.

A

B

B ′

C

C ′

L

O

O ′

α

ω

Let α = ∠CAB. The angles ∠CAB and ∠C ′OB′ are inscribed into the two circles with

centers O and L, respectively, so ∠COB = 2∠CAB = 2α and 2∠C ′OB′ = 360◦ − ∠C ′LB′.

From the kite AB′LC ′ we have ∠C ′LB′ = 180◦ − ∠C ′AB′ = 180◦ − α. Combining these, we

get

2α = ∠COB < ∠C ′OB′ =
360◦ − ∠C ′LB′

2
=

360◦ − (180◦ − α)

2
= 90◦ +

α

2
,

so

α < 60◦.

Let O′ be the reflection of O in the line BC. In the quadrilateral ABO′C we have

∠CO′B + ∠CAB = ∠COB + ∠CAB = 2α+ α < 180◦,

so the point O′ is outside the circle ABC. Hence, O and O′ are two points of ω such that one

of them lies inside the circumcircle, while the other one is located outside. Therefore, the two

circles intersect.
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Comment. There are different ways of reducing the statement of the problem to the case α < 60◦.

E.g., since the point O lies in the interior of the isosceles triangle AB′C ′, we have OA < AB′. So,

if AB′ ≤ 2LB′ then OA < 2LO, which means that ω intersects the circumcircle of ABC. Hence the

only interesting case is AB′ > 2LB′, and this condition implies ∠CAB = 2∠B′AL < 2 · 30◦ = 60◦.
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G2

Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcenter and the

circumradius of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove

that
1

O1A
2
1 − r21

+
1

O2A
2
2 − r22

+
1

O3A
2
3 − r23

+
1

O4A
2
4 − r24

= 0.

Solution 1. Let M be the point of intersection of the diagonals A1A3 and A2A4. On each

diagonal choose a direction and let x, y, z, and w be the signed distances from M to the

points A1, A2, A3, and A4, respectively.

Let ω1 be the circumcircle of the triangle A2A3A4 and let B1 be the second intersection point

of ω1 and A1A3 (thus, B1 = A3 if and only if A1A3 is tangent to ω1). Since the expression

O1A
2
1 − r21 is the power of the point A1 with respect to ω1, we get

O1A
2
1 − r21 = A1B1 · A1A3.

On the other hand, from the equality MB1 · MA3 = MA2 · MA4 we obtain MB1 = yw/z.

Hence, we have

O1A
2
1 − r21 =

(yw

z
− x
)

(z − x) =
z − x

z
(yw − xz).

Substituting the analogous expressions into the sought sum we get

4∑

i=1

1

OiA
2
i − r2i

=
1

yw − xz

(
z

z − x
− w

w − y
+

x

x− z
− y

y − w

)

= 0,

as desired.

Comment. One might reformulate the problem by assuming that the quadrilateral A1A2A3A4 is

convex. This should not really change the difficulty, but proofs that distinguish several cases may

become shorter.

Solution 2. Introduce a Cartesian coordinate system in the plane. Every circle has an equation

of the form p(x, y) = x2 + y2 + l(x, y) = 0, where l(x, y) is a polynomial of degree at most 1.

For any point A = (xA, yA) we have p(xA, yA) = d2 − r2, where d is the distance from A to the

center of the circle and r is the radius of the circle.

For each i in {1, 2, 3, 4} let pi(x, y) = x2 + y2 + li(x, y) = 0 be the equation of the circle with

center Oi and radius ri and let di be the distance from Ai to Oi. Consider the equation

4∑

i=1

pi(x, y)

d2i − r2i
= 1. (1)
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Since the coordinates of the points A1, A2, A3, and A4 satisfy (1) but these four points do not

lie on a circle or on an line, equation (1) defines neither a circle, nor a line. Hence, the equation

is an identity and the coefficient of the quadratic term x2 + y2 also has to be zero, i.e.

4∑

i=1

1

d2i − r2i
= 0.

Comment. Using the determinant form of the equation of the circle through three given points, the

same solution can be formulated as follows.

For i = 1, 2, 3, 4 let (ui, vi) be the coordinates of Ai and define

∆ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u21 + v21 u1 v1 1

u22 + v22 u2 v2 1

u23 + v23 u3 v3 1

u24 + v24 u4 v4 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

and ∆i =

∣
∣
∣
∣
∣
∣
∣

ui+1 vi+1 1

ui+2 vi+2 1

ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣

,

where i+ 1, i+ 2, and i+ 3 have to be read modulo 4 as integers in the set {1, 2, 3, 4}.

Expanding

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1 v1 1 1

u2 v2 1 1

u3 v3 1 1

u4 v4 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 along the third column, we get ∆1 −∆2 +∆3 −∆4 = 0.

The circle through Ai+1, Ai+2, and Ai+3 is given by the equation

1

∆i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x2 + y2 x y 1

u2i+1 + v2i+1 ui+1 vi+1 1

u2i+2 + v2i+2 ui+2 vi+2 1

u2i+3 + v2i+3 ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (2)

On the left-hand side, the coefficient of x2 + y2 is equal to 1. Substituting (ui, vi) for (x, y) in (2) we

obtain the power of point Ai with respect to the circle through Ai+1, Ai+2, and Ai+3:

d2i − r2i =
1

∆i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u2i + v2i ui vi 1

u2i+1 + v2i+1 ui+1 vi+1 1

u2i+2 + v2i+2 ui+2 vi+2 1

u2i+3 + v2i+3 ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)i+1 ∆

∆i
.

Thus, we have
4∑

i=1

1

d2i − r2i
=

∆1 −∆2 +∆3 −∆4

∆
= 0.
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G3

Let ABCD be a convex quadrilateral whose sides AD andBC are not parallel. Suppose that the

circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be

the circle through the feet of the perpendiculars from E to the lines AB, BC, and CD. Let ωF

be the circle through the feet of the perpendiculars from F to the lines CD, DA, and AB.

Prove that the midpoint of the segment EF lies on the line through the two intersection points

of ωE and ωF .

Solution. Denote by P , Q, R, and S the projections of E on the lines DA, AB, BC, and

CD respectively. The points P and Q lie on the circle with diameter AE, so ∠QPE = ∠QAE;

analogously, ∠QRE = ∠QBE. So ∠QPE + ∠QRE = ∠QAE + ∠QBE = 90◦. By similar

reasons, we have ∠SPE + ∠SRE = 90◦, hence we get ∠QPS + ∠QRS = 90◦ + 90◦ = 180◦,

and the quadrilateral PQRS is inscribed in ωE. Analogously, all four projections of F onto the

sides of ABCD lie on ωF .

Denote by K the meeting point of the lines AD and BC. Due to the arguments above, there

is no loss of generality in assuming that A lies on segment DK. Suppose that ∠CKD ≥ 90◦;

then the circle with diameter CD covers the whole quadrilateral ABCD, so the points E, F

cannot lie inside this quadrilateral. Hence our assumption is wrong. Therefore, the lines EP

and BC intersect at some point P ′, while the lines ER and AD intersect at some point R′.

B

A D

C

E

F

K M

M ′

N

N ′P

P ′

Q

R

R ′

S
ωE

Figure 1

We claim that the points P ′ and R′ also belong to ωE. Since the points R, E, Q, B are

concyclic, ∠QRK = ∠QEB = 90◦−∠QBE = ∠QAE = ∠QPE. So ∠QRK = ∠QPP ′, which

means that the point P ′ lies on ωE . Analogously, R
′ also lies on ωE.

In the same manner, denote by M and N the projections of F on the lines AD and BC
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respectively, and let M ′ = FM ∩BC, N ′ = FN ∩AD. By the same arguments, we obtain that

the points M ′ and N ′ belong to ωF .

E

F

K M

M ′

N

N ′P

P ′

R

R ′

U

V

g

ωE

ωF

Figure 2

Now we concentrate on Figure 2, where all unnecessary details are removed. Let U = NN ′ ∩
PP ′, V = MM ′ ∩ RR′. Due to the right angles at N and P , the points N , N ′, P , P ′ are

concyclic, so UN · UN ′ = UP · UP ′ which means that U belongs to the radical axis g of the

circles ωE and ωF . Analogously, V also belongs to g.

Finally, since EUFV is a parallelogram, the radical axis UV of ωE and ωF bisects EF .
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G4

Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A, and let G be the centroid

of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at a

point X 6= A. Prove that the points D, G, and X are collinear.

Solution 1. If AB = AC, then the statement is trivial. So without loss of generality we may

assume AB < AC. Denote the tangents to Ω at points A and X by a and x, respectively.

Let Ω1 be the circumcircle of triangle AB0C0. The circles Ω and Ω1 are homothetic with center

A, so they are tangent at A, and a is their radical axis. Now, the lines a, x, and B0C0 are the

three radical axes of the circles Ω, Ω1, and ω. Since a 6 ‖B0C0, these three lines are concurrent

at some point W .

The points A and D are symmetric with respect to the line B0C0; hence WX = WA = WD.

This means that W is the center of the circumcircle γ of triangle ADX . Moreover, we have

∠WAO = ∠WXO = 90◦, where O denotes the center of Ω. Hence ∠AWX + ∠AOX = 180◦.

A

A0B

B0

C

C0

D

G

O

T

W

X

a

x

γ

Ω

ω

Ω1

Denote by T the second intersection point of Ω and the line DX . Note that O belongs to Ω1.

Using the circles γ and Ω, we find ∠DAT = ∠ADX−∠ATD = 1
2
(360◦−∠AWX)− 1

2
∠AOX =

180◦ − 1
2
(∠AWX + ∠AOX) = 90◦. So, AD ⊥ AT , and hence AT ‖ BC. Thus, ATCB is an

isosceles trapezoid inscribed in Ω.

Denote by A0 the midpoint of BC, and consider the image of ATCB under the homothety h

with center G and factor −1
2
. We have h(A) = A0, h(B) = B0, and h(C) = C0. From the
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symmetry about B0C0, we have ∠TCB = ∠CBA = ∠B0C0A = ∠DC0B0. Using AT ‖ DA0,

we conclude h(T ) = D. Hence the points D, G, and T are collinear, and X lies on the same

line.

Solution 2. We define the points A0, O, and W as in the previous solution and we concentrate

on the case AB < AC. Let Q be the perpendicular projection of A0 on B0C0.

Since ∠WAO = ∠WQO = ∠OXW = 90◦, the five points A, W , X , O, and Q lie on a

common circle. Furthermore, the reflections with respect to B0C0 and OW map A to D

and X , respectively. For these reasons, we have

∠WQD = ∠AQW = ∠AXW = ∠WAX = ∠WQX.

Thus the three points Q, D, and X lie on a common line, say ℓ.

A

A0B

B0

C

C0

D

G

J

O

QW

X

a

x

To complete the argument, we note that the homothety centered at G sending the triangle ABC

to the triangle A0B0C0 maps the altitude AD to the altitude A0Q. Therefore it maps D to Q,

so the points D, G, and Q are collinear. Hence G lies on ℓ as well.

Comment. There are various other ways to prove the collinearity of Q, D, and X obtained in the

middle part of Solution 2. Introduce for instance the point J where the lines AW and BC intersect.

Then the four points A, D, X, and J lie at the same distance from W , so the quadrilateral ADXJ is

cyclic. In combination with the fact that AWXQ is cyclic as well, this implies

∠JDX = ∠JAX = ∠WAX = ∠WQX.

Since BC ‖ WQ, it follows that Q, D, and X are indeed collinear.
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G5

Let ABC be a triangle with incenter I and circumcircle ω. Let D and E be the second

intersection points of ω with the lines AI and BI, respectively. The chord DE meets AC at a

point F , and BC at a point G. Let P be the intersection point of the line through F parallel to

AD and the line through G parallel to BE. Suppose that the tangents to ω at A and at B meet

at a point K. Prove that the three lines AE, BD, and KP are either parallel or concurrent.

Solution 1. Since

∠IAF = ∠DAC = ∠BAD = ∠BED = ∠IEF

the quadrilateral AIFE is cyclic. Denote its circumcircle by ω1. Similarly, the quadrilat-

eral BDGI is cyclic; denote its circumcircle by ω2.

The line AE is the radical axis of ω and ω1, and the line BD is the radical axis of ω and ω2.

Let t be the radical axis of ω1 and ω2. These three lines meet at the radical center of the three

circles, or they are parallel to each other. We will show that t is in fact the line PK.

Let L be the second intersection point of ω1 and ω2, so t = IL. (If the two circles are tangent

to each other then L = I and t is the common tangent.)

A

B C

D

E

F

G

IK ′=K
L

P ′=P

t

ω

ω1

ω2

Let the line t meet the circumcircles of the triangles ABL and FGL at K ′ 6= L and P ′ 6= L,

respectively. Using oriented angles we have

∠(AB,BK ′) = ∠(AL,LK ′) = ∠(AL,LI) = ∠(AE,EI) = ∠(AE,EB) = ∠(AB,BK),
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so BK ′ ‖ BK. Similarly we have AK ′ ‖ AK, and therefore K ′ = K. Next, we have

∠(P ′F, FG) = ∠(P ′L, LG) = ∠(IL, LG) = ∠(ID,DG) = ∠(AD,DE) = ∠(PF, FG),

hence P ′F ‖ PF and similarly P ′G ‖ PG. Therefore P ′ = P . This means that t passes through

K and P , which finishes the proof.

Solution 2. Let M be the intersection point of the tangents to ω at D and E, and let the

lines AE and BD meet at T ; if AE and BD are parallel, then let T be their common ideal

point. It is well-known that the points K and M lie on the line TI (as a consequence of

Pascal’s theorem, applied to the inscribed degenerate hexagons AADBBE and ADDBEE).

The lines AD and BE are the angle bisectors of the angles ∠CAB and ∠ABC, respectively, so

D and E are the midpoints of the arcs BC and CA of the circle ω, respectively. Hence, DM

is parallel to BC and EM is parallel to AC.

Apply Pascal’s theorem to the degenerate hexagon CADDEB. By the theorem, the points

CA∩DE = F , AD ∩EB = I and the common ideal point of lines DM and BC are collinear,

therefore FI is parallel to BC and DM . Analogously, the line GI is parallel to AC and EM .

A

B C

D

E

F

G

H

I
K

M

P

T

ω

Now consider the homothety with scale factor −FG
ED

which takes E to G and D to F . Since the

triangles EDM and GFI have parallel sides, the homothety takes M to I. Similarly, since the

triangles DEI and FGP have parallel sides, the homothety takes I to P . Hence, the points

M , I, P and the homothety center H must lie on the same line. Therefore, the point P also

lies on the line TKIM .

Comment. One may prove that IF ‖ BC and IG ‖ AC in a more elementary way. Since ∠ADE =

∠EDC and ∠DEB = ∠CED, the points I and C are symmetric about DE. Moreover, since the

arcs AE and EC are equal and the arcs CD and DB are equal, we have ∠CFG = ∠FGC, so the

triangle CFG is isosceles. Hence, the quadrilateral IFCG is a rhombus.
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G6

Let ABC be a triangle with AB = AC, and let D be the midpoint of AC. The angle bisector

of ∠BAC intersects the circle through D, B, and C in a point E inside the triangle ABC.

The line BD intersects the circle through A, E, and B in two points B and F . The lines AF

and BE meet at a point I, and the lines CI and BD meet at a point K. Show that I is the

incenter of triangle KAB.

Solution 1. Let D′ be the midpoint of the segment AB, and let M be the midpoint of BC.

By symmetry at line AM , the point D′ has to lie on the circle BCD. Since the arcs D′E

and ED of that circle are equal, we have ∠ABI = ∠D′BE = ∠EBD = IBK, so I lies on

the angle bisector of ∠ABK. For this reason it suffices to prove in the sequel that the ray AI

bisects the angle ∠BAK.

From

∠DFA = 180◦ − ∠BFA = 180◦ − ∠BEA = ∠MEB =
1

2
∠CEB =

1

2
∠CDB

we derive ∠DFA = ∠DAF so the triangle AFD is isosceles with AD = DF .

A

B C

DD ′
E

F

I
K

M

ω1

ω2

ApplyingMenelaus’s theorem to the triangle ADF with respect to the line CIK, and applying

the angle bisector theorem to the triangle ABF , we infer

1 =
AC

CD
· DK

KF
· FI

IA
= 2 · DK

KF
· BF

AB
= 2 · DK

KF
· BF

2 · AD =
DK

KF
· BF

AD

and therefore
BD

AD
=

BF + FD

AD
=

BF

AD
+ 1 =

KF

DK
+ 1 =

DF

DK
=

AD

DK
.
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It follows that the triangles ADK and BDA are similar, hence ∠DAK = ∠ABD. Then

∠IAB = ∠AFD − ∠ABD = ∠DAF − ∠DAK = ∠KAI

shows that the point K is indeed lying on the angle bisector of ∠BAK.

Solution 2. It can be shown in the same way as in the first solution that I lies on the angle

bisector of ∠ABK. Here we restrict ourselves to proving that KI bisects ∠AKB.

A

B C

D

E

F

I

K

O1

O3ω1

ω2
ω3

Denote the circumcircle of triangle BCD and its center by ω1 and by O1, respectively. Since

the quadrilateral ABFE is cyclic, we have ∠DFE = ∠BAE = ∠DAE. By the same reason,

we have ∠EAF = ∠EBF = ∠ABE = ∠AFE. Therefore ∠DAF = ∠DFA, and hence

DF = DA = DC. So triangle AFC is inscribed in a circle ω2 with center D.

Denote the circumcircle of triangle ABD by ω3, and let its center be O3. Since the arcs BE

and EC of circle ω1 are equal, and the triangles ADE and FDE are congruent, we have

∠AO1B = 2∠BDE = ∠BDA, so O1 lies on ω3. Hence ∠O3O1D = ∠O3DO1.

The line BD is the radical axis of ω1 and ω3. Point C belongs to the radical axis of ω1 and ω2,

and I also belongs to it since AI ·IF = BI ·IE. Hence K = BD∩CI is the radical center of ω1,

ω2, and ω3, and AK is the radical axis of ω2 and ω3. Now, the radical axes AK, BK and IK are

perpendicular to the central lines O3D, O3O1 and O1D, respectively. By ∠O3O1D = ∠O3DO1,

we get that KI is the angle bisector of ∠AKB.

Solution 3. Again, let M be the midpoint of BC. As in the previous solutions, we can deduce

∠ABI = ∠IBK. We show that the point I lies on the angle bisector of ∠KAB.

Let G be the intersection point of the circles AFC and BCD, different from C. The lines
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CG, AF , and BE are the radical axes of the three circles AGFC, CDB, and ABFE, so

I = AF ∩ BE is the radical center of the three circles and CG also passes through I.

A

B

B ′

C

D
E

F

G

I
K

M

The angle between line DE and the tangent to the circle BCD at E is equal to ∠EBD =

∠EAF = ∠ABE = ∠AFE. As the tangent at E is perpendicular to AM , the line DE is

perpendicular to AF . The triangle AFE is isosceles, so DE is the perpendicular bisector

of AF and thus AD = DF . Hence, the point D is the center of the circle AFC, and this circle

passes through M as well since ∠AMC = 90◦.

Let B′ be the reflection of B in the point D, so ABCB′ is a parallelogram. Since DC = DG

we have ∠GCD = ∠DBC = ∠KB′A. Hence, the quadrilateral AKCB′ is cyclic and thus

∠CAK = ∠CB′K = ∠ABD = 2∠MAI. Then

∠IAB = ∠MAB − ∠MAI =
1

2
∠CAB − 1

2
∠CAK =

1

2
∠KAB

and therefore AI is the angle bisector of ∠KAB.
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G7

Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with center O.

Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the

perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the

line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that

DJ = DL.

Solution 1. Since ω and the circumcircle of triangle ACE are concentric, the tangents from A,

C, and E to ω have equal lengths; that means that AB = BC, CD = DE, and EF = FA.

Moreover, we have ∠BCD = ∠DEF = ∠FAB.

A
B

B ′

B ′′

C

D

E

F
J

K ′

L′

M

O

Pω

Consider the rotation around point D mapping C to E; let B′ and L′ be the images of the

points B and J , respectively, under this rotation. Then one has DJ = DL′ and B′L′ ⊥ DE;

moreover, the triangles B′ED and BCD are congruent. Since ∠DEO < 90◦, the lines EO

and B′L′ intersect at some point K ′. We intend to prove that K ′B ⊥ DF ; this would imply

K = K ′, therefore L = L′, which proves the problem statement.

Analogously, consider the rotation around F mapping A to E; let B′′ be the image of B under

this rotation. Then the triangles FAB and FEB′′ are congruent. We have EB′′ = AB = BC =

EB′ and ∠FEB′′ = ∠FAB = ∠BCD = ∠DEB′, so the points B′ and B′′ are symmetrical

with respect to the angle bisector EO of ∠DEF . So, from K ′B′ ⊥ DE we get K ′B′′ ⊥ EF .

From these two relations we obtain

K ′D2 −K ′E2 = B′D2 − B′E2 and K ′E2 −K ′F 2 = B′′E2 − B′′F 2.

Adding these equalities and taking into account that B′E = B′′E we obtain

K ′D2 −K ′F 2 = B′D2 − B′′F 2 = BD2 − BF 2,
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which means exactly that K ′B ⊥ DF .

Comment. There are several variations of this solution. For instance, let us consider the intersection

point M of the lines BJ and OC. Define the point K ′ as the reflection of M in the line DO. Then

one has

DK ′2 −DB2 = DM2 −DB2 = CM2 − CB2.

Next, consider the rotation around O which maps CM to EK ′. Let P be the image of B under this

rotation; so P lies on ED. Then EF ⊥ K ′P , so

CM2 − CB2 = EK ′2 − EP 2 = FK ′2 − FP 2 = FK ′2 − FB2,

since the triangles FEP and FAB are congruent.

Solution 2. Let us denote the points of tangency of AB, BC, CD, DE, EF , and FA to ω

by R, S, T , U , V , and W , respectively. As in the previous solution, we mention that AR =

AW = CS = CT = EU = EV .

The reflection in the line BO maps R to S, therefore A to C and thus also W to T . Hence, both

lines RS and WT are perpendicular to OB, therefore they are parallel. On the other hand,

the lines UV and WT are not parallel, since otherwise the hexagon ABCDEF is symmetric

with respect to the line BO and the lines defining the point K coincide, which contradicts the

conditions of the problem. Therefore we can consider the intersection point Z of UV and WT .

A

B

C

D

E

F
J

K

L

O

R

S

T U

V

W

Z

ω

Next, we recall a well-known fact that the points D, F , Z are collinear. Actually, D is the pole

of the line UT , F is the pole of VW , and Z = TW ∩ UV ; so all these points belong to the

polar line of TU ∩ VW .
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Now, we put O into the origin, and identify each point (say X) with the vector
−−→
OX. So, from

now on all the products of points refer to the scalar products of the corresponding vectors.

Since OK ⊥ UZ and OB ⊥ TZ, we have K · (Z − U) = 0 = B · (Z − T ). Next, the

condition BK ⊥ DZ can be written as K · (D−Z) = B · (D−Z). Adding these two equalities

we get

K · (D − U) = B · (D − T ).

By symmetry, we have D · (D−U) = D · (D−T ). Subtracting this from the previous equation,

we obtain (K −D) · (D − U) = (B −D) · (D − T ) and rewrite it in vector form as

−−→
DK · −−→UD =

−−→
DB · −→TD.

Finally, projecting the vectors
−−→
DK and

−−→
DB onto the lines UD and TD respectively, we can

rewrite this equality in terms of segment lengths as DL · UD = DJ · TD, thus DL = DJ .

Comment. The collinearity of Z, F , and D may be shown in various more elementary ways. For in-

stance, applying the sine theorem to the triangles DTZ and DUZ, one gets
sin∠DZT

sin∠DZU
=

sin∠DTZ

sin∠DUZ
;

analogously,
sin∠FZW

sin∠FZV
=

sin∠FWZ

sin∠FV Z
. The right-hand sides are equal, hence so are the left-hand

sides, which implies the collinearity of the points D, F , and Z.

There also exist purely synthetic proofs of this fact. E.g., let Q be the point of intersection of the

circumcircles of the triangles ZTV and ZWU different from Z. Then QZ is the bisector of ∠V QW

since ∠V QZ = ∠V TZ = ∠V UW = ∠ZQW . Moreover, all these angles are equal to 1
2∠V OW ,

so ∠V QW = ∠V OW , hence the quadrilateral VWOQ is cyclic. On the other hand, the points O,

V , W lie on the circle with diameter OF due to the right angles; so Q also belongs to this circle.

Since FV = FW , QF is also the bisector of ∠V QW , so F lies on QZ. Analogously, D lies on the

same line.
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G8

Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let ta, tb,

and tc be the lines obtained by reflecting t in the lines BC, CA, and AB, respectively. Show

that the circumcircle of the triangle determined by the lines ta, tb, and tc is tangent to the

circle ω.

To avoid a large case distinction, we will use the notion of oriented angles. Namely, for two

lines ℓ and m, we denote by ∠(ℓ,m) the angle by which one may rotate ℓ anticlockwise to

obtain a line parallel to m. Thus, all oriented angles are considered modulo 180◦.

A

A′

A′′
B

B ′

B ′′

C
C ′=S

C ′′

D

E
F

I

K

X

T

ta

tb

tc

t

ω

Solution 1. Denote by T the point of tangency of t and ω. Let A′ = tb ∩ tc, B
′ = ta ∩ tc,

C ′ = ta ∩ tb. Introduce the point A′′ on ω such that TA = AA′′ (A′′ 6= T unless TA is a

diameter). Define the points B′′ and C ′′ in a similar way.

Since the points C and B are the midpoints of arcs TC ′′ and TB′′, respectively, we have

∠(t, B′′C ′′) = ∠(t, TC ′′) + ∠(TC ′′, B′′C ′′) = 2∠(t, TC) + 2∠(TC ′′, BC ′′)

= 2
(
∠(t, TC) + ∠(TC,BC)

)
= 2∠(t, BC) = ∠(t, ta).

It follows that ta and B′′C ′′ are parallel. Similarly, tb ‖ A′′C ′′ and tc ‖ A′′B′′. Thus, either the

triangles A′B′C ′ and A′′B′′C ′′ are homothetic, or they are translates of each other. Now we

will prove that they are in fact homothetic, and that the center K of the homothety belongs
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to ω. It would then follow that their circumcircles are also homothetic with respect to K and

are therefore tangent at this point, as desired.

We need the two following claims.

Claim 1. The point of intersection X of the lines B′′C and BC ′′ lies on ta.

Proof. Actually, the points X and T are symmetric about the line BC, since the lines CT

and CB′′ are symmetric about this line, as are the lines BT and BC ′′. �

Claim 2. The point of intersection I of the lines BB′ and CC ′ lies on the circle ω.

Proof. We consider the case that t is not parallel to the sides of ABC; the other cases may be

regarded as limit cases. Let D = t ∩ BC, E = t ∩ AC, and F = t ∩ AB.

Due to symmetry, the lineDB is one of the angle bisectors of the lines B′D and FD; analogously,

the line FB is one of the angle bisectors of the lines B′F and DF . So B is either the incenter

or one of the excenters of the triangle B′DF . In any case we have ∠(BD,DF )+∠(DF, FB)+

∠(B′B,B′D) = 90◦, so

∠(B′B,B′C ′) = ∠(B′B,B′D) = 90◦ − ∠(BC,DF )− ∠(DF,BA) = 90◦ − ∠(BC,AB).

Analogously, we get ∠(C ′C,B′C ′) = 90◦ − ∠(BC,AC). Hence,

∠(BI, CI) = ∠(B′B,B′C ′) + ∠(B′C ′, C ′C) = ∠(BC,AC)− ∠(BC,AB) = ∠(AB,AC),

which means exactly that the points A, B, I, C are concyclic. �

Now we can complete the proof. Let K be the second intersection point of B′B′′ and ω.

Applying Pascal’s theorem to hexagon KB′′CIBC ′′ we get that the points B′ = KB′′ ∩ IB

and X = B′′C ∩ BC ′′ are collinear with the intersection point S of CI and C ′′K. So S =

CI ∩ B′X = C ′, and the points C ′, C ′′, K are collinear. Thus K is the intersection point

of B′B′′ and C ′C ′′ which implies that K is the center of the homothety mapping A′B′C ′

to A′′B′′C ′′, and it belongs to ω.

Solution 2. Define the points T , A′, B′, and C ′ in the same way as in the previous solution.

Let X , Y , and Z be the symmetric images of T about the lines BC, CA, and AB, respectively.

Note that the projections of T on these lines form a Simson line of T with respect to ABC,

therefore the points X , Y , Z are also collinear. Moreover, we have X ∈ B′C ′, Y ∈ C ′A′,

Z ∈ A′B′.

Denote α = ∠(t, TC) = ∠(BT,BC). Using the symmetry in the lines AC and BC, we get

∠(BC,BX) = ∠(BT,BC) = α and ∠(XC,XC ′) = ∠(t, TC) = ∠(Y C, Y C ′) = α.

Since ∠(XC,XC ′) = ∠(Y C, Y C ′), the points X , Y , C, C ′ lie on some circle ωc. Define the

circles ωa and ωb analogously. Let ω
′ be the circumcircle of triangle A′B′C ′.
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Now, applying Miquel’s theorem to the four lines A′B′, A′C ′, B′C ′, and XY , we obtain that

the circles ω′, ωa, ωb, ωc intersect at some point K. We will show that K lies on ω, and that

the tangent lines to ω and ω′ at this point coincide; this implies the problem statement.

Due to symmetry, we have XB = TB = ZB, so the point B is the midpoint of one of the

arcs XZ of circle ωb. Therefore ∠(KB,KX) = ∠(XZ,XB). Analogously, ∠(KX,KC) =

∠(XC,XY ). Adding these equalities and using the symmetry in the line BC we get

∠(KB,KC) = ∠(XZ,XB) + ∠(XC,XZ) = ∠(XC,XB) = ∠(TB, TC).

Therefore, K lies on ω.

Next, let k be the tangent line to ω at K. We have

∠(k,KC ′) = ∠(k,KC) + ∠(KC,KC ′) = ∠(KB,BC) + ∠(XC,XC ′)

=
(
∠(KB,BX)− ∠(BC,BX)

)
+ α = ∠(KB′, B′X)− α + α = ∠(KB′, B′C ′),

which means exactly that k is tangent to ω′.

A

A′

B

B ′

C

C ′

K

X

Y

Z

T

k

ta
tb

tc

t

ω ω′
ωb

ωc

Comment. There exist various solutions combining the ideas from the two solutions presented above.

For instance, one may define the point X as the reflection of T with respect to the line BC, and

then introduce the point K as the second intersection point of the circumcircles of BB′X and CC ′X.

Using the fact that BB′ and CC ′ are the bisectors of ∠(A′B′, B′C ′) and ∠(A′C ′, B′C ′) one can show

successively that K ∈ ω, K ∈ ω′, and that the tangents to ω and ω′ at K coincide.
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N1

For any integer d > 0, let f(d) be the smallest positive integer that has exactly d positive

divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every

integer k ≥ 0 the number f(2k) divides f(2k+1).

Solution 1. For any positive integer n, let d(n) be the number of positive divisors of n. Let

n =
∏

p p
a(p) be the prime factorization of n where p ranges over the prime numbers, the integers

a(p) are nonnegative and all but finitely many a(p) are zero. Then we have d(n) =
∏

p(a(p)+1).

Thus, d(n) is a power of 2 if and only if for every prime p there is a nonnegative integer b(p)

with a(p) = 2b(p) − 1 = 1 + 2 + 22 + · · ·+ 2b(p)−1. We then have

n =
∏

p

b(p)−1
∏

i=0

p2
i

, and d(n) = 2k with k =
∑

p

b(p).

Let S be the set of all numbers of the form p2
r

with p prime and r a nonnegative integer. Then

we deduce that d(n) is a power of 2 if and only if n is the product of the elements of some finite

subset T of S that satisfies the following condition: for all t ∈ T and s ∈ S with s
∣
∣ t we have

s ∈ T . Moreover, if d(n) = 2k then the corresponding set T has k elements.

Note that the set Tk consisting of the smallest k elements from S obviously satisfies the condition

above. Thus, given k, the smallest n with d(n) = 2k is the product of the elements of Tk. This n

is f(2k). Since obviously Tk ⊂ Tk+1, it follows that f(2
k)
∣
∣ f(2k+1).

Solution 2. This is an alternative to the second part of the Solution 1. Suppose k is a

nonnegative integer. From the first part of Solution 1 we see that f(2k) =
∏

p p
a(p) with

a(p) = 2b(p) − 1 and
∑

p b(p) = k. We now claim that for any two distinct primes p, q with

b(q) > 0 we have

m = p2
b(p)

> q2
b(q)−1

= ℓ. (1)

To see this, note first that ℓ divides f(2k). With the first part of Solution 1 one can see that

the integer n = f(2k)m/ℓ also satisfies d(n) = 2k. By the definition of f(2k) this implies that

n ≥ f(2k) so m ≥ ℓ. Since p 6= q the inequality (1) follows.

Let the prime factorization of f(2k+1) be given by f(2k+1) =
∏

p p
r(p) with r(p) = 2s(p) − 1.

Since we have
∑

p s(p) = k + 1 > k =
∑

p b(p) there is a prime p with s(p) > b(p). For any

prime q 6= p with b(q) > 0 we apply inequality (1) twice and get

q2
s(q)

> p2
s(p)−1 ≥ p2

b(p)

> q2
b(q)−1

,

which implies s(q) ≥ b(q). It follows that s(q) ≥ b(q) for all primes q, so f(2k)
∣
∣ f(2k+1).

63



N2 Number Theory – solutions 52nd IMO 2011

N2

Consider a polynomial P (x) = (x + d1)(x + d2) · . . . · (x + d9), where d1, d2, . . . , d9 are nine

distinct integers. Prove that there exists an integer N such that for all integers x ≥ N the

number P (x) is divisible by a prime number greater than 20.

Solution 1. Note that the statement of the problem is invariant under translations of x; hence

without loss of generality we may suppose that the numbers d1, d2, . . . , d9 are positive.

The key observation is that there are only eight primes below 20, while P (x) involves more

than eight factors.

We shall prove that N = d8 satisfies the desired property, where d = max{d1, d2, . . . , d9}.
Suppose for the sake of contradiction that there is some integer x ≥ N such that P (x) is

composed of primes below 20 only. Then for every index i ∈ {1, 2, . . . , 9} the number x + di

can be expressed as product of powers of the first 8 primes.

Since x + di > x ≥ d8 there is some prime power fi > d that divides x + di. Invoking the

pigeonhole principle we see that there are two distinct indices i and j such that fi and fj are

powers of the same prime number. For reasons of symmetry, we may suppose that fi ≤ fj .

Now both of the numbers x+ di and x+ dj are divisible by fi and hence so is their difference

di − dj. But as

0 < |di − dj| ≤ max(di, dj) ≤ d < fi,

this is impossible. Thereby the problem is solved.

Solution 2. Observe that for each index i ∈ {1, 2, . . . , 9} the product

Di =
∏

1≤j≤9,j 6=i

|di − dj |

is positive. We claim that N = max{D1 − d1, D2 − d2, . . . , D9 − d9}+ 1 satisfies the statement

of the problem. Suppose there exists an integer x ≥ N such that all primes dividing P (x) are

smaller than 20. For each index i we reduce the fraction (x + di)/Di to lowest terms. Since

x + di > Di the numerator of the fraction we thereby get cannot be 1, and hence it has to be

divisible by some prime number pi < 20.

By the pigeonhole principle, there are a prime number p and two distinct indices i and j such

that pi = pj = p. Let pαi and pαj be the greatest powers of p dividing x + di and x + dj,

respectively. Due to symmetry we may suppose αi ≤ αj. But now pαi divides di−dj and hence

also Di, which means that all occurrences of p in the numerator of the fraction (x + di)/Di

cancel out, contrary to the choice of p = pi. This contradiction proves our claim.
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Solution 3. Given a nonzero integer N as well as a prime number p we write vp(N) for the

exponent with which p occurs in the prime factorization of |N |.

Evidently, if the statement of the problem were not true, then there would exist an infinite

sequence (xn) of positive integers tending to infinity such that for each n ∈ Z+ the integer

P (xn) is not divisible by any prime number > 20. Observe that the numbers −d1,−d2, . . . ,−d9

do not appear in this sequence.

Now clearly there exists a prime p1 < 20 for which the sequence vp1(xn + d1) is not bounded;

thinning out the sequence (xn) if necessary we may even suppose that

vp1(xn + d1) −→ ∞.

Repeating this argument eight more times we may similarly choose primes p2, . . . , p9 < 20 and

suppose that our sequence (xn) has been thinned out to such an extent that vpi(xn+di) −→ ∞
holds for i = 2, . . . , 9 as well. In view of the pigeonhole principle, there are distinct indices i

and j as well as a prime p < 20 such that pi = pj = p. Setting k = vp(di − dj) there now has to

be some n for which both vp(xn+ di) and vp(xn+ dj) are greater than k. But now the numbers

xn + di and xn + dj are divisible by pk+1 whilst their difference di − dj is not – a contradiction.

Comment. This problem is supposed to be a relatively easy one, so one might consider adding the

hypothesis that the numbers d1, d2, . . . , d9 be positive. Then certain merely technical issues are not

going to arise while the main ideas required to solve the problems remain the same.
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N3

Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself such

that for all integers x and y the difference f(x)− f(y) divides xn − yn.

Answer. All functions f of the form f(x) = εxd + c, where ε is in {1,−1}, the integer d is a

positive divisor of n, and c is an integer.

Solution. Obviously, all functions in the answer satisfy the condition of the problem. We will

show that there are no other functions satisfying that condition.

Let f be a function satisfying the given condition. For each integer n, the function g defined

by g(x) = f(x) + n also satisfies the same condition. Therefore, by subtracting f(0) from f(x)

we may assume that f(0) = 0.

For any prime p, the condition on f with (x, y) = (p, 0) states that f(p) divides pn. Since the

set of primes is infinite, there exist integers d and ε with 0 ≤ d ≤ n and ε ∈ {1,−1} such that

for infinitely many primes p we have f(p) = εpd. Denote the set of these primes by P . Since a

function g satisfies the given condition if and only if −g satisfies the same condition, we may

suppose ε = 1.

The case d = 0 is easily ruled out, because 0 does not divide any nonzero integer. Suppose

d ≥ 1 and write n as md + r, where m and r are integers such that m ≥ 1 and 0 ≤ r ≤ d− 1.

Let x be an arbitrary integer. For each prime p in P , the difference f(p)−f(x) divides pn−xn.

Using the equality f(p) = pd, we get

pn − xn = pr(pd)m − xn ≡ prf(x)m − xn ≡ 0 (mod pd − f(x))

Since we have r < d, for large enough primes p ∈ P we obtain

|prf(x)m − xn| < pd − f(x).

Hence prf(x)m − xn has to be zero. This implies r = 0 and xn = (xd)m = f(x)m. Since m is

odd, we obtain f(x) = xd.

Comment. If n is an even positive integer, then the functions f of the form

f(x) =







xd + c for some integers,

−xd + c for the rest of integers,

where d is a positive divisor of n/2 and c is an integer, also satisfy the condition of the problem.

Together with the functions in the answer, they are all functions that satisfy the condition when n is

even.

66



52nd IMO 2011 Number Theory – solutions N4

N4

For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive

integers a for which there exists a positive integer n such that all the differences

t(n+ a)− t(n), t(n+ a + 1)− t(n + 1), . . . , t(n+ 2a− 1)− t(n+ a− 1)

are divisible by 4.

Answer. a = 1, 3, or 5.

Solution. A pair (a, n) satisfying the condition of the problem will be called a winning pair.

It is straightforward to check that the pairs (1, 1), (3, 1), and (5, 4) are winning pairs.

Now suppose that a is a positive integer not equal to 1, 3, and 5. We will show that there are

no winning pairs (a, n) by distinguishing three cases.

Case 1: a is even. In this case we have a = 2αd for some positive integer α and some odd d. Since

a ≥ 2α, for each positive integer n there exists an i ∈ {0, 1, . . . , a− 1} such that n+ i = 2α−1e,

where e is some odd integer. Then we have t(n+ i) = t(2α−1e) = e and

t(n + a+ i) = t(2αd+ 2α−1e) = 2d+ e ≡ e + 2 (mod 4).

So we get t(n + i)− t(n+ a + i) ≡ 2 (mod 4), and (a, n) is not a winning pair.

Case 2: a is odd and a > 8. For each positive integer n, there exists an i ∈ {0, 1, . . . , a − 5}
such that n+ i = 2d for some odd d. We get

t(n + i) = d 6≡ d+ 2 = t(n + i+ 4) (mod 4)

and

t(n+ a + i) = n + a+ i ≡ n+ a + i+ 4 = t(n + a+ i+ 4) (mod 4).

Therefore, the integers t(n+a+ i)− t(n+ i) and t(n+ a+ i+ 4)− t(n + i+ 4) cannot be both

divisible by 4, and therefore there are no winning pairs in this case.

Case 3: a = 7. For each positive integer n, there exists an i ∈ {0, 1, . . . , 6} such that n + i is

either of the form 8k + 3 or of the form 8k + 6, where k is a nonnegative integer. But we have

t(8k + 3) ≡ 3 6≡ 1 ≡ 4k + 5 = t(8k + 3 + 7) (mod 4)

and

t(8k + 6) = 4k + 3 ≡ 3 6≡ 1 ≡ t(8k + 6 + 7) (mod 4).

Hence, there are no winning pairs of the form (7, n).

67



N5 Number Theory – solutions 52nd IMO 2011

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for

any two integers m and n, the difference f(m)− f(n) is divisible by f(m− n). Prove that for

all integers m, n with f(m) ≤ f(n) the number f(n) is divisible by f(m).

Solution 1. Suppose that x and y are two integers with f(x) < f(y). We will show that

f(x)
∣
∣ f(y). By taking m = x and n = y we see that

f(x− y)
∣
∣ |f(x)− f(y)| = f(y)− f(x) > 0,

so f(x− y) ≤ f(y)− f(x) < f(y). Hence the number d = f(x)− f(x− y) satisfies

−f(y) < −f(x− y) < d < f(x) < f(y).

Taking m = x and n = x − y we see that f(y)
∣
∣ d, so we deduce d = 0, or in other words

f(x) = f(x − y). Taking m = x and n = y we see that f(x) = f(x − y)
∣
∣ f(x) − f(y), which

implies f(x)
∣
∣ f(y).

Solution 2. We split the solution into a sequence of claims; in each claim, the letters m and n

denote arbitrary integers.

Claim 1. f(n)
∣
∣ f(mn).

Proof. Since trivially f(n)
∣
∣ f(1 · n) and f(n)

∣
∣ f((k + 1)n) − f(kn) for all integers k, this is

easily seen by using induction on m in both directions. �

Claim 2. f(n)
∣
∣ f(0) and f(n) = f(−n).

Proof. The first part follows by plugging m = 0 into Claim 1. Using Claim 1 twice with

m = −1, we get f(n)
∣
∣ f(−n)

∣
∣ f(n), from which the second part follows. �

From Claim 1, we get f(1)
∣
∣ f(n) for all integers n, so f(1) is the minimal value attained by f .

Next, from Claim 2, the function f can attain only a finite number of values since all these

values divide f(0).

Now we prove the statement of the problem by induction on the number Nf of values attained

by f . In the base case Nf ≤ 2, we either have f(0) 6= f(1), in which case these two numbers

are the only values attained by f and the statement is clear, or we have f(0) = f(1), in which

case we have f(1)
∣
∣ f(n)

∣
∣ f(0) for all integers n, so f is constant and the statement is obvious

again.

For the induction step, assume that Nf ≥ 3, and let a be the least positive integer with

f(a) > f(1). Note that such a number exists due to the symmetry of f obtained in Claim 2.
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Claim 3. f(n) 6= f(1) if and only if a
∣
∣ n.

Proof. Since f(1) = · · · = f(a− 1) < f(a), the claim follows from the fact that

f(n) = f(1) ⇐⇒ f(n+ a) = f(1).

So it suffices to prove this fact.

Assume that f(n) = f(1). Then f(n + a)
∣
∣ f(a) − f(−n) = f(a) − f(n) > 0, so f(n + a) ≤

f(a) − f(n) < f(a); in particular the difference f(n + a) − f(n) is stricly smaller than f(a).

Furthermore, this difference is divisible by f(a) and nonnegative since f(n) = f(1) is the

least value attained by f . So we have f(n + a) − f(n) = 0, as desired. For the converse

direction we only need to remark that f(n + a) = f(1) entails f(−n − a) = f(1), and hence

f(n) = f(−n) = f(1) by the forward implication. �

We return to the induction step. So let us take two arbitrary integersm and nwith f(m) ≤ f(n).

If a 6
∣
∣ m, then we have f(m) = f(1)

∣
∣ f(n). On the other hand, suppose that a

∣
∣ m; then by

Claim 3 a
∣
∣ n as well. Now define the function g(x) = f(ax). Clearly, g satisfies the condi-

tions of the problem, but Ng < Nf − 1, since g does not attain f(1). Hence, by the induction

hypothesis, f(m) = g(m/a)
∣
∣ g(n/a) = f(n), as desired.

Comment. After the fact that f attains a finite number of values has been established, there are

several ways of finishing the solution. For instance, let f(0) = b1 > b2 > · · · > bk be all these values.

One may show (essentially in the same way as in Claim 3) that the set Si = {n : f(n) ≥ bi} consists

exactly of all numbers divisible by some integer ai ≥ 0. One obviously has ai
∣
∣ ai−1, which implies

f(ai)
∣
∣ f(ai−1) by Claim 1. So, bk

∣
∣ bk−1

∣
∣ · · ·

∣
∣ b1, thus proving the problem statement.

Moreover, now it is easy to describe all functions satisfying the conditions of the problem. Namely, all

these functions can be constructed as follows. Consider a sequence of nonnegative integers a1, a2, . . . , ak

and another sequence of positive integers b1, b2, . . . , bk such that |ak| = 1, ai 6= aj and bi 6= bj for all

1 ≤ i < j ≤ k, and ai
∣
∣ ai−1 and bi

∣
∣ bi−1 for all i = 2, . . . , k. Then one may introduce the function

f(n) = bi(n), where i(n) = min{i : ai
∣
∣ n}.

These are all the functions which satisfy the conditions of the problem.
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N6

Let P (x) and Q(x) be two polynomials with integer coefficients such that no nonconstant

polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for every

positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.

Prove that Q(x) is a constant polynomial.

Solution. First we show that there exists an integer d such that for all positive integers n we

have gcd
(
P (n), Q(n)

)
≤ d.

Since P (x) and Q(x) are coprime (over the polynomials with rational coefficients), Euclid’s al-

gorithm provides some polynomials R0(x), S0(x) with rational coefficients such that P (x)R0(x)−
Q(x)S0(x) = 1. Multiplying by a suitable positive integer d, we obtain polynomials R(x) =

d · R0(x) and S(x) = d · S0(x) with integer coefficients for which P (x)R(x) − Q(x)S(x) = d.

Then we have gcd
(
P (n), Q(n)

)
≤ d for any integer n.

To prove the problem statement, suppose that Q(x) is not constant. Then the sequence Q(n)

is not bounded and we can choose a positive integer m for which

M = 2Q(m) − 1 ≥ 3max{P (1),P (2),...,P (d)}. (1)

Since M = 2Q(n) − 1
∣
∣ 3P (n) − 1, we have 2, 3 6

∣
∣M . Let a and b be the multiplicative orders

of 2 and 3 modulo M , respectively. Obviously, a = Q(m) since the lower powers of 2 do not

reach M . Since M divides 3P (m)−1, we have b
∣
∣P (m). Then gcd(a, b) ≤ gcd

(
P (m), Q(m)

)
≤ d.

Since the expression ax − by attains all integer values divisible by gcd(a, b) when x and y

run over all nonnegative integer values, there exist some nonnegative integers x, y such that

1 ≤ m+ ax− by ≤ d.

By Q(m+ ax) ≡ Q(m) (mod a) we have

2Q(m+ax) ≡ 2Q(m) ≡ 1 (mod M)

and therefore

M
∣
∣ 2Q(m+ax) − 1

∣
∣ 3P (m+ax) − 1.

Then, by P (m+ ax− by) ≡ P (m+ ax) (mod b) we have

3P (m+ax−by) ≡ 3P (m+ax) ≡ 1 (mod M).

Since P (m + ax − by) > 0 this implies M ≤ 3P (m+ax−by) − 1. But P (m + ax − by) is listed

among P (1), P (2), . . . , P (d), so

M < 3P (m+ax−by) ≤ 3max{P (1),P (2),...,P (d)}
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which contradicts (1).

Comment. We present another variant of the solution above.

Denote the degree of P by k and its leading coefficient by p. Consider any positive integer n and let

a = Q(n). Again, denote by b the multiplicative order of 3 modulo 2a − 1. Since 2a − 1
∣
∣ 3P (n) − 1, we

have b
∣
∣ P (n). Moreover, since 2Q(n+at) − 1

∣
∣ 3P (n+at) − 1 and a = Q(n)

∣
∣ Q(n + at) for each positive

integer t, we have 2a − 1
∣
∣ 3P (n+at) − 1, hence b

∣
∣ P (n + at) as well.

Therefore, b divides gcd{P (n+ at) : t ≥ 0}; hence it also divides the number

k∑

i=0

(−1)k−i

(
k

i

)

P (n+ ai) = p · k! · ak.

Finally, we get b
∣
∣gcd

(
P (n), k! ·p ·Q(n)k

)
, which is bounded by the same arguments as in the beginning

of the solution. So 3b − 1 is bounded, and hence 2Q(n) − 1 is bounded as well.
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N7

Let p be an odd prime number. For every integer a, define the number

Sa =
a

1
+

a2

2
+ · · ·+ ap−1

p− 1
.

Let m and n be integers such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.

Solution 1. For rational numbers p1/q1 and p2/q2 with the denominators q1, q2 not divisible

by p, we write p1/q1 ≡ p2/q2 (mod p) if the numerator p1q2−p2q1 of their difference is divisible

by p.

We start with finding an explicit formula for the residue of Sa modulo p. Note first that for

every k = 1, . . . , p− 1 the number
(
p
k

)
is divisible by p, and

1

p

(
p

k

)

=
(p− 1)(p− 2) · · · (p− k + 1)

k!
≡ (−1) · (−2) · · · (−k + 1)

k!
=

(−1)k−1

k
(mod p)

Therefore, we have

Sa = −
p−1
∑

k=1

(−a)k(−1)k−1

k
≡ −

p−1
∑

k=1

(−a)k · 1
p

(
p

k

)

(mod p).

The number on the right-hand side is integer. Using the binomial formula we express it as

−
p−1
∑

k=1

(−a)k · 1
p

(
p

k

)

= −1

p

(

−1− (−a)p +

p
∑

k=0

(−a)k
(
p

k

))

=
(a− 1)p − ap + 1

p

since p is odd. So, we have

Sa ≡
(a− 1)p − ap + 1

p
(mod p).

Finally, using the obtained formula we get

S3 + S4 − 3S2 ≡
(2p − 3p + 1) + (3p − 4p + 1)− 3(1p − 2p + 1)

p

=
4 · 2p − 4p − 4

p
= −(2p − 2)2

p
(mod p).

By Fermat’s theorem, p
∣
∣ 2p − 2, so p2

∣
∣ (2p − 2)2 and hence S3 + S4 − 3S2 ≡ 0 (mod p).
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Solution 2. One may solve the problem without finding an explicit formula for Sa. It is

enough to find the following property.

Lemma. For every integer a, we have Sa+1 ≡ S−a (mod p).

Proof. We expand Sa+1 using the binomial formula as

Sa+1 =

p−1
∑

k=1

1

k

k∑

j=0

(
k

j

)

aj =

p−1
∑

k=1

(

1

k
+

k∑

j=1

aj · 1
k

(
k

j

))

=

p−1
∑

k=1

1

k
+

p−1
∑

j=1

aj
p−1
∑

k=j

1

k

(
k

j

)

ak.

Note that 1
k
+ 1

p−k
= p

k(p−k)
≡ 0 (mod p) for all 1 ≤ k ≤ p − 1; hence the first sum vanishes

modulo p. For the second sum, we use the relation 1
k

(
k
j

)
= 1

j

(
k−1
j−1

)
to obtain

Sa+1 ≡
p−1
∑

j=1

aj

j

p−1
∑

k=1

(
k − 1

j − 1

)

(mod p).

Finally, from the relation

p−1
∑

k=1

(
k − 1

j − 1

)

=

(
p− 1

j

)

=
(p− 1)(p− 2) . . . (p− j)

j!
≡ (−1)j (mod p)

we obtain

Sa+1 ≡
p−1
∑

j=1

aj(−1)j

j!
= S−a. �

Now we turn to the problem. Using the lemma we get

S3 − 3S2 ≡ S−2 − 3S2 =
∑

1≤k≤p−1
k is even

−2 · 2k
k

+
∑

1≤k≤p−1
k is odd

−4 · 2k
k

(mod p). (1)

The first sum in (1) expands as

(p−1)/2
∑

ℓ=1

−2 · 22ℓ
2ℓ

= −
(p−1)/2
∑

ℓ=1

4ℓ

ℓ
.

Next, using Fermat’s theorem, we expand the second sum in (1) as

−
(p−1)/2
∑

ℓ=1

22ℓ+1

2ℓ− 1
≡ −

(p−1)/2
∑

ℓ=1

2p+2ℓ

p+ 2ℓ− 1
= −

p−1
∑

m=(p+1)/2

2 · 4m
2m

= −
p−1
∑

m=(p+1)/2

4m

m
(mod p)

(here we set m = ℓ+ p−1
2
). Hence,

S3 − 3S2 ≡ −
(p−1)/2
∑

ℓ=1

4ℓ

ℓ
−

p−1
∑

m=(p+1)/2

4m

m
= −S4 (mod p).
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N8

Let k be a positive integer and set n = 2k + 1. Prove that n is a prime number if and only if

the following holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a

sequence of integers g1, g2, . . . , gn−1 such that n divides gaii −ai+1 for every i ∈ {1, 2, . . . , n−1},
where we set an = a1.

Solution. Let N = {1, 2, . . . , n − 1}. For a, b ∈ N , we say that b follows a if there exists an

integer g such that b ≡ ga (mod n) and denote this property as a → b. This way we have a

directed graph with N as set of vertices. If a1, . . . , an−1 is a permutation of 1, 2, . . . , n− 1 such

that a1 → a2 → . . . → an−1 → a1 then this is a Hamiltonian cycle in the graph.

Step I. First consider the case when n is composite. Let n = pα1
1 . . . pαs

s be its prime factoriza-

tion. All primes pi are odd.

Suppose that αi > 1 for some i. For all integers a, g with a ≥ 2, we have ga 6≡ pi (mod p2i ),

because ga is either divisible by p2i or it is not divisible by pi. It follows that in any Hamiltonian

cycle pi comes immediately after 1. The same argument shows that 2pi also should come

immediately after 1, which is impossible. Hence, there is no Hamiltonian cycle in the graph.

Now suppose that n is square-free. We have n = p1p2 . . . ps > 9 and s ≥ 2. Assume that there

exists a Hamiltonian cycle. There are n−1
2

even numbers in this cycle, and each number which

follows one of them should be a quadratic residue modulo n. So, there should be at least n−1
2

nonzero quadratic residues modulo n. On the other hand, for each pi there exist exactly pi+1
2

quadratic residues modulo pi; by the Chinese Remainder Theorem, the number of quadratic

residues modulo n is exactly p1+1
2

· p2+1
2

· . . . · ps+1
2

, including 0. Then we have a contradiction

by
p1 + 1

2
· p2 + 1

2
· . . . · ps + 1

2
≤ 2p1

3
· 2p2

3
· . . . · 2ps

3
=

(
2

3

)s

n ≤ 4n

9
<

n− 1

2
.

This proves the “if”-part of the problem.

Step II. Now suppose that n is prime. For any a ∈ N , denote by ν2(a) the exponent of 2 in

the prime factorization of a, and let µ(a) = max{t ∈ [0, k] | 2t → a}.

Lemma. For any a, b ∈ N , we have a → b if and only if ν2(a) ≤ µ(b).

Proof. Let ℓ = ν2(a) and m = µ(b).

Suppose ℓ ≤ m. Since b follows 2m, there exists some g0 such that b ≡ g2
m

0 (mod n). By

gcd(a, n − 1) = 2ℓ there exist some integers p and q such that pa − q(n − 1) = 2ℓ. Choosing

g = g2
m−ℓp

0 we have ga = g2
m−ℓpa

0 = g
2m+2m−ℓq(n−1)
0 ≡ g2

m

0 ≡ b (mod n) by Fermat’s theorem.

Hence, a → b.

To prove the reverse statement, suppose that a → b, so b ≡ ga (mod n) with some g. Then

b ≡ (ga/2
ℓ

)2
ℓ

, and therefore 2ℓ → b. By the definition of µ(b), we have µ(b) ≥ ℓ. The lemma is
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proved. �

Now for every i with 0 ≤ i ≤ k, let

Ai = {a ∈ N | ν2(a) = i},
Bi = {a ∈ N | µ(a) = i},

and Ci = {a ∈ N | µ(a) ≥ i} = Bi ∪ Bi+1 ∪ . . . ∪Bk.

We claim that |Ai| = |Bi| for all 0 ≤ i ≤ k. Obviously we have |Ai| = 2k−i−1 for all i =

0, . . . , k − 1, and |Ak| = 1. Now we determine |Ci|. We have |C0| = n − 1 and by Fermat’s

theorem we also have Ck = {1}, so |Ck| = 1. Next, notice that Ci+1 = {x2 mod n | x ∈ Ci}.
For every a ∈ N , the relation x2 ≡ a (mod n) has at most two solutions in N . Therefore we

have 2|Ci+1| ≤ |Ci|, with the equality achieved only if for every y ∈ Ci+1, there exist distinct

elements x, x′ ∈ Ci such that x2 ≡ x′2 ≡ y (mod n) (this implies x + x′ = n). Now, since

2k|Ck| = |C0|, we obtain that this equality should be achieved in each step. Hence |Ci| = 2k−i

for 0 ≤ i ≤ k, and therefore |Bi| = 2k−i−1 for 0 ≤ i ≤ k − 1 and |Bk| = 1.

From the previous arguments we can see that for each z ∈ Ci (0 ≤ i < k) the equation x2 ≡ z2

(mod n) has two solutions in Ci, so we have n − z ∈ Ci. Hence, for each i = 0, 1, . . . , k − 1,

exactly half of the elements of Ci are odd. The same statement is valid for Bi = Ci \ Ci+1

for 0 ≤ i ≤ k − 2. In particular, each such Bi contains an odd number. Note that Bk = {1}
also contains an odd number, and Bk−1 = {2k} since Ck−1 consists of the two square roots of 1

modulo n.

Step III. Now we construct a Hamiltonian cycle in the graph. First, for each i with 0 ≤ i ≤ k,

connect the elements of Ai to the elements of Bi by means of an arbitrary bijection. After

performing this for every i, we obtain a subgraph with all vertices having in-degree 1 and out-

degree 1, so the subgraph is a disjoint union of cycles. If there is a unique cycle, we are done.

Otherwise, we modify the subgraph in such a way that the previous property is preserved and

the number of cycles decreases; after a finite number of steps we arrive at a single cycle.

For every cycle C, let λ(C) = minc∈C ν2(c). Consider a cycle C for which λ(C) is maximal. If

λ(C) = 0, then for any other cycle C ′ we have λ(C ′) = 0. Take two arbitrary vertices a ∈ C

and a′ ∈ C ′ such that ν2(a) = ν2(a
′) = 0; let their direct successors be b and b′, respectively.

Then we can unify C and C ′ to a single cycle by replacing the edges a → b and a′ → b′ by

a → b′ and a′ → b.

Now suppose that λ = λ(C) ≥ 1; let a ∈ C ∩ Aλ. If there exists some a′ ∈ Aλ \ C, then a′ lies

in another cycle C ′ and we can merge the two cycles in exactly the same way as above. So, the

only remaining case is Aλ ⊂ C. Since the edges from Aλ lead to Bλ, we get also Bλ ⊂ C. If

λ 6= k−1 then Bλ contains an odd number; this contradicts the assumption λ(C) > 0. Finally,

if λ = k − 1, then C contains 2k−1 which is the only element of Ak−1. Since Bk−1 = {2k} = Ak

and Bk = {1}, the cycle C contains the path 2k−1 → 2k → 1 and it contains an odd number

again. This completes the proof of the “only if”-part of the problem.
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Comment 1. The lemma and the fact |Ai| = |Bi| together show that for every edge a → b of the

Hamiltonian cycle, ν2(a) = µ(b) must hold. After this observation, the Hamiltonian cycle can be built

in many ways. For instance, it is possible to select edges from Ai to Bi for i = k, k − 1, . . . , 1 in such

a way that they form disjoint paths; at the end all these paths will have odd endpoints. In the final

step, the paths can be closed to form a unique cycle.

Comment 2. Step II is an easy consequence of some basic facts about the multiplicative group modulo

the prime n = 2k + 1. The Lemma follows by noting that this group has order 2k, so the a-th powers

are exactly the 2ν2(a)-th powers. Using the existence of a primitive root g modulo n one sees that the

map from {1, 2, . . . , n−1} to itself that sends a to ga mod n is a bijection that sends Ai to Bi for each

i ∈ {0, . . . , k}.
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Algebra

A1. Find all the functions f : Z → Z such that

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)

for all integers a, b, c satisfying a+ b+ c = 0.

A2. Let Z and Q be the sets of integers and rationals respectively.

a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

Here X + Y denotes the set {x+ y | x ∈ X, y ∈ Y }, for X, Y ⊆ Z and X, Y ⊆ Q.

A3. Let a2, . . . , an be n − 1 positive real numbers, where n ≥ 3, such that a2a3 · · ·an = 1.
Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

A4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g.
Suppose that for infinitely many primes p the polynomial pf + g has a rational root. Prove
that f has a rational root.

A5. Find all functions f : R → R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R

and f(−1) 6= 0.

A6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for
every n ∈ N there exists a k ∈ N such that f 2k(n) = n + k, and let kn be the smallest such k.
Prove that the sequence k1, k2, . . . is unbounded.

A7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m
and n, it can be represented in the form

f(x1, . . . , xk) = max
i=1,...,m

min
j=1,...,n

Pi,j(x1, . . . , xk)

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also
a metapolynomial.
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Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent
numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

C2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the
set {1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

C3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T
be the number of triples (C1, C2, C3) of cells, the first two in the same row and the last two in
the same column, with C1 and C3 white and C2 red. Find the maximum value T can attain.

C4. Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a
circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each
box. Then the two of them make moves in the order B,A,B,A, . . . by the following rules:

• On every move of his B passes 1 coin from every box to an adjacent box.

• On every move of hers A chooses several coins that were not involved in B’s previous
move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A’s goal is to ensure at least 1 coin in each box after every move of hers, regardless of
how B plays and how many moves are made. Find the least N that enables her to succeed.

C5. The columns and the rows of a 3n× 3n square board are numbered 1, 2, . . . , 3n. Every
square (x, y) with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the
modulo 3 remainder of x+ y is 0, 1 or 2 respectively. One token colored asparagus, byzantium
or citrine is placed on each square, so that there are 3n2 tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of
at most d from its original position, each asparagus token replaces a byzantium token, each
byzantium token replaces a citrine token, and each citrine token replaces an asparagus token.
Prove that it is possible to permute the tokens so that each token is moved to a distance of at
most d+ 2 from its original position, and each square contains a token with the same color as
the square.

C6. Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses integers
x and N with 1 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly
ask Amy whether x ∈ S for arbitrary sets S of integers. Amy will always answer with yes or no,
but she might lie. The only restriction is that she can lie at most k times in a row. After he
has asked as many questions as he wants, Ben must specify a set of at most n positive integers.
If x is in this set he wins; otherwise, he loses. Prove that:

a) If n ≥ 2k then Ben can always win.

b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

C7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that
one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums
of the pairs of numbers at the endpoints of the chosen chords are equal.
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Geometry

G1. In the triangle ABC the point J is the center of the excircle opposite to A. This excircle
is tangent to the side BC at M , and to the lines AB and AC at K and L respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST .

G2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that
ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that
D, H , F , G are concyclic.

G3. In an acute triangle ABC the points D, E and F are the feet of the altitudes through A,
B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2
and O1O2 are parallel.

G4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines
through D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively.
Prove that the quadrilateral BXCY is cyclic.

G5. Let ABC be a triangle with ∠BCA = 90◦, and let C0 be the foot of the altitude
from C. Choose a point X in the interior of the segment CC0, and let K,L be the points on
the segments AX,BX for which BK = BC and AL = AC respectively. Denote by M the
intersection of AL and BK. Show that MK = ML.

G6. Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on
the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

G7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume
that there is a point E on the side BC such that the quadrilaterals ABED and AECD are
circumscribed. Prove that there is a point F on the side AD such that the quadrilaterals
ABCF and BCDF are circumscribed if and only if AB is parallel to CD.

G8. Let ABC be a triangle with circumcircle ω and ℓ a line without common points with ω.
Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines BC,CA,AB
intersect ℓ at the points X, Y, Z different from P . Prove that the circumcircles of the triangles
AXP,BY P and CZP have a common point different from P or are mutually tangent at P .
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Number Theory

N1. Call admissible a set A of integers that has the following property:

If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.

Determine all pairsm,n of nonzero integers such that the only admissible set containing bothm
and n is the set of all integers.

N2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

N3. Determine all integers m ≥ 2 such that every n with m
3
≤ n ≤ m

2
divides the binomial

coefficient
(

n
m−2n

)
.

N4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a
solution over the positive integers.

a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

b) Decide whether a = 2 is friendly.

N5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk
where p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative
integer coefficients such that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

N6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive
integer n, prove that x = 1.

N7. Find all n ∈ N for which there exist nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

N8. Prove that for every prime p > 100 and every integer r there exist two integers a and b
such that p divides a2 + b5 − r.
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Algebra

A1. Find all the functions f : Z → Z such that

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)

for all integers a, b, c satisfying a+ b+ c = 0.

Solution. The substitution a = b = c = 0 gives 3f(0)2 = 6f(0)2, hence

f(0) = 0. (1)

The substitution b = −a and c = 0 gives ((f(a)− f(−a))2 = 0. Hence f is an even function:

f(a) = f(−a) for all a ∈ Z. (2)

Now set b = a and c = −2a to obtain 2f(a)2 + f(2a)2 = 2f(a)2 + 4f(a)f(2a). Hence

f(2a) = 0 or f(2a) = 4f(a) for all a ∈ Z. (3)

If f(r) = 0 for some r ≥ 1 then the substitution b = r and c = −a−r gives (f(a+r)−f(a))2 = 0.
So f is periodic with period r, i. e.

f(a+ r) = f(a) for all a ∈ Z.

In particular, if f(1) = 0 then f is constant, thus f(a) = 0 for all a ∈ Z. This function clearly
satisfies the functional equation. For the rest of the analysis, we assume f(1) = k 6= 0.

By (3) we have f(2) = 0 or f(2) = 4k. If f(2) = 0 then f is periodic of period 2, thus
f(even) = 0 and f(odd) = k. This function is a solution for every k. We postpone the
verification; for the sequel assume f(2) = 4k 6= 0.

By (3) again, we have f(4) = 0 or f(4) = 16k. In the first case f is periodic of period 4, and
f(3) = f(−1) = f(1) = k, so we have f(4n) = 0, f(4n+1) = f(4n+3) = k, and f(4n+2) = 4k
for all n ∈ Z. This function is a solution too, which we justify later. For the rest of the analysis,
we assume f(4) = 16k 6= 0.

We show now that f(3) = 9k. In order to do so, we need two substitutions:

a = 1, b = 2, c = −3 =⇒ f(3)2 − 10kf(3) + 9k2 = 0 =⇒ f(3) ∈ {k, 9k},
a = 1, b = 3, c = −4 =⇒ f(3)2 − 34kf(3) + 225k2 = 0 =⇒ f(3) ∈ {9k, 25k}.

Therefore f(3) = 9k, as claimed. Now we prove inductively that the only remaining function is
f(x) = kx2, x ∈ Z. We proved this for x = 0, 1, 2, 3, 4. Assume that n ≥ 4 and that f(x) = kx2

holds for all integers x ∈ [0, n]. Then the substitutions a = n, b = 1, c = −n−1 and a = n−1,
b = 2, c = −n− 1 lead respectively to

f(n+ 1) ∈ {k(n+ 1)2, k(n− 1)2} and f(n+ 1) ∈ {k(n+ 1)2, k(n− 3)2}.

Since k(n − 1)2 6= k(n − 3)2 for n 6= 2, the only possibility is f(n + 1) = k(n + 1)2. This
completes the induction, so f(x) = kx2 for all x ≥ 0. The same expression is valid for negative
values of x since f is even. To verify that f(x) = kx2 is actually a solution, we need to check
the identity a4 + b4 + (a + b)4 = 2a2b2 + 2a2(a + b)2 + 2b2(a + b)2, which follows directly by
expanding both sides.
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Therefore the only possible solutions of the functional equation are the constant function
f1(x) = 0 and the following functions:

f2(x) = kx2 f3(x) =

{
0 x even
k x odd

f4(x) =







0 x ≡ 0 (mod 4)
k x ≡ 1 (mod 2)
4k x ≡ 2 (mod 4)

for any non-zero integer k. The verification that they are indeed solutions was done for the
first two. For f3 note that if a + b + c = 0 then either a, b, c are all even, in which case
f(a) = f(b) = f(c) = 0, or one of them is even and the other two are odd, so both sides of
the equation equal 2k2. For f4 we use similar parity considerations and the symmetry of the
equation, which reduces the verification to the triples (0, k, k), (4k, k, k), (0, 0, 0), (0, 4k, 4k).
They all satisfy the equation.

Comment. We used several times the same fact: For any a, b ∈ Z the functional equation is a
quadratic equation in f(a+ b) whose coefficients depend on f(a) and f(b):

f(a+ b)2 − 2(f(a) + f(b))f(a+ b) + (f(a)− f(b))2 = 0.

Its discriminant is 16f(a)f(b). Since this value has to be non-negative for any a, b ∈ Z, we conclude
that either f or −f is always non-negative. Also, if f is a solution of the functional equation, then
−f is also a solution. Therefore we can assume f(x) ≥ 0 for all x ∈ Z. Now, the two solutions of the
quadratic equation are

f(a+ b) ∈
{(√

f(a) +
√

f(b)
)2

,
(√

f(a)−
√

f(b)
)2
}

for all a, b ∈ Z.

The computation of f(3) from f(1), f(2) and f(4) that we did above follows immediately by setting
(a, b) = (1, 2) and (a, b) = (1,−4). The inductive step, where f(n+ 1) is derived from f(n), f(n− 1),
f(2) and f(1), follows immediately using (a, b) = (n, 1) and (a, b) = (n− 1, 2).
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A2. Let Z and Q be the sets of integers and rationals respectively.

a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

Here X + Y denotes the set {x+ y | x ∈ X, y ∈ Y }, for X, Y ⊆ Z and X, Y ⊆ Q.

Solution 1. a) The residue classes modulo 3 yield such a partition:

A = {3k | k ∈ Z}, B = {3k + 1 | k ∈ Z}, C = {3k + 2 | k ∈ Z}.

b) The answer is no. Suppose that Q can be partitioned into non-empty subsets A,B,C as
stated. Note that for all a ∈ A, b ∈ B, c ∈ C one has

a+ b− c ∈ C, b+ c− a ∈ A, c+ a− b ∈ B. (1)

Indeed a+b−c /∈ A as (A+B)∩(A+C) = ∅, and similarly a+b−c /∈ B, hence a+b−c ∈ C. The
other two relations follow by symmetry. Hence A+B ⊂ C+C, B+C ⊂ A+A, C+A ⊂ B+B.

The opposite inclusions also hold. Let a, a′ ∈ A and b ∈ B, c ∈ C be arbitrary. By (1)
a′ + c− b ∈ B, and since a ∈ A, c ∈ C, we use (1) again to obtain

a+ a′ − b = a+ (a′ + c− b)− c ∈ C.

So A+ A ⊂ B + C and likewise B +B ⊂ C + A, C + C ⊂ A+B. In summary

B + C = A + A, C + A = B +B, A +B = C + C.

Furthermore suppose that 0 ∈ A without loss of generality. Then B = {0} + B ⊂ A + B
and C = {0}+C ⊂ A+C. So, since B+C is disjoint with A+B and A+C, it is also disjoint
with B and C. Hence B + C is contained in Z \ (B ∪ C) = A. Because B + C = A + A, we
obtain A+ A ⊂ A. On the other hand A = {0}+ A ⊂ A+ A, implying A = A+ A = B + C.

Therefore A+B+C = A+A+A = A, and now B+B = C +A and C +C = A+B yield
B+B+B = A+B+C = A, C+C+C = A+B+C = A. In particular if r ∈ Q = A∪B ∪C
is arbitrary then 3r ∈ A.

However such a conclusion is impossible. Take any b ∈ B (B 6= ∅) and let r = b/3 ∈ Q.
Then b = 3r ∈ A which is a contradiction.

Solution 2. We prove that the example for Z from the first solution is unique, and then use
this fact to solve part b).

Let Z = A∪B ∪C be a partition of Z with A,B,C 6= ∅ and A+B, B +C, C +A disjoint.
We need the relations (1) which clearly hold for Z. Fix two consecutive integers from different
sets, say b ∈ B and c = b+1 ∈ C. For every a ∈ A we have, in view of (1), a−1 = a+b−c ∈ C
and a+ 1 = a+ c− b ∈ B. So every a ∈ A is preceded by a number from C and followed by a
number from B.

In particular there are pairs of the form c, c+ 1 with c ∈ C, c+ 1 ∈ A. For such a pair and
any b ∈ B analogous reasoning shows that each b ∈ B is preceded by a number from A and
followed by a number from C. There are also pairs b, b−1 with b ∈ B, b−1 ∈ A. We use them
in a similar way to prove that each c ∈ C is preceded by a number from B and followed by a
number from A.

By putting the observations together we infer that A,B,C are the three congruence classes
modulo 3. Observe that all multiples of 3 are in the set of the partition that contains 0.
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Now we turn to part b). Suppose that there is a partition of Q with the given properties.
Choose three rationals ri = pi/qi from the three sets A,B,C, i = 1, 2, 3, and set N = 3q1q2q3.

Let S ⊂ Q be the set of fractions with denominators N (irreducible or not). It is obtained
through multiplication of every integer by the constant 1/N , hence closed under sums and
differences. Moreover, if we identify each k ∈ Z with k/N ∈ S then S is essentially the set Z
with respect to addition. The numbers ri belong to S because

r1 =
3p1q2q3

N
, r2 =

3p2q3q1
N

, r3 =
3p3q1q2

N
.

The partition Q = A∪B ∪C of Q induces a partition S = A′ ∪B′ ∪C ′ of S, with A′ = A∩ S,
B′ = B ∩ S, C ′ = C ∩ S. Clearly A′ + B′, B′ + C ′, C ′ + A′ are disjoint, so this partition has
the properties we consider.

By the uniqueness of the example for Z the sets A′, B′, C ′ are the congruence classes mod-
ulo 3, multiplied by 1/N . Also all multiples of 3/N are in the same set, A′, B′ or C ′. This holds
for r1, r2, r3 in particular as they are all multiples of 3/N . However r1, r2, r3 are in different sets
A′, B′, C ′ since they were chosen from different sets A,B,C. The contradiction ends the proof.

Comment. The uniqueness of the example for Z can also be deduced from the argument in the first
solution.
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A3. Let a2, . . . , an be n − 1 positive real numbers, where n ≥ 3, such that a2a3 · · ·an = 1.
Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

Solution. The substitution a2 =
x2

x1

, a3 =
x3

x2

, . . . , an =
x1

xn−1

transforms the original problem

into the inequality

(x1 + x2)
2(x2 + x3)

3 · · · (xn−1 + x1)
n > nnx2

1x
3
2 · · ·xn

n−1 (∗)

for all x1, . . . , xn−1 > 0. To prove this, we use the AM-GM inequality for each factor of the
left-hand side as follows:

(x1 + x2)
2 ≥ 22x1x2

(x2 + x3)
3 =

(
2
(
x2

2

)
+ x3

)3 ≥ 33
(
x2

2

)2
x3

(x3 + x4)
4 =

(
3
(
x3

3

)
+ x4

)4 ≥ 44
(
x3

3

)3
x4

...
...

...

(xn−1 + x1)
n =

(
(n− 1)

(
xn−1

n−1

)
+ x1

)n ≥ nn
(
xn−1

n−1

)n−1
x1.

Multiplying these inequalities together gives (*), with inequality sign ≥ instead of >. However
for the equality to occur it is necessary that x1 = x2, x2 = 2x3, . . . , xn−1 = (n− 1)x1, implying
x1 = (n− 1)!x1. This is impossible since x1 > 0 and n ≥ 3. Therefore the inequality is strict.

Comment. One can avoid the substitution ai = xi/xi−1. Apply the weighted AM-GM inequality to
each factor (1 + ak)

k, with the same weights like above, to obtain

(1 + ak)
k =

(

(k − 1)
1

k − 1
+ ak

)k

≥ kk

(k − 1)k−1
ak.

Multiplying all these inequalities together gives

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n ≥ nna2a3 · · · an = nn.

The same argument as in the proof above shows that the equality cannot be attained.
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A4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g.
Suppose that for infinitely many primes p the polynomial pf + g has a rational root. Prove
that f has a rational root.

Solution 1. Since deg f > deg g, we have |g(x)/f(x)| < 1 for sufficiently large x; more
precisely, there is a real number R such that |g(x)/f(x)| < 1 for all x with |x| > R. Then for
all such x and all primes p we have

∣
∣pf(x) + g(x)

∣
∣ ≥

∣
∣f(x)

∣
∣

(

p− |g(x)|
|f(x)|

)

> 0.

Hence all real roots of the polynomials pf + g lie in the interval [−R,R].

Let f(x) = anx
n + an−1x

n−1 + · · · + a0 and g(x) = bmx
m + bm−1x

m−1 + · · · + b0 where
n > m, an 6= 0 and bm 6= 0. Upon replacing f(x) and g(x) by an−1

n f(x/an) and an−1
n g(x/an)

respectively, we reduce the problem to the case an = 1. In other words one can assume that f
is monic. Then the leading coefficient of pf + g is p, and if r = u/v is a rational root of pf + g
with (u, v) = 1 and v > 0, then either v = 1 or v = p.

First consider the case when v = 1 infinitely many times. If v = 1 then |u| ≤ R, so there
are only finitely many possibilities for the integer u. Therefore there exist distinct primes p
and q for which we have the same value of u. Then the polynomials pf + g and qf + g share
this root, implying f(u) = g(u) = 0. So in this case f and g have an integer root in common.

Now suppose that v = p infinitely many times. By comparing the exponent of p in the
denominators of pf(u/p) and g(u/p) we get m = n − 1 and pf(u/p) + g(u/p) = 0 reduces to
an equation of the form

(

un + an−1pu
n−1 + . . .+ a0p

n
)

+
(

bn−1u
n−1 + bn−2pu

n−2 + . . .+ b0p
n−1
)

= 0.

The equation above implies that un + bn−1u
n−1 is divisible by p and hence, since (u, p) = 1,

we have u + bn−1 = pk with some integer k. On the other hand all roots of pf + g lie in the
interval [−R,R], so that

|pk − bn−1|
p

=
|u|
p

< R,

|k| < R +
|bn−1|
p

< R + |bn−1|.

Therefore the integer k can attain only finitely many values. Hence there exists an integer k
such that the number pk−bn−1

p
= k − bn−1

p
is a root of pf + g for infinitely many primes p. For

these primes we have

f

(

k − bn−1
1

p

)

+
1

p
g

(

k − bn−1
1

p

)

= 0.

So the equation

f (k − bn−1x) + xg (k − bn−1x) = 0 (1)

has infinitely many solutions of the form x = 1/p. Since the left-hand side is a polynomial, this
implies that (1) is a polynomial identity, so it holds for all real x. In particular, by substituting
x = 0 in (1) we get f(k) = 0. Thus the integer k is a root of f .

In summary the monic polynomial f obtained after the initial reduction always has an
integer root. Therefore the original polynomial f has a rational root.
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Solution 2. Analogously to the first solution, there exists a real number R such that the
complex roots of all polynomials of the form pf + g lie in the disk |z| ≤ R.

For each prime p such that pf + g has a rational root, by Gauss’ lemma pf + g is the
product of two integer polynomials, one with degree 1 and the other with degree deg f − 1.
Since p is a prime, the leading coefficient of one of these factors divides the leading coefficient
of f . Denote that factor by hp.

By narrowing the set of the primes used we can assume that all polynomials hp have the
same degree and the same leading coefficient. Their complex roots lie in the disk |z| ≤ R, hence
Vieta’s formulae imply that all coefficients of all polynomials hp form a bounded set. Since
these coefficients are integers, there are only finitely many possible polynomials hp. Hence there
is a polynomial h such that hp = h for infinitely many primes p.

Finally, if p and q are distinct primes with hp = hq = h then h divides (p − q)f . Since
deg h = 1 or deg h = deg f − 1, in both cases f has a rational root.

Comment. Clearly the polynomial h is a common factor of f and g. If degh = 1 then f and g share a
rational root. Otherwise degh = deg f − 1 forces deg g = deg f − 1 and g divides f over the rationals.

Solution 3. Like in the first solution, there is a real number R such that the real roots of all
polynomials of the form pf + g lie in the interval [−R,R].

Let p1 < p2 < · · · be an infinite sequence of primes so that for every index k the polynomial
pkf + g has a rational root rk. The sequence r1, r2, . . . is bounded, so it has a convergent
subsequence rk1 , rk2, . . .. Now replace the sequences (p1, p2, . . . ) and (r1, r2, . . . ) by (pk1, pk2, . . .)
and (rk1 , rk2, . . .); after this we can assume that the sequence r1, r2, . . . is convergent. Let
α = lim

k→∞
rk. We show that α is a rational root of f .

Over the interval [−R,R], the polynomial g is bounded, |g(x)| ≤ M with some fixed M .
Therefore

|f(rk)| =
∣
∣
∣
∣
f(rk)−

pkf(rk) + g(rk)

pk

∣
∣
∣
∣
=

|g(rk)|
pk

≤ M

pk
→ 0,

and
f(α) = f

(

lim
k→∞

rk

)

= lim
k→∞

f(rk) = 0.

So α is a root of f indeed.

Now let uk, vk be relative prime integers for which rk = uk

vk
. Let a be the leading coefficient

of f , let b = f(0) and c = g(0) be the constant terms of f and g, respectively. The leading
coefficient of the polynomial pkf + g is pka, its constant term is pkb+ c. So vk divides pka and
uk divides pkb+ c. Let pkb+ c = ukek (if pkb+ c = uk = 0 then let ek = 1).

We prove that α is rational by using the following fact. Let (pn) and (qn) be sequences of

integers such that the sequence (pn/qn) converges. If (pn) or (qn) is bounded then lim(pn/qn) is
rational .

Case 1: There is an infinite subsequence (kn) of indices such that vkn divides a. Then (vkn)
is bounded, so α = limn→∞(ukn/vkn) is rational.

Case 2: There is an infinite subsequence (kn) of indices such that vkn does not divide a.
For such indices we have vkn = pkndkn where dkn is a divisor of a. Then

α = lim
n→∞

ukn

vkn
= lim

n→∞

pknb+ c

pkndknekn
= lim

n→∞

b

dknekn
+ lim

n→∞

c

pkndknekn
= lim

n→∞

b

dknekn
.

Because the numerator b in the last limit is bounded, α is rational.
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A5. Find all functions f : R → R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R

and f(−1) 6= 0.

Solution. The only solution is the function f(x) = x− 1, x ∈ R.
We set g(x) = f(x) + 1 and show that g(x) = x for all real x. The conditions take the form

g(1 + xy)− g(x+ y) =
(
g(x)− 1

)(
g(y)− 1

)
for all x, y ∈ R and g(−1) 6= 1. (1)

Denote C = g(−1)− 1 6= 0. Setting y = −1 in (1) gives

g(1− x)− g(x− 1) = C(g(x)− 1). (2)

Set x = 1 in (2) to obtain C(g(1)− 1) = 0. Hence g(1) = 1 as C 6= 0. Now plugging in x = 0
and x = 2 yields g(0) = 0 and g(2) = 2 respectively.

We pass on to the key observations

g(x) + g(2− x) = 2 for all x ∈ R, (3)

g(x+ 2)− g(x) = 2 for all x ∈ R. (4)

Replace x by 1 − x in (2), then change x to −x in the resulting equation. We obtain the
relations g(x)− g(−x) = C(g(1− x)− 1), g(−x)− g(x) = C(g(1 + x)− 1). Then adding them
up leads to C(g(1− x) + g(1 + x)− 2) = 0. Thus C 6= 0 implies (3).

Let u, v be such that u+ v = 1. Apply (1) to the pairs (u, v) and (2− u, 2− v):

g(1 + uv)− g(1) =
(
g(u)− 1

)(
g(v)− 1

)
, g(3 + uv)− g(3) =

(
g(2− u)− 1

)(
g(2− v)− 1

)
.

Observe that the last two equations have equal right-hand sides by (3). Hence u+v = 1 implies

g(uv + 3)− g(uv + 1) = g(3)− g(1).

Each x ≤ 5/4 is expressible in the form x = uv + 1 with u + v = 1 (the quadratic function
t2−t+(x−1) has real roots for x ≤ 5/4). Hence g(x+2)−g(x) = g(3)−g(1) whenever x ≤ 5/4.
Because g(x) = x holds for x = 0, 1, 2, setting x = 0 yields g(3) = 3. This proves (4) for x ≤ 5/4.
If x > 5/4 then −x < 5/4 and so g(2 − x) − g(−x) = 2 by the above. On the other hand (3)
gives g(x) = 2−g(2−x), g(x+2) = 2−g(−x), so that g(x+2)−g(x) = g(2−x)−g(−x) = 2.
Thus (4) is true for all x ∈ R.

Now replace x by −x in (3) to obtain g(−x) + g(2 + x) = 2. In view of (4) this leads to
g(x) + g(−x) = 0, i. e. g(−x) = −g(x) for all x. Taking this into account, we apply (1) to the
pairs (−x, y) and (x,−y):

g(1− xy)− g(−x+ y) =
(
g(x) + 1

)(
1− g(y)

)
, g(1− xy)− g(x− y) =

(
1− g(x)

)(
g(y) + 1

)
.

Adding up yields g(1 − xy) = 1 − g(x)g(y). Then g(1 + xy) = 1 + g(x)g(y) by (3). Now the
original equation (1) takes the form g(x+ y) = g(x) + g(y). Hence g is additive.

By additvity g(1 + xy) = g(1) + g(xy) = 1 + g(xy); since g(1 + xy) = 1 + g(x)g(y) was
shown above, we also have g(xy) = g(x)g(y) (g is multiplicative). In particular y = x gives
g(x2) = g(x)2 ≥ 0 for all x, meaning that g(x) ≥ 0 for x ≥ 0. Since g is additive and bounded
from below on [0,+∞), it is linear; more exactly g(x) = g(1)x = x for all x ∈ R.

In summary f(x) = x − 1, x ∈ R. It is straightforward that this function satisfies the
requirements.

Comment. There are functions that satisfy the given equation but vanish at −1, for instance the
constant function 0 and f(x) = x2 − 1, x ∈ R.
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A6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for
every n ∈ N there exists a k ∈ N such that f 2k(n) = n + k, and let kn be the smallest such k.
Prove that the sequence k1, k2, . . . is unbounded.

Solution. We restrict attention to the set

S = {1, f(1), f 2(1), . . .}.

Observe that S is unbounded because for every number n in S there exists a k > 0 such
that f 2k(n) = n+ k is in S. Clearly f maps S into itself; moreover f is injective on S. Indeed
if f i(1) = f j(1) with i 6= j then the values fm(1) start repeating periodically from some point
on, and S would be finite.

Define g : S → S by g(n) = f 2kn(n) = n + kn. We prove that g is injective too. Suppose
that g(a) = g(b) with a < b. Then a + ka = f 2ka(a) = f 2kb(b) = b + kb implies ka > kb. So,
since f is injective on S, we obtain

f 2(ka−kb)(a) = b = a + (ka − kb).

However this contradicts the minimality of ka as 0 < ka − kb < ka.
Let T be the set of elements of S that are not of the form g(n) with n ∈ S. Note that 1 ∈ T

by g(n) > n for n ∈ S, so T is non-empty. For each t ∈ T denote Ct = {t, g(t), g2(t), . . .};
call Ct the chain starting at t. Observe that distinct chains are disjoint because g is injective.
Each n ∈ S\T has the form n = g(n′) with n′ < n, n′ ∈ S. Repeated applications of the same
observation show that n ∈ Ct for some t ∈ T , i. e. S is the disjoint union of the chains Ct.

If fn(1) is in the chain Ct starting at t = fnt(1) then n = nt + 2a1 + · · ·+ 2aj with

fn(1) = gj(fnt(1)) = f 2aj (f 2aj−1(· · · f 2a1(fnt(1)))) = fnt(1) + a1 + · · ·+ aj .

Hence

fn(1) = fnt(1) +
n− nt

2
= t+

n− nt

2
. (1)

Now we show that T is infinite. We argue by contradiction. Suppose that there are only
finitely many chains Ct1 , . . . , Ctr , starting at t1 < · · · < tr. Fix N . If fn(1) with 1 ≤ n ≤ N
is in Ct then fn(1) = t + n−nt

2
≤ tr +

N
2
by (1). But then the N + 1 distinct natural numbers

1, f(1), . . . , fN(1) are all less than tr +
N
2
and hence N + 1 ≤ tr +

N
2
. This is a contradiction if

N is sufficiently large, and hence T is infinite.
To complete the argument, choose any k in N and consider the k + 1 chains starting at the

first k + 1 numbers in T . Let t be the greatest one among these numbers. Then each of the
chains in question contains a number not exceeding t, and at least one of them does not contain
any number among t+1, . . . , t+k. So there is a number n in this chain such that g(n)−n > k,
i. e. kn > k. In conclusion k1, k2, . . . is unbounded.
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A7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m
and n, it can be represented in the form

f(x1, . . . , xk) = max
i=1,...,m

min
j=1,...,n

Pi,j(x1, . . . , xk)

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also
a metapolynomial.

Solution.We use the notation f(x) = f(x1, . . . , xk) for x = (x1, . . . , xk) and [m] = {1, 2, . . . , m}.
Observe that if a metapolynomial f(x) admits a representation like the one in the statement
for certain positive integers m and n, then they can be replaced by any m′ ≥ m and n′ ≥ n. For
instance, if we want to replace m by m+1 then it is enough to define Pm+1,j(x) = Pm,j(x) and
note that repeating elements of a set do not change its maximum nor its minimum. So one can
assume that any two metapolynomials are defined with the same m and n. We reserve letters
P and Q for polynomials, so every function called P, Pi,j, Q,Qi,j, . . . is a polynomial function.

We start with a lemma that is useful to change expressions of the form minmax fi,j to ones
of the form maxmin gi,j.

Lemma. Let {ai,j} be real numbers, for all i ∈ [m] and j ∈ [n]. Then

min
i∈[m]

max
j∈[n]

ai,j = max
j1,...,jm∈[n]

min
i∈[m]

ai,ji,

where the max in the right-hand side is over all vectors (j1, . . . , jm) with j1, . . . , jm ∈ [n].

Proof. We can assume for all i that ai,n = max{ai,1, . . . , ai,n} and am,n = min{a1,n, . . . , am,n}.
The left-hand side is = am,n and hence we need to prove the same for the right-hand side.
If (j1, j2, . . . , jm) = (n, n, . . . , n) then min{a1,j1, . . . , am,jm} = min{a1,n, . . . , am,n} = am,n which
implies that the right-hand side is ≥ am,n. It remains to prove the opposite inequality and
this is equivalent to min{a1,j1, . . . , am,jm} ≤ am,n for all possible (j1, j2, . . . , jm). This is true
because min{a1,j1, . . . , am,jm} ≤ am,jm ≤ am,n. �

We need to show that the family M of metapolynomials is closed under multiplication, but
it turns out easier to prove more: that it is also closed under addition, maxima and minima.

First we prove the assertions about the maxima and the minima. If f1, . . . , fr are metapoly-
nomials, assume them defined with the same m and n. Then

f = max{f1, . . . , fr} = max{max
i∈[m]

min
j∈[n]

P 1
i,j, . . . ,max

i∈[m]
min
j∈[n]

P r
i,j} = max

s∈[r],i∈[m]
min
j∈[n]

P s
i,j.

It follows that f = max{f1, . . . , fr} is a metapolynomial. The same argument works for the
minima, but first we have to replace min max by max min, and this is done via the lemma.

Another property we need is that if f = maxminPi,j is a metapolynomial then so is −f .
Indeed, −f = min(−minPi,j) = minmaxPi,j.

To prove M is closed under addition let f = maxminPi,j and g = maxminQi,j. Then

f(x) + g(x) = max
i∈[m]

min
j∈[n]

Pi,j(x) + max
i∈[m]

min
j∈[n]

Qi,j(x)

= max
i1,i2∈[m]

(min
j∈[n]

Pi1,j(x) + min
j∈[n]

Qi2,j(x)) = max
i1,i2∈[m]

min
j1,j2∈[n]

(
Pi1,j1(x) +Qi2,j2(x)

)
,

and hence f(x) + g(x) is a metapolynomial.
We proved that M is closed under sums, maxima and minima, in particular any function

that can be expressed by sums, max, min, polynomials or even metapolynomials is in M.
We would like to proceed with multiplication along the same lines like with addition, but

there is an essential difference. In general the product of the maxima of two sets is not equal
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to the maximum of the product of the sets. We need to deal with the fact that a < b and c < d
do not imply ac < bd. However this is true for a, b, c, d ≥ 0.

In view of this we decompose each function f(x) into its positive part f+(x) = max{f(x), 0}
and its negative part f−(x) = max{0,−f(x)}. Note that f = f+ − f− and f+, f− ∈ M if
f ∈ M. The whole problem reduces to the claim that if f and g are metapolynomials with
f, g ≥ 0 then fg it is also a metapolynomial.

Assuming this claim, consider arbitrary f, g ∈ M. We have

fg = (f+ − f−)(g+ − g−) = f+g+ − f+g− − f−g+ + f−g−,

and hence fg ∈ M. Indeed, M is closed under addition, also f+g+, f+g−, f−g+, f−g− ∈ M
because f+, f−, g+, g− ≥ 0.

It remains to prove the claim. In this case f, g ≥ 0, and one can try to repeat the argument
for the sum. More precisely, let f = maxminPij ≥ 0 and g = maxminQij ≥ 0. Then

fg = maxminPi,j ·maxminQi,j = maxminP+
i,j ·maxminQ+

i,j = maxminP+
i1,j1

·Q+
i2,j2

.

Hence it suffices to check that P+Q+ ∈ M for any pair of polynomials P and Q. This reduces
to the identity

u+v+ = max{0,min{uv, u, v},min{uv, uv2, u2v},min{uv, u, u2v},min{uv, uv2, v}},

with u replaced by P (x) and v replaced by Q(x). The formula is proved by a case-by-case
analysis. If u ≤ 0 or v ≤ 0 then both sides equal 0. In case u, v ≥ 0, the right-hand side is
clearly ≤ uv. To prove the opposite inequality we use that uv equals

min{uv, u, v} if 0 ≤ u, v ≤ 1,
min{uv, uv2, u2v} if 1 ≤ u, v,
min{uv, u, u2v} if 0 ≤ v ≤ 1 ≤ u,
min{uv, uv2, v} if 0 ≤ u ≤ 1 ≤ v.

Comment. The case k = 1 is simpler and can be solved by proving that a function f : R → R is a
metapolynomial if and only if it is a piecewise polinomial (and continuos) function.

It is enough to prove that all such functions are metapolynomials, and this easily reduces to the
following case. Given a polynomial P (x) with P (0) = 0, the function f defined by f(x) = P (x) for
x ≥ 0 and 0 otherwise is a metapolynomial. For this last claim, it suffices to prove that (x+)n is a
metapolynomial, and this follows from the formula (x+)n = max{0,min{xn−1, xn},min{xn, xn+1}}.
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Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent
numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

Solution 1. Note first that the allowed operation does not change the maximum M of the
initial sequence. Let a1, a2, . . . , an be the numbers obtained at some point of the process.
Consider the sum

S = a1 + 2a2 + · · ·+ nan.

We claim that S increases by a positive integer amount with every operation. Let the operation
replace the pair (ai, ai+1) by a pair (c, ai), where ai > ai+1 and c = ai+1+1 or c = ai−1. Then the
new and the old value of S differ by d = (ic+(i+1)ai)−(iai+(i+1)ai+1) = ai−ai+1+i(c−ai+1).
The integer d is positive since ai − ai+1 ≥ 1 and c− ai+1 ≥ 0.

On the other hand S ≤ (1 + 2+ · · ·+ n)M as ai ≤ M for all i = 1, . . . , n. Since S increases
by at least 1 at each step and never exceeds the constant (1 + 2+ · · ·+n)M , the process stops
after a finite number of iterations.

Solution 2. Like in the first solution note that the operations do not change the maximum M
of the initial sequence. Now consider the reverse lexicographical order for n-tuples of integers.
We say that (x1, . . . , xn) < (y1, . . . , yn) if xn < yn, or if xn = yn and xn−1 < yn−1, or if xn = yn,
xn−1 = yn−1 and xn−2 < yn−2, etc. Each iteration creates a sequence that is greater than
the previous one with respect to this order, and no sequence occurs twice during the process.
On the other hand there are finitely many possible sequences because their terms are always
positive integers not exceeding M . Hence the process cannot continue forever.

Solution 3. Let the current numbers be a1, a2, . . . , an. Define the score si of ai as the number
of aj ’s that are less than ai. Call the sequence s1, s2, . . . , sn the score sequence of a1, a2, . . . , an.

Let us say that a sequence x1, . . . , xn dominates a sequence y1, . . . , yn if the first index i
with xi 6= yi is such that xi < yi. We show that after each operation the new score sequence
dominates the old one. Score sequences do not repeat, and there are finitely many possibilities
for them, no more than (n− 1)n. Hence the process will terminate.

Consider an operation that replaces (x, y) by (a, x), with a = y + 1 or a = x− 1. Suppose
that x was originally at position i. For each j < i the score sj does not increase with the
change because y ≤ a and x ≤ x. If sj decreases for some j < i then the new score sequence
dominates the old one. Assume that sj stays the same for all j < i and consider si. Since x > y
and y ≤ a ≤ x, we see that si decreases by at least 1. This concludes the proof.

Comment. All three proofs work if x and y are not necessarily adjacent, and if the pair (x, y) is
replaced by any pair (a, x), with a an integer satisfying y ≤ a ≤ x. There is nothing special about
the “weights” 1, 2, . . . , n in the definition of S =

∑n
i=1 iai from the first solution. For any sequence

w1 < w2 < · · · < wn of positive integers, the sum
∑n

i=1 wiai increases by at least 1 with each operation.
Consider the same problem, but letting Alice replace the pair (x, y) by (a, x), where a is any positive

integer less than x. The same conclusion holds in this version, i. e. the process stops eventually. The
solution using the reverse lexicographical order works without any change. The first solution would
require a special set of weights like wi = M i for i = 1, . . . , n.

Comment. The first and the second solutions provide upper bounds for the number of possible
operations, respectively of order Mn2 and Mn where M is the maximum of the original sequence.
The upper bound (n− 1)n in the third solution does not depend on M .
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C2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the
set {1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

Solution. Consider x such pairs in {1, 2, . . . , n}. The sum S of the 2x numbers in them is at
least 1+2+· · ·+2x since the pairs are disjoint. On the other hand S ≤ n+(n−1)+· · ·+(n−x+1)
because the sums of the pairs are different and do not exceed n. This gives the inequality

2x(2x+ 1)

2
≤ nx− x(x− 1)

2
,

which leads to x ≤ 2n−1
5

. Hence there are at most
⌊
2n−1

5

⌋
pairs with the given properties.

We show a construction with exactly
⌊
2n−1
5

⌋
pairs. First consider the case n = 5k + 3 with

k ≥ 0, where
⌊
2n−1
5

⌋
= 2k + 1. The pairs are displayed in the following table.

Pairs
3k + 1 3k · · · 2k + 2 4k + 2 4k + 1 · · · 3k + 3 3k + 2

2 4 · · · 2k 1 3 · · · 2k − 1 2k + 1
Sums 3k + 3 3k + 4 · · · 4k + 2 4k + 3 4k + 4 · · · 5k + 2 5k + 3

The 2k+1 pairs involve all numbers from 1 to 4k+2; their sums are all numbers from 3k+3
to 5k + 3. The same construction works for n = 5k + 4 and n = 5k + 5 with k ≥ 0. In these
cases the required number

⌊
2n−1

5

⌋
of pairs equals 2k + 1 again, and the numbers in the table

do not exceed 5k + 3. In the case n = 5k + 2 with k ≥ 0 one needs only 2k pairs. They can
be obtained by ignoring the last column of the table (thus removing 5k + 3). Finally, 2k pairs
are also needed for the case n = 5k + 1 with k ≥ 0. Now it suffices to ignore the last column
of the table and then subtract 1 from each number in the first row.

Comment. The construction above is not unique. For instance, the following table shows another
set of 2k + 1 pairs for the cases n = 5k + 3, n = 5k + 4, and n = 5k + 5.

Pairs
1 2 · · · k k + 1 k + 2 · · · 2k + 1

4k + 1 4k − 1 · · · 2k + 3 4k + 2 4k · · · 2k + 2

Sums 4k + 2 4k + 1 · · · 3k + 3 5k + 3 5k + 2 · · · 4k + 3

The table for the case n = 5k + 2 would be the same, with the pair (k + 1, 4k + 2) removed. For the
case n = 5k + 1 remove the last column and subtract 2 from each number in the second row.
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C3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T
be the number of triples (C1, C2, C3) of cells, the first two in the same row and the last two in
the same column, with C1 and C3 white and C2 red. Find the maximum value T can attain.

Solution. We prove that in an n× n square table there are at most 4n4

27
such triples.

Let row i and column j contain ai and bj white cells respectively, and let R be the set of
red cells. For every red cell (i, j) there are aibj admissible triples (C1, C2, C3) with C2 = (i, j),
therefore

T =
∑

(i,j)∈R

aibj .

We use the inequality 2ab ≤ a2 + b2 to obtain

T ≤ 1

2

∑

(i,j)∈R

(a2i + b2j ) =
1

2

n∑

i=1

(n− ai)a
2
i +

1

2

n∑

j=1

(n− bj)b
2
j .

This is because there are n − ai red cells in row i and n − bj red cells in column j. Now we
maximize the right-hand side.

By the AM-GM inequality we have

(n− x)x2 =
1

2
(2n− 2x) · x · x ≤ 1

2

(
2n

3

)3

=
4n3

27
,

with equality if and only if x = 2n
3
. By putting everything together, we get

T ≤ n

2

4n3

27
+

n

2

4n3

27
=

4n4

27
.

If n = 999 then any coloring of the square table with x = 2n
3
= 666 white cells in each row

and column attains the maximum as all inequalities in the previous argument become equalities.
For example color a cell (i, j) white if i− j ≡ 1, 2, . . . , 666 (mod 999), and red otherwise.

Therefore the maximum value T can attain is T = 4·9994

27
.

Comment. One can obtain a better preliminary estimate with the Cauchy-Schwarz inequality:

T =
∑

(i,j)∈R

aibj ≤




∑

(i,j)∈R

a2i





1
2

·




∑

(i,j)∈R

b2j





1
2

=

(
n∑

i=1

(n− ai)a
2
i

) 1
2

·





n∑

j=1

(n− bj)b
2
j





1
2

.

It can be used to reach the same conclusion.
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C4. Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a
circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each
box. Then the two of them make moves in the order B,A,B,A, . . . by the following rules:

• On every move of his B passes 1 coin from every box to an adjacent box.

• On every move of hers A chooses several coins that were not involved in B’s previous
move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A’s goal is to ensure at least 1 coin in each box after every move of hers, regardless of
how B plays and how many moves are made. Find the least N that enables her to succeed.

Solution. We argue for a general n ≥ 7 instead of 2012 and prove that the required minimum N
is 2n− 2. For n = 2012 this gives Nmin = 4022.

a) If N = 2n − 2 player A can achieve her goal. Let her start the game with a regular

distribution: n− 2 boxes with 2 coins and 2 boxes with 1 coin. Call the boxes of the two kinds
red and white respectively. We claim that on her first move A can achieve a regular distribution
again, regardless of B’s first move M . She acts according as the following situation S occurs
after M or not: The initial distribution contains a red box R with 2 white neighbors, and R
receives no coins from them on move M .

Suppose that S does not occur. Exactly one of the coins c1 and c2 in a given red box X
is involved in M , say c1. If M passes c1 to the right neighbor of X , let A pass c2 to its left
neighbor, and vice versa. By doing so with all red boxes A performs a legal move M ′. Thus
M and M ′ combined move the 2 coins of every red box in opposite directions. Hence after M
and M ′ are complete each neighbor of a red box X contains exactly 1 coin that was initially
in X . So each box with a red neighbor is non-empty after M ′. If initially there is a box X
with 2 white neighbors (X is red and unique) then X receives a coin from at least one of them
on move M since S does not occur. Such a coin is not involved in M ′, so X is also non-empty
after M ′. Furthermore each box Y has given away its initial content after M and M ′. A red
neighbor of Y adds 1 coin to it; a white neighbor adds at most 1 coin because it is not involved
in M ′. Hence each box contains 1 or 2 coins after M ′. Because N = 2n−2, such a distribution
is regular.

Now let S occur after move M . Then A leaves untouched the exceptional red box R. With
all remaining red boxes she proceeds like in the previous case, thus making a legal move M ′′.
Box R receives no coins from its neighbors on either move, so there is 1 coin in it after M ′′.
Like above M and M ′′ combined pass exactly 1 coin from every red box different from R to
each of its neighbors. Every box except R has a red neighbor different from R, hence all boxes
are non-empty after M ′′. Next, each box Y except R loses its initial content after M and M ′′.
A red neighbor of Y adds at most 1 coin to it; a white neighbor also adds at most 1 coin as
it does not participate in M ′′. Thus each box has 1 or 2 coins after M ′′, and the obtained
distribution is regular.

Player A can apply the described strategy indefinitely, so N = 2n−2 enables her to succeed.

b) For N ≤ 2n − 3 player B can achieve an empty box after some move of A. Let α be a
set of ℓ consecutive boxes containing a total of N(α) coins. We call α an arc if ℓ ≤ n− 2 and
N(α) ≤ 2ℓ − 3. Note that ℓ ≥ 2 by the last condition. Moreover if both extremes of α are
non-empty boxes then N(α) ≥ 2, so that N(α) ≤ 2ℓ − 3 implies ℓ ≥ 3. Observe also that if
an extreme X of α has more than 1 coin then ignoring X yields a shorter arc. It follows that
every arc contains an arc whose extremes have at most 1 coin each.

Given a clockwise labeling 1, 2, . . . , n of the boxes, suppose that boxes 1, 2, . . . , ℓ form an
arc α, with ℓ ≤ n − 2 and N(α) ≤ 2ℓ − 3. Suppose also that all n ≥ 7 boxes are non-empty.
Then B can move so that an arc α′ with N(α′) < N(α) will appear after any response of A.
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One may assume exactly 1 coin in boxes 1 and ℓ by a previous remark. Let B pass 1 coin
in counterclockwise direction from box 1 and box n, and in clockwise direction from each
remaining box. This leaves N(α)−2 coins in the boxes of α. In addition, due to 3 ≤ ℓ ≤ n−2,
box ℓ has exactly 1 coin c, the one received from box ℓ− 1.

Let player A’s next move M pass k ≤ 2 coins to boxes 1, 2, . . . , ℓ from the remaining ones.
Only boxes 1 and ℓ can receive such coins, at most 1 each. If k < 2 then after move M boxes
1, 2, . . . , ℓ form an arc α′ with N(α′) < N(α). If k = 2 then M adds a coin to box ℓ. Also
M does not move coin c from ℓ because c is involved in the previous move of B. In summary
boxes 1, 2, . . . , ℓ contain N(α) coins like before, so they form an arc. However there are 2 coins
now in the extreme ℓ of the arc. Ignore ℓ to obtain a shorter arc α′ with N(α′) < N(α).

Consider any initial distribution without empty boxes. Since N ≤ 2n − 3, there are at
least 3 boxes in it with exactly 1 coin. It follows from n ≥ 7 that some 2 of them are the
extremes of an arc α. Hence B can make the move described above, which leads to an arc α′

with N(α′) < N(α) after A’s response. If all boxes in the new distribution are non-empty he
can repeat the same, and so on. Because N(α) cannot decrease indefinitely, an empty box will
occur after some move of A.
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C5. The columns and the rows of a 3n× 3n square board are numbered 1, 2, . . . , 3n. Every
square (x, y) with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the
modulo 3 remainder of x+ y is 0, 1 or 2 respectively. One token colored asparagus, byzantium
or citrine is placed on each square, so that there are 3n2 tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of
at most d from its original position, each asparagus token replaces a byzantium token, each
byzantium token replaces a citrine token, and each citrine token replaces an asparagus token.
Prove that it is possible to permute the tokens so that each token is moved to a distance of at
most d+ 2 from its original position, and each square contains a token with the same color as
the square.

Solution. Without loss of generality it suffices to prove that the A-tokens can be moved to
distinct A-squares in such a way that each A-token is moved to a distance at most d+ 2 from
its original place. This means we need a perfect matching between the 3n2 A-squares and the
3n2 A-tokens such that the distance in each pair of the matching is at most d+ 2.

To find the matching, we construct a bipartite graph. The A-squares will be the vertices in
one class of the graph; the vertices in the other class will be the A-tokens.

Split the board into 3 × 1 horizontal triminos; then each trimino contains exactly one A-
square. Take a permutation π of the tokens which moves A-tokens to B-tokens, B-tokens to
C-tokens, and C-tokens to A-tokens, in each case to a distance at most d. For each A-square S,
and for each A-token T , connect S and T by an edge if T , π(T ) or π−1(T ) is on the trimino
containing S. We allow multiple edges; it is even possible that the same square and the same
token are connected with three edges. Obviously the lengths of the edges in the graph do not
exceed d+ 2. By length of an edge we mean the distance between the A-square and the A-token
it connects.

Each A-token T is connected with the three A-squares whose triminos contain T , π(T )
and π−1(T ). Therefore in the graph all tokens are of degree 3. We show that the same is true
for the A-squares. Let S be an arbitrary A-square, and let T1, T2, T3 be the three tokens on
the trimino containing S. For i = 1, 2, 3, if Ti is an A-token, then S is connected with Ti; if Ti

is a B-token then S is connected with π−1(Ti); finally, if Ti is a C-token then S is connected
with π(Ti). Hence in the graph the A-squares also are of degree 3.

Since the A-squares are of degree 3, from every set S of A-squares exactly 3|S| edges start.
These edges end in at least |S| tokens because the A-tokens also are of degree 3. Hence every
set S of A-squares has at least |S| neighbors among the A-tokens.

Therefore, by Hall’s marriage theorem, the graph contains a perfect matching between
the two vertex classes. So there is a perfect matching between the A-squares and A-tokens
with edges no longer than d+2. It follows that the tokens can be permuted as specified in the
problem statement.

Comment 1. In the original problem proposal the board was infinite and there were only two colors.
Having n colors for some positive integer n was an option; we chose n = 3. Moreover, we changed
the board to a finite one to avoid dealing with infinite graphs (although Hall’s theorem works in the
infinite case as well).

With only two colors Hall’s theorem is not needed. In this case we split the board into 2 × 1
dominos, and in the resulting graph all vertices are of degree 2. The graph consists of disjoint cycles
with even length and infinite paths, so the existence of the matching is trivial.

Having more than three colors would make the problem statement more complicated, because we
need a matching between every two color classes of tokens. However, this would not mean a significant
increase in difficulty.
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Comment 2. According to Wikipedia, the color asparagus (hexadecimal code #87A96B) is a tone
of green that is named after the vegetable. Crayola created this color in 1993 as one of the 16 to
be named in the Name The Color Contest. Byzantium (#702963) is a dark tone of purple. Its first
recorded use as a color name in English was in 1926. Citrine (#E4D00A) is variously described as
yellow, greenish-yellow, brownish-yellow or orange. The first known use of citrine as a color name in
English was in the 14th century.
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C6. Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses integers
x and N with 1 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly
ask Amy whether x ∈ S for arbitrary sets S of integers. Amy will always answer with yes or no,
but she might lie. The only restriction is that she can lie at most k times in a row. After he
has asked as many questions as he wants, Ben must specify a set of at most n positive integers.
If x is in this set he wins; otherwise, he loses. Prove that:

a) If n ≥ 2k then Ben can always win.

b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

Solution. Consider an answer A ∈ {yes, no} to a question of the kind “Is x in the set S?”
We say that A is inconsistent with a number i if A = yes and i 6∈ S, or if A = no and i ∈ S.
Observe that an answer inconsistent with the target number x is a lie.

a) Suppose that Ben has determined a set T of size m that contains x. This is true initially
with m = N and T = {1, 2, . . . , N}. For m > 2k we show how Ben can find a number y ∈ T
that is different from x. By performing this step repeatedly he can reduce T to be of size 2k ≤ n
and thus win.

Since only the size m > 2k of T is relevant, assume that T = {0, 1, . . . , 2k, . . . , m−1}. Ben
begins by asking repeatedly whether x is 2k. If Amy answers no k + 1 times in a row, one
of these answers is truthful, and so x 6= 2k. Otherwise Ben stops asking about 2k at the first
answer yes. He then asks, for each i = 1, . . . , k, if the binary representation of x has a 0 in
the ith digit. Regardless of what the k answers are, they are all inconsistent with a certain
number y ∈ {0, 1, . . . , 2k − 1}. The preceding answer yes about 2k is also inconsistent with y.
Hence y 6= x. Otherwise the last k + 1 answers are not truthful, which is impossible.

Either way, Ben finds a number in T that is different from x, and the claim is proven.
b) We prove that if 1 < λ < 2 and n =

⌊
(2− λ)λk+1

⌋
− 1 then Ben cannot guarantee a win.

To complete the proof, then it suffices to take λ such that 1.99 < λ < 2 and k large enough so
that

n =
⌊
(2− λ)λk+1

⌋
− 1 ≥ 1.99k.

Consider the following strategy for Amy. First she choosesN = n+1 and x ∈ {1, 2, . . . , n+1}
arbitrarily. After every answer of hers Amy determines, for each i = 1, 2, . . . , n + 1, the
number mi of consecutive answers she has given by that point that are inconsistent with i. To
decide on her next answer, she then uses the quantity

φ =
n+1∑

i=1

λmi.

No matter what Ben’s next question is, Amy chooses the answer which minimizes φ.
We claim that with this strategy φ will always stay less than λk+1. Consequently no expo-

nent mi in φ will ever exceed k, hence Amy will never give more than k consecutive answers
inconsistent with some i. In particular this applies to the target number x, so she will never lie
more than k times in a row. Thus, given the claim, Amy’s strategy is legal. Since the strategy
does not depend on x in any way, Ben can make no deductions about x, and therefore he cannot
guarantee a win.

It remains to show that φ < λk+1 at all times. Initially each mi is 0, so this condition holds
in the beginning due to 1 < λ < 2 and n =

⌊
(2− λ)λk+1

⌋
− 1. Suppose that φ < λk+1 at some

point, and Ben has just asked if x ∈ S for some set S. According as Amy answers yes or no,
the new value of φ becomes

φ1 =
∑

i∈S

1 +
∑

i/∈S

λmi+1 or φ2 =
∑

i∈S

λmi+1 +
∑

i/∈S

1.
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Since Amy chooses the option minimizing φ, the new φ will equal min(φ1, φ2). Now we have

min(φ1, φ2) ≤
1

2
(φ1 + φ2) =

1

2

(
∑

i∈S

(
1 + λmi+1

)
+
∑

i/∈S

(
λmi+1 + 1

)

)

=
1

2
(λφ+ n+ 1).

Because φ < λk+1, the assumptions λ < 2 and n =
⌊
(2− λ)λk+1

⌋
− 1 lead to

min(φ1, φ2) <
1

2
(λk+2 + (2− λ)λk+1) = λk+1.

The claim follows, which completes the solution.

Comment. Given a fixed k, let f(k) denote the minimum value of n for which Ben can guarantee a
victory. The problem asks for a proof that for large k

1.99k ≤ f(k) ≤ 2k.

A computer search shows that f(k) = 2, 3, 4, 7, 11, 17 for k = 1, 2, 3, 4, 5, 6.



28

C7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that
one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums
of the pairs of numbers at the endpoints of the chosen chords are equal.

Solution. The proof is based on the following general fact.

Lemma. In a graph G each vertex v has degree dv. Then G contains an independent set S of
vertices such that |S| ≥ f(G) where

f(G) =
∑

v∈G

1

dv + 1
.

Proof. Induction on n = |G|. The base n = 1 is clear. For the inductive step choose a vertex v0
in G of minimum degree d. Delete v0 and all of its neighbors v1, . . . , vd and also all edges with
endpoints v0, v1, . . . , vd. This gives a new graph G′. By the inductive assumption G′ contains
an independent set S ′ of vertices such that |S ′| ≥ f(G′). Since no vertex in S ′ is a neighbor
of v0 in G, the set S = S ′ ∪ {v0} is independent in G.

Let d′v be the degree of a vertex v in G′. Clearly d′v ≤ dv for every such vertex v, and also
dvi ≥ d for all i = 0, 1, . . . , d by the minimal choice of v0. Therefore

f(G′) =
∑

v∈G′

1

d′v + 1
≥
∑

v∈G′

1

dv + 1
= f(G)−

d∑

i=0

1

dvi + 1
≥ f(G)− d+ 1

d+ 1
= f(G)− 1.

Hence |S| = |S ′|+ 1 ≥ f(G′) + 1 ≥ f(G), and the induction is complete. �

We pass on to our problem. For clarity denote n = 2499 and draw all chords determined by
the given 2n points. Color each chord with one of the colors 3, 4, . . . , 4n − 1 according to the
sum of the numbers at its endpoints. Chords with a common endpoint have different colors.
For each color c consider the following graph Gc. Its vertices are the chords of color c, and two
chords are neighbors in Gc if they intersect. Let f(Gc) have the same meaning as in the lemma
for all graphs Gc.

Every chord ℓ divides the circle into two arcs, and one of them contains m(ℓ) ≤ n− 1 given
points. (In particular m(ℓ) = 0 if ℓ joins two consecutive points.) For each i = 0, 1, . . . , n− 2
there are 2n chords ℓ with m(ℓ) = i. Such a chord has degree at most i in the respective graph.
Indeed let A1, . . . , Ai be all points on either arc determined by a chord ℓ with m(ℓ) = i and
color c. Every Aj is an endpoint of at most 1 chord colored c, j = 1, . . . , i. Hence at most
i chords of color c intersect ℓ.

It follows that for each i = 0, 1, . . . , n − 2 the 2n chords ℓ with m(ℓ) = i contribute at
least 2n

i+1
to the sum

∑

c f(Gc). Summation over i = 0, 1, . . . , n− 2 gives

∑

c

f(Gc) ≥ 2n
n−1∑

i=1

1

i
.

Because there are 4n− 3 colors in all, averaging yields a color c such that

f(Gc) ≥
2n

4n− 3

n−1∑

i=1

1

i
>

1

2

n−1∑

i=1

1

i
.

By the lemma there are at least 1
2

∑n−1
i=1

1
i
pairwise disjoint chords of color c, i. e. with the same

sum c of the pairs of numbers at their endpoints. It remains to show that 1
2

∑n−1
i=1

1
i
≥ 100 for

n = 2499. Indeed we have
n−1∑

i=1

1

i
>

2400∑

i=1

1

i
= 1 +

400∑

k=1

2k∑

i=2k−1+1

1

i
> 1 +

400∑

k=1

2k−1

2k
= 201 > 200.

This completes the solution.
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Geometry

G1. In the triangle ABC the point J is the center of the excircle opposite to A. This excircle
is tangent to the side BC at M , and to the lines AB and AC at K and L respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST .

Solution. Let α = ∠CAB, β = ∠ABC and γ = ∠BCA. The line AJ is the bisector of ∠CAB,
so ∠JAK = ∠JAL = α

2
. By ∠AKJ = ∠ALJ = 90◦ the points K and L lie on the circle ω

with diameter AJ .
The triangle KBM is isosceles as BK and BM are tangents to the excircle. Since BJ is the

bisector of ∠KBM , we have ∠MBJ = 90◦ − β
2
and ∠BMK = β

2
. Likewise ∠MCJ = 90◦ − γ

2

and ∠CML = γ
2
. Also ∠BMF = ∠CML, therefore

∠LFJ = ∠MBJ − ∠BMF =

(

90◦ − β

2

)

− γ

2
=

α

2
= ∠LAJ.

Hence F lies on the circle ω. (By the angle computation, F and A are on the same side of BC.)
Analogously, G also lies on ω. Since AJ is a diameter of ω, we obtain ∠AFJ = ∠AGJ = 90◦.

A

B C

GF

S T

K

M

L

ω

J

β γ

α
2

α
2

α
2

α
2

The lines AB and BC are symmetric with respect to the external bisector BF . Because
AF ⊥ BF and KM ⊥ BF , the segments SM and AK are symmetric with respect to BF ,
hence SM = AK. By symmetry TM = AL. Since AK and AL are equal as tangents to the
excircle, it follows that SM = TM , and the proof is complete.

Comment. After discovering the circle AFKJLG, there are many other ways to complete the solu-
tion. For instance, from the cyclic quadrilaterals JMFS and JMGT one can find∠TSJ = ∠STJ = α

2 .
Another possibility is to use the fact that the lines AS and GM are parallel (both are perpendicular
to the external angle bisector BJ), so MS

MT = AG
GT = 1.
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G2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that
ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that
D, H , F , G are concyclic.

Solution. We show first that the triangles FDG and FBE are similar. Since ABCD is cyclic,
the triangles EAB and EDC are similar, as well as FAB and FCD. The parallelogram ECGD
yields GD = EC and ∠CDG = ∠DCE; also ∠DCE = ∠DCA = ∠DBA by inscribed angles.
Therefore

∠FDG = ∠FDC + ∠CDG = ∠FBA+ ∠ABD = ∠FBE,

GD

EB
=

CE

EB
=

CD

AB
=

FD

FB
.

It follows that FDG and FBE are similar, and so ∠FGD = ∠FEB.

A B

D

G

E

F

H

C

Since H is the reflection of E with respect to FD, we conclude that

∠FHD = ∠FED = 180◦ − ∠FEB = 180◦ − ∠FGD.

This proves that D, H , F , G are concyclic.

Comment. Points E and G are always in the half-plane determined by the line FD that contains
B and C, but H is always in the other half-plane. In particular, DHFG is cyclic if and only if
∠FHD + ∠FGD = 180◦.
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G3. In an acute triangle ABC the points D, E and F are the feet of the altitudes through A,
B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2
and O1O2 are parallel.

Solution. Let ∠CAB = α, ∠ABC = β, ∠BCA = γ. We start by showing that A,B, I1
and I2 are concyclic. Since AI1 and BI2 bisect ∠CAB and ∠ABC, their extensions beyond I1
and I2 meet at the incenter I of the triangle. The points E and F are on the circle with
diameter BC, so ∠AEF = ∠ABC and ∠AFE = ∠ACB. Hence the triangles AEF and ABC
are similar with ratio of similitude AE

AB
= cosα. Because I1 and I are their incenters, we obtain

I1A = IA cosα and II1 = IA− I1A = 2IA sin2 α
2
. By symmetry II2 = 2IB sin2 β

2
. The law of

sines in the triangle ABI gives IA sin α
2
= IB sin β

2
. Hence

II1 · IA = 2
(
IA sin α

2

)2
= 2

(
IB sin β

2

)2
= II2 · IB.

Therefore A,B, I1 and I2 are concyclic, as claimed.

O2

O1

C

A F B

I2Q

I

E

D

I3

I1

In addition II1 · IA = II2 · IB implies that I has the same power with respect to the
circles (ACI1), (BCI2) and (ABI1I2). Then CI is the radical axis of (ACI1) and (BCI2); in
particular CI is perpendicular to the line of centers O1O2.

Now it suffices to prove that CI ⊥ I1I2. Let CI meet I1I2 at Q, then it is enough to check
that ∠II1Q+ ∠I1IQ = 90◦. Since ∠I1IQ is external for the triangle ACI, we have

∠II1Q+ ∠I1IQ = ∠II1Q+ (∠ACI + ∠CAI) = ∠II1I2 + ∠ACI + ∠CAI.

It remains to note that ∠II1I2 = β
2
from the cyclic quadrilateral ABI1I2, and ∠ACI = γ

2
,

∠CAI = α
2
. Therefore ∠II1Q + ∠I1IQ = α

2
+ β

2
+ γ

2
= 90◦, completing the proof.

Comment. It follows from the first part of the solution that the common point I3 6= C of the
circles (ACI1) and (BCI2) is the incenter of the triangle CDE.
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G4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines
through D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively.
Prove that the quadrilateral BXCY is cyclic.

Solution. The bisector of ∠BAC and the perpendicular bisector of BC meet at P , the midpoint
of the minor arc B̂C (they are different lines as AB 6= AC). In particular OP is perpendicular
to BC and intersects it at M , the midpoint of BC.

Denote by Y ′ the reflexion of Y with respect to OP . Since ∠BY C = ∠BY ′C, it suffices to
prove that BXCY ′ is cyclic.

A

D

Y ′Y

B C

X

M

O

E

P

We have
∠XAP = ∠OPA = ∠EY P.

The first equality holds because OA = OP , and the second one because EY and OP are both
perpendicular to BC and hence parallel. But {Y, Y ′} and {E,D} are pairs of symmetric points
with respect to OP , it follows that ∠EY P = ∠DY ′P and hence

∠XAP = ∠DY ′P = ∠XY ′P.

The last equation implies that XAY ′P is cyclic. By the powers of D with respect to the
circles (XAY ′P ) and (ABPC) we obtain

XD ·DY ′ = AD ·DP = BD ·DC.

It follows that BXCY ′ is cyclic, as desired.
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G5. Let ABC be a triangle with ∠BCA = 90◦, and let C0 be the foot of the altitude
from C. Choose a point X in the interior of the segment CC0, and let K,L be the points on
the segments AX,BX for which BK = BC and AL = AC respectively. Denote by M the
intersection of AL and BK. Show that MK = ML.

Solution. Let C ′ be the reflection of C in the line AB, and let ω1 and ω2 be the circles
with centers A and B, passing through L and K respectively. Since AC ′ = AC = AL and
BC ′ = BC = BK, both ω1 and ω2 pass through C and C ′. By ∠BCA = 90◦, AC is tangent
to ω2 at C, and BC is tangent to ω1 at C. Let K1 6= K be the second intersection of AX and
ω2, and let L1 6= L be the second intersection of BX and ω1.

A

K
M

L1

K1

ω3

C

L

BC0

C ′

X

ω2
ω1

By the powers of X with respect to ω2 and ω1,

XK ·XK1 = XC ·XC ′ = XL ·XL1,

so the points K1, L, K, L1 lie on a circle ω3.
The power of A with respect to ω2 gives

AL2 = AC2 = AK · AK1,

indicating that AL is tangent to ω3 at L. Analogously, BK is tangent to ω3 at K. Hence MK
and ML are the two tangents from M to ω3 and therefore MK = ML.
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G6. Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on
the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

Solution. By Miquel’s theorem the circles (AEF ) = ωA, (BFD) = ωB and (CDE) = ωC

have a common point, for arbitrary points D, E and F on BC, CA and AB. So ωA passes
through the common point P 6= D of ωB and ωC .

Let ωA, ωB and ωC meet the bisectors AI, BI and CI at A 6= A′, B 6= B′ and C 6= C ′

respectively. The key observation is that A′, B′ and C ′ do not depend on the particular choice
of D, E and F , provided that BD + BF = CA, CD + CE = AB and AE + AF = BC hold
true (the last equality follows from the other two). For a proof we need the following fact.

Lemma. Given is an angle with vertex A and measure α. A circle ω through A intersects the
angle bisector at L and sides of the angle at X and Y . Then AX + AY = 2AL cos α

2
.

Proof. Note that L is the midpoint of arc X̂LY in ω and set XL = Y L = u, XY = v. By
Ptolemy’s theorem AX ·Y L+AY ·XL = AL ·XY , which rewrites as (AX +AY )u = AL · v.
Since ∠LXY = α

2
and ∠XLY = 180◦ − α, we have v = 2 cos α

2
u by the law of sines, and the

claim follows. �

X

L
u

u

v

A

Y

Apply the lemma to ∠BAC = α and the circle ω = ωA, which intersects AI at A′. This
gives 2AA′ cos α

2
= AE + AF = BC; by symmetry analogous relations hold for BB′ and CC ′.

It follows that A′, B′ and C ′ are independent of the choice of D, E and F , as stated.

We use the lemma two more times with ∠BAC = α. Let ω be the circle with diameter AI.
Then X and Y are the tangency points of the incircle of ABC with AB and AC, and hence
AX = AY = 1

2
(AB + AC − BC). So the lemma yields 2AI cos α

2
= AB + AC − BC. Next,

if ω is the circumcircle of ABC and AI intersects ω at M 6= A then {X, Y } = {B,C}, and so
2AM cos α

2
= AB + AC by the lemma. To summarize,

2AA′ cos α
2
= BC, 2AI cos α

2
= AB + AC − BC, 2AM cos α

2
= AB + AC. (*)

These equalities imply AA′ + AI = AM , hence the segments AM and IA′ have a common
midpoint. It follows that I and A′ are equidistant from the circumcenter O. By symmetry
OI = OA′ = OB′ = OC ′, so I, A′, B′, C ′ are on a circle centered at O.

To prove OP = OI, now it suffices to show that I, A′, B′, C ′ and P are concyclic. Clearly
one can assume P 6= I, A′, B′, C ′.

We use oriented angles to avoid heavy case distinction. The oriented angle between the lines l
and m is denoted by ∠(l, m). We have ∠(l, m) = −∠(m, l) and ∠(l, m) + ∠(m,n) = ∠(l, n)
for arbitrary lines l, m and n. Four distinct non-collinear points U, V,X, Y are concyclic if and
only if ∠(UX, V X) = ∠(UY, V Y ).
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M

C

B′

I
O

E

P

C ′

A

B

A′

ωA

D

F

ωB

ωC

Suppose for the moment that A′, B′, P, I are distinct and noncollinear; then it is enough to
check the equality ∠(A′P,B′P ) = ∠(A′I, B′I). Because A, F, P, A′ are on the circle ωA, we have
∠(A′P, FP ) = ∠(A′A, FA) = ∠(A′I, AB). Likewise ∠(B′P, FP ) = ∠(B′I, AB). Therefore

∠(A′P,B′P ) = ∠(A′P, FP ) + ∠(FP,B′P ) = ∠(A′I, AB)− ∠(B′I, AB) = ∠(A′I, B′I).

Here we assumed that P 6= F . If P = F then P 6= D,E and the conclusion follows similarly (use
∠(A′F,B′F ) = ∠(A′F,EF ) + ∠(EF,DF ) + ∠(DF,B′F ) and inscribed angles in ωA, ωB, ωC).

There is no loss of generality in assuming A′, B′, P, I distinct and noncollinear. If ABC
is an equilateral triangle then the equalities (*) imply that A′, B′, C ′, I, O and P coincide, so
OP = OI. Otherwise at most one of A′, B′, C ′ coincides with I. If say C ′ = I then OI ⊥ CI
by the previous reasoning. It follows that A′, B′ 6= I and hence A′ 6= B′. Finally A′, B′ and I
are noncollinear because I, A′, B′, C ′ are concyclic.

Comment. The proposer remarks that the locus γ of the points P is an arc of the circle (A′B′C ′I).
The reflection I ′ of I in O belongs to γ; it is obtained by choosing D, E and F to be the tangency
points of the three excircles with their respective sides. The rest of the circle (A′B′C ′I), except I,
can be included in γ by letting D, E and F vary on the extensions of the sides and assuming signed
lengths. For instance if B is between C and D then the length BD must be taken with a negative
sign. The incenter I corresponds to the limit case where D tends to infinity.
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G7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume
that there is a point E on the side BC such that the quadrilaterals ABED and AECD are
circumscribed. Prove that there is a point F on the side AD such that the quadrilaterals
ABCF and BCDF are circumscribed if and only if AB is parallel to CD.

Solution. Let ω1 and ω2 be the incircles and O1 and O2 the incenters of the quadrilater-
als ABED and AECD respectively. A point F with the stated property exists only if ω1

and ω2 are also the incircles of the quadrilaterals ABCF and BCDF .

D

C

E

B

O1

O2

AF1F2O

Let the tangents from B to ω2 and from C to ω1 (other than BC) meet AD at F1 and F2

respectively. We need to prove that F1 = F2 if and only if AB ‖ CD.

Lemma. The circles ω1 and ω2 with centers O1 and O2 are inscribed in an angle with vertex O.
The points P, S on one side of the angle and Q,R on the other side are such that ω1 is the
incircle of the triangle PQO, and ω2 is the excircle of the triangle RSO opposite to O. Denote
p = OO1 · OO2. Then exactly one of the following relations holds:

OP ·OR < p < OQ · OS, OP · OR > p > OQ · OS, OP · OR = p = OQ · OS.

Proof. Denote ∠OPO1 = u, ∠OQO1 = v, ∠OO2R = x, ∠OO2S = y, ∠POQ = 2ϕ. Because
PO1, QO1, RO2, SO2 are internal or external bisectors in the triangles PQO and RSO, we have

u+ v = x+ y (= 90◦ − ϕ). (1)

R

S

O1O2

x
y

Pu

v Q

O ϕ
ϕ

By the law of sines
OP

OO1
=

sin(u+ ϕ)

sin u
and

OO2

OR
=

sin(x+ ϕ)

sin x
.

Therefore, since x, u and ϕ are acute,

OP ·OR ≥ p ⇔ OP

OO1

≥ OO2

OR
⇔ sin x sin(u+ ϕ) ≥ sin u sin(x+ ϕ) ⇔ sin(x− u) ≥ 0 ⇔ x ≥ u.

Thus OP · OR ≥ p is equivalent to x ≥ u, with OP · OR = p if and only if x = u.
Analogously, p ≥ OQ · OS is equivalent to v ≥ y, with p = OQ · OS if and only if v = y.

On the other hand x ≥ u and v ≥ y are equivalent by (1), with x = u if and only if v = y. The
conclusion of the lemma follows from here. �
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Going back to the problem, apply the lemma to the quadruples {B,E,D, F1}, {A,B,C,D}
and {A,E,C, F2}. Assuming OE · OF1 > p, we obtain

OE · OF1 > p ⇒ OB · OD < p ⇒ OA ·OC > p ⇒ OE · OF2 < p.

In other words, OE · OF1 > p implies

OB · OD < p < OA · OC and OE · OF1 > p > OE ·OF2.

Similarly, OE · OF1 < p implies

OB · OD > p > OA · OC and OE · OF1 < p < OE ·OF2.

In these cases F1 6= F2 and OB · OD 6= OA · OC, so the lines AB and CD are not parallel.
There remains the case OE · OF1 = p. Here the lemma leads to OB · OD = p = OA · OC

and OE ·OF1 = p = OE · OF2. Therefore F1 = F2 and AB ‖ CD.

Comment. The conclusion is also true if BC and AD are parallel. One can prove a limit case of
the lemma for the configuration shown in the figure below, where r1 and r2 are parallel rays starting
at O′ and O′′, with O′O′′ ⊥ r1, r2 and O the midpoint of O′O′′. Two circles with centers O1 and O2

are inscribed in the strip between r1 and r2. The lines PQ and RS are tangent to the circles, with
P, S on r1, and Q,R on r2, so that O,O1 are on the same side of PQ and O,O2 are on different sides
of RS. Denote s = OO1 +OO2. Then exactly one of the following relations holds:

O′P +O′′R < s < O′′Q+O′S, O′P +O′′R > s > O′′Q+O′S, O′P +O′′R = s = O′′Q+O′S.

O2

R

S

O1

Q

P
r1

r2

O

O′

O′′

Once this is established, the proof of the original statement for BC ‖ AD is analogous to the one
in the intersecting case. One replaces products by sums of relevant segments.
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G8. Let ABC be a triangle with circumcircle ω and ℓ a line without common points with ω.
Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines BC,CA,AB
intersect ℓ at the points X, Y, Z different from P . Prove that the circumcircles of the triangles
AXP,BY P and CZP have a common point different from P or are mutually tangent at P .

Solution 1. Let ωA, ωB, ωC and ω be the circumcircles of triangles AXP,BY P,CZP and ABC
respectively. The strategy of the proof is to construct a point Q with the same power with
respect to the four circles. Then each of P and Q has the same power with respect to ωA, ωB, ωC

and hence the three circles are coaxial. In other words they have another common point P ′ or
the three of them are tangent at P .

We first give a description of the point Q. Let A′ 6= A be the second intersection of ω
and ωA; define B

′ and C ′ analogously. We claim that AA′, BB′ and CC ′ have a common point.
Once this claim is established, the point just constructed will be on the radical axes of the
three pairs of circles {ω, ωA}, {ω, ωB}, {ω, ωC}. Hence it will have the same power with respect
to ω, ωA, ωB, ωC.

ℓ

ωA

ωC
ω

ωB

X Y ZP

A

B′

Q
O

C ′

B

A′C

Z ′ Y ′X ′

P ′

We proceed to prove that AA′, BB′ and CC ′ intersect at one point. Let r be the circumra-
dius of triangle ABC. Define the points X ′, Y ′, Z ′ as the intersections of AA′, BB′, CC ′ with ℓ.
Observe that X ′, Y ′, Z ′ do exist. If AA′ is parallel to ℓ then ωA is tangent to ℓ; hence X = P
which is a contradiction. Similarly, BB′ and CC ′ are not parallel to ℓ.

From the powers of the point X ′ with respect to the circles ωA and ω we get

X ′P · (X ′P + PX) = X ′P ·X ′X = X ′A′ ·X ′A = X ′O2 − r2,

hence
X ′P · PX = X ′O2 − r2 −X ′P 2 = OP 2 − r2.

We argue analogously for the points Y ′ and Z ′, obtaining

X ′P · PX = Y ′P · PY = Z ′P · PZ = OP 2 − r2 = k2. (1)

In these computations all segments are regarded as directed segments. We keep the same
convention for the sequel.

We prove that the lines AA′, BB′, CC ′ intersect at one point by Ceva’s theorem. To avoid
distracting remarks we interpret everything projectively, i. e. whenever two lines are parallel
they meet at a point on the line at infinity.
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Let U, V,W be the intersections of AA′, BB′, CC ′ with BC,CA,AB respectively. The idea
is that although it is difficult to calculate the ratio BU

CU
, it is easier to deal with the cross-ratio

BU
CU

/BX
CX

because we can send it to the line ℓ. With this in mind we apply Menelaus’ theorem
to the triangle ABC and obtain BX

CX
· CY
AY

· AZ
BZ

= 1. Hence Ceva’s ratio can be expressed as

BU

CU
· CV

AV
· AW
BW

=
BU

CU
/
BX

CX
· CV

AV
/
CY

AY
· AW
BW

/
AZ

BZ
.

ℓ

ω

X Y P

A

V
Q

W

U
B

C

Z ′ ZX ′ Y ′

Project the line BC to ℓ from A. The cross-ratio between BC and UX equals the cross-ratio
between ZY and X ′X . Repeating the same argument with the lines CA and AB gives

BU

CU
· CV

AV
· AW
BW

=
ZX ′

Y X ′
/
ZX

YX
· XY ′

ZY ′
/
XY

ZY
· Y Z ′

XZ ′
/
Y Z

XZ

and hence
BU

CU
· CV

AV
· AW
BW

= (−1) · ZX
′

Y X ′
· XY ′

ZY ′
· Y Z ′

XZ ′
.

The equations (1) reduce the problem to a straightforward computation on the line ℓ.
For instance, the transformation t 7→ −k2/t preserves cross-ratio and interchanges the points
X, Y, Z with the points X ′, Y ′, Z ′. Then

BU

CU
· CV

AV
· AW
BW

= (−1) · ZX
′

Y X ′
/
ZZ ′

Y Z ′
· XY ′

ZY ′
/
XZ ′

ZZ ′
= −1.

We proved that Ceva’s ratio equals −1, so AA′, BB′, CC ′ intersect at one point Q.

Comment 1. There is a nice projective argument to prove that AX ′, BY ′, CZ ′ intersect at one point.
Suppose that ℓ and ω intersect at a pair of complex conjugate points D and E. Consider a projective
transformation that takes D and E to [i; 1, 0] and [−i, 1, 0]. Then ℓ is the line at infinity, and ω is
a conic through the special points [i; 1, 0] and [−i, 1, 0], hence it is a circle. So one can assume that
AX,BY,CZ are parallel to BC,CA,AB. The involution on ℓ taking X,Y,Z to X ′, Y ′, Z ′ and leaving
D,E fixed is the involution changing each direction to its perpendicular one. Hence AX,BY,CZ are
also perpendicular to AX ′, BY ′, CZ ′.

It follows from the above that AX ′, BY ′, CZ ′ intersect at the orthocenter of triangle ABC.

Comment 2. The restriction that the line ℓ does not intersect the circumcricle ω is unnecessary.
The proof above works in general. In case ℓ intersects ω at D and E point P is the midpoint of DE,
and some equations can be interpreted differently. For instance

X ′P ·X ′X = X ′A′ ·X ′A = X ′D ·X ′E,

and hence the pairs X ′X and DE are harmonic conjugates. This means that X ′, Y ′, Z ′ are the
harmonic conjugates of X,Y,Z with respect to the segment DE.
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Solution 2. First we prove that there is an inversion in space that takes ℓ and ω to parallel
circles on a sphere. Let QR be the diameter of ω whose extension beyond Q passes through P .
Let Π be the plane carrying our objects. In space, choose a point O such that the line QO is
perpendicular to Π and ∠POR = 90◦, and apply an inversion with pole O (the radius of the
inversion does not matter). For any object T denote by T ′ the image of T under this inversion.

The inversion takes the plane Π to a sphere Π′. The lines in Π are taken to circles through O,
and the circles in Π also are taken to circles on Π′.

O

ℓ

P RQ

Q′

R′

ω

ℓ′

Π

P ′

Π
′

ω′

Since the line ℓ and the circle ω are perpendicular to the plane OPQ, the circles ℓ′ and ω′

also are perpendicular to this plane. Hence, the planes of the circles ℓ′ and ω′ are parallel.

Now consider the circles A′X ′P ′, B′Y ′P ′ and C ′Z ′P ′. We want to prove that either they
have a common point (on Π′), different from P ′, or they are tangent to each other.

H

C ′

O

B1

X ′

A′

W

Y ′

P ′

Z ′

Π
′

ℓ′

ω′

A1

C1

B′

The point X ′ is the second intersection of the circles B′C ′O and ℓ′, other than O. Hence,
the lines OX ′ and B′C ′ are coplanar. Moreover, they lie in the parallel planes of ℓ′ and ω′.
Therefore, OX ′ and B′C ′ are parallel. Analogously, OY ′ and OZ ′ are parallel to A′C ′ and A′B′.

Let A1 be the second intersection of the circles A′X ′P ′ and ω′, other than A′. The segments
A′A1 and P ′X ′ are coplanar, and therefore parallel. Now we know that B′C ′ and A′A1 are
parallel to OX ′ and X ′P ′ respectively, but these two segments are perpendicular because OP ′

is a diameter in ℓ′. We found that A′A1 and B′C ′ are perpendicular, hence A′A1 is the altitude
in the triangle A′B′C ′, starting from A.

Analogously, let B1 and C1 be the second intersections of ω′ with the circles B′P ′Y ′

and C ′P ′Z ′, other than B′ and C ′ respectively. Then B′B1 and C ′C1 are the other two al-
titudes in the triangle A′B′C ′.



41

Let H be the orthocenter of the triangle A′B′C ′. Let W be the second intersection of the
line P ′H with the sphere Π′, other than P ′. The point W lies on the sphere Π′, in the plane
of the circle A′P ′X ′, so W lies on the circle A′P ′X ′. Similarly, W lies on the circles B′P ′Y ′

and C ′P ′Z ′ as well; indeed W is the second common point of the three circles.
If the line P ′H is tangent to the sphere then W coincides with P ′, and P ′H is the common

tangent of the three circles.
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Number Theory

N1. Call admissible a set A of integers that has the following property:

If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.

Determine all pairsm,n of nonzero integers such that the only admissible set containing bothm
and n is the set of all integers.

Solution. A pair of integers m,n fulfills the condition if and only if gcd(m,n) = 1. Suppose
that gcd(m,n) = d > 1. The set

A = {. . . ,−2d,−d, 0, d, 2d, . . .}

is admissible, because if d divides x and y then it divides x2 + kxy + y2 for every integer k.
Also m,n ∈ A and A 6= Z.

Now let gcd(m,n) = 1, and let A be an admissible set containing m and n. We use the
following observations to prove that A = Z:

(i) kx2 ∈ A for every x ∈ A and every integer k.

(ii) (x+ y)2 ∈ A for all x, y ∈ A.

To justify (i) let y = x in the definition of an admissible set; to justify (ii) let k = 2.
Since gcd(m,n) = 1, we also have gcd(m2, n2) = 1. Hence one can find integers a, b such

that am2 + bn2 = 1. It follows from (i) that am2 ∈ A and bn2 ∈ A. Now we deduce from (ii)
that 1 = (am2 + bn2)2 ∈ A. But if 1 ∈ A then (i) implies k ∈ A for every integer k.
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N2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

Solution. First note that x divides 2012 ·2 = 23 ·503. If 503 | x then the right-hand side of the
equation is divisible by 5033, and it follows that 5032 | xyz + 2. This is false as 503 | x. Hence
x = 2m with m ∈ {0, 1, 2, 3}. If m ≥ 2 then 26 | 2012(xyz + 2). However the highest powers
of 2 dividing 2012 and xyz + 2 = 2myz + 2 are 22 and 21 respectively. So x = 1 or x = 2,
yielding the two equations

y3 + z3 = 2012(yz + 2), and y3 + z3 = 503(yz + 1).

In both cases the prime 503 = 3 · 167 + 2 divides y3 + z3. We claim that 503 | y + z. This
is clear if 503 | y, so let 503 ∤ y and 503 ∤ z. Then y502 ≡ z502 (mod 503) by Fermat’s little
theorem. On the other hand y3 ≡ −z3 (mod 503) implies y3·167 ≡ −z3·167 (mod 503), i. e.
y501 ≡ −z501 (mod 503). It follows that y ≡ −z (mod 503) as claimed.

Therefore y + z = 503k with k ≥ 1. In view of y3 + z3 = (y + z)
(
(y − z)2 + yz

)
the two

equations take the form

k(y − z)2 + (k − 4)yz = 8, (1)

k(y − z)2 + (k − 1)yz = 1. (2)

In (1) we have (k − 4)yz ≤ 8, which implies k ≤ 4. Indeed if k > 4 then 1 ≤ (k − 4)yz ≤ 8,
so that y ≤ 8 and z ≤ 8. This is impossible as y + z = 503k ≥ 503. Note next that y3 + z3

is even in the first equation. Hence y + z = 503k is even too, meaning that k is even. Thus
k = 2 or k = 4. Clearly (1) has no integer solutions for k = 4. If k = 2 then (1) takes the form
(y + z)2 − 5yz = 4. Since y + z = 503k = 503 · 2, this leads to 5yz = 5032 · 22 − 4. However
5032 · 22 − 4 is not a multiple of 5. Therefore (1) has no integer solutions.

Equation (2) implies 0 ≤ (k − 1)yz ≤ 1, so that k = 1 or k = 2. Also 0 ≤ k(y − z)2 ≤ 1,
hence k = 2 only if y = z. However then y = z = 1, which is false in view of y + z ≥ 503.
Therefore k = 1 and (2) takes the form (y − z)2 = 1, yielding z − y = |y − z| = 1. Combined
with k = 1 and y + z = 503k, this leads to y = 251, z = 252.

In summary the triple (2, 251, 252) is the only solution.
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N3. Determine all integers m ≥ 2 such that every n with m
3
≤ n ≤ m

2
divides the binomial

coefficient
(

n
m−2n

)
.

Solution. The integers in question are all prime numbers.
First we check that all primes satisfy the condition, and even a stronger one. Namely, if p

is a prime then every n with 1 ≤ n ≤ p
2
divides

(
n

p−2n

)
. This is true for p = 2 where n = 1 is

the only possibility. For an odd prime p take n ∈ [1, p
2
] and consider the following identity of

binomial coefficients:

(p− 2n) ·
(

n

p− 2n

)

= n ·
(

n− 1

p− 2n− 1

)

.

Since p ≥ 2n and p is odd, all factors are non-zero. If d = gcd(p − 2n, n) then d divides p,
but d ≤ n < p and hence d = 1. It follows that p− 2n and n are relatively prime, and so the
factor n in the right-hand side divides the binomial coefficient

(
n

p−2n

)
.

Next we show that no composite number m has the stated property. Consider two cases.

• If m = 2k with k > 1, pick n = k. Then m
3
≤ n ≤ m

2
but

(
n

m−2n

)
=
(
k
0

)
= 1 is not divisible

by k > 1.

• If m is odd then there exist an odd prime p and an integer k ≥ 1 with m = p(2k + 1).
Pick n = pk, then m

3
≤ n ≤ m

2
by k ≥ 1. However

1

n

(
n

m− 2n

)

=
1

pk

(
pk

p

)

=
(pk − 1)(pk − 2) · · · (pk − (p− 1))

p!

is not an integer, because p divides the denominator but not the numerator.
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N4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a
solution over the positive integers.

a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

b) Decide whether a = 2 is friendly.

Solution. a) Every a of the form a = 4k − 3 with k ≥ 2 is friendly. Indeed the numbers
m = 2k − 1 > 0 and n = k − 1 > 0 satisfy the given equation with a = 4k − 3:

(m2 + n)(n2 +m) =
(
(2k − 1)2 + (k − 1)

)(
(k − 1)2 + (2k − 1)

)
= (4k − 3)k3 = a(m− n)3.

Hence 5, 9, . . . , 2009 are friendly and so {1, 2, . . . , 2012} contains at least 502 friendly numbers.

b) We show that a = 2 is not friendly. Consider the equation with a = 2 and rewrite its
left-hand side as a difference of squares:

1

4

(
(m2 + n+ n2 +m)2 − (m2 + n− n2 −m)2

)
= 2(m− n)3.

Since m2 + n− n2 −m = (m− n)(m+ n− 1), we can further reformulate the equation as

(m2 + n+ n2 +m)2 = (m− n)2
(
8(m− n) + (m+ n− 1)2

)
.

It follows that 8(m− n) + (m + n− 1)2 is a perfect square. Clearly m > n, hence there is an
integer s ≥ 1 such that

(m+ n− 1 + 2s)2 = 8(m− n) + (m+ n− 1)2.

Subtracting the squares gives s(m + n − 1 + s) = 2(m − n). Since m + n − 1 + s > m − n,
we conclude that s < 2. Therefore the only possibility is s = 1 and m = 3n. However then
the left-hand side of the given equation (with a = 2) is greater than m3 = 27n3, whereas its
right-hand side equals 16n3. The contradiction proves that a = 2 is not friendly.

Comment. A computer search shows that there are 561 friendly numbers in {1, 2, . . . , 2012}.



46

N5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk
where p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative
integer coefficients such that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

Solution 1. We are going to prove that f(x) = axm for some nonnegative integers a and
m. If f(x) is the zero polynomial we are done, so assume that f(x) has at least one positive
coefficient. In particular f(1) > 0.

Let p be a prime number. The condition is that f(n) ≡ 0 (mod p) implies

f(nrad(n)) ≡ 0 (mod p). (1)

Since rad(nrad(n)k) = rad(n) for all k, repeated applications of the preceding implication show
that if p divides f(n) then

f(nrad(n)k) ≡ 0 (mod p) for all k.

The idea is to construct a prime p and a positive integer n such that p− 1 divides n and p
divides f(n). In this case, for k large enough p − 1 divides rad(n)k. Hence if (p, n) = 1 then
nrad(n)k ≡ 1 (mod p) by Fermat’s little theorem, so that

f(1) ≡ f(nrad(n)k) ≡ 0 (mod p). (2)

Suppose that f(x) = g(x)xm with g(0) 6= 0. Let t be a positive integer, p any prime factor
of g(−t) and n = (p−1)t. So p−1 divides n and f(n) = f((p− 1)t) ≡ f(−t) ≡ 0 (mod p), hence
either (p, n) > 1 or (2) holds. If (p, (p−1)t) > 1 then p divides t and g(0) ≡ g(−t) ≡ 0 (mod p),
meaning that p divides g(0).

In conclusion we proved that each prime factor of g(−t) divides g(0)f(1) 6= 0, and thus the
set of prime factors of g(−t) when t ranges through the positive integers is finite. This is known
to imply that g(x) is a constant polynomial, and so f(x) = axm.

Solution 2. Let f(x) be a polynomial with integer coefficients (not necessarily nonnegative)
such that rad(f(n)) divides rad(f(nrad(n))) for any nonnegative integer n. We give a complete
description of all polynomials with this property. More precisely, we claim that if f(x) is such
a polynomial and ξ is a root of f(x) then so is ξd for every positive integer d.

Therefore each root of f(x) is zero or a root of unity. In particular, if a root of unity ξ is
a root of f(x) then 1 = ξd is a root too (for some positive integer d). In the original problem
f(x) has nonnegative coefficients. Then either f(x) is the zero polynomial or f(1) > 0 and
ξ = 0 is the only possible root. In either case f(x) = axm with a and m nonnegative integers.

To prove the claim let ξ be a root of f(x), and let g(x) be an irreducible factor of f(x) such
that g(ξ) = 0. If 0 or 1 are roots of g(x) then either ξ = 0 or ξ = 1 (because g(x) is irreducible)
and we are done. So assume that g(0), g(1) 6= 0. By decomposing d as a product of prime
numbers, it is enough to consider the case d = p prime. We argue for p = 2. Since rad(2k) = 2
for every k, we have

rad(f(2k)) | rad(f(22k)).
Now we prove that g(x) divides f(x2). Suppose that this is not the case. Then, since g(x)

is irreducible, there are integer-coefficient polynomials a(x), b(x) and an integer N such that

a(x)g(x) + b(x)f(x2) = N. (3)

Each prime factor p of g(2k) divides f(2k), so by rad(f(2k))|rad(f(22k)) it also divides f(22k).
From the equation above with x = 2k it follows that p divides N .
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In summary, each prime divisor of g(2k) divides N , for all k ≥ 0. Let p1, . . . , pn be the odd
primes dividing N , and suppose that

g(1) = 2αpα1
1 · · · pαn

n .

If k is divisible by ϕ(pα1+1
1 · · · pαn+1

n ) then

2k ≡ 1 (mod pα1+1
1 · · · pαn+1

n ),

yielding
g(2k) ≡ g(1) (mod pα1+1

1 · · · pαn+1
n ).

It follows that for each i the maximal power of pi dividing g(2
k) and g(1) is the same, namely pαi

i .
On the other hand, for large enough k, the maximal power of 2 dividing g(2k) and g(0) 6= 0
is the same. From the above, for k divisible by ϕ(pα1+1

1 · · · pαn+1
n ) and large enough, we obtain

that g(2k) divides g(0) · g(1). This is impossible because g(0), g(1) 6= 0 are fixed and g(2k) is
arbitrarily large.

In conclusion, g(x) divides f(x2). Recall that ξ is a root of f(x) such that g(ξ) = 0; then
f(ξ2) = 0, i. e. ξ2 is a root of f(x).

Likewise if ξ is a root of f(x) and p an arbitrary prime then ξp is a root too. The argument
is completely analogous, in the proof above just replace 2 by p and “odd prime” by “prime
different from p.”

Comment. The claim in the second solution can be proved by varying n (mod p) in (1). For instance,
we obtain

f(nrad(n+pk)) ≡ 0 (mod p)

for every positive integer k. One can prove that if (n, p) = 1 then rad(n+pk) runs through all residue
classes r (mod p − 1) with (r, p − 1) squarefree. Hence if f(n) ≡ 0 (mod p) then f(nr) ≡ 0 (mod p)
for all integers r. This implies the claim by an argument leading to the identity (3).
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N6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive
integer n, prove that x = 1.

Solution. First we prove the following fact: For every positive integer y there exist infinitely
many primes p ≡ 3 (mod 4) such that p divides some number of the form 2ny + 1.

Clearly it is enough to consider the case y odd. Let

2y + 1 = pe11 · · · perr

be the prime factorization of 2y + 1. Suppose on the contrary that there are finitely many
primes pr+1, . . . , pr+s ≡ 3 (mod 4) that divide some number of the form 2ny + 1 but do not
divide 2y + 1.

We want to find an n such that peii ||2ny+1 for 1 ≤ i ≤ r and pi ∤ 2ny+1 for r+1 ≤ i ≤ r+s.
For this it suffices to take

n = 1 + ϕ(pe1+1
1 · · · per+1

r p1r+1 · · · p1r+s),

because then
2ny + 1 ≡ 2y + 1 (mod pe1+1

1 · · · per+1
r p1r+1 · · · p1r+s).

The last congruence means that pe11 , . . . , perr divide exactly 2ny + 1 and no prime pr+1, . . . , pr+s

divides 2ny + 1. It follows that the prime factorization of 2ny + 1 consists of the prime powers
pe11 , . . . , perr and powers of primes ≡ 1 (mod 4). Because y is odd, we obtain

2ny + 1 ≡ pe11 · · · perr ≡ 2y + 1 ≡ 3 (mod 4).

This is a contradiction since n > 1, and so 2ny + 1 ≡ 1 (mod 4).
Now we proceed to the problem. If p is a prime divisor of 2ny + 1 the problem statement

implies that xd ≡ 1 (mod p) for d = 2n. By Fermat’s little theorem the same congruence
holds for d = p − 1, so it must also hold for d = (2n, p − 1). For p ≡ 3 (mod 4) we have
(2n, p− 1) = 2, therefore in this case x2 ≡ 1 (mod p).

In summary, we proved that every prime p ≡ 3 (mod 4) that divides some number of the
form 2ny + 1 also divides x2 − 1. This is possible only if x = 1, otherwise by the above x2 − 1
would be a positive integer with infinitely many prime factors.

Comment. For each x and each odd prime p the maximal power of p dividing x2
n − 1 for some n is

bounded and hence the same must be true for the numbers 2ny + 1. We infer that p2 divides 2p−1− 1
for each prime divisor p of 2ny+1. However trying to reach a contradiction with this conclusion alone
seems hopeless, since it is not even known if there are infinitely many primes p without this property.
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N7. Find all n ∈ N for which there exist nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

Solution. Such numbers a1, a2, . . . , an exist if and only if n ≡ 1 (mod 4) or n ≡ 2 (mod 4).
Let

∑n
k=1

k
3ak

= 1 with a1, a2, . . . , an nonnegative integers. Then 1·x1+2·x2+· · ·+n·xn = 3a

with x1, . . . , xn powers of 3 and a ≥ 0. The right-hand side is odd, and the left-hand side has
the same parity as 1+2+ · · ·+n. Hence the latter sum is odd, which implies n ≡ 1, 2 (mod 4).
Now we prove the converse.

Call feasible a sequence b1, b2, . . . , bn if there are nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

b1
3a1

+
b2
3a2

+ · · ·+ bn
3an

= 1.

Let bk be a term of a feasible sequence b1, b2, . . . , bn with exponents a1, a2, . . . , an like above,
and let u, v be nonnegative integers with sum 3bk. Observe that

1

2ak+1
+

1

2ak+1
=

1

2ak
and

u

3ak+1
+

v

3ak+1
=

bk
3ak

.

It follows that the sequence b1, . . . , bk−1, u, v, bk+1, . . . , bn is feasible. The exponents ai are the
same for the unchanged terms bi, i 6= k; the new terms u, v have exponents ak + 1.

We state the conclusion in reverse. If two terms u, v of a sequence are replaced by one
term u+v

3
and the obtained sequence is feasible, then the original sequence is feasible too.

Denote by αn the sequence 1, 2, . . . , n. To show that αn is feasible for n ≡ 1, 2 (mod 4), we
transform it by n − 1 replacements {u, v} 7→ u+v

3
to the one-term sequence α1. The latter is

feasible, with a1 = 0. Note that if m and 2m are terms of a sequence then {m, 2m} 7→ m, so
2m can be ignored if necessary.

Let n ≥ 16. We prove that αn can be reduced to αn−12 by 12 operations. Write n = 12k+ r
where k ≥ 1 and 0 ≤ r ≤ 11. If 0 ≤ r ≤ 5 then the last 12 terms of αn can be partitioned into
2 singletons {12k − 6}, {12k} and the following 5 pairs:

{12k − 6− i, 12k − 6 + i}, i = 1, . . . , 5− r; {12k − j, 12k + j}, j = 1, . . . , r.

(There is only one kind of pairs if r ∈ {0, 5}.) One can ignore 12k − 6 and 12k since αn

contains 6k − 3 and 6k. Furthermore the 5 operations {12k − 6− i, 12k − 6 + i} 7→ 8k − 4 and
{12k − j, 12k + j} 7→ 8k remove the 10 terms in the pairs and bring in 5 new terms equal
to 8k − 4 or 8k. All of these can be ignored too as 4k − 2 and 4k are still present in the
sequence. Indeed 4k ≤ n− 12 is equivalent to 8k ≥ 12− r, which is true for r ∈ {4, 5}. And if
r ∈ {0, 1, 2, 3} then n ≥ 16 implies k ≥ 2, so 8k ≥ 12− r also holds. Thus αn reduces to αn−12.

The case 6 ≤ r ≤ 11 is analogous. Consider the singletons {12k}, {12k+6} and the 5 pairs

{12k − i, 12k + i}, i = 1, . . . , 11− r; {12k + 6− j, 12k + 6 + j}, j = 1, . . . , r − 6.

Ignore the singletons like before, then remove the pairs via operations {12k − i, 12k + i} 7→ 8k
and {12k + 6− j, 12k + 6 + j} 7→ 8k + 4. The 5 newly-appeared terms 8k and 8k + 4 can be
ignored too since 4k + 2 ≤ n− 12 (this follows from k ≥ 1 and r ≥ 6). We obtain αn−12 again.

The problem reduces to 2 ≤ n ≤ 15. In fact n ∈ {2, 5, 6, 9, 10, 13, 14} by n ≡ 1, 2 (mod 4).
The cases n = 2, 6, 10, 14 reduce to n = 1, 5, 9, 13 respectively because the last even term of αn

can be ignored. For n = 5 apply {4, 5} 7→ 3, then {3, 3} 7→ 2, then ignore the 2 occurrences
of 2. For n = 9 ignore 6 first, then apply {5, 7} 7→ 4, {4, 8} 7→ 4, {3, 9} 7→ 4. Now ignore
the 3 occurrences of 4, then ignore 2. Finally n = 13 reduces to n = 10 by {11, 13} 7→ 8 and
ignoring 8 and 12. The proof is complete.
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N8. Prove that for every prime p > 100 and every integer r there exist two integers a and b
such that p divides a2 + b5 − r.

Solution 1. Throughout the solution, all congruence relations are meant modulo p.

Fix p, and let P = {0, 1, . . . , p− 1} be the set of residue classes modulo p. For every r ∈ P,
let Sr =

{
(a, b) ∈ P × P : a2 + b5 ≡ r

}
, and let sr = |Sr|. Our aim is to prove sr > 0 for

all r ∈ P .

We will use the well-known fact that for every residue class r ∈ P and every positive
integer k, there are at most k values x ∈ P such that xk ≡ r.

Lemma. Let N be the number of quadruples (a, b, c, d) ∈ P4 for which a2 + b5 ≡ c2 + d5. Then

N =
∑

r∈P

s2r (a)

and

N ≤ p(p2 + 4p− 4). (b)

Proof. (a) For each residue class r there exist exactly sr pairs (a, b) with a2 + b5 ≡ r and sr
pairs (c, d) with c2 + d5 ≡ r. So there are s2r quadruples with a2 + b5 ≡ c2 + d5 ≡ r. Taking the
sum over all r ∈ P, the statement follows.

(b) Choose an arbitrary pair (b, d) ∈ P and look for the possible values of a, c.

1. Suppose that b5 ≡ d5, and let k be the number of such pairs (b, d). The value b can be
chosen in p different ways. For b ≡ 0 only d = 0 has this property; for the nonzero values of b
there are at most 5 possible values for d. So we have k ≤ 1 + 5(p− 1) = 5p− 4.

The values a and c must satisfy a2 ≡ c2, so a ≡ ±c, and there are exactly 2p − 1 such
pairs (a, c).

2. Now suppose b5 6≡ d5. In this case a and c must be distinct. By (a− c)(a+ c) = d5 − b5,
the value of a − c uniquely determines a + c and thus a and c as well. Hence, there are p− 1
suitable pairs (a, c).

Thus, for each of the k pairs (b, d) with b5 ≡ d5 there are 2p− 1 pairs (a, c), and for each of
the other p2 − k pairs (b, d) there are p− 1 pairs (a, c). Hence,

N = k(2p− 1) + (p2 − k)(p− 1) = p2(p− 1) + kp ≤ p2(p− 1) + (5p− 4)p = p(p2 + 4p− 4). �

To prove the statement of the problem, suppose that Sr = ∅ for some r ∈ P; obviously
r 6≡ 0. Let T =

{
x10 : x ∈ P \ {0}

}
be the set of nonzero 10th powers modulo p. Since each

residue class is the 10th power of at most 10 elements in P, we have |T | ≥ p−1
10

≥ 4 by p > 100.

For every t ∈ T , we have Str = ∅. Indeed, if (x, y) ∈ Str and t ≡ z10 then

(z−5x)2 + (z−2y)5 ≡ t−1(x2 + y5) ≡ r,

so (z−5x, z−2y) ∈ Sr. So, there are at least p−1
10

≥ 4 empty sets among S1, . . . , Sp−1, and there
are at most p − 4 nonzero values among s0, s2, . . . , sp−1. Then by the AM-QM inequality we
obtain

N =
∑

r∈P\rT

s2r ≥
1

p− 4




∑

r∈P\rT

sr





2

=
|P × P|2
p− 4

=
p4

p− 4
> p(p2 + 4p− 4),

which is impossible by the lemma.
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Solution 2. If 5 ∤ p− 1, then all modulo p residue classes are complete fifth powers and the
statement is trivial. So assume that p = 10k + 1 where k ≥ 10. Let g be a primitive root
modulo p.

We will use the following facts:

(F1) If some residue class x is not quadratic then x(p−1)/2 ≡ −1 (mod p).

(F2) For every integer d, as a simple corollary of the summation formula for geometric pro-
gressions,

2k−1∑

i=0

g5di ≡
{

2k if 2k
∣
∣ d

0 if 2k 6 | d
(mod p).

Suppose that, contrary to the statement, some modulo p residue class r cannot be expressed
as a2+b5. Of course r 6≡ 0 (mod p). By (F1) we have (r−b5)(p−1)/2 = (r−b5)5k ≡ −1 (mod p)
for all residue classes b.

For t = 1, 2 . . . , k − 1 consider the sums

S(t) =
2k−1∑

i=0

(
r − g5i

)5k
g5ti.

By the indirect assumption and (F2),

S(t) =
2k−1∑

i=0

(
r − (gi)5

)5k
g5ti ≡

2k−1∑

i=0

(−1)g5ti ≡ −
2k−1∑

i=0

g5ti ≡ 0 (mod p)

because 2k cannot divide t.
On the other hand, by the binomial theorem,

S(t) =

2k−1∑

i=0

(
5k∑

j=0

(
5k

j

)

r5k−j
(
− g5i

)j

)

g5ti =

5k∑

j=0

(−1)j
(
5k

j

)

r5k−j

(
2k−1∑

i=0

g5(j+t)i

)

≡

≡
5k∑

j=0

(−1)j
(
5k

j

)

r5k−j

{

2k if 2k
∣
∣ j + t

0 if 2k 6 | j + t
(mod p).

Since 1 ≤ j + t < 6k, the number 2k divides j + t only for j = 2k − t and j = 4k − t. Hence,

0 ≡ S(t) ≡ (−1)t
((

5k

2k − t

)

r3k+t +

(
5k

4k − t

)

rk+t

)

· 2k (mod p),

(
5k

2k − t

)

r2k +

(
5k

4k − t

)

≡ 0 (mod p).

Taking this for t = 1, 2 and eliminating r, we get

0 ≡
(

5k

2k − 2

)((
5k

2k − 1

)

r2k +

(
5k

4k − 1

))

−
(

5k

2k − 1

)((
5k

2k − 2

)

r2k +

(
5k

4k − 2

))

=

(
5k

2k − 2

)(
5k

4k − 1

)

−
(

5k

2k − 1

)(
5k

4k − 2

)

=
(5k)!2

(2k − 1)!(3k + 2)!(4k − 1)!(k + 2)!

(

(2k − 1)(k + 2)− (3k + 2)(4k − 1)
)

=
−(5k)!2 · 2k(5k + 1)

(2k − 1)!(3k + 2)!(4k − 1)!(k + 2)!
(mod p).

But in the last expression none of the numbers is divisible by p = 10k + 1, a contradiction.
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Comment 1. The argument in the second solution is valid whenever k ≥ 3, that is for all primes
p = 10k + 1 except p = 11. This is an exceptional case when the statement is not true; r = 7 cannot
be expressed as desired.

Comment 2. The statement is true in a more general setting: for every positive integer n, for all
sufficiently large p, each residue class modulo p can be expressed as a2 + bn. Choosing t = 3 would
allow using the Cauchy-Davenport theorem (together with some analysis on the case of equality).

In the literature more general results are known. For instance, the statement easily follows from
the Hasse-Weil bound.
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Problems

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d
with a ‰ c or b ‰ d, such that

ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq and fpx` yq ě fpxq ` fpyq
for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n

and
aai ď n` i ´ 1 for i “ 1, 2, . . . , n,

prove that
a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0

satisfying the relation
fpfpfpnqqq “ fpn` 1q ` 1

for all n P Zě0.

(Serbia)

A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´ mx2 ` 1qP px` 1q ` px3 ` mx2 ` 1qP px´ 1q “ 2px3 ´ mx ` 1qP pxq
for all real numbers x.

(Serbia)
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1

of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x ` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´ =D “ =C ´ =F “ =E ´ =B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1 ` 2k ´ 1

n
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mk

˙

.

(Japan)

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a

b

˙

“ f
´x ` a

b

¯

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)

(Israel)

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m.

A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x ´ 1 ă txu ď x and x ď rxs ă x ` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)
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Solutions

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

Solution 1. We prove by induction on k that

uk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait . p1q

Note that we have one trivial summand equal to 1 (which corresponds to t “ 0 and the empty
sequence, whose product is 1).

For k “ 0, 1 the sum on the right-hand side only contains the empty product, so (1) holds due
to u0 “ u1 “ 1. For k ě 1, assuming the result is true for 0, 1, . . . , k, we have

uk`1 “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait `
ÿ

0ăi1ă...ăităk´1,
ij`1´ijě2

ai1 . . . ait ¨ ak

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kRti1,...,itu

ai1 . . . ait `
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kPti1,...,itu

ai1 . . . ait

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2

ai1 . . . ait ,

as required.
Applying (1) to the sequence b1, . . . , bn given by bk “ an´k for 1 ď k ď n, we get

vk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

bi1 . . . bit “
ÿ

nąi1ą...ąitąn´k,
ij´ij`1ě2

ai1 . . . ait . p2q

For k “ n the expressions (1) and (2) coincide, so indeed un “ vn.

Solution 2. Define recursively a sequence of multivariate polynomials by

P0 “ P1 “ 1, Pk`1px1, . . . , xkq “ Pkpx1, . . . , xk´1q ` xkPk´1px1, . . . , xk´2q,

so Pn is a polynomial in n´ 1 variables for each n ě 1. Two easy inductive arguments show that

un “ Pnpa1, . . . , an´1q, vn “ Pnpan´1, . . . , a1q,
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so we need to prove Pnpx1, . . . , xn´1q “ Pnpxn´1, . . . , x1q for every positive integer n. The cases
n “ 1, 2 are trivial, and the cases n “ 3, 4 follow from P3px, yq “ 1 ` x ` y and P4px, y, zq “
1 ` x ` y ` z ` xz.

Now we proceed by induction, assuming that n ě 5 and the claim hold for all smaller cases.
Using F pa, bq as an abbreviation for P|a´b|`1pxa, . . . , xbq (where the indices a, . . . , b can be either
in increasing or decreasing order),

F pn, 1q “ F pn, 2q ` x1F pn, 3q “ F p2, nq ` x1F p3, nq
“ pF p2, n´ 1q ` xnF p2, n´ 2qq ` x1pF p3, n´ 1q ` xnF p3, n´ 2qq
“ pF pn´ 1, 2q ` x1F pn´ 1, 3qq ` xnpF pn´ 2, 2q ` x1F pn´ 2, 3qq
“ F pn´ 1, 1q ` xnF pn´ 2, 1q “ F p1, n´ 1q ` xnF p1, n´ 2q
“ F p1, nq,

as we wished to show.

Solution 3. Using matrix notation, we can rewrite the recurrence relation as
ˆ

uk`1

uk`1 ´ uk

˙

“
ˆ

uk ` akuk´1

akuk´1

˙

“
ˆ

1 ` ak ´ak
ak ´ak

˙ˆ

uk
uk ´ uk´1

˙

for 1 ď k ď n´ 1, and similarly

pvk`1; vk ´ vk`1q “
´

vk ` an´kvk´1;´an´kvk´1

¯

“ pvk; vk´1 ´ vkq
ˆ

1 ` an´k ´an´k

an´k ´an´k

˙

for 1 ď k ď n´ 1. Hence, introducing the 2 ˆ 2 matrices Ak “
ˆ

1 ` ak ´ak
ak ´ak

˙

we have

ˆ

uk`1

uk`1 ´ uk

˙

“ Ak

ˆ

uk
uk ´ uk´1

˙

and pvk`1; vk ´ vk`1q “ pvk; vk´1 ´ vkqAn´k.

for 1 ď k ď n´ 1. Since
`

u1

u1´u0

˘

“
`

1
0

˘

and pv1; v0 ´ v1q “ p1; 0q, we get
ˆ

un
un ´ un´1

˙

“ An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

and pvn; vn´1 ´ vnq “ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1.

It follows that

punq “ p1; 0q
ˆ

un
un ´ un´1

˙

“ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

“ pvn; vn´1 ´ vnq
ˆ

1

0

˙

“ pvnq.

Comment 1. These sequences are related to the Fibonacci sequence; when a1 “ ¨ ¨ ¨ “ an´1 “ 1, we
have uk “ vk “ Fk`1, the pk ` 1qst Fibonacci number. Also, for every positive integer k, the polynomial
Pkpx1, . . . , xk´1q from Solution 2 is the sum of Fk`1 monomials.

Comment 2. One may notice that the condition is equivalent to

uk`1

uk
“ 1 ` ak

1 ` ak´1

1 ` . . . ` a2
1 ` a1

and
vk`1

vk
“ 1 ` an´k

1 ` an´k`1

1 ` . . . ` an´2

1 ` an´1

so the problem claims that the corresponding continued fractions for un{un´1 and vn{vn´1 have the same
numerator.
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Comment 3. An alternative variant of the problem is the following.

Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the sequences
u0, . . . , un and v0, . . . , vn inductively by u0 “ v0 “ 0, u1 “ v1 “ 1, and

uk`1 “ akuk ` uk´1, vk`1 “ an´kvk ` vk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

All three solutions above can be reformulated to prove this statement; one may prove

un “ vn “
ÿ

0“i0ăi1ă...ăit“n,
ij`1´ij is odd

ai1 . . . ait´1
for n ą 0

or observe that
ˆ

uk`1

uk

˙

“
ˆ

ak 1
1 0

˙ˆ

uk
uk´1

˙

and pvk`1; vkq “ pvk; vk´1q
ˆ

ak 1
1 0

˙

.

Here we have
uk`1

uk
“ ak ` 1

ak´1 ` 1

ak´2 ` . . . ` 1

a1

“ rak; ak´1, . . . , a1s

and
vk`1

vk
“ an´k ` 1

an´k`1 ` 1

an´k`2 ` . . . ` 1

an´1

“ ran´k; an´k`1, . . . , an´1s,

so this alternative statement is equivalent to the known fact that the continued fractions ran´1; an´2, . . . , a1s
and ra1; a2, . . . , an´1s have the same numerator.
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A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d
with a ‰ c or b ‰ d, such that

ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

Solution. For any set S of n “ 2000 distinct real numbers, let D1 ď D2 ď ¨ ¨ ¨ ď Dm be the
distances between them, displayed with their multiplicities. Here m “ npn ´ 1q{2. By rescaling
the numbers, we may assume that the smallest distance D1 between two elements of S is D1 “ 1.
Let D1 “ 1 “ y ´ x for x, y P S. Evidently Dm “ v ´ u is the difference between the largest
element v and the smallest element u of S.

If Di`1{Di ă 1 ` 10´5 for some i “ 1, 2, . . . , m´ 1 then the required inequality holds, because
0 ď Di`1{Di ´ 1 ă 10´5. Otherwise, the reverse inequality

Di`1

Di
ě 1 ` 1

105

holds for each i “ 1, 2, . . . , m´ 1, and therefore

v ´ u “ Dm “ Dm

D1
“ Dm

Dm´1
¨ ¨ ¨ D3

D2
¨ D2

D1
ě
ˆ

1 ` 1

105

˙m´1

.

From m´ 1 “ npn´ 1q{2´ 1 “ 1000 ¨ 1999´ 1 ą 19 ¨ 105, together with the fact that for all n ě 1,
`

1 ` 1
n

˘n ě 1 `
`

n
1

˘

¨ 1
n

“ 2, we get

ˆ

1 ` 1

105

˙19¨105

“
˜

ˆ

1 ` 1

105

˙105
¸19

ě 219 “ 29 ¨ 210 ą 500 ¨ 1000 ą 2 ¨ 105,

and so v ´ u “ Dm ą 2 ¨ 105.
Since the distance of x to at least one of the numbers u, v is at least pu ´ vq{2 ą 105, we have

|x´ z| ą 105.

for some z P tu, vu. Since y ´ x “ 1, we have either z ą y ą x (if z “ v) or y ą x ą z (if z “ u).
If z ą y ą x, selecting a “ z, b “ y, c “ z and d “ x (so that b ‰ d), we obtain

ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

z ´ y

z ´ x
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

x´ y

z ´ x

ˇ

ˇ

ˇ

ˇ

“ 1

z ´ x
ă 10´5.

Otherwise, if y ą x ą z, we may choose a “ y, b “ z, c “ x and d “ z (so that a ‰ c), and obtain
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ z

x ´ z
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ x

x´ z

ˇ

ˇ

ˇ

ˇ

“ 1

x ´ z
ă 10´5.

The desired result follows.

Comment. As the solution shows, the numbers 2000 and 1
100000 appearing in the statement of the problem

may be replaced by any n P Zą0 and δ ą 0 satisfying

δp1 ` δqnpn´1q{2´1 ą 2.
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A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq, (1)

fpx` yq ě fpxq ` fpyq (2)

for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

Solution. Denote by Zą0 the set of positive integers.
Plugging x “ 1, y “ a into (1) we get fp1q ě 1. Next, by an easy induction on n we get

from (2) that
fpnxq ě nfpxq for all n P Zą0 and x P Qą0. (3)

In particular, we have
fpnq ě nfp1q ě n for all n P Zą0. (4)

From (1) again we have fpm{nqfpnq ě fpmq, so fpqq ą 0 for all q P Qą0.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields

fpxq ě fptxuq ě txu ą x´ 1 for all x ě 1.

By an easy induction we get from (1) that fpxqn ě fpxnq, so

fpxqn ě fpxnq ą xn ´ 1 ùñ fpxq ě n
?
xn ´ 1 for all x ą 1 and n P Zą0.

This yields
fpxq ě x for every x ą 1. (5)

(Indeed, if x ą y ą 1 then xn ´ yn “ px´ yqpxn´1 ` xn´2y ` ¨ ¨ ¨ ` ynq ą npx´ yq, so for a large n
we have xn ´ 1 ą yn and thus fpxq ą y.)

Now, (1) and (5) give an “ fpaqn ě fpanq ě an, so fpanq “ an. Now, for x ą 1 let us choose
n P Zą0 such that an ´ x ą 1. Then by (2) and (5) we get

an “ fpanq ě fpxq ` fpan ´ xq ě x ` pan ´ xq “ an

and therefore fpxq “ x for x ą 1. Finally, for every x P Qą0 and every n P Zą0, from (1) and (3)
we get

nfpxq “ fpnqfpxq ě fpnxq ě nfpxq,
which gives fpnxq “ nfpxq. Therefore fpm{nq “ fpmq{n “ m{n for all m,n P Zą0.

Comment. The condition fpaq “ a ą 1 is essential. Indeed, for b ě 1 the function fpxq “ bx2 satisfies (1)
and (2) for all x, y P Qą0, and it has a unique fixed point 1{b ď 1.
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A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n (1)

and

aai ď n` i ´ 1 for i “ 1, 2, . . . , n, (2)

prove that

a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

Solution 1. First, we claim that

ai ď n` i ´ 1 for i “ 1, 2, . . . , n. (3)

Assume contrariwise that i is the smallest counterexample. From an ě an´1 ě ¨ ¨ ¨ ě ai ě n ` i
and aai ď n` i´ 1, taking into account the periodicity of our sequence, it follows that

ai cannot be congruent to i, i` 1, . . . , n´ 1, or n pmod nq. (4)

Thus our assumption that ai ě n ` i implies the stronger statement that ai ě 2n ` 1, which by
a1 ` n ě an ě ai gives a1 ě n ` 1. The minimality of i then yields i “ 1, and (4) becomes
contradictory. This establishes our first claim.

In particular we now know that a1 ď n. If an ď n, then a1 ď ¨ ¨ ¨ ď ¨ ¨ ¨ an ď n and the desired
inequality holds trivially. Otherwise, consider the number t with 1 ď t ď n´ 1 such that

a1 ď a2 ď . . . ď at ď n ă at`1 ď . . . ď an. (5)

Since 1 ď a1 ď n and aa1 ď n by (2), we have a1 ď t and hence an ď n ` t. Therefore if for each
positive integer i we let bi be the number of indices j P tt` 1, . . . , nu satisfying aj ě n` i, we have

b1 ě b2 ě . . . ě bt ě bt`1 “ 0.

Next we claim that ai ` bi ď n for 1 ď i ď t. Indeed, by n ` i ´ 1 ě aai and ai ď n, each j
with aj ě n` i (thus aj ą aai) belongs to tai ` 1, . . . , nu, and for this reason bi ď n ´ ai.

It follows from the definition of the bis and (5) that

at`1 ` . . .` an ď npn´ tq ` b1 ` . . .` bt.

Adding a1 ` . . .` at to both sides and using that ai ` bi ď n for 1 ď i ď t, we get

a1 ` a2 ` ¨ ¨ ¨ ` an ď npn´ tq ` nt “ n2

as we wished to prove.
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Solution 2. In the first quadrant of an infinite grid, consider the increasing “staircase” obtained
by shading in dark the bottom ai cells of the ith column for 1 ď i ď n. We will prove that there
are at most n2 dark cells.

To do it, consider the n ˆ n square S in the first quadrant with a vertex at the origin. Also
consider the nˆn square directly to the left of S. Starting from its lower left corner, shade in light
the leftmost aj cells of the jth row for 1 ď j ď n. Equivalently, the light shading is obtained by
reflecting the dark shading across the line x “ y and translating it n units to the left. The figure
below illustrates this construction for the sequence 6, 6, 6, 7, 7, 7, 8, 12, 12, 14.

i

ai

n+ i− 1

aai

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that
there is such a cell in column i. Consider the highest dark cell in column i which is inside S. Since
it is above a light cell and inside S, it must be light as well. There are two cases:

Case 1. ai ď n

If ai ď n then this dark and light cell is pi, aiq, as highlighted in the figure. However, this is the
pn ` iq-th cell in row ai, and we only shaded aai ă n` i light cells in that row, a contradiction.

Case 2. ai ě n` 1

If ai ě n ` 1, this dark and light cell is pi, nq. This is the pn ` iq-th cell in row n and we shaded
an ď a1 ` n light cells in this row, so we must have i ď a1. But a1 ď aa1 ď n by (1) and (2), so
i ď a1 implies ai ď aa1 ď n, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the
number of shaded cells in S is at most n2.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have
a dark cell above S, and then the cell pn, nq would be dark and light. It follows that the number
of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded
cells in S equals a1 ` ¨ ¨ ¨ ` an. The desired result follows.

Solution 3. As in Solution 1, we first establish that ai ď n ` i ´ 1 for 1 ď i ď n. Now define
ci “ maxpai, iq for 1 ď i ď n and extend the sequence c1, c2, . . . periodically modulo n. We claim
that this sequence also satisfies the conditions of the problem.

For 1 ď i ă j ď n we have ai ď aj and i ă j, so ci ď cj . Also an ď a1 ` n and n ă 1` n imply
cn ď c1 ` n. Finally, the definitions imply that cci P taai , ai, ai ´ n, iu so cci ď n` i´ 1 by (2) and
(3). This establishes (1) and (2) for c1, c2, . . ..
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Our new sequence has the additional property that

ci ě i for i “ 1, 2, . . . , n, (6)

which allows us to construct the following visualization: Consider n equally spaced points on a
circle, sequentially labelled 1, 2, . . . , n pmod nq, so point k is also labelled n` k. We draw arrows
from vertex i to vertices i ` 1, . . . , ci for 1 ď i ď n, keeping in mind that ci ě i by (6). Since
ci ď n ` i ´ 1 by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself.
The total number of arrows is

number of arrows “
n
ÿ

i“1

pci ´ iq “
n
ÿ

i“1

ci ´
ˆ

n ` 1

2

˙

Now we show that we never draw both arrows i Ñ j and j Ñ i for 1 ď i ă j ď n. Assume
contrariwise. This means, respectively, that

i ă j ď ci and j ă n ` i ď cj .

We have n ` i ď cj ď c1 ` n by (1), so i ď c1. Since c1 ď n by (3), this implies that ci ď cc1 ď n
using (1) and (3). But then, using (1) again, j ď ci ď n implies cj ď cci, which combined with
n ` i ď cj gives us that n` i ď cci. This contradicts (2).

This means that the number of arrows is at most
`

n
2

˘

, which implies that

n
ÿ

i“1

ci ď
ˆ

n

2

˙

`
ˆ

n` 1

2

˙

“ n2.

Recalling that ai ď ci for 1 ď i ď n, the desired inequality follows.

Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case n “ 1 and
the simple cases when a1 “ 1, a1 “ n, or an ď n. Then, as in Solution 1, consider the index t such that
a1 ď ¨ ¨ ¨ ď at ď n ă at`1 ď ¨ ¨ ¨ ď an. Observe again that a1 ď t. Define the sequence d1, . . . , dn´1 by

di “
#

ai`1 ´ 1 if i ď t´ 1

ai`1 ´ 2 if i ě t

and extend it periodically modulo n´ 1. One may verify that this sequence also satisfies the hypotheses
of the problem. The induction hypothesis then gives d1 ` ¨ ¨ ¨ ` dn´1 ď pn´ 1q2, which implies that

n
ÿ

i“1

ai “ a1 `
t
ÿ

i“2

pdi´1 ` 1q `
n
ÿ

i“t`1

pdi´1 ` 2q ď t` pt´ 1q ` 2pn´ tq ` pn´ 1q2 “ n2.

Comment 2. One unusual feature of this problem is that there are many different sequences for which
equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the
steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path
P from the lower left to the upper right corner of the nˆ n square S using only steps up and right, such
that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below
P dark, and the cells of S above P light. Now reflect the light shape across the line x “ y and shift it
up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal
sequence, and every optimal sequence arises in this way.
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A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0

satisfying the relation
fpfpfpnqqq “ fpn` 1q ` 1 p˚q

for all n P Zě0.

(Serbia)

Answer. There are two such functions: fpnq “ n` 1 for all n P Zě0, and

fpnq “

$

’

&

’

%

n ` 1, n ” 0 pmod 4q or n ” 2 pmod 4q,
n ` 5, n ” 1 pmod 4q,
n ´ 3, n ” 3 pmod 4q

for all n P Zě0. (1)

Throughout all the solutions, we write hkpxq to abbreviate the kth iteration of function h, so h0 is
the identity function, and hkpxq “ hp. . . h

loomoon

k times

pxq . . . qq for k ě 1.

Solution 1. To start, we get from p˚q that

f 4pnq “ fpf 3pnqq “ f
`

fpn` 1q ` 1
˘

and f 4pn ` 1q “ f 3pfpn` 1qq “ f
`

fpn` 1q ` 1
˘

` 1,

thus
f 4pnq ` 1 “ f 4pn ` 1q. (2)

I. Let us denote by Ri the range of f i; note that R0 “ Zě0 since f 0 is the identity function.
Obviously, R0 Ě R1 Ě . . . . Next, from (2) we get that if a P R4 then also a` 1 P R4. This implies
that Zě0zR4 — and hence Zě0zR1 — is finite. In particular, R1 is unbounded.

Assume that fpmq “ fpnq for some distinct m and n. Then from p˚q we obtain fpm ` 1q “
fpn ` 1q; by an easy induction we then get that fpm ` cq “ fpn ` cq for every c ě 0. So the
function fpkq is periodic with period |m´ n| for k ě m, and thus R1 should be bounded, which is
false. So, f is injective.

II. Denote now Si “ Ri´1zRi; all these sets are finite for i ď 4. On the other hand, by the
injectivity we have n P Si ðñ fpnq P Si`1. By the injectivity again, f implements a bijection
between Si and Si`1, thus |S1| “ |S2| “ . . . ; denote this common cardinality by k. If 0 P R3 then
0 “ fpfpfpnqqq for some n, thus from p˚q we get fpn ` 1q “ ´1 which is impossible. Therefore
0 P R0zR3 “ S1 Y S2 Y S3, thus k ě 1.

Next, let us describe the elements b of R0zR3 “ S1 YS2 YS3. We claim that each such element
satisfies at least one of three conditions piq b “ 0, piiq b “ fp0q ` 1, and piiiq b´ 1 P S1. Otherwise
b´1 P Zě0, and there exists some n ą 0 such that fpnq “ b´1; but then f 3pn´1q “ fpnq `1 “ b,
so b P R3.

This yields
3k “ |S1 Y S2 Y S3| ď 1 ` 1 ` |S1| “ k ` 2,

or k ď 1. Therefore k “ 1, and the inequality above comes to equality. So we have S1 “ tau,
S2 “ tfpaqu, and S3 “ tf 2paqu for some a P Zě0, and each one of the three options piq, piiq,
and piiiq should be realized exactly once, which means that

ta, fpaq, f 2paqu “ t0, a` 1, fp0q ` 1u. (3)
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III. From (3), we get a` 1 P tfpaq, f 2paqu (the case a` 1 “ a is impossible). If a` 1 “ f 2paq then
we have fpa` 1q “ f 3paq “ fpa` 1q ` 1 which is absurd. Therefore

fpaq “ a` 1. (4)

Next, again from (3) we have 0 P ta, f 2paqu. Let us consider these two cases separately.

Case 1. Assume that a “ 0, then fp0q “ fpaq “ a ` 1 “ 1. Also from (3) we get fp1q “ f 2paq “
fp0q ` 1 “ 2. Now, let us show that fpnq “ n ` 1 by induction on n; the base cases n ď 1 are
established. Next, if n ě 2 then the induction hypothesis implies

n` 1 “ fpn´ 1q ` 1 “ f 3pn´ 2q “ f 2pn ´ 1q “ fpnq,

establishing the step. In this case we have obtained the first of two answers; checking that is
satisfies p˚q is straightforward.

Case 2. Assume now that f 2paq “ 0; then by (3) we get a “ fp0q ` 1. By (4) we get fpa ` 1q “
f 2paq “ 0, then fp0q “ f 3paq “ fpa` 1q ` 1 “ 1, hence a “ fp0q ` 1 “ 2 and fp2q “ 3 by (4). To
summarize,

fp0q “ 1, fp2q “ 3, fp3q “ 0.

Now let us prove by induction on m that (1) holds for all n “ 4k, 4k`2, 4k`3 with k ď m and
for all n “ 4k ` 1 with k ă m. The base case m “ 0 is established above. For the step, assume
that m ě 1. From p˚q we get f 3p4m ´ 3q “ fp4m´ 2q ` 1 “ 4m. Next, by (2) we have

fp4mq “ f 4p4m´ 3q “ f 4p4m´ 4q ` 1 “ f 3p4m´ 3q ` 1 “ 4m` 1.

Then by the induction hypothesis together with p˚q we successively obtain

fp4m´ 3q “ f 3p4m´ 1q “ fp4mq ` 1 “ 4m ` 2,

fp4m` 2q “ f 3p4m´ 4q “ fp4m´ 3q ` 1 “ 4m ` 3,

fp4m` 3q “ f 3p4m´ 3q “ fp4m´ 2q ` 1 “ 4m,

thus finishing the induction step.

Finally, it is straightforward to check that the constructed function works:

f 3p4kq “ 4k ` 7 “ fp4k ` 1q ` 1, f 3p4k ` 1q “ 4k ` 4 “ fp4k ` 2q ` 1,

f 3p4k ` 2q “ 4k ` 1 “ fp4k ` 3q ` 1, f 3p4k ` 3q “ 4k ` 6 “ fp4k ` 4q ` 1.

Solution 2. I. For convenience, let us introduce the function gpnq “ fpnq ` 1. Substituting fpnq
instead of n into p˚q we obtain

f 4pnq “ f
`

fpnq ` 1
˘

` 1, or f 4pnq “ g2pnq. (5)

Applying f to both parts of p˚q and using (5) we get

f 4pnq ` 1 “ f
`

fpn` 1q ` 1
˘

` 1 “ f 4pn` 1q. (6)

Thus, if g2p0q “ f 4p0q “ c then an easy induction on n shows that

g2pnq “ f 4pnq “ n ` c, n P Zě0. (7)
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This relation implies that both f and g are injective: if, say, fpmq “ fpnq then m ` c “
f 4pmq “ f 4pnq “ n ` c. Next, since gpnq ě 1 for every n, we have c “ g2p0q ě 1. Thus from (7)
again we obtain fpnq ‰ n and gpnq ‰ n for all n P Zě0.

II. Next, application of f and g to (7) yields

fpn` cq “ f 5pnq “ f 4pfpnqq “ fpnq ` c and gpn` cq “ g3pnq “ gpnq ` c. (8)

In particular, this means that if m ” n pmod cq then fpmq ” fpnq pmod cq. Conversely, if
fpmq ” fpnq pmod cq then we get m` c “ f 4pmq ” f 4pnq “ n ` c pmod cq. Thus,

m ” n pmod cq ðñ fpmq ” fpnq pmod cq ðñ gpmq ” gpnq pmod cq. (9)

Now, let us introduce the function δpnq “ fpnq ´ n “ gpnq ´ n´ 1. Set

S “
c´1
ÿ

n“0

δpnq.

Using (8), we get that for every complete residue system n1, . . . , nc modulo c we also have

S “
c
ÿ

i“1

δpniq.

By (9), we get that tfkpnq : n “ 0, . . . , c ´ 1u and tgkpnq : n “ 0, . . . , c ´ 1u are complete residue
systems modulo c for all k. Thus we have

c2 “
c´1
ÿ

n“0

`

f 4pnq ´ n
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

`

fk`1pnq ´ fkpnq
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

δpfkpnqq “ 4S

and similarly

c2 “
c´1
ÿ

n“0

`

g2pnq ´ n
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

gk`1pnq ´ gkpnq
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

δpgkpnqq ` 1
˘

“ 2S ` 2c.

Therefore c2 “ 4S “ 2 ¨ 2S “ 2pc2 ´ 2cq, or c2 “ 4c. Since c ‰ 0, we get c “ 4. Thus, in view of
(8) it is sufficient to determine the values of f on the numbers 0, 1, 2, 3.

III. Let d “ gp0q ě 1. Then gpdq “ g2p0q “ 0 ` c “ 4. Now, if d ě 4, then we would
have gpd ´ 4q “ gpdq ´ 4 “ 0 which is impossible. Thus d P t1, 2, 3u. If d “ 1 then we have
fp0q “ gp0q ´ 1 “ 0 which is impossible since fpnq ‰ n for all n. If d “ 3 then gp3q “ g2p0q “ 4
and hence fp3q “ 3 which is also impossible. Thus gp0q “ 2 and hence gp2q “ g2p0q “ 4.

Next, if gp1q “ 1 ` 4k for some integer k, then 5 “ g2p1q “ gp1 ` 4kq “ gp1q ` 4k “ 1 ` 8k
which is impossible. Thus, since tgpnq : n “ 0, 1, 2, 3u is a complete residue system modulo 4, we
get gp1q “ 3 ` 4k and hence gp3q “ g2p1q ´ 4k “ 5 ´ 4k, leading to k “ 0 or k “ 1. So, we obtain
iether

fp0q “ 1, fp1q “ 2, fp2q “ 3, fp3q “ 4, or fp0q “ 1, fp1q “ 6, fp2q “ 3, fp3q “ 0,

thus arriving to the two functions listed in the answer.

Finally, one can check that these two function work as in Solution 1. One may simplify the
checking by noticing that (8) allows us to reduce it to n “ 0, 1, 2, 3.
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A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´ mx2 ` 1qP px` 1q ` px3 ` mx2 ` 1qP px´ 1q “ 2px3 ´ mx ` 1qP pxq (1)

for all real numbers x.

(Serbia)

Answer. P pxq “ tx for any real number t.

Solution. Let P pxq “ anx
n ` ¨ ¨ ¨ ` a0x

0 with an ‰ 0. Comparing the coefficients of xn`1 on both
sides gives anpn´ 2mqpn´ 1q “ 0, so n “ 1 or n “ 2m.

If n “ 1, one easily verifies that P pxq “ x is a solution, while P pxq “ 1 is not. Since the given
condition is linear in P , this means that the linear solutions are precisely P pxq “ tx for t P R.

Now assume that n “ 2m. The polynomial xP px ` 1q ´ px ` 1qP pxq “ pn ´ 1qanxn ` ¨ ¨ ¨
has degree n, and therefore it has at least one (possibly complex) root r. If r R t0,´1u, define
k “ P prq{r “ P pr ` 1q{pr ` 1q. If r “ 0, let k “ P p1q. If r “ ´1, let k “ ´P p´1q. We now
consider the polynomial Spxq “ P pxq ´ kx. It also satisfies (1) because P pxq and kx satisfy it.
Additionally, it has the useful property that r and r ` 1 are roots.

Let Apxq “ x3 ´ mx2 ` 1 and Bpxq “ x3 ` mx2 ` 1. Plugging in x “ s into (1) implies that:

If s ´ 1 and s are roots of S and s is not a root of A, then s ` 1 is a root of S.

If s and s ` 1 are roots of S and s is not a root of B, then s ´ 1 is a root of S.

Let a ě 0 and b ě 1 be such that r ´ a, r ´ a` 1, . . . , r, r ` 1, . . . , r ` b ´ 1, r ` b are roots of S,
while r ´ a ´ 1 and r ` b ` 1 are not. The two statements above imply that r ´ a is a root of B
and r ` b is a root of A.

Since r ´ a is a root of Bpxq and of Apx ` a ` bq, it is also a root of their greatest common
divisor Cpxq as integer polynomials. If Cpxq was a non-trivial divisor of Bpxq, then B would have
a rational root α. Since the first and last coefficients of B are 1, α can only be 1 or ´1; but
Bp´1q “ m ą 0 and Bp1q “ m` 2 ą 0 since n “ 2m.

Therefore Bpxq “ Apx ` a` bq. Writing c “ a` b ě 1 we compute

0 “ Apx` cq ´ Bpxq “ p3c´ 2mqx2 ` cp3c´ 2mqx` c2pc´ mq.

Then we must have 3c´ 2m “ c ´ m “ 0, which gives m “ 0, a contradiction. We conclude that
fpxq “ tx is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as

xpx3 ´ mx2 ` 1qP px` 1q ` xpx3 ` mx2 ` 1qP px´ 1q “ rpx ` 1q ` px´ 1qs px3 ´ mx ` 1qP pxq.

After regrouping, it becomes

px3 ´ mx2 ` 1qQpxq “ px3 ` mx2 ` 1qQpx´ 1q, (2)

where Qpxq “ xP px ` 1q ´ px ` 1qP pxq. If degP ě 2 then degQ “ deg P , so Qpxq has a finite
multiset of complex roots, which we denote RQ. Each root is taken with its multiplicity. Then the
multiset of complex roots of Qpx ´ 1q is RQ ` 1 “ tz ` 1 : z P RQu.
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Let tx1, x2, x3u and ty1, y2, y3u be the multisets of roots of the polynomials Apxq “ x3 ´mx2 `1
and Bpxq “ x3 ` mx2 ` 1, respectively. From (2) we get the equality of multisets

tx1, x2, x3u Y RQ “ ty1, y2, y3u Y pRQ ` 1q.

For every r P RQ, since r ` 1 is in the set of the right hand side, we must have r ` 1 P RQ or
r ` 1 “ xi for some i. Similarly, since r is in the set of the left hand side, either r ´ 1 P RQ or
r “ yi for some i. This implies that, possibly after relabelling y1, y2, y3, all the roots of (2) may
be partitioned into three chains of the form tyi, yi ` 1, . . . , yi ` ki “ xiu for i “ 1, 2, 3 and some
integers k1, k2, k3 ě 0.

Now we analyze the roots of the polynomial Aapxq “ x3 `ax2 `1. Using calculus or elementary
methods, we find that the local extrema of Aapxq occur at x “ 0 and x “ ´2a{3; their values are
Aap0q “ 1 ą 0 and Aap´2a{3q “ 1` 4a3{27, which is positive for integers a ě ´1 and negative for
integers a ď ´2. So when a P Z, Aa has three real roots if a ď ´2 and one if a ě ´1.

Now, since yi ´ xi P Z for i “ 1, 2, 3, the cubics Am and A´m must have the same number of
real roots. The previous analysis then implies that m “ 1 or m “ ´1. Therefore the real root α of
A1pxq “ x3 `x2 ` 1 and the real root β of A´1pxq “ x3 ´x2 ` 1 must differ by an integer. But this
is impossible, because A1

`

´3
2

˘

“ ´1
8
and A1p´1q “ 1 so ´1.5 ă α ă ´1, while A´1p´1q “ ´1

and A´1

`

´1
2

˘

“ 5
8
, so ´1 ă β ă ´0.5.

It follows that deg P ď 1. Then, as shown in Solution 1, we conclude that the solutions are
P pxq “ tx for all real numbers t.
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

Answer. k “ 2n´ 1.

Solution 1. If d “ 2n´ 1 and a1 “ ¨ ¨ ¨ “ a2n´1 “ n{p2n´ 1q, then each group in such a partition
can contain at most one number, since 2n{p2n´ 1q ą 1. Therefore k ě 2n´ 1. It remains to show
that a suitable partition into 2n´ 1 groups always exists.

We proceed by induction on d. For d ď 2n ´ 1 the result is trivial. If d ě 2n, then since

pa1 ` a2q ` . . .` pa2n´1 ` a2nq ď n

we may find two numbers ai, ai`1 such that ai ` ai`1 ď 1. We “merge” these two numbers into
one new number ai ` ai`1. By the induction hypothesis, a suitable partition exists for the d ´ 1
numbers a1, . . . , ai´1, ai ` ai`1, ai`2, . . . , ad. This induces a suitable partition for a1, . . . , ad.

Solution 2. We will show that it is even possible to split the sequence a1, . . . , ad into 2n ´ 1
contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a
segment S of length n, and partition it into segments S1, . . . , Sd of lengths a1, . . . , ad, respectively,
as shown below. Consider a second partition of S into n equal parts by n´ 1 “empty dots”.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Assume that the n´ 1 empty dots are in segments Si1, . . . , Sin´1
. (If a dot is on the boundary

of two segments, we choose the right segment). These n ´ 1 segments are distinct because they
have length at most 1. Consider the partition:

ta1, . . . , ai1´1u, tai1u, tai1`1, . . . , ai2´1u, tai2u, . . . tain´1
u, tain´1`1, . . . , adu.

In the example above, this partition is ta1, a2u, ta3u, ta4, a5u, ta6u,H, ta7u, ta8, a9, a10u. We claim
that in this partition, the sum of the numbers in this group is at most 1.

For the sets taitu this is obvious since ait ď 1. For the sets tait ` 1, . . . , ait`1´1u this follows
from the fact that the corresponding segments lie between two neighboring empty dots, or between
an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than 1
2
in their own groups. Then, form the remaining

groups as follows: For each group, add new ais one at a time until their sum exceeds 1
2
. Since the

last summand is at most 1
2
, this group has sum at most 1. Continue this procedure until we have

used all the ais. Notice that the last group may have sum less than 1
2
. If the sum of the numbers

in the last two groups is less than or equal to 1, we merge them into one group. In the end we are
left with m groups. If m “ 1 we are done. Otherwise the first m´ 2 have sums greater than 1

2
and

the last two have total sum greater than 1. Therefore n ą pm´ 2q{2` 1 so m ď 2n´ 1 as desired.



22 IMO 2013 Colombia

Comment 1. The original proposal asked for the minimal value of k when n “ 2.

Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose
sum is a real number r. In this case the smallest value of k is k “ r2rs ´ 1, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound k ď 2rrs ´ 1. This is actually the optimal bound
for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see
this, assume that r is not an integer and let c “ pr ` 1 ´ rrsq{p1 ` rrsq. One easily checks that 0 ă c ă 1

2
and rrsp2cq ` prrs ´ 1qp1 ´ cq “ r, so the sequence

2c, 1 ´ c, 2c, 1 ´ c, . . . , 1 ´ c, 2c

of 2rrs ´ 1 numbers satisfies the given conditions. For this sequence, the only suitable partition into
consecutive groups is the trivial partition, which requires 2rrs ´ 1 groups.
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C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

Answer. k “ 2013.

Solution 1. Firstly, let us present an example showing that k ě 2013. Mark 2013 red and 2013
blue points on some circle alternately, and mark one more blue point somewhere in the plane. The
circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is
reached, then each arc should intersect some of the drawn lines. Since any line contains at most
two points of the circle, one needs at least 4026{2 “ 2013 lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention
that for every two points A and B having the same color, one can draw two lines separating these
points from all other ones. Namely, it suffices to take two lines parallel to AB and lying on different
sides of AB sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.

Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the
other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the
other points by two lines. Thus, 2013 lines will be used.

Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices
of P , say A and B. One may separate these two points from the others by a line parallel to AB.
Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and
separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked
points A and B such that all the other marked points are on one side of this line. If one of A and B is
red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.

Solution 2. Let us present a different proof of the fact that k “ 2013 suffices. In fact, we will
prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily,
then it suffices to draw tn{2u lines to reach the goal.

We proceed by induction on n. If n ď 2 then the statement is obvious. Now assume that n ě 3,
and consider a line ℓ containing two marked points A and B such that all the other marked points
are on one side of ℓ; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining
configuration it suffices to draw tn{2u ´ 1 lines to reach the goal. Now return the points A and B
back. Three cases are possible.

Case 1. If A and B have the same color, then one may draw a line parallel to ℓ and separating A
and B from the other points. Obviously, the obtained configuration of tn{2u lines works.

Case 2. If A and B have different colors, but they are separated by some drawn line, then again
the same line parallel to ℓ works.
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Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by
the drawn lines. By the induction assumption, this region contains no other points of one of the
colors — without loss of generality, the only blue point it contains is A. Then it suffices to draw
a line separating A from all other points.

Thus the step of the induction is proved.

Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any
positive integers m and n, say with m ď n. Denote the answer for this problem by fpm,nq.

One may show along the lines of Solution 1 that m ď fpm,nq ď m ` 1; moreover, if m is even then
fpm,nq “ m. On the other hand, for every odd m there exists an N such that fpm,nq “ m for all
m ď n ď N , and fpm,nq “ m` 1 for all n ą N .
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C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1

of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected
if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its
vertices in several colors so that every two connected vertices have different colors.

Lemma. Assume that a graph G admits a proper coloring in n colors (n ą 1). Then one may
perform a sequence of operations resulting in a graph which admits a proper coloring in n ´ 1
colors.

Proof. Let us apply repeatedly operation piq to any appropriate vertices while it is possible. Since
the number of vertices decreases, this process finally results in a graph where all the degrees are
even. Surely this graph also admits a proper coloring in n colors 1, . . . , n; let us fix this coloring.

Now apply the operation piiq to this graph. A proper coloring of the resulting graph in n
colors still exists: one may preserve the colors of the original vertices and color the vertex I 1 in
a color k ` 1 pmod nq if the vertex I has color k. Then two connected original vertices still have
different colors, and so do their two connected copies. On the other hand, the vertices I and I 1

have different colors since n ą 1.
All the degrees of the vertices in the resulting graph are odd, so one may apply operation piq

to delete consecutively all the vertices of color n one by one; no two of them are connected by
an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a
proper coloring in n ´ 1 colors, as required. The lemma is proved. l

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors.
Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color,
that is — a graph with no edges, as required.

Solution 2. Again, we will use the graph language.

I. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G˝ is obtained from G
by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with
no edges from G˝, then such a sequence also exists for G.

Proof. Consider any operation applicable to G˝ resulting in a graph G˝
1; then there exists a sequence

of operations applicable to G and resulting in a graph G1 differing from G˝
1 by an addition of an

isolated vertex A. Indeed, if this operation is of type piq, then one may simply repeat it in G.
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Otherwise, the operation is of type piiq, and one may apply it to G and then delete the vertex A1

(it will have degree 1).
Thus one may change the process for G˝ into a corresponding process for G step by step. l

In view of this lemma, if at some moment a graph contains some isolated vertex, then we may
simply delete it; let us call this operation piiiq.
II. Let V “ tA0

1, . . . , A
0
nu be the vertices of the initial graph. Let us describe which graphs can

appear during our operations. Assume that operation piiq was applied m times. If these were
the only operations applied, then the resulting graph Gm

n has the set of vertices which can be
enumerated as

V m
n “ tAj

i : 1 ď i ď n, 0 ď j ď 2m ´ 1u,
where A0

i is the common “ancestor” of all the vertices Aj
i , and the binary expansion of j (adjoined

with some zeroes at the left to have m digits) “keeps the history” of this vertex: the dth digit from
the right is 0 if at the dth doubling the ancestor of Aj

i was in the original part, and this digit is 1
if it was in the copy.

Next, the two vertices Aj
i and A

ℓ
k in Gm

n are connected with an edge exactly if either (1) j “ ℓ
and there was an edge between A0

i and A0
k (so these vertices appeared at the same application of

operation piiq); or (2) i “ k and the binary expansions of j and ℓ differ in exactly one digit (so
their ancestors became connected as a copy and the original vertex at some application of piiq).

Now, if some operations piq were applied during the process, then simply some vertices in Gm
n

disappeared. So, in any case the resulting graph is some induced subgraph of Gm
n .

III. Finally, we will show that from each (not necessarily induced) subgraph of Gm
n one can obtain

a graph with no vertices by applying operations piq, piiq and piiiq. We proceed by induction on n;
the base case n “ 0 is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph
containing no vertices of the form Aj

n for j P Z. We will do this in three steps.

Step 1. We apply repeatedly operation piq to any appropriate vertices while it is possible. In the
resulting graph, all vertices have even degrees.

Step 2. Apply operation piiq obtaining a subgraph of Gm`1
n with all degrees being odd. In this

graph, we delete one by one all the vertices Aj
n where the sum of the binary digits of j is even; it

is possible since there are no edges between such vertices, so all their degrees remain odd. After
that, we delete all isolated vertices.

Step 3. Finally, consider any remaining vertex Aj
n (then the sum of digits of j is odd). If its

degree is odd, then we simply delete it. Otherwise, since Aj
n is not isolated, we consider any vertex

adjacent to it. It has the form Aj
k for some k ă n (otherwise it would have the form Aℓ

n, where ℓ
has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of Aj

k

was deleted at Steps 2 and 3, so it has an odd degree. Then we successively delete Aj
k and Aj

n.
Notice that this deletion does not affect the applicability of this step to other vertices, since

no two vertices Aj
i and A

ℓ
k for different j, ℓ with odd digit sum are connected with an edge. Thus

we will delete all the remaining vertices of the form Aj
n, obtaining a subgraph of Gm`1

n´1 . The
application of the induction hypothesis finishes the proof.

Comment. In fact, the graph Gm
n is a Cartesian product of G and the graph of an m-dimensional

hypercube.
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C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let kmin

be the minimum number of parts in an A-partition of n, and let n “ a1 ` ¨ ¨ ¨ ` akmin
be an

optimal partition. Denote by s the number of different parts in this partition, so we can write
S “ ta1, . . . , akmin

u “ tb1, . . . , bsu for some pairwise different numbers b1 ă ¨ ¨ ¨ ă bs in A.
If s ą 3

?
6n, we will prove that there exist subsets X and Y of S such that |X| ă |Y | and

ř

xPX x “ ř

yPY y. Then, deleting the elements of Y from our partition and adding the elements of
X to it, we obtain an A-partition of n into less than kmin parts, which is the desired contradiction.

For each positive integer k ď s, we consider the k-element subset

Sk
1,0 :“ tb1, . . . , bku

as well as the following k-element subsets Sk
i,j of S:

Sk
i,j :“

 

b1, . . . , bk´i, bk´i`j`1, bs´i`2, . . . , bs
(

, i “ 1, . . . , k, j “ 1, . . . , s ´ k.

Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent
a subset of S by shading in the appropriate dots, we have:

Sk
i,j “ ‚ ‚ ‚ ‚ ‚ ‚ ‚

looooomooooon

k´i

˝ ˝ ˝ ˝ ˝
looomooon

j

‚ ˝ ˝ ˝ ˝ ˝ ˝ ˝
looooomooooon

s´k´j

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
looooooomooooooon

i´1

Denote by Σk
i,j the sum of elements in Sk

i,j. Clearly, Σk
1,0 is the minimum sum of a k-element

subset of S. Next, for all appropriate indices i and j we have

Σk
i,j “ Σk

i,j`1 ` bk´i`j`1 ´ bk´i`j`2 ă Σk
i,j`1 and Σk

i,s´k “ Σk
i`1,1 ` bk´i ´ bk´i`1 ă Σk

i`1,1.

Therefore

1 ď Σk
1,0 ă Σk

1,1 ă Σk
1,2 ă ¨ ¨ ¨ ă Σk

1,s´k ă Σk
2,1 ă ¨ ¨ ¨ ă Σk

2,s´k ă Σk
3,1 ă ¨ ¨ ¨ ă Σk

k,s´k ď n.

To see this in the picture, we start with the k leftmost points marked. At each step, we look for
the rightmost point which can move to the right, and move it one unit to the right. We continue
until the k rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found kps ´ kq ` 1 different integers of the form Σk
i,j between 1 and n. As

we vary k, the total number of integers we are considering is
s
ÿ

k“1

`

kps ´ kq ` 1
˘

“ s ¨ sps ` 1q
2

´ sps ` 1qp2s` 1q
6

` s “ sps2 ` 5q
6

ą s3

6
ą n.

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist
1 ď k ă k1 ď s and X “ Sk

i,j as well as Y “ Sk1

i1,j1 such that
ÿ

xPX

x “
ÿ

yPY

y, but |X| “ k ă k1 “ |Y |,

as required. The result follows.
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Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum
number n for which it fails. So there exists a set A Ď t1, . . . , nu together with an optimal A-
partition n “ a1 ` ¨ ¨ ¨ ` akmin

of n refuting our statement, where, of course, kmin is the minimum
number of parts in an A-partition of n. Again, we define S “ ta1, . . . , akmin

u “ tb1, . . . , bsu with
b1 ă ¨ ¨ ¨ ă bs; by our assumption we have s ą 3

?
6n ą 1. Without loss of generality we assume

that akmin
“ bs. Let us distinguish two cases.

Case 1. bs ě sps´1q
2

` 1.
Consider the partition n ´ bs “ a1 ` ¨ ¨ ¨ ` akmin´1, which is clearly a minimum A-partition

of n´ bs with at least s ´ 1 ě 1 different parts. Now, from n ă s3

6
we obtain

n´ bs ď n´ sps ´ 1q
2

´ 1 ă s3

6
´ sps ´ 1q

2
´ 1 ă ps ´ 1q3

6
,

so s ´ 1 ą 3

a

6pn´ bsq, which contradicts the choice of n.

Case 2. bs ď sps´1q
2

.

Set b0 “ 0, Σ0,0 “ 0, and Σi,j “ b1`¨ ¨ ¨`bi´1`bj for 1 ď i ď j ă s. There are sps´1q
2

`1 ą bs such
sums; so at least two of them, say Σi,j and Σi1,j1, are congruent modulo bs (where pi, jq ‰ pi1, j1q).
This means that Σi,j ´ Σi1,j1 “ rbs for some integer r. Notice that for i ď j ă k ă s we have

0 ă Σi,k ´ Σi,j “ bk ´ bj ă bs,

so the indices i and i1 are distinct, and we may assume that i ą i1. Next, we observe that
Σi,j ´ Σi1,j1 “ pbi1 ´ bj1q ` bj ` bi1`1 ` ¨ ¨ ¨ ` bi´1 and bi1 ď bj1 imply

´bs ă ´bj1 ă Σi,j ´ Σi1,j1 ă pi ´ i1qbs,

so 0 ď r ď i´ i1 ´ 1.
Thus, we may remove the i terms of Σi,j in our A-partition, and replace them by the i1 terms

of Σi1,j1 and r terms equal to bs, for a total of r ` i1 ă i terms. The result is an A-partition of n
into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in
the problem has the correct order of magnitude:

For every positive integer n, there exist a set A and an optimal A-partition of n that contains t 3
?
2nu

different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less
suitable for the competiton; but for completeness we provide an outline of its proof here.

Let k “ t 3
?
2nu ´ 1. The statement is trivial for n ă 4, so we assume n ě 4 and hence k ě 1. Let

h “ tn´1
k u. Notice that h ě n

k ´ 1.
Now let A “ t1, . . . , hu, and set a1 “ h, a2 “ h´1, . . . , ak “ h´k`1, and ak`1 “ n´ pa1 ` ¨ ¨ ¨ `akq.

It is not difficult to prove that ak ą ak`1 ě 1, which shows that

n “ a1 ` . . . ` ak`1

is an A-partition of n into k`1 different parts. Since kh ă n, any A-partition of n has at least k`1 parts.
Therefore our A-partition is optimal, and it has t 3

?
2nu distinct parts, as desired.
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C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)

Solution. For every indices m ď n we will denote Spm,nq “ am ` am`1 ` ¨ ¨ ¨ ` an´1; thus
Spn, nq “ 0. Let us start with the following lemma.

Lemma. Let b0, b1, . . . be an infinite sequence. Assume that for every nonnegative integer m there
exists a nonnegative integer n P rm ` 1, m ` rs such that bm “ bn. Then for every indices k ď ℓ
there exists an index t P rℓ, ℓ ` r ´ 1s such that bt “ bk. Moreover, there are at most r distinct
numbers among the terms of pbiq.
Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices
k1 “ k, k2, k3, . . . such that bk1 “ bk2 “ ¨ ¨ ¨ “ bk and ki ă ki`1 ď ki ` r for all i ě 1. This sequence
is unbounded from above, thus it hits each segment of the form rℓ, ℓ`r´1s with ℓ ě k, as required.

To prove the second claim, assume, to the contrary, that there exist r ` 1 distinct numbers
bi1 , . . . , bir`1

. Let us apply the first claim to k “ i1, . . . , ir`1 and ℓ “ maxti1, . . . , ir`1u; we obtain
that for every j P t1, . . . , r` 1u there exists tj P rs, s` r´ 1s such that btj “ bij . Thus the segment
rs, s ` r ´ 1s should contain r ` 1 distinct integers, which is absurd. l

Setting s “ 0 in the problem condition, we see that the sequence paiq satisfies the condi-
tion of the lemma, thus it attains at most r distinct values. Denote by Ai the ordered r-tuple
pai, . . . , ai`r´1q; then among Ai’s there are at most rr distinct tuples, so for every k ě 0 two of the
tuples Ak, Ak`1, . . . , Ak`rr are identical. This means that there exists a positive integer p ď rr such
that the equality Ad “ Ad`p holds infinitely many times. Let D be the set of indices d satisfying
this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded,
it suffices to show that d P D whenever d ` 1 P D. For that, denote bk “ Spk, p ` kq. The
sequence b0, b1, . . . satisfies the lemma conditions, so there exists an index t P rd ` 1, d ` rs such
that Spt, t ` pq “ Spd, d ` pq. This last relation rewrites as Spd, tq “ Spd ` p, t ` pq. Since
Ad`1 “ Ad`p`1, we have Spd` 1, tq “ Spd ` p ` 1, t` pq, therefore we obtain

ad “ Spd, tq ´ Spd` 1, tq “ Spd ` p, t` pq ´ Spd` p ` 1, t` pq “ ad`p

and thus Ad “ Ad`p, as required.

Finally, we get Ad “ Ad`p for all d, so in particular ad “ ad`p for all d, QED.

Comment 1. In the present proof, the upper bound for the minimal period length is rr. This bound is
not sharp; for instance, one may improve it to pr ´ 1qr for r ě 3..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to
check that the sequence with period p3,´3, 3,´3, 3,´1,´1,´1q satisfies the problem condition for r “ 7.

Comment 2. The conclusion remains true even if the problem condition only holds for every s ě N for
some positive integer N . To show that, one can act as follows. Firstly, the sums of the form Spi, i `Nq
attain at most r values, as well as the sums of the form Spi, i`N`1q. Thus the terms ai “ Spi, i `N ` 1q´
Spi ` 1, i `N ` 1q attain at most r2 distinct values. Then, among the tuples Ak, Ak`N , . . . , Ak`r2rN two
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are identical, so for some p ď r2r the set D “ td : Ad “ Ad`Npu is infinite. The further arguments apply
almost literally, with p being replaced by Np.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for
the minimal period length to rr — essentially by verifying that the sequence satisfies the original version
of the condition.
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

Solution. Let us denote by dpa, bq the distance between the cities a and b, and by

Sipaq “ tc : dpa, cq “ iu

the set of cities at distance exactly i from city a.
Assume that for some city x the set D “ S4pxq has size at least 2551. Let A “ S1pxq. A

subset A1 of A is said to be substantial, if every city in D can be reached from x with four flights
while passing through some member of A1; in other terms, every city in D has distance 3 from
some member of A1, or D Ď Ť

aPA1 S3paq. For instance, A itself is substantial. Now let us fix some
substantial subset A˚ of A having the minimal cardinality m “ |A˚|.

Since

mp101 ´ mq ď 50 ¨ 51 “ 2550,

there has to be a city a P A˚ such that |S3paq X D| ě 102 ´ m. As |S3paq| ď 100, we obtain
that S3paq may contain at most 100 ´ p102 ´ mq “ m ´ 2 cities c with dpc, xq ď 3. Let us
denote by T “ tc P S3paq : dpx, cq ď 3u the set of all such cities, so |T | ď m ´ 2. Now, to get a
contradiction, we will construct m´ 1 distinct elements in T , corresponding to m´ 1 elements of
the set Aa “ A˚ztau.

Firstly, due to the minimality of A˚, for each y P Aa there exists some city dy P D which can
only be reached with four flights from x by passing through y. So, there is a way to get from x to
dy along x–y–by–cy–dy for some cities by and cy; notice that dpx, byq “ 2 and dpx, cyq “ 3 since this
path has the minimal possible length.

Now we claim that all 2pm ´ 1q cities of the form by, cy with y P Aa are distinct. Indeed,
no by may coincide with any cz since their distances from x are different. On the other hand, if
one had by “ bz for y ‰ z, then there would exist a path of length 4 from x to dz via y, namely
x–y–bz–cz–dz; this is impossible by the choice of dz. Similarly, cy ‰ cz for y ‰ z.

So, it suffices to prove that for every y P Aa, one of the cities by and cy has distance 3
from a (and thus belongs to T ). For that, notice that dpa, yq ď 2 due to the path a–x–y, while
dpa, dyq ě dpx, dyq ´ dpx, aq “ 3. Moreover, dpa, dyq ‰ 3 by the choice of dy; thus dpa, dyq ą 3.
Finally, in the sequence dpa, yq, dpa, byq, dpa, cyq, dpa, dyq the neighboring terms differ by at most 1,
the first term is less than 3, and the last one is greater than 3; thus there exists one which is equal
to 3, as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of
them is the “Roman Empire”: it has one capital, called “Rome”, that is connected to 51 semicapitals by
internally disjoint paths of length 3. Moreover, each of these semicapitals is connected to 50 rural cities
by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size
of S1pxq or S2pxq.
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Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced

by n and
Y

pn`1q2

4

]

for any positive integer n. Still more generally, one can also replace the pair p3, 4q of

distances under consideration by any pair pr, sq of positive integers satisfying r ă s ď 3
2r.

To adapt the above proof to this situation, one takes A “ Ss´rpxq and defines the concept of substan-
tiality as before. Then one takes A˚ to be a minimal substantial subset of A, and for each y P A˚ one
fixes an element dy P Sspxq which is only reachable from x by a path of length s by passing through y.
As before, it suffices to show that for distinct a, y P A˚ and a path y “ y0 ´ y1 ´ . . . ´ yr “ dy, at least
one of the cities y0, . . . , yr´1 has distance r from a. This can be done as above; the relation s ď 3

2r is
used here to show that dpa, y0q ď r.

Moreover, the estimate
Y

pn`1q2

4

]

is also sharp for every positive integer n and every positive integers

r, s with r ă s ď 3
2r. This may be shown by an example similar to that in the previous comment.
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C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x ` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

Solution 1. Given a circular arrangement of r0, ns “ t0, 1, . . . , nu, we define a k-chord to be
a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three
chords of a circle are aligned if one of them separates the other two. Say that m ě 3 chords
are aligned if any three of them are aligned. For instance, in Figure 1, A, B, and C are aligned,
while B, C, and D are not.

A

B

C

D

AB

C

D

E

0 n
u v

t
n− t

Figure 1 Figure 2

Claim. In a beautiful arrangement, the k–chords are aligned for any integer k.

Proof. We proceed by induction. For n ď 3 the statement is trivial. Now let n ě 4, and proceed
by contradiction. Consider a beautiful arrangement S where the three k–chords A, B, C are not
aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain
a beautiful arrangement Sztnu of r0, n ´ 1s, where A, B, and C are aligned by the induction
hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the
numbers by 1 gives a beautiful arrangement Szt0u where A, B, and C are aligned. Therefore
both 0 and n are among the endpoints of these segments. If x and y are their respective partners,
we have n ě 0 ` x “ k “ n ` y ě n. Thus 0 and n are the endpoints of one of the chords; say it
is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the
same side of C as A and B, as shown in Figure 2. Set t “ u` v. If we had t “ n, the n–chords A,
B, and D would not be aligned in the beautiful arrangement Szt0, nu, contradicting the induction
hypothesis. If t ă n, then the t-chord from 0 to t cannot intersect D, so the chord C separates t
and D. The chord E from t to n´ t does not intersect C, so t and n´ t are on the same side of C.
But then the chords A, B, and E are not aligned in Szt0, nu, a contradiction. Finally, the case
t ą n is equivalent to the case t ă n via the beauty-preserving relabelling x ÞÑ n´x for 0 ď x ď n,
which sends t-chords to p2n ´ tq–chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case n “ 2 is
trivial. Now assume that n ě 3. Let S be a beautiful arrangement of r0, ns and delete n to obtain
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the beautiful arrangement T of r0, n´ 1s. The n–chords of T are aligned, and they contain every
point except 0. Say T is of Type 1 if 0 lies between two of these n–chords, and it is of Type 2
otherwise; i.e., if 0 is aligned with these n–chords. We will show that each Type 1 arrangement
of r0, n´ 1s arises from a unique arrangement of r0, ns, and each Type 2 arrangement of r0, n´ 1s
arises from exactly two beautiful arrangements of r0, ns.

If T is of Type 1, let 0 lie between chords A and B. Since the chord from 0 to n must be
aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be
recovered uniquely from T . In the other direction, if T is of Type 1 and we insert n as above,
then we claim the resulting arrangement S is beautiful. For 0 ă k ă n, the k–chords of S are also
k–chords of T , so they are aligned. Finally, for n ă k ă 2n, notice that the n–chords of S are
parallel by construction, so there is an antisymmetry axis ℓ such that x is symmetric to n´x with
respect to ℓ for all x. If we had two k–chords which intersect, then their reflections across ℓ would
be two p2n ´ kq-chords which intersect, where 0 ă 2n´ k ă n, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0. As above, we
check that both positions lead to beautiful arrangements of r0, ns.

Hence if we letMn be the number of beautiful arrangements of r0, ns, and let Ln be the number
of beautiful arrangements of r0, n´ 1s of Type 2, we have

Mn “ pMn´1 ´ Ln´1q ` 2Ln´1 “ Mn´1 ` Ln´1.

It then remains to show that Ln´1 is the number of pairs px, yq of positive integers with x` y “ n
and gcdpx, yq “ 1. Since n ě 3, this number equals ϕpnq “ #tx : 1 ď x ď n, gcdpx, nq “ 1u.

To prove this, consider a Type 2 beautiful arrangement of r0, n ´ 1s. Label the positions
0, . . . , n ´ 1 pmod nq clockwise around the circle, so that number 0 is in position 0. Let fpiq be
the number in position i; note that f is a permutation of r0, n ´ 1s. Let a be the position such
that fpaq “ n´ 1.

Since the n–chords are aligned with 0, and every point is in an n–chord, these chords are all
parallel and

fpiq ` fp´iq “ n for all i.

Similarly, since the pn´ 1q–chords are aligned and every point is in an pn´ 1q–chord, these chords
are also parallel and

fpiq ` fpa´ iq “ n ´ 1 for all i.

Therefore fpa´ iq “ fp´iq ´ 1 for all i; and since fp0q “ 0, we get

fp´akq “ k for all k. (1)

Recall that this is an equality modulo n. Since f is a permutation, we must have pa, nq “ 1. Hence
Ln´1 ď ϕpnq.

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider
four numbers w, x, y, z on the circle with w ` y “ x ` z. Their positions around the circle satisfy
p´awq ` p´ayq “ p´axq ` p´azq, which means that the chord from w to y and the chord from
x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result
follows.
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Solution 2. Notice that there are exactly N irreducible fractions f1 ă ¨ ¨ ¨ ă fN in p0, 1q whose
denominator is at most n, since the pair px, yq with x ` y ď n and px, yq “ 1 corresponds to the
fraction x{px ` yq. Write fi “ ai

bi
for 1 ď i ď N .

We begin by constructing N ` 1 beautiful arrangements. Take any α P p0, 1q which is not one
of the above N fractions. Consider a circle of perimeter 1. Successively mark points 0, 1, 2, . . . , n
where 0 is arbitrary, and the clockwise distance from i to i`1 is α. The point k will be at clockwise
distance tkαu from 0, where tru denotes the fractional part of r. Call such a circular arrangement
cyclic and denote it by Apαq. If the clockwise order of the points is the same in Apα1q and Apα2q,
we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement Ap3{5`ǫq
of r0, 13s where ǫ ą 0 is very small.
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Figure 3

If 0 ď a, b, c, d ď n satisfy a` c “ b ` d, then aα ` cα “ bα ` dα, so the chord from a to c is
parallel to the chord from b to d in Apαq. Hence in a cyclic arrangement all k—chords are parallel.
In particular every cyclic arrangement is beautiful.

Next we show that there are exactly N ` 1 distinct cyclic arrangements. To see this, let us
see how Apαq changes as we increase α from 0 to 1. The order of points p and q changes precisely
when we cross a value α “ f such that tpfu “ tqfu; this can only happen if f is one of the N
fractions f1, . . . , fN . Therefore there are at most N ` 1 different cyclic arrangements.

To show they are all distinct, recall that fi “ ai{bi and let ǫ ą 0 be a very small number. In

the arrangement Apfi ` ǫq, point k lands at kai pmod biq
bi

` kǫ. Therefore the points are grouped

into bi clusters next to the points 0, 1
bi
, . . . , bi´1

bi
of the circle. The cluster following k

bi
contains the

numbers congruent to ka´1
i modulo bi, listed clockwise in increasing order. It follows that the first

number after 0 in Apfi ` ǫq is bi, and the first number after 0 which is less than bi is a
´1
i pmod biq,

which uniquely determines ai. In this way we can recover fi from the cyclic arrangement. Note
also that Apfi ` ǫq is not the trivial arrangement where we list 0, 1, . . . , n in order clockwise. It
follows that the N ` 1 cyclic arrangements Apǫq, Apf1 ` ǫq, . . . , ApfN ` ǫq are distinct.

Let us record an observation which will be useful later:

if fi ă α ă fi`1 then 0 is immediately after bi`1 and before bi in Apαq. (2)

Indeed, we already observed that bi is the first number after 0 in Apfi ` ǫq “ Apαq. Similarly we
see that bi`1 is the last number before 0 in Apfi`1 ´ ǫq “ Apαq.
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Finally, we show that any beautiful arrangement of r0, ns is cyclic by induction on n. For n ď 2
the result is clear. Now assume that all beautiful arrangements of r0, n´1s are cyclic, and consider
a beautiful arrangement A of r0, ns. The subarrangement An´1 “ Aztnu of r0, n´ 1s obtained by
deleting n is cyclic; say An´1 “ An´1pαq.

Let α be between the consecutive fractions p1
q1

ă p2
q2

among the irreducible fractions of de-

nominator at most n ´ 1. There is at most one fraction i
n
in pp1

q1
, p2
q2

q, since i
n

ă i
n´1

ď i`1
n

for
0 ă i ď n´ 1.

Case 1. There is no fraction with denominator n between p1
q1

and p2
q2
.

In this case the only cyclic arrangement extending An´1pαq is Anpαq. We know that A and
Anpαq can only differ in the position of n. Assume n is immediately after x and before y in Anpαq.
Since the neighbors of 0 are q1 and q2 by (2), we have x, y ě 1.

x

n

y x− 1

n− 1

y − 1

Figure 4

In Anpαq the chord from n´1 to x is parallel and adjacent to the chord from n to x´1, so n´1
is between x ´ 1 and x in clockwise order, as shown in Figure 4. Similarly, n ´ 1 is between y
and y ´ 1. Therefore x, y, x ´ 1, n ´ 1, and y ´ 1 occur in this order in Anpαq and hence in A
(possibly with y “ x ´ 1 or x “ y ´ 1).

Now, A may only differ from Anpαq in the location of n. In A, since the chord from n ´ 1
to x and the chord from n to x ´ 1 do not intersect, n is between x and n ´ 1. Similarly, n is
between n ´ 1 and y. Then n must be between x and y and A “ Anpαq. Therefore A is cyclic as
desired.

Case 2. There is exactly one i with p1
q1

ă i
n

ă p2
q2
.

In this case there exist two cyclic arrangements Anpα1q and Anpα2q of the numbers 0, . . . , n
extending An´1pαq, where p1

q1
ă α1 ă i

n
and i

n
ă α2 ă p2

q2
. In An´1pαq, 0 is the only number

between q2 and q1 by (2). For the same reason, n is between q2 and 0 in Anpα1q, and between 0
and q1 in Anpα2q.

Letting x “ q2 and y “ q1, the argument of Case 1 tells us that n must be between x and y
in A. Therefore A must equal Anpα1q or Anpα2q, and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are
exactly N ` 1 beautiful arrangements of r0, ns as we wished to show.



Shortlisted problems – solutions 37

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)

Answer. No. Such a strategy for player A does not exist.

Solution. We will present a strategy for player B that guarantees that the interval r0, 1s is com-
pletely blackened, once the paint pot has become empty.

At the beginning of round r, let xr denote the largest real number for which the interval
between 0 and xr has already been blackened; for completeness we define x1 “ 0. Let m be the
integer picked by player A in this round; we define an integer yr by

yr
2m

ď xr ă yr ` 1

2m
.

Note that Ir0 “ ryr{2m, pyr ` 1q{2ms is the leftmost interval that may be painted in round r and
that still contains some uncolored point.

Player B now looks at the next interval Ir1 “ rpyr ` 1q{2m, pyr ` 2q{2ms. If Ir1 still contains an
uncolored point, then player B blackens the interval Ir1 ; otherwise he blackens the interval Ir0 . We
make the convention that, at the beginning of the game, the interval r1, 2s is already blackened;
thus, if yr ` 1 “ 2m, then B blackens Ir0 .

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by
induction that, if before rth round the segment r0, 1s is not completely colored, then, before this
move,

piq the amount of ink used for the segment r0, xrs is at most 3xr; and

piiq for every m, B has blackened at most one interval of length 1{2m to the right of xr.

Obviously, these conditions are satisfied for r “ 0. Now assume that they were satisfied before
the rth move, and consider the situation after this move; let m be the number A has picked at
this move.

If B has blackened the interval Ir1 at this move, then xr`1 “ xr, and piq holds by the induction
hypothesis. Next, had B blackened before the rth move any interval of length 1{2m to the right
of xr, this interval would necessarily coincide with Ir1 . By our strategy, this cannot happen. So,
condition piiq also remains valid.

Assume now that B has blackened the interval Ir0 at the rth move, but the interval r0, 1s still
contains uncolored parts (which means that Ir1 is contained in r0, 1s). Then condition piiq clearly
remains true, and we need to check piq only. In our case, the intervals Ir0 and Ir1 are completely
colored after the rth move, so xr`1 either reaches the right endpoint of I1 or moves even further
to the right. So, xr`1 “ xr ` α for some α ą 1{2m.

Next, any interval blackened by B before the rth move which intersects pxr, xr`1q should be
contained in rxr, xr`1s; by piiq, all such intervals have different lengths not exceeding 1{2m, so
the total amount of ink used for them is less than 2{2m. Thus, the amount of ink used for the
segment r0, xr`1s does not exceed the sum of 2{2m, 3xr (used for r0, xrs), and 1{2m used for the
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segment Ir0 . In total it gives at most 3pxr ` 1{2mq ă 3pxr ` αq “ 3xr`1. Thus condition piq is also
verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the
pr´1qst move; assume that the segment r0, 1s is not completely black. By piiq, in the segment rxr, 1s
player B has colored several segments of different lengths; all these lengths are negative powers
of 2 not exceeding 1 ´ xr; thus the total amount of ink used for this interval is at most 2p1 ´ xrq.
Using piq, we obtain that the total amount of ink used is at most 3xr ` 2p1 ´ xrq ă 3. Thus the
pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.

Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the
whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of
the type r0, xs. Such a strategy cannot work (even if there is more ink available). Indeed, under the
assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers m ď s in which,
if player B ever paints a point x ě 1 ´ 1{2s then after some move, exactly the interval r0, 1 ´ 1{2ss is
blackened, and the amount of ink used up to this moment is at least s{2.

For the base case s “ 1, player A just picks m “ 1 in the first round. If for some positive integer k
player A has such a strategy, for s` 1 he can first rescale his strategy to the interval r0, 1{2s (sending in
each round half of the amount of ink he would give by the original strategy). Thus, after some round, the
interval r0, 1{2 ´ 1{2s`1s becomes blackened, and the amount of ink used is at least s{4. Now player A
picks m “ 1{2, and player B spends 1{2 unit of ink to blacken the interval r0, 1{2s. After that, player A
again rescales his strategy to the interval r1{2, 1s, and player B spends at least s{4 units of ink to blacken
the interval r1{2, 1 ´ 1{2s`1s, so he spends in total at least s{4 ` 1{2 ` s{4 “ ps ` 1q{2 units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:

Players A and B play a paintful game on the real numbers. Player A has a paint pot with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of
length p. In the beginning of the game, player A chooses (and announces) a positive integer
N . In every round, player A picks some positive integer m ď N and provides 1{2m units
of ink from the pot. The player B picks an integer k and blackens the interval from k{2m
to pk ` 1q{2m (some parts of this interval may happen to be blackened before). The goal of
player A is to reach a situation where the pot is empty and the interval r0, 1s is not completely
blackened.

Decide whether there exists a strategy for player A to win.

However, the Problem Selection Committee believes that this version may turn out to be harder than the
original one.
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of
circles ω1 and ω2, other than W . We show that X , Y , Z and H lie on the same line.

Due to =BNC “ =BMC “ 90˝, the points B, C, N and M are concyclic; denote their circle
by ω3. Observe that the line WZ is the radical axis of ω1 and ω2; similarly, BN is the radical axis
of ω1 and ω3, and CM is the radical axis of ω2 and ω3. Hence A “ BN XCM is the radical center
of the three circles, and therefore WZ passes through A.

SinceWX andWY are diameters in ω1 and ω2, respectively, we have =WZX “ =WZY “ 90˝,
so the points X and Y lie on the line through Z, perpendicular to WZ.
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The quadrilateral BLHN is cyclic, because it has two opposite right angles. From the power
of A with respect to the circles ω1 and BLHN we find AL ¨AH “ AB ¨AN “ AW ¨AZ. If H lies
on the line AW then this implies H “ Z immediately. Otherwise, by AZ

AH
“ AL

AW
the triangles AHZ

and AWL are similar. Then =HZA “ =WLA “ 90˝, so the point H also lies on the line XY Z.

Comment. The original proposal also included a second statement:

Let P be the point on ω1 such that WP is parallel to CN , and let Q be the point on ω2 such
that WQ is parallel to BM . Prove that P , Q and H are collinear if and only if BW “ CW
or AW K BC.

The Problem Selection Committee considered the first part more suitable for the competition.
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G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

Solution 1. Let O be the center of ω, thus O “ MY XNX . Let ℓ be the perpendicular bisector
of AT (it also passes through O). Denote by r the operation of reflection about ℓ. Since AT is the
angle bisector of =BAC, the line rpABq is parallel to AC. Since OM K AB and ON K AC, this
means that the line rpOMq is parallel to the line ON and passes through O, so rpOMq “ ON .
Finally, the circumcircle γ of the triangle AMT is symmetric about ℓ, so rpγq “ γ. Thus the
point M maps to the common point of ON with the arc AMT of γ — that is, rpMq “ X .

Similarly, rpNq “ Y . Thus, we get rpMNq “ XY , and the common point K of MN nd XY
lies on ℓ. This means exactly that KA “ KT .
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Solution 2. Let L be the second common point of the line AC with the circumcircle γ of
the triangle AMT . From the cyclic quadrilaterals ABTC and AMTL we get =BTC “ 180˝ ´
=BAC “ =MTL, which implies =BTM “ =CTL. Since AT is an angle bisector in these
quadrilaterals, we have BT “ TC and MT “ TL. Thus the triangles BTM and CTL are
congruent, so CL “ BM “ AM .

Let X 1 be the common point of the line NX with the external bisector of =BAC; notice
that it lies outside the triangle ABC. Then we have =TAX 1 “ 90˝ and X 1A “ X 1C, so we
get =X 1AM “ 90˝ ` =BAC{2 “ 180˝ ´ =X 1AC “ 180˝ ´ =X 1CA “ =X 1CL. Thus the
triangles X 1AM and X 1CL are congruent, and therefore

=MX 1L “ =AX 1C ` p=CX 1L´ =AX 1Mq “ =AX 1C “ 180˝ ´ 2=X 1AC “ =BAC “ =MAL.

This means that X 1 lies on γ.
Thus we have =TXN “ =TXX 1 “ =TAX 1 “ 90˝, so TX ‖ AC. Then =XTA “ =TAC “

=TAM , so the cyclic quadrilateral MATX is an isosceles trapezoid. Similarly, NATY is an
isosceles trapezoid, so again the lines MN and XY are the reflections of each other about the
perpendicular bisector of AT . Thus K belongs to this perpendicular bisector.
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Comment. There are several different ways of showing that the points X and M are symmetrical with
respect to ℓ. For instance, one can show that the quadrilaterals AMON and TXOY are congruent. We
chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting
properties of the configuration.

Let us define Y 1, analogously to X 1, as the common point of MY and the external bisector of =BAC.
One may easily see that in general the lines MN and X 1Y 1 (which is the external bisector of =BAC)
do not intersect on the perpendicular bisector of AT . Thus, any solution should involve some argument
using the choice of the intersection points X and Y .
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G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

Solution 1. Let K, L, M , and N be the vertices of the rhombus lying on the sides AE, ED, DB,
and BA, respectively. Denote by dpX, Y Zq the distance from a point X to a line Y Z. Since D
and E are the feet of the bisectors, we have dpD,ABq “ dpD,ACq, dpE,ABq “ dpE,BCq, and
dpD,BCq “ dpE,ACq “ 0, which implies

dpD,ACq ` dpD,BCq “ dpD,ABq and dpE,ACq ` dpE,BCq “ dpE,ABq.

Since L lies on the segment DE and the relation dpX,ACq ` dpX,BCq “ dpX,ABq is linear in X
inside the triangle, these two relations imply

dpL,ACq ` dpL,BCq “ dpL,ABq. (1)

Denote the angles as in the figure below, and denote a “ KL. Then we have dpL,ACq “ a sinµ
and dpL,BCq “ a sin ν. Since KLMN is a parallelogram lying on one side of AB, we get

dpL,ABq “ dpL,ABq ` dpN,ABq “ dpK,ABq ` dpM,ABq “ apsin δ ` sin εq.

Thus the condition (1) reads
sin µ ` sin ν “ sin δ ` sin ε. (2)
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If one of the angles α and β is non-acute, then the desired inequality is trivial. So we assume
that α, β ă π{2. It suffices to show then that ψ “ =NKL ď maxtα, βu.

Assume, to the contrary, that ψ ą maxtα, βu. Since µ ` ψ “ =CKN “ α ` δ, by our
assumption we obtain µ “ pα ´ ψq ` δ ă δ. Similarly, ν ă ε. Next, since KN ‖ ML, we have
β “ δ ` ν, so δ ă β ă π{2. Similarly, ε ă π{2. Finally, by µ ă δ ă π{2 and ν ă ε ă π{2, we
obtain

sin µ ă sin δ and sin ν ă sin ε.

This contradicts (2).

Comment. One can see that the equality is achieved if α “ β for every rhombus inscribed into the
quadrilateral AEDB.
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G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

Solution 1. Denote by ω the circumcircle of the triangle ABC, and let =ACB “ γ. Note
that the condition γ ă =CBA implies γ ă 90˝. Since =PBA “ γ, the line PB is tangent
to ω, so PA ¨ PC “ PB2 “ PD2. By PA

PD
“ PD

PC
the triangles PAD and PDC are similar, and

=ADP “ =DCP .
Next, since =ABQ “ =ACB, the triangles ABC and AQB are also similar. Then =AQB “

=ABC “ =ARC, which means that the points D, R, C, and Q are concyclic. Therefore =DRQ “
=DCQ “ =ADP .

A

B

CP Q

R

D

ω

Figure 1

Now from =ARB “ =ACB “ γ and =PDB “ =PBD “ 2γ we get

=QBR “ =ADB ´ =ARB “ =ADP ` =PDB ´ =ARB “ =DRQ ` γ “ =QRB,

so the triangle QRB is isosceles, which yields QB “ QR.

Solution 2. Again, denote by ω the circumcircle of the triangle ABC. Denote =ACB “ γ. Since
=PBA “ γ, the line PB is tangent to ω.

Let E be the second intersection point of BQ with ω. If V 1 is any point on the ray CE
beyond E, then =BEV 1 “ 180˝ ´ =BEC “ 180˝ ´ =BAC “ =PAB; together with =ABQ “
=PBA this shows firstly, that the rays BA and CE intersect at some point V , and secondly
that the triangle V EB is similar to the triangle PAB. Thus we have =BV E “ =BPA. Next,
=AEV “ =BEV ´ γ “ =PAB ´ =ABQ “ =AQB; so the triangles PBQ and V AE are also
similar.

Let PH be an altitude in the isosceles triangle PBD; thenBH “ HD. LetG be the intersection
point of PH and AB. By the symmetry with respect to PH , we have =BDG “ =DBG “ γ “
=BEA; thus DG ‖ AE and hence BG

GA
“ BD

DE
. Thus the points G and D correspond to each other

in the similar triangles PAB and V EB, so =DV B “ =GPB “ 90˝ ´ =PBQ “ 90˝ ´ =V AE.
Thus V D K AE.
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Let T be the common point of V D and AE, and let DS be an altitude in the triangle BDR.
The points S and T are the feet of corresponding altitudes in the similar triangles ADE and BDR,
so BS

SR
“ AT

TE
. On the other hand, the points T and H are feet of corresponding altitudes in the

similar triangles V AE and PBQ, so AT
TE

“ BH
HQ

. Thus BS
SR

“ AT
TE

“ BH
HQ

, and the triangles BHS
and BQR are similar.

Finally, SH is a median in the right-angled triangle SBD; so BH “ HS, and hence BQ “ QR.

A

B

C
P

Q

R

D

G

H

S

T

E

V

ω

Figure 2

Solution 3. Denote by ω and O the circumcircle of the triangle ABC and its center, respectively.
From the condition =PBA “ =BCA we know that BP is tangent to ω.

Let E be the second point of intersection of ω and BD. Due to the isosceles triangle BDP ,
the tangent of ω at E is parallel to DP and consequently it intersects BP at some point L. Of
course, PD ‖ LE. Let M be the midpoint of BE, and let H be the midpoint of BR. Notice that
=AEB “ =ACB “ =ABQ “ =ABE, so A lies on the perpendicular bisector of BE; thus the
points L, A, M , and O are collinear. Let ω1 be the circle with diameter BO. Let Q1 “ HOXBE;
since HO is the perpendicular bisector of BR, the statement of the problem is equivalent to
Q1 “ Q.

Consider the following sequence of projections (see Fig. 3).

1. Project the line BE to the line LB through the center A. (This maps Q to P .)
2. Project the line LB to BE in parallel direction with LE. (P ÞÑ D.)
3. Project the line BE to the circle ω through its point A. (D ÞÑ R.)
4. Scale ω by the ratio 1

2
from the point B to the circle ω1. (R ÞÑ H .)

5. Project ω1 to the line BE through its point O. (H ÞÑ Q1.)

We prove that the composition of these transforms, which maps the line BE to itself, is the
identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which
is fixed by all the transformations above. Another fixed point is M , its path being M ÞÑ L ÞÑ
E ÞÑ E ÞÑ M ÞÑ M .
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Figure 3 Figure 4
In order to show a third fixed point, draw a line parallel with LE through A; let that line

intersect BE, LB and ω at X , Y and Z ‰ A, respectively (see Fig. 4). We show that X is a
fixed point. The images of X at the first three transformations are X ÞÑ Y ÞÑ X ÞÑ Z. From
=XBZ “ =EAZ “ =AEL “ =LBA “ =BZX we can see that the triangle XBZ is isosceles.
Let U be the midpoint of BZ; then the last two transformations do Z ÞÑ U ÞÑ X , and the point X
is fixed.

Comment. Verifying that the point E is fixed seems more natural at first, but it appears to be less
straightforward. Here we outline a possible proof.

Let the images of E at the first three transforms above be F , G and I. After comparing the angles
depicted in Fig. 5 (noticing that the quadrilateral AFBG is cyclic) we can observe that the tangent LE
of ω is parallel to BI. Then, similarly to the above reasons, the point E is also fixed.

A

ω

B

I

E

Q
P

F

L

G

Figure 5
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G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´ =D “ =C ´ =F “ =E ´ =B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

In all three solutions, we denote θ “ =A´ =D “ =C ´ =F “ =E ´ =B and assume without loss
of generality that θ ě 0.

Solution 1. Let x “ AB “ DE, y “ CD “ FA, z “ EF “ BC. Consider the points P, Q,
and R such that the quadrilaterals CDEP , EFAQ, and ABCR are parallelograms. We compute

=PEQ “ =FEQ ` =DEP ´ =E “ p180˝ ´ =F q ` p180˝ ´ =Dq ´ =E

“ 360˝ ´ =D ´ =E ´ =F “ 1
2

`

=A` =B ` =C ´ =D ´ =E ´ =F
˘

“ θ{2.

Similarly, =QAR “ =RCP “ θ{2.

D
E

F

A

B

CP
Q

R

x
z

y

x
z

y

If θ “ 0, since △RCP is isosceles, R “ P . Therefore AB ‖ RC “ PC ‖ ED, so ABDE is a
parallelogram. Similarly, BCEF and CDFA are parallelograms. It follows that AD, BE and CF
meet at their common midpoint.

Now assume θ ą 0. Since △PEQ, △QAR, and △RCP are isosceles and have the same angle
at the apex, we have △PEQ „ △QAR „ △RCP with ratios of similarity y : z : x. Thus

△PQR is similar to the triangle with sidelengths y, z, and x. (1)

Next, notice that
RQ

QP
“ z

y
“ RA

AF

and, using directed angles between rays,

>pRQ,QP q “ >pRQ,QEq ` >pQE,QP q
“ >pRQ,QEq ` >pRA,RQq “ >pRA,QEq “ >pRA,AF q.

Thus △PQR „ △FAR. Since FA “ y and AR “ z, (1) then implies that FR “ x. Similarly
FP “ x. Therefore CRFP is a rhombus.

We conclude that CF is the perpendicular bisector of PR. Similarly, BE is the perpendicular
bisector of PQ and AD is the perpendicular bisector of QR. It follows that AD, BE, and CF are
concurrent at the circumcenter of PQR.
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Solution 2. Let X “ CD X EF , Y “ EF X AB, Z “ AB X CD, X 1 “ FA X BC, Y 1 “
BC X DE, and Z 1 “ DE X FA. From =A ` =B ` =C “ 360˝ ` θ{2 we get =A ` =B ą 180˝

and =B ` =C ą 180˝, so Z and X 1 are respectively on the opposite sides of BC and AB from the
hexagon. Similar conclusions hold for X , Y , Y 1, and Z 1. Then

=Y ZX “ =B ` =C ´ 180˝ “ =E ` =F ´ 180˝ “ =Y 1Z 1X 1,

and similarly =ZXY “ =Z 1X 1Y 1 and =XY Z “ =X 1Y 1Z 1, so △XY Z „ △X 1Y 1Z 1. Thus there is
a rotation R which sends △XY Z to a triangle with sides parallel to △X 1Y 1Z 1. Since AB “ DE
we have R

`ÝÝÑ
AB

˘

“ ÝÝÑ
DE. Similarly, R

`ÝÝÑ
CD

˘

“ ÝÝÑ
FA and R

`ÝÝÑ
EF

˘

“ ÝÝÑ
BC. Therefore

ÝÑ
0 “ ÝÝÑ

AB ` ÝÝÑ
BC ` ÝÝÑ

CD ` ÝÝÑ
DE ` ÝÝÑ

EF ` ÝÝÑ
FA “

`ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF

˘

` R
`ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF

˘

.

If R is a rotation by 180˝, then any two opposite sides of our hexagon are equal and parallel,
so the three diagonals meet at their common midpoint. Otherwise, we must have

ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF “ ÝÑ

0 ,

or else we would have two vectors with different directions whose sum is
ÝÑ
0 .

T

D

EF

A

B

C

Z

X
Y

Z ′

X ′

Y ′

O3

O1

O2

N

LM
O

This allows us to consider a triangle LMN with
ÝÝÑ
LM “ ÝÝÑ

EF ,
ÝÝÑ
MN “ ÝÝÑ

AB, and
ÝÝÑ
NL “ ÝÝÑ

CD. Let O
be the circumcenter of △LMN and consider the points O1, O2, O3 such that △AO1B, △CO2D,
and △EO3F are translations of △MON , △NOL, and △LOM , respectively. Since FO3 and AO1

are translations of MO, quadrilateral AFO3O1 is a parallelogram and O3O1 “ FA “ CD “ NL.
Similarly, O1O2 “ LM and O2O3 “ MN . Therefore △O1O2O3 – △LMN . Moreover, by means
of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of △O1O2O3. We claim that AD, BE, and CF meet at T . Let
us show that C, T , and F are collinear. Notice that CO2 “ O2T “ TO3 “ O3F since they are
all equal to the circumradius of △LMN . Therefore △TO3F and △CO2T are isosceles. Using
directed angles between rays again, we get

>pTF, TO3q “ >pFO3, FT q and >pTO2, TCq “ >pCT,CO2q. (2)

Also, T and O are the circumcenters of the congruent triangles △O1O2O3 and △LMN so we have
>pTO3, TO2q “ >pON,OMq. Since CO2 and FO3 are translations of NO and MO respectively,
this implies

>pTO3, TO2q “ >pCO2, FO3q. (3)
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Adding the three equations in (2) and (3) gives

>pTF, TCq “ >pCT, FT q “ ´>pTF, TCq
which implies that T is on CF . Analogous arguments show that it is on AD and BE also. The
desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled
clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider
the complex numbers a, b, c, a1, b1, c1 given by B ´ A “ a, D ´ C “ b, F ´ E “ c, E ´ D “ a1,
A ´ F “ b1, and C ´ B “ c1. Let k “ |a|{|b|. From a{b1 “ ´kei=A and a1{b “ ´kei=D we get that
pa1{aqpb1{bq “ e´iθ and similarly pb1{bqpc1{cq “ e´iθ and pc1{cqpa1{aq “ e´iθ. It follows that a1 “ ar,
b1 “ br, and c1 “ cr for a complex number r with |r| “ 1, as shown below.

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

EF

A

B

C

a+ b+ cr = c(r − 1)

−br − c−br

0

a

a+ cr

c(r − 1)λ

a cr

b

ar
c

br

We have
0 “ a` cr ` b` ar ` c ` br “ pa` b ` cqp1 ` rq.

If r “ ´1, then the hexagon is centrally symmetric and its diagonals intersect at its center of
symmetry. Otherwise

a` b ` c “ 0.

Therefore

A “ 0, B “ a, C “ a` cr, D “ cpr ´ 1q, E “ ´br ´ c, F “ ´br.
Now consider a point W on AD given by the complex number cpr´ 1qλ, where λ is a real number
with 0 ă λ ă 1. Since D ‰ A, we have r ‰ 1, so we can define s “ 1{pr ´ 1q. From rr “ |r|2 “ 1
we get

1 ` s “ r

r ´ 1
“ r

r ´ rr
“ 1

1 ´ r
“ ´s.

Now,

W is on BE ðñ cpr ´ 1qλ´ a ‖ a´ p´br ´ cq “ bpr ´ 1q ðñ cλ ´ as ‖ b
ðñ ´aλ ´ bλ ´ as ‖ b ðñ apλ ` sq ‖ b.

One easily checks that r ‰ ˘1 implies that λ ` s ‰ 0 since s is not real. On the other hand,

W on CF ðñ cpr ´ 1qλ ` br ‖ ´br ´ pa` crq “ apr ´ 1q ðñ cλ ` bp1 ` sq ‖ a
ðñ ´aλ ´ bλ ´ bs ‖ a ðñ bpλ ` sq ‖ a ðñ b ‖ apλ ` sq,

where in the last step we use that pλ` sqpλ` sq “ |λ` s|2 P Rą0. We conclude that AD XBE “
CF X BE, and the desired result follows.
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G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)

Solution 1. Denote the circumcircles of the triangles ABC and A1B1C1 by Ω and Γ, respectively.
Denote the midpoint of the arc CB of Ω containing A by A0, and define B0 as well as C0 analogously.
By our hypothesis the centre Q of Γ lies on Ω.

Lemma. One has A0B1 “ A0C1. Moreover, the points A, A0, B1, and C1 are concyclic. Finally,
the points A and A0 lie on the same side of B1C1. Similar statements hold for B and C.

Proof. Let us consider the case A “ A0 first. Then the triangle ABC is isosceles at A, which
implies AB1 “ AC1 while the remaining assertions of the Lemma are obvious. So let us suppose
A ‰ A0 from now on.

By the definition of A0, we have A0B “ A0C. It is also well known and easy to show that BC1 “
CB1. Next, we have =C1BA0 “ =ABA0 “ =ACA0 “ =B1CA0. Hence the triangles A0BC1

and A0CB1 are congruent. This implies A0C1 “ A0B1, establishing the first part of the Lemma.
It also follows that =A0C1A “ =A0B1A, as these are exterior angles at the corresponding vertices
C1 and B1 of the congruent triangles A0BC1 and A0CB1. For that reason the points A, A0, B1,
and C1 are indeed the vertices of some cyclic quadrilateral two opposite sides of which are AA0

and B1C1. l

Now we turn to the solution. Evidently the points A1, B1, and C1 lie interior to some semicircle
arc of Γ, so the triangle A1B1C1 is obtuse-angled. Without loss of generality, we will assume that
its angle at B1 is obtuse. Thus Q and B1 lie on different sides of A1C1; obviously, the same holds
for the points B and B1. So, the points Q and B are on the same side of A1C1.

Notice that the perpendicular bisector of A1C1 intersects Ω at two points lying on different
sides of A1C1. By the first statement from the Lemma, both points B0 and Q are among these
points of intersection; since they share the same side of A1C1, they coincide (see Figure 1).
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C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1

A0

B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)

C0

Ω

Γ

Figure 1
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Now, by the first part of the Lemma again, the lines QA0 and QC0 are the perpendicular
bisectors of B1C1 and A1B1, respectively. Thus

=C1B0A1 “ =C1B0B1 ` =B1B0A1 “ 2=A0B0B1 ` 2=B1B0C0 “ 2=A0B0C0 “ 180˝ ´ =ABC,

recalling that A0 and C0 are the midpoints of the arcs CB and BA, respectively.
On the other hand, by the second part of the Lemma we have

=C1B0A1 “ =C1BA1 “ =ABC.

From the last two equalities, we get =ABC “ 90˝, whereby the problem is solved.

Solution 2. Let Q again denote the centre of the circumcircle of the triangle A1B1C1, that lies
on the circumcircle Ω of the triangle ABC. We first consider the case where Q coincides with one
of the vertices of ABC, say Q “ B. Then BC1 “ BA1 and consequently the triangle ABC is
isosceles at B. Moreover we have BC1 “ B1C in any triangle, and hence BB1 “ BC1 “ B1C;
similarly, BB1 “ B1A. It follows that B1 is the centre of Ω and that the triangle ABC has a right
angle at B.

So from now on we may suppose Q R tA,B,Cu. We start with the following well known fact.

Lemma. Let XY Z and X 1Y 1Z 1 be two triangles with XY “ X 1Y 1 and Y Z “ Y 1Z 1.

piq If XZ ‰ X 1Z 1 and =Y ZX “ =Y 1Z 1X 1, then =ZXY ` =Z 1X 1Y 1 “ 180˝.

piiq If =Y ZX ` =X 1Z 1Y 1 “ 180˝, then =ZXY “ =Y 1X 1Z 1.

Proof. For both parts, we may move the triangle XY Z through the plane until Y “ Y 1 and Z “ Z 1.
Possibly after reflecting one of the two triangles about Y Z, we may also suppose that X and X 1

lie on the same side of Y Z if we are in case piq and on different sides if we are in case piiq. In both
cases, the points X , Z, and X 1 are collinear due to the angle condition (see Fig. 2). Moreover we
have X ‰ X 1, because in case piq we assumed XZ ‰ X 1Z 1 and in case piiq these points even lie
on different sides of Y Z. Thus the triangle XX 1Y is isosceles at Y . The claim now follows by
considering the equal angles at its base. l

X X ′

Y = Y ′

Z = Z ′
X X ′

Y = Y ′

Z = Z ′

Figure 2(i) Figure 2(ii)

Relabeling the vertices of the triangle ABC if necessary we may suppose that Q lies in the
interior of the arc AB of Ω not containing C. We will sometimes use tacitly that the six trian-
gles QBA1, QA1C, QCB1, QB1A, QC1A, and QBC1 have the same orientation.

As Q cannot be the circumcentre of the triangle ABC, it is impossible that QA “ QB “ QC
and thus we may also suppose that QC ‰ QB. Now the above Lemma piq is applicable to the
triangles QB1C and QC1B, since QB1 “ QC1 and B1C “ C1B, while =B1CQ “ =C1BQ holds
as both angles appear over the same side of the chord QA in Ω (see Fig. 3). So we get

=CQB1 ` =BQC1 “ 180˝. (1)
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We claim that QC “ QA. To see this, let us assume for the sake of a contradiction that
QC ‰ QA. Then arguing similarly as before but now with the triangles QA1C and QC1A we get

=A1QC ` =C1QA “ 180˝.

Adding this equation to (1), we get =A1QB1 ` =BQA “ 360˝, which is absurd as both summands
lie in the interval p0˝, 180˝q.

This proves QC “ QA; so the triangles QA1C and QC1A are congruent their sides being equal,
which in turn yields

=A1QC “ =C1QA. (2)

Finally our Lemma piiq is applicable to the trianglesQA1B andQB1A. Indeed we have QA1 “ QB1

and A1B “ B1A as usual, and the angle condition =A1BQ ` =QAB1 “ 180˝ holds as A and B
lie on different sides of the chord QC in Ω. Consequently we have

=BQA1 “ =B1QA. (3)

From (1) and (3) we get

p=B1QC ` =B1QAq ` p=C1QB ´ =BQA1q “ 180˝,

i.e. =CQA ` =A1QC1 “ 180˝. In light of (2) this may be rewritten as 2=CQA “ 180˝ and as Q
lies on Ω this implies that the triangle ABC has a right angle at B.
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Figure 3

Comment 1. One may also check that Q is in the interior of Ω if and only if the triangle ABC is
acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle ABC
is right-angled, then the point Q lies on its circumcircle. The Problem Selection Committee thinks that
the above simplified version is more suitable for the competition.
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

Answer. fpnq “ n.

Solution 1. Setting m “ n “ 2 tells us that 4`fp2q | 2fp2q`2. Since 2fp2q`2 ă 2p4`fp2qq, we
must have 2fp2q ` 2 “ 4` fp2q, so fp2q “ 2. Plugging in m “ 2 then tells us that 4` fpnq | 4`n,
which implies that fpnq ď n for all n.

Setting m “ n gives n2 ` fpnq | nfpnq ` n, so nfpnq ` n ě n2 ` fpnq which we rewrite as
pn ´ 1qpfpnq ´ nq ě 0. Therefore fpnq ě n for all n ě 2. This is trivially true for n “ 1 also.

It follows that fpnq “ n for all n. This function obviously satisfies the desired property.

Solution 2. Setting m “ fpnq we get fpnqpfpnq`1q | fpnqfpfpnqq`n. This implies that fpnq | n
for all n.

Now let m be any positive integer, and let p ą 2m2 be a prime number. Note that p ą mfpmq
also. Plugging in n “ p´mfpmq we learn thatm2`fpnq divides p. Since m2`fpnq cannot equal 1,
it must equal p. Therefore p ´ m2 “ fpnq | n “ p ´ mfpmq. But p ´ mfpmq ă p ă 2pp ´ m2q, so
we must have p ´ mfpmq “ p ´ m2, i.e., fpmq “ m.

Solution 3. Plugging m “ 1 we obtain 1` fpnq ď fp1q `n, so fpnq ď n` c for the constant c “
fp1q´1. Assume that fpnq ‰ n for some fixed n. When m is large enough (e.g. m ě maxpn, c`1q)
we have

mfpmq ` n ď mpm ` cq ` n ď 2m2 ă 2pm2 ` fpnqq,
so we must have mfpmq ` n “ m2 ` fpnq. This implies that

0 ‰ fpnq ´ n “ mpfpmq ´ mq,

which is impossible for m ą |fpnq ´ n|. It follows that f is the identity function.
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N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1 ` 2k ´ 1

n
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mk

˙

.

(Japan)

Solution 1. We proceed by induction on k. For k “ 1 the statement is trivial. Assuming we
have proved it for k “ j ´ 1, we now prove it for k “ j.

Case 1. n “ 2t ´ 1 for some positive integer t.

Observe that

1 ` 2j ´ 1

2t´ 1
“ 2pt` 2j´1 ´ 1q

2t
¨ 2t

2t´ 1
“
ˆ

1 ` 2j´1 ´ 1

t

˙ˆ

1 ` 1

2t´ 1

˙

.

By the induction hypothesis we can find m1, . . . , mj´1 such that

1 ` 2j´1 ´ 1

t
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mj´1

˙

,

so setting mj “ 2t´ 1 gives the desired expression.

Case 2. n “ 2t for some positive integer t.

Now we have

1 ` 2j ´ 1

2t
“ 2t` 2j ´ 1

2t` 2j ´ 2
¨ 2t` 2j ´ 2

2t
“
ˆ

1 ` 1

2t` 2j ´ 2

˙ˆ

1 ` 2j´1 ´ 1

t

˙

,

noting that 2t` 2j ´ 2 ą 0. Again, we use that

1 ` 2j´1 ´ 1

t
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mj´1

˙

.

Setting mj “ 2t ` 2j ´ 2 then gives the desired expression.

Solution 2. Consider the base 2 expansions of the residues of n´ 1 and ´n modulo 2k:

n´ 1 ” 2a1 ` 2a2 ` ¨ ¨ ¨ ` 2ar pmod 2kq where 0 ď a1 ă a2 ă . . . ă ar ď k ´ 1,

´n ” 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bs pmod 2kq where 0 ď b1 ă b2 ă . . . ă bs ď k ´ 1.

Since ´1 ” 20 ` 21 ` ¨ ¨ ¨ ` 2k´1 pmod 2kq, we have ta1, . . . , aru Y tb1 . . . , bsu “ t0, 1, . . . , k´ 1u and
r ` s “ k. Write

Sp “ 2ap ` 2ap`1 ` ¨ ¨ ¨ ` 2ar for 1 ď p ď r,

Tq “ 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bq for 1 ď q ď s.
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Also set Sr`1 “ T0 “ 0. Notice that S1 ` Ts “ 2k ´ 1 and n` Ts ” 0 pmod 2kq. We have

1 ` 2k ´ 1

n
“ n ` S1 ` Ts

n
“ n ` S1 ` Ts

n` Ts
¨ n ` Ts

n

“
r
ź

p“1

n ` Sp ` Ts
n ` Sp`1 ` Ts

¨
s
ź

q“1

n` Tq
n` Tq´1

“
r
ź

p“1

ˆ

1 ` 2ap

n ` Sp`1 ` Ts

˙

¨
s
ź

q“1

ˆ

1 ` 2bq

n ` Tq´1

˙

,

so if we define

mp “ n` Sp`1 ` Ts
2ap

for 1 ď p ď r and mr`q “ n ` Tq´1

2bq
for 1 ď q ď s,

the desired equality holds. It remains to check that every mi is an integer. For 1 ď p ď r we have

n` Sp`1 ` Ts ” n ` Ts ” 0 pmod 2apq

and for 1 ď q ď r we have
n ` Tq´1 ” n ` Ts ” 0 pmod 2bqq.

The desired result follows.
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N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

Solution. Let pn be the largest prime divisor of n4 `n2 ` 1 and let qn be the largest prime divisor
of n2 ` n ` 1. Then pn “ qn2 , and from

n4 ` n2 ` 1 “ pn2 ` 1q2 ´ n2 “ pn2 ´ n` 1qpn2 ` n` 1q “ ppn´ 1q2 ` pn´ 1q ` 1qpn2 ` n` 1q

it follows that pn “ maxtqn, qn´1u for n ě 2. Keeping in mind that n2 ´ n` 1 is odd, we have

gcdpn2 ` n` 1, n2 ´ n` 1q “ gcdp2n, n2 ´ n` 1q “ gcdpn, n2 ´ n` 1q “ 1.

Therefore qn ‰ qn´1.

To prove the result, it suffices to show that the set

S “ tn P Zě2 | qn ą qn´1 and qn ą qn`1u

is infinite, since for each n P S one has

pn “ maxtqn, qn´1u “ qn “ maxtqn, qn`1u “ pn`1.

Suppose on the contrary that S is finite. Since q2 “ 7 ă 13 “ q3 and q3 “ 13 ą 7 “ q4, the set S
is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that qm ą qm`1 ą qm`2 ą . . . because all these numbers are positive
integers, so there exists a k ě m such that qk ă qk`1 (recall that qk ‰ qk`1). Next observe that it
is impossible to have qk ă qk`1 ă qk`2 ă . . . , because qpk`1q2 “ pk`1 “ maxtqk, qk`1u “ qk`1, so
let us take the smallest ℓ ě k ` 1 such that qℓ ą qℓ`1. By the minimality of ℓ we have qℓ´1 ă qℓ,
so ℓ P S. Since ℓ ě k ` 1 ą k ě m, this contradicts the maximality of m, and hence S is indeed
infinite.

Comment. Once the factorization of n4 ` n2 ` 1 is found and the set S is introduced, the problem is
mainly about ruling out the case that

qk ă qk`1 ă qk`2 ă . . . (1)

might hold for some k P Zą0. In the above solution, this is done by observing qpk`1q2 “ maxpqk, qk`1q.
Alternatively one may notice that (1) implies that qj`2 ´ qj ě 6 for j ě k ` 1, since every prime greater
than 3 is congruent to ´1 or 1 modulo 6. Then there is some integer C ě 0 such that qn ě 3n ´ C for
all n ě k.

Now let the integer t be sufficiently large (e.g. t “ maxtk ` 1, C ` 3u) and set p “ qt´1 ě 2t. Then
p | pt ´ 1q2 ` pt ´ 1q ` 1 implies that p | pp ´ tq2 ` pp ´ tq ` 1, so p and qp´t are prime divisors of
pp´ tq2 ` pp´ tq ` 1. But p´ t ą t´ 1 ě k, so qp´t ą qt´1 “ p and p ¨ qp´t ą p2 ą pp´ tq2 ` pp´ tq ` 1,
a contradiction.
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N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

Answer. No.

Solution. Assume that a1, a2, a3, . . . is such a sequence. For each positive integer k, let yk “
akak´1 . . . a1. By the assumption, for each k ą N there exists a positive integer xk such that
yk “ x2k.

I. For every n, let 5γn be the greatest power of 5 dividing xn. Let us show first that 2γn ě n for
every positive integer n ą N .

Assume, to the contrary, that there exists a positive integer n ą N such that 2γn ă n, which
yields

yn`1 “ an`1an . . . a1 “ 10nan`1 ` anan´1 . . . a1 “ 10nan`1 ` yn “ 52γn
´

2n5n´2γnan`1 ` yn
52γn

¯

.

Since 5 {| yn{52γn , we obtain γn`1 “ γn ă n ă n ` 1. By the same arguments we obtain that
γn “ γn`1 “ γn`2 “ . . . . Denote this common value by γ.

Now, for each k ě n we have

pxk`1 ´ xkqpxk`1 ` xkq “ x2k`1 ´ x2k “ yk`1 ´ yk “ ak`1 ¨ 10k.

One of the numbers xk`1 ´xk and xk`1 `xk is not divisible by 5γ`1 since otherwise one would have
5γ`1 |

`

pxk`1 ´xkq ` pxk`1 `xkq
˘

“ 2xk`1. On the other hand, we have 5k | pxk`1 ´xkqpxk`1 `xkq,
so 5k´γ divides one of these two factors. Thus we get

5k´γ ď maxtxk`1 ´ xk, xk`1 ` xku ă 2xk`1 “ 2
?
yk`1 ă 2 ¨ 10pk`1q{2,

which implies 52k ă 4 ¨ 52γ ¨ 10k`1, or p5{2qk ă 40 ¨ 52γ. The last inequality is clearly false for
sufficiently large values of k. This contradiction shows that 2γn ě n for all n ą N .

II. Consider now any integer k ą maxtN{2, 2u. Since 2γ2k`1 ě 2k ` 1 and 2γ2k`2 ě 2k ` 2,
we have γ2k`1 ě k ` 1 and γ2k`2 ě k ` 1. So, from y2k`2 “ a2k`2 ¨ 102k`1 ` y2k`1 we obtain
52k`2 | y2k`2 ´ y2k`1 “ a2k`2 ¨ 102k`1 and thus 5 | a2k`2, which implies a2k`2 “ 5. Therefore,

px2k`2 ´ x2k`1qpx2k`2 ` x2k`1q “ x22k`2 ´ x22k`1 “ y2k`2 ´ y2k`1 “ 5 ¨ 102k`1 “ 22k`1 ¨ 52k`2.

Setting Ak “ x2k`2{5k`1 and Bk “ x2k`1{5k`1, which are integers, we obtain

pAk ´ BkqpAk ` Bkq “ 22k`1. (1)

Both Ak and Bk are odd, since otherwise y2k`2 or y2k`1 would be a multiple of 10 which is false
by a1 ‰ 0; so one of the numbers Ak ´ Bk and Ak ` Bk is not divisible by 4. Therefore (1) yields
Ak ´ Bk “ 2 and Ak ` Bk “ 22k, hence Ak “ 22k´1 ` 1 and thus

x2k`2 “ 5k`1Ak “ 10k`1 ¨ 2k´2 ` 5k`1 ą 10k`1,

since k ě 2. This implies that y2k`2 ą 102k`2 which contradicts the fact that y2k`2 contains 2k` 2
digits. The desired result follows.
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Solution 2. Again, we assume that a sequence a1, a2, a3, . . . satisfies the problem conditions,
introduce the numbers xk and yk as in the previous solution, and notice that

yk`1 ´ yk “ pxk`1 ´ xkqpxk`1 ` xkq “ 10kak`1 (2)

for all k ą N . Consider any such k. Since a1 ‰ 0, the numbers xk and xk`1 are not multiples of 10,
and therefore the numbers pk “ xk`1 ´ xk and qk “ xk`1 ` xk cannot be simultaneously multiples
of 20, and hence one of them is not divisible either by 4 or by 5. In view of (2), this means that
the other one is divisible by either 5k or by 2k´1. Notice also that pk and qk have the same parity,
so both are even.

On the other hand, we have x2k`1 “ x2k ` 10kak`1 ě x2k ` 10k ą 2x2k, so xk`1{xk ą
?
2, which

implies that

1 ă qk
pk

“ 1 ` 2

xk`1{xk ´ 1
ă 1 ` 2?

2 ´ 1
ă 6. (3)

Thus, if one of the numbers pk and qk is divisible by 5k, then we have

10k`1 ą 10kak`1 “ pkqk ě p5kq2
6

and hence p5{2qk ă 60 which is false for sufficiently large k. So, assuming that k is large, we get
that 2k´1 divides one of the numbers pk and qk. Hence

tpk, qku “ t2k´1 ¨ 5rkbk, 2 ¨ 5k´rkcku with nonnegative integers bk, ck, rk such that bkck “ ak`1.

Moreover, from (3) we get

6 ą 2k´1 ¨ 5rkbk
2 ¨ 5k´rkck

ě 1

36
¨
ˆ

2

5

˙k

¨ 52rk and 6 ą 2 ¨ 5k´rkck
2k´1 ¨ 5rkbk

ě 4

9
¨
ˆ

5

2

˙k

¨ 5´2rk ,

so
αk ` c1 ă rk ă αk ` c2 for α “ 1

2
log5

`

5
2

˘

ă 1 and some constants c2 ą c1. (4)

Consequently, for C “ c2 ´ c1 ` 1 ´ α ą 0 we have

pk ` 1q ´ rk`1 ď k ´ rk ` C. (5)

Next, we will use the following easy lemma.

Lemma. Let s be a positive integer. Then 5s`2s ” 5s pmod 10sq.
Proof. Euler’s theorem gives 52

s ” 1 pmod 2sq, so 5s`2s ´ 5s “ 5sp52s ´ 1q is divisible by 2s and 5s.

Now, for every large k we have

xk`1 “ pk ` qk
2

“ 5rk ¨ 2k´2bk ` 5k´rkck ” 5k´rkck pmod 10rkq (6)

since rk ď k ´ 2 by (4); hence yk`1 ” 52pk´rkqc2k pmod 10rkq. Let us consider some large integer s,
and choose the minimal k such that 2pk´ rkq ě s`2s; it exists by (4). Set d “ 2pk´ rkq ´ ps`2sq.
By (4) we have 2s ă 2pk ´ rkq ă

`

2
α

´ 2
˘

rk ´ 2c1
α
; if s is large this implies rk ą s, so (6) also holds

modulo 10s. Then (6) and the lemma give

yk`1 ” 52pk´rkqc2k “ 5s`2s ¨ 5dc2k ” 5s ¨ 5dc2k pmod 10sq. (7)

By (5) and the minimality of k we have d ď 2C, so 5dc2k ď 52C ¨ 81 “ D. Using 54 ă 103 we obtain

5s ¨ 5dc2k ă 103s{4D ă 10s´1

for sufficiently large s. This, together with (7), shows that the sth digit from the right in yk`1,
which is as, is zero. This contradicts the problem condition.
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N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

Solution 1. Let us first observe that the number appearing on the blackboard decreases after
every move; so the game necessarily ends after at most n steps, and consequently there always has
to be some player possessing a winning strategy. So if some n ě k is bad, then Ana has a winning
strategy in the game with starting number n.

More precisely, if n ě k is such that there is a good integer m with n ą m ě k and
gcdpm,nq “ 1, then n itself is bad, for Ana has the following winning strategy in the game with
initial number n: She proceeds by first playing m and then using Banana’s strategy for the game
with starting number m.

Otherwise, if some integer n ě k has the property that every integer m with n ą m ě k and
gcdpm,nq “ 1 is bad, then n is good. Indeed, if Ana can make a first move at all in the game with
initial number n, then she leaves it in a position where the first player has a winning strategy, so
that Banana can defeat her.

In particular, this implies that any two good numbers have a non–trivial common divisor. Also,
k itself is good.

For brevity, we say that n ÝÑ x is a move if n and x are two coprime integers with n ą x ě k.

Claim 1. If n is good and n1 is a multiple of n, then n1 is also good.

Proof. If n1 were bad, there would have to be some move n1 ÝÑ x, where x is good. As n1 is a
multiple of n this implies that the two good numbers n and x are coprime, which is absurd. l

Claim 2. If r and s denote two positive integers for which rs ě k is bad, then r2s is also bad.

Proof. Since rs is bad, there is a move rs ÝÑ x for some good x. Evidently x is coprime to r2s as
well, and hence the move r2s ÝÑ x shows that r2s is indeed bad. l

Claim 3. If p ą k is prime and n ě k is bad, then np is also bad.

Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, np
is good. Since n is bad, there is a move n ÝÑ x for some good x. Now np ÝÑ x cannot be a
valid move, which tells us that x has to be divisible by p. So we can write x “ pry, where r and y
denote some positive integers, the latter of which is not divisible by p.

Note that y “ 1 is impossible, for then we would have x “ pr and the move x ÝÑ k would
establish that x is bad. In view of this, there is a least power yα of y that is at least as large
as k. Since the numbers np and yα are coprime and the former is good, the latter has to be
bad. Moreover, the minimality of α implies yα ă ky ă py “ x

pr´1 ă n
pr´1 . So pr´1 ¨ yα ă n and

consequently all the numbers yα, pyα, . . . , pr ¨ yα “ pppr´1 ¨ yαq are bad due to the minimal choice
of n. But now by Claim 1 the divisor x of pr ¨ yα cannot be good, whereby we have reached a
contradiction that proves Claim 3. l
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We now deduce the statement of the problem from these three claims. To this end, we call two
integers a, b ě k similar if they are divisible by the same prime numbers not exceeding k. We are
to prove that if a and b are similar, then either both of them are good or both are bad. As in this
case the product ab is similar to both a and b, it suffices to show the following: if c ě k is similar
to some of its multiples d, then either both c and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample pc0, d0q with d0 being
as small as possible. By Claim 1, c0 is bad whilst d0 is good. Plainly d0 is strictly greater than c0
and hence the quotient d0

c0
has some prime factor p. Clearly p divides d0. If p ď k, then p

divides c0 as well due to the similarity, and hence d0 is actually divisible by p2. So d0
p
is good by

the contrapositive of Claim 2. Since c0 | d0
p
, the pair pc0, d0p q contradicts the supposed minimality

of d0. This proves p ą k, but now we get the same contradiction using Claim 3 instead of Claim 2.
Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of
the first solution. Let us call a prime number p small in case p ď k and big otherwise. We again
call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer b ě k having some small prime factor, there exists an integer x
similar to it with b ě x ě k and having no big prime factors.

Proof. Unless b has a big prime factor we may simply choose x “ b. Now let p and q denote a
small and a big prime factor of b, respectively. Let a be the product of all small prime factors
of b. Further define n to be the least non–negative integer for which the number x “ pna is at
least as large as k. It suffices to show that b ą x. This is clear in case n “ 0, so let us assume
n ą 0 from now on. Then we have x ă pk due to the minimality of n, p ď a because p divides a
by construction, and k ă q. Therefore x ă aq and, as the right hand side is a product of distinct
prime factors of b, this implies indeed x ă b. l

Let us now assume that there is a pair pa, bq of similar numbers such that a is bad and b is
good. Take such a pair with maxpa, bq being as small as possible. Since a is bad, there exists a
move a ÝÑ r for some good r. Since the numbers k and r are both good, they have a common
prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields
an integer r1 similar to r containing small prime factors only and satisfying r ě r1 ě k. Since
maxpr, r1q “ r ă a ď maxpa, bq the number r1 is also good. Now let p denote a common prime
factor of the good numbers r1 and b. By our construction of r1, this prime is small and due to
the similarities it consequently divides a and r, contrary to a ÝÑ r being a move. Thereby the
problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For
instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.

Proof. Otherwise there exists a pair pb, b1q of good numbers with b1 ě b ě k all of whose common prime
factors are big. Choose such a pair with b1 being as small as possible. Since b and k are both good, there
has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide b1, which in
turn tells us b1 ą b. Applying Claim 4 to b we get an integer x with b ě x ě k that is similar to b and has
no big prime divisors at all. By our assumption, b1 and x are coprime, and as b1 is good this implies that
x is bad. Consequently there has to be some move x ÝÑ b˚ such that b˚ is good. But now all the small
prime factors of b also appear in x and thus they cannot divide b˚. Therefore the pair pb˚, bq contradicts
the supposed minimality of b1. l
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From that point, it is easy to complete the solution: assume that there are two similar integers a and b
such that a is bad and b is good. Since a is bad, there is a move a ÝÑ b1 for some good b1. By Claim 5,
there is a small prime p dividing b and b1. Due to the similarity of a and b, the prime p has to divide a
as well, but this contradicts the fact that a ÝÑ b1 is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence
b0, b1, . . . , of all good numbers may be constructed recursively as follows:

‚ Start with b0 “ k.

‚ If bn has just been defined for some n ě 0, then bn`1 is the smallest number b ą bn that is coprime
to none of b0, . . . , bn.

This construction can be used to determine the set of good numbers for any specific k as explained in the
next comment. It is already clear that if k “ pα is a prime power, then a number b ě k is good if and
only if it is divisible by p.

Comment 3. Let P ą 1 denote the product of all small prime numbers. Then any two integers a, b ě k
that are congruent modulo P are similar. Thus the infinite word Wk “ pXk,Xk`1, . . .q defined by

Xi “
#

A if i is bad

B if i is good

for all i ě k is periodic and the length of its period divides P . As the prime power example shows, the
true period can sometimes be much smaller than P . On the other hand, there are cases where the period
is rather large; e.g., if k “ 15, the sequence of good numbers begins with 15, 18, 20, 24, 30, 36, 40, 42, 45
and the period of W15 is 30.

Comment 4. The original proposal contained two questions about the game of numbers, namely paq to
show that if two numbers have the same prime factors then either both are good or both are bad, and pbq
to show that the word Wk introduced in the previous comment is indeed periodic. The Problem Selection
Committee thinks that the above version of the problem is somewhat easier, even though it demands to
prove a stronger result.
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N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a

b

˙

“ f
´x ` a

b

¯

(1)

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)

(Israel)

Answer. There are three kinds of such functions, which are: all constant functions, the floor
function, and the ceiling function.

Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for
all constant functions. Now consider any triple px, a, bq P Q ˆ Z ˆ Zą0 and set

q “
Yx` a

b

]

.

This means that q is an integer and bq ď x` a ă bpq ` 1q. It follows that bq ď txu ` a ă bpq ` 1q
holds as well, and thus we have

Z

txu ` a

b

^

“
Yx ` a

b

]

,

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling
function has the same property.

II. Let us now suppose conversely that the function f : Q ÝÑ Z satisfies (1) for all px, a, bq P
QˆZˆZą0. According to the behaviour of the restriction of f to the integers we distinguish two
cases.

Case 1: There is some m P Z such that fpmq ‰ m.

Write fpmq “ C and let η P t´1,`1u and b denote the sign and absolute value of fpmq ´ m,
respectively. Given any integer r, we may plug the triple pm, rb ´ C, bq into (1), thus getting
fprq “ fpr´ ηq. Starting with m and using induction in both directions, we deduce from this that
the equation fprq “ C holds for all integers r. Now any rational number y can be written in the
form y “ p

q
with pp, qq P ZˆZą0, and substituting pC´p, p´C, qq into (1) we get fpyq “ fp0q “ C.

Thus f is the constant function whose value is always C.

Case 2: One has fpmq “ m for all integers m.

Note that now the special case b “ 1 of (1) takes a particularly simple form, namely

fpxq ` a “ fpx ` aq for all px, aq P Q ˆ Z. (2)

Defining f
`

1
2

˘

“ ω we proceed in three steps.

Step A. We show that ω P t0, 1u.
If ω ď 0, we may plug

`

1
2
,´ω, 1 ´ 2ω

˘

into (1), obtaining 0 “ fp0q “ f
`

1
2

˘

“ ω. In the contrary
case ω ě 1 we argue similarly using the triple

`

1
2
, ω ´ 1, 2ω ´ 1

˘

.

Step B. We show that fpxq “ ω for all rational numbers x with 0 ă x ă 1.

Assume that this fails and pick some rational number a
b

P p0, 1q with minimal b such that fpa
b
q ‰ ω.

Obviously, gcdpa, bq “ 1 and b ě 2. If b is even, then a has to be odd and we can substitute
`

1
2
, a´1

2
, b
2

˘

into (1), which yields

f

ˆ

ω ` pa´ 1q{2
b{2

˙

“ f
´a

b

¯

‰ ω. (3)
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Recall that 0 ď pa ´ 1q{2 ă b{2. Thus, in both cases ω “ 0 and ω “ 1, the left-hand part of (3)
equals ω either by the minimality of b, or by fpωq “ ω. A contradiction.

Thus b has to be odd, so b “ 2k ` 1 for some k ě 1. Applying (1) to
`

1
2
, k, b

˘

we get

f

ˆ

ω ` k

b

˙

“ f

ˆ

1

2

˙

“ ω. (4)

Since a and b are coprime, there exist integers r P t1, 2, . . . , bu and m such that ra´ mb “ k ` ω.
Note that we actually have 1 ď r ă b, since the right hand side is not a multiple of b. If m
is negative, then we have ra ´ mb ą b ě k ` ω, which is absurd. Similarly, m ě r leads to
ra´ mb ă br ´ br “ 0, which is likewise impossible; so we must have 0 ď m ď r ´ 1.

We finally substitute
`

k`ω
b
, m, r

˘

into (1) and use (4) to learn

f
´ω ` m

r

¯

“ f
´a

b

¯

‰ ω.

But as above one may see that the left hand side has to equal ω due to the minimality of b. This
contradiction concludes our step B.

Step C. Now notice that if ω “ 0, then fpxq “ txu holds for all rational x with 0 ď x ă 1 and
hence by (2) this even holds for all rational numbers x. Similarly, if ω “ 1, then fpxq “ rxs holds
for all x P Q. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer,
proceeds as follows. Let square brackets indicate the floor function in case ω “ 0 and the ceiling function
if ω “ 1. We are to prove that fpxq “ rxs holds for all x P Q, and because of Step A and (2) we already
know this in case 2x P Z. Applying (1) to p2x, 0, 2q we get

fpxq “ f

ˆ

fp2xq
2

˙

,

and by the previous observation this yields

fpxq “
„

fp2xq
2



for all x P Q. (5)

An easy induction now shows

fpxq “
„

fp2nxq
2n



for all px, nq P Q ˆ Zą0. (6)

Now suppose first that x is not an integer but can be written in the form p
q with p P Z and q P Zą0 both

being odd. Let d denote the multiplicative order of 2 modulo q and let m be any large integer. Plugging
n “ dm into (6) and using (2) we get

fpxq “
„

fp2dmxq
2dm



“
„

fpxq ` p2dm ´ 1qx
2dm



“
„

x` fpxq ´ x

2dm



.

Since x is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the
above fomula gives fpxq “ rxs. To complete the argument we just need to observe that if some y P Q

satisfies fpyq “ rys, then (5) yields f
`y
2

˘

“ f
´

rys
2

¯

“
”

rys
2

ı

“
“ y
2

‰

.
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Solution 2. Here we just give another argument for the second case of the above solution. Again
we use equation (2). It follows that the set S of all zeros of f contains for each x P Q exactly one
term from the infinite sequence . . . , x´ 2, x´ 1, x, x` 1, x` 2, . . . .

Next we claim that

if pp, qq P Z ˆ Zą0 and p
q

P S, then p
q`1

P S holds as well. (7)

To see this we just plug
`

p
q
, p, q ` 1

˘

into (1), thus getting f
`

p
q`1

˘

“ f
`

p
q

˘

“ 0.

From this we get that

if x, y P Q, x ą y ą 0, and x P S, then y P S. (8)

Indeed, if we write x “ p
q
and y “ r

s
with p, q, r, s P Zą0, then ps ą qr and (7) tells us

0 “ f

ˆ

p

q

˙

“ f

ˆ

pr

qr

˙

“ f

ˆ

pr

qr ` 1

˙

“ . . . “ f

ˆ

pr

ps

˙

“ f

ˆ

r

s

˙

.

Essentially the same argument also establishes that

if x, y P Q, x ă y ă 0, and x P S, then y P S. (9)

From (8) and (9) we get 0 P S Ď p´1,`1q and hence the real number α “ suppSq exists and
satisfies 0 ď α ď 1.

Let us assume that we actually had 0 ă α ă 1. Note that fpxq “ 0 if x P p0, αq X Q by (8),
and fpxq “ 1 if x P pα, 1q X Q by (9) and (2). Let K denote the unique positive integer satisfying
Kα ă 1 ď pK ` 1qα. The first of these two inequalities entails α ă 1`α

K`1
, and thus there is a

rational number x P
`

α, 1`α
K`1

˘

. Setting y “ pK ` 1qx´ 1 and substituting py, 1, K ` 1q into (1) we
learn

f

ˆ

fpyq ` 1

K ` 1

˙

“ f

ˆ

y ` 1

K ` 1

˙

“ fpxq.

Since α ă x ă 1 and 0 ă y ă α, this simplifies to

f

ˆ

1

K ` 1

˙

“ 1.

But, as 0 ă 1
K`1

ď α, this is only possible if α “ 1
K`1

and fpαq “ 1. From this, however, we get
the contradiction

0 “ f

ˆ

1

pK ` 1q2
˙

“ f

ˆ

α ` 0

K ` 1

˙

“ f

ˆ

fpαq ` 0

K ` 1

˙

“ fpαq “ 1.

Thus our assumption 0 ă α ă 1 has turned out to be wrong and it follows that α P t0, 1u. If
α “ 0, then we have S Ď p´1, 0s, whence S “ p´1, 0s X Q, which in turn yields fpxq “ rxs for all
x P Q due to (2). Similarly, α “ 1 entails S “ r0, 1q X Q and fpxq “ txu for all x P Q. Thereby
the solution is complete.
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Comment 2. It seems that all solutions to this problems involve some case distinction separating the
constant solutions from the unbounded ones, though the “descriptions” of the cases may be different
depending on the work that has been done at the beginning of the solution. For instance, these two cases
can also be “f is periodic on the integers” and “f is not periodic on the integers”. The case leading to
the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions x ÞÝÑ txu and x ÞÝÑ rxs can easily be
treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem
interchanging these two functions. Namely, if a function f : Q ÝÑ Z satisfies (1), then so does the
function g : Q ÝÑ Z defined by gpxq “ ´fp´xq for all x P Q. For that reason, we could have restricted
our attention to the case ω “ 0 in the first solution and, once α P t0, 1u had been obtained, to the case
α “ 0 in the second solution.
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N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m. p˚q
A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x ´ 1 ă txu ď x and x ď rxs ă x ` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)

Solution. For positive integers a and b, let us denote

fpa, bq “ arbνs ´ btaνu.

We will deal with various values of m; thus it is convenient to say that a pair pa, bq is m-good or
m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values fpa ` b, bq and fpa, b ` aq are related to fpa, bq. If
taνu ` tbνu ă 1, then we have tpa` bqνu “ taνu ` tbνu and rpa ` bqνs “ raνs ` rbνs ´ 1, so

fpa` b, bq “ pa` bqrbνs ´ bptaνu ` tbνuq “ fpa, bq ` bprbνs ´ tbνuq “ fpa, bq ` b

and

fpa, b` aq “ aprbνs ` raνs ´ 1q ´ pb` aqtaνu “ fpa, bq ` apraνs ´ 1 ´ taνuq “ fpa, bq.

Similarly, if taνu ` tbνu ě 1 then one obtains

fpa` b, bq “ fpa, bq and fpa, b` aq “ fpa, bq ` a.

So, in both cases one of the numbers fpa` b, aq and fpa, b` aq is equal to fpa, bq while the other
is greater than fpa, bq by one of a and b. Thus, exactly one of the pairs pa` b, bq and pa, b` aq is
excellent (for an appropriate value of m).

Now let us say that the pairs pa ` b, bq and pa, b ` aq are the children of the pair pa, bq, while
this pair is their parent. Next, if a pair pc, dq can be obtained from pa, bq by several passings from a
parent to a child, we will say that pc, dq is a descendant of pa, bq, while pa, bq is an ancestor of pc, dq
(a pair is neither an ancestor nor a descendant of itself). Thus each pair pa, bq has two children,
it has a unique parent if a ‰ b, and no parents otherwise. Therefore, each pair of distinct positive
integers has a unique ancestor of the form pa, aq; our aim is now to find how many m-excellent
descendants each such pair has.

Notice now that if a pair pa, bq is m-excellent then minta, bu ď m. Indeed, if a “ b then
fpa, aq “ a “ m, so the statement is valid. Otherwise, the pair pa, bq is a child of some pair pa1, b1q. If
b “ b1 and a “ a1 `b1, then we should have m “ fpa, bq “ fpa1, b1q`b1, so b “ b1 “ m´fpa1, b1q ă m.
Similarly, if a “ a1 and b “ b1 ` a1 then a ă m.

Let us consider the set Sm of all pairs pa, bq such that fpa, bq ď m and minta, bu ď m. Then
all the ancestors of the elements in Sm are again in Sm, and each element in Sm either is of the
form pa, aq with a ď m, or has a unique ancestor of this form. From the arguments above we see
that all m-excellent pairs lie in Sm.

We claim now that the set Sm is finite. Indeed, assume, for instance, that it contains infinitely
many pairs pc, dq with d ą 2m. Such a pair is necessarily a child of pc, d´cq, and thus a descendant
of some pair pc, d1q with m ă d1 ď 2m. Therefore, one of the pairs pa, bq P Sm with m ă b ď 2m
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has infinitely many descendants in Sm, and all these descendants have the form pa, b` kaq with k
a positive integer. Since fpa, b` kaq does not decrease as k grows, it becomes constant for k ě k0,
where k0 is some positive integer. This means that taνu ` tpb` kaqνu ă 1 for all k ě k0. But this
yields 1 ą tpb ` kaqνu “ tpb ` k0aqνu ` pk ´ k0qtaνu for all k ą k0, which is absurd.

Similarly, one can prove that Sm contains finitely many pairs pc, dq with c ą 2m, thus finitely
many elements at all.

We are now prepared for proving the following crucial lemma.

Lemma. Consider any pair pa, bq with fpa, bq ‰ m. Then the number gpa, bq of its m-excellent
descendants is equal to the number hpa, bq of ways to represent the number t “ m ´ fpa, bq as
t “ ka` ℓb with k and ℓ being some nonnegative integers.

Proof. We proceed by induction on the number N of descendants of pa, bq in Sm. If N “ 0 then
clearly gpa, bq “ 0. Assume that hpa, bq ą 0; without loss of generality, we have a ď b. Then,
clearly, m ´ fpa, bq ě a, so fpa, b ` aq ď fpa, bq ` a ď m and a ď m, hence pa, b ` aq P Sm which
is impossible. Thus in the base case we have gpa, bq “ hpa, bq “ 0, as desired.

Now let N ą 0. Assume that fpa` b, bq “ fpa, bq ` b and fpa, b` aq “ fpa, bq (the other case
is similar). If fpa, bq ` b ‰ m, then by the induction hypothesis we have

gpa, bq “ gpa` b, bq ` gpa, b` aq “ hpa` b, bq ` hpa, b ` aq.

Notice that both pairs pa` b, bq and pa, b` aq are descendants of pa, bq and thus each of them has
strictly less descendants in Sm than pa, bq does.

Next, each one of the hpa` b, bq representations of m´ fpa` b, bq “ m´ b´ fpa, bq as the sum
k1pa ` bq ` ℓ1b provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ă k1 ` ℓ1 ` 1 “ ℓ.
Similarly, each one of the hpa, b ` aq representations of m ´ fpa, b ` aq “ m ´ fpa, bq as the sum
k1a ` ℓ1pb ` aq provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ` ℓ1 ě ℓ1 “ ℓ. This
correspondence is obviously bijective, so

hpa, bq “ hpa ` b, bq ` hpa, b` aq “ gpa, bq,

as required.

Finally, if fpa, bq`b “ m then pa`b, bq ism-excellent, so gpa, bq “ 1`gpa, b`aq “ 1`hpa, b`aq
by the induction hypothesis. On the other hand, the number m´ fpa, bq “ b has a representation
0 ¨ a ` 1 ¨ b and sometimes one more representation as ka ` 0 ¨ b; this last representation exists
simultaneously with the representation m´fpa, b`aq “ ka`0 ¨ pb`aq, so hpa, bq “ 1`hpa, b`aq
as well. Thus in this case the step is also proved. l

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form pa, aq,
and each other m-excellent pair pa, bq has a unique ancestor of the form px, xq with x ă m. By the
lemma, for every x ă m the number of its m-excellent descendants is hpx, xq, which is the number
of ways to represent m ´ fpx, xq “ m ´ x as kx ` ℓx (with nonnegative integer k and ℓ). This
number is 0 if x {| m, and m{x otherwise. So the total number of excellent pairs is

1 `
ÿ

x|m, xăm

m

x
“ 1 `

ÿ

d|m, dą1

d “
ÿ

d|m

d,

as required.
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Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the
number of excellent pairs does not depend on the (irrational) number ν, and to find this number for some
appropriate value of ν. For that, we first introduce some geometrical language. We deal only with the
excellent pairs pa, bq with a ‰ b.

Part I. Given an irrational positive ν, for every positive integer n we introduce two integral points Fνpnq “
pn, tnνuq and Cνpnq “ pn, rnνsq on the coordinate plane Oxy. Then p˚q reads as rOFνpaqCνpbqs “ m{2;
here r¨s stands for the signed area. Next, we rewrite in these terms the condition on a pair pa, bq to be
excellent. Let ℓν , ℓ

`
ν , and ℓ

´
ν be the lines determined by the equations y “ νx, y “ νx`1, and y “ νx´1,

respectively.

a). Firstly, we deal with all excellent pairs pa, bq with a ă b. Given some value of a, all the points C such
that rOFνpaqCs “ m{2 lie on some line fνpaq; if there exist any good pairs pa, bq at all, this line has to
contain at least one integral point, which happens exactly when gcdpa, taνuq | m.

Let Pνpaq be the point of intersection of ℓ`
ν and fνpaq, and let pνpaq be its abscissa; notice that pνpaq

is irrational if it is nonzero. Now, if pa, bq is good, then the point Cνpbq lies on fνpaq, which means that
the point of fνpaq with abscissa b lies between ℓν and ℓ`

ν and is integral. If in addition the pair pa, b´ aq
is not good, then the point of fνpaq with abscissa b ´ a lies above ℓ`

ν (see Fig. 1). Thus, the pair pa, bq
with b ą a is excellent exactly when pνpaq lies between b´ a and b, and the point of fνpaq with abscissa b
is integral (which means that this point is Cνpbq).

Notice now that, if pνpaq ą a, then the number of excellent pairs of the form pa, bq (with b ą a) is
gcdpa, taνuq.

a bb− a

Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)

Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)Cν(a)

Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)Cν(b)

Pν(a)

ℓν

ℓ+
ν
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ab a− b
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Figure 1 Figure 2

b). Analogously, considering the pairs pa, bq with a ą b, we fix the value of b, introduce the line cνpbq
containing all the points F with rOFCνpbqs “ m{2, assume that this line contains an integral point
(which means gcdpb, rbνsq | m), and denote the common point of cνpbq and ℓ´

ν by Qνpbq, its abscissa
being qνpbq. Similarly to the previous case, we obtain that the pair pa, bq is excellent exactly when qνpaq
lies between a´ b and a, and the point of cνpbq with abscissa a is integral (see Fig. 2). Again, if qνpbq ą b,
then the number of excellent pairs of the form pa, bq (with a ą b) is gcdpb, rbνsq.
Part II, sketchy. Having obtained such a description, one may check how the number of excellent pairs
changes as ν grows. (Having done that, one may find this number for one appropriate value of ν; for
instance, it is relatively easy to make this calculation for ν P

`

1, 1 ` 1
m

˘

.)

Consider, for the initial value of ν, some excellent pair pa, tq with a ą t. As ν grows, this pair
eventually stops being excellent; this happens when the point Qνptq passes through Fνpaq. At the same
moment, the pair pa ` t, tq becomes excellent instead.

This process halts when the point Qνptq eventually disappears, i.e. when ν passes through the ratio
of the coordinates of the point T “ Cνptq. Hence, the point T afterwards is regarded as Fνptq. Thus, all
the old excellent pairs of the form pa, tq with a ą t disappear; on the other hand, the same number of
excellent pairs with the first element being t just appear.
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Similarly, if some pair pt, bq with t ă b is initially ν-excellent, then at some moment it stops being
excellent when Pνptq passes through Cνpbq; at the same moment, the pair pt, b´tq becomes excellent. This
process eventually stops when b ´ t ă t. At this moment, again the second element of the pair becomes
fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged,
as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly
by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially
much care should be applied to the limit points of this set, which are exactly the points when the line ℓν
passes through some point of the form Cνpbq.

The same ideas may be explained in an algebraic language instead of a geometrical one; the same
technicalities remain in this way as well.
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Problems

Algebra

A1. Let z0 ă z1 ă z2 ă ¨ ¨ ¨ be an infinite sequence of positive integers. Prove that there
exists a unique integer n ě 1 such that

zn ă z0 ` z1 ` ¨ ¨ ¨ ` zn
n

ď zn`1.

(Austria)

A2. Define the function f : p0, 1q Ñ p0, 1q by

fpxq “
#

x ` 1
2

if x ă 1
2
,

x2 if x ě 1
2
.

Let a and b be two real numbers such that 0 ă a ă b ă 1. We define the sequences an and bn
by a0 “ a, b0 “ b, and an “ fpan´1q, bn “ fpbn´1q for n ą 0. Show that there exists a positive
integer n such that

pan ´ an´1qpbn ´ bn´1q ă 0.

(Denmark)

A3. For a sequence x1, x2, . . . , xn of real numbers, we define its price as

max
1ďiďn

|x1 ` ¨ ¨ ¨ ` xi|.

Given n real numbers, Dave and George want to arrange them into a sequence with a
low price. Diligent Dave checks all possible ways and finds the minimum possible price D.
Greedy George, on the other hand, chooses x1 such that |x1| is as small as possible; among
the remaining numbers, he chooses x2 such that |x1 ` x2| is as small as possible, and so on.
Thus, in the ith step he chooses xi among the remaining numbers so as to minimise the value
of |x1 ` x2 ` ¨ ¨ ¨ ` xi|. In each step, if several numbers provide the same value, George chooses
one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection
of n real numbers, and for every possible sequence that George might obtain, the resulting
values satisfy the inequality G ď cD.

(Georgia)

A4. Determine all functions f : Z Ñ Z satisfying

f
`

fpmq ` n
˘

` fpmq “ fpnq ` fp3mq ` 2014

for all integers m and n.
(Netherlands)
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A5. Consider all polynomials P pxq with real coefficients that have the following property:
for any two real numbers x and y one has

|y2 ´ P pxq| ď 2 |x| if and only if |x2 ´ P pyq| ď 2 |y| .

Determine all possible values of P p0q.
(Belgium)

A6. Find all functions f : Z Ñ Z such that

n2 ` 4fpnq “ fpfpnqq2

for all n P Z.
(United Kingdom)
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Combinatorics

C1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel
to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides
parallel to the sides of R in such a way that none of these rectangles contains any of the given
points in its interior. Prove that we have to dissect R into at least n ` 1 smaller rectangles.

(Serbia)

C2. We have 2m sheets of paper, with the number 1 written on each of them. We perform
the following operation. In every step we choose two distinct sheets; if the numbers on the two
sheets are a and b, then we erase these numbers and write the number a ` b on both sheets.
Prove that after m2m´1 steps, the sum of the numbers on all the sheets is at least 4m.

(Iran)

C3. Let n ě 2 be an integer. Consider an n ˆ n chessboard divided into n2 unit squares.
We call a configuration of n rooks on this board happy if every row and every column contains
exactly one rook. Find the greatest positive integer k such that for every happy configuration
of rooks, we can find a k ˆ k square without a rook on any of its k2 unit squares.

(Croatia)

C4. Construct a tetromino by attaching two 2 ˆ 1 dominoes along their longer sides such
that the midpoint of the longer side of one domino is a corner of the other domino. This
construction yields two kinds of tetrominoes with opposite orientations. Let us call them S-
and Z-tetrominoes, respectively.

S-tetrominoes Z-tetrominoes

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove than no matter
how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

(Hungary)

C5. Consider n ě 3 lines in the plane such that no two lines are parallel and no three have a
common point. These lines divide the plane into polygonal regions; let F be the set of regions
having finite area. Prove that it is possible to colour

Pa

n{2
T

of the lines blue in such a way
that no region in F has a completely blue boundary. (For a real number x, rxs denotes the
least integer which is not smaller than x.)

(Austria)
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C6. We are given an infinite deck of cards, each with a real number on it. For every real
number x, there is exactly one card in the deck that has x written on it. Now two players draw
disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that
declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down
in increasing order face down and we are told which card belongs to which player, but
not what numbers are written on them, we can still decide the winner.

2. If we write the elements of both sets in increasing order as A “ ta1, a2, . . . , a100u and
B “ tb1, b2, . . . , b100u, and ai ą bi for all i, then A beats B.

3. If three players draw three disjoint sets A,B,C from the deck, A beats B and B beats C,
then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there
exist two sets A and B such that A beats B according to one rule, but B beats A according to
the other.

(Russia)

C7. Let M be a set of n ě 4 points in the plane, no three of which are collinear. Initially these
points are connected with n segments so that each point in M is the endpoint of exactly two
segments. Then, at each step, one may choose two segments AB and CD sharing a common
interior point and replace them by the segments AC and BD if none of them is present at this
moment. Prove that it is impossible to perform n3{4 or more such moves.

(Russia)

C8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is
written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two
players alternately take cards from the deck, one card per turn. After the deck is empty, each
player checks if he can throw out one of his cards so that each of the ten digits occurs on an
even number of his remaining cards. If one player can do this but the other one cannot, the
one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.
(Russia)

C9. There are n circles drawn on a piece of paper in such a way that any two circles
intersect in two points, and no three circles pass through the same point. Turbo the snail slides
along the circles in the following fashion. Initially he moves on one of the circles in clockwise
direction. Turbo always keeps sliding along the current circle until he reaches an intersection
with another circle. Then he continues his journey on this new circle and also changes the
direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo’s path entirely covers all circles. Prove that n must be odd.
(India)
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Geometry

G1. The points P and Q are chosen on the side BC of an acute-angled triangle ABC so
that =PAB “ =ACB and =QAC “ =CBA. The points M and N are taken on the rays AP
and AQ, respectively, so that AP “ PM and AQ “ QN . Prove that the lines BM and CN
intersect on the circumcircle of the triangle ABC.

(Georgia)

G2. Let ABC be a triangle. The points K, L, and M lie on the segments BC, CA, and AB,
respectively, such that the lines AK, BL, and CM intersect in a common point. Prove that it
is possible to choose two of the triangles ALM , BMK, and CKL whose inradii sum up to at
least the inradius of the triangle ABC.

(Estonia)

G3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle ABC
with AB ą BC. The angle bisector of =ABC intersects Ω at M ‰ B. Let Γ be the circle
with diameter BM . The angle bisectors of =AOB and =BOC intersect Γ at points P and Q,
respectively. The point R is chosen on the line PQ so that BR “ MR. Prove that BR ‖ AC.
(Here we always assume that an angle bisector is a ray.)

(Russia)

G4. Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix
a real number λ P p0, 1q. For a variable point P R tA,B,Cu on Γ, let M be the point on
the segment CP such that CM “ λ ¨ CP . Let Q be the second point of intersection of the
circumcircles of the triangles AMP and BMC. Prove that as P varies, the point Q lies on a
fixed circle.

(United Kingdom)

G5. Let ABCD be a convex quadrilateral with =B “ =D “ 90˝. Point H is the foot of
the perpendicular from A to BD. The points S and T are chosen on the sides AB and AD,
respectively, in such a way that H lies inside triangle SCT and

=SHC ´ =BSC “ 90˝, =THC ´ =DTC “ 90˝ .

Prove that the circumcircle of triangle SHT is tangent to the line BD.
(Iran)

G6. Let ABC be a fixed acute-angled triangle. Consider some points E and F lying on
the sides AC and AB, respectively, and let M be the midpoint of EF . Let the perpendicular
bisector of EF intersect the line BC at K, and let the perpendicular bisector of MK intersect
the lines AC and AB at S and T , respectively. We call the pair pE, F q interesting , if the
quadrilateral KSAT is cyclic.

Suppose that the pairs pE1, F1q and pE2, F2q are interesting. Prove that

E1E2

AB
“ F1F2

AC
.

(Iran)

G7. Let ABC be a triangle with circumcircle Ω and incentre I. Let the line passing through I
and perpendicular to CI intersect the segment BC and the arc BC (not containing A) of Ω at
points U and V , respectively. Let the line passing through U and parallel to AI intersect AV
at X , and let the line passing through V and parallel to AI intersect AB at Y . Let W and Z be
the midpoints of AX and BC, respectively. Prove that if the points I, X , and Y are collinear,
then the points I, W , and Z are also collinear.

(U.S.A.)
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Number Theory

N1. Let n ě 2 be an integer, and let An be the set

An “ t2n ´ 2k | k P Z, 0 ď k ă nu.

Determine the largest positive integer that cannot be written as the sum of one or more (not
necessarily distinct) elements of An.

(Serbia)

N2. Determine all pairs px, yq of positive integers such that

3
a

7x2 ´ 13xy ` 7y2 “ |x ´ y| ` 1 .

(U.S.A.)

N3. A coin is called a Cape Town coin if its value is 1{n for some positive integer n. Given
a collection of Cape Town coins of total value at most 99 ` 1

2
, prove that it is possible to split

this collection into at most 100 groups each of total value at most 1.
(Luxembourg)

N4. Let n ą 1 be a given integer. Prove that infinitely many terms of the sequence pakqkě1,
defined by

ak “
Z

nk

k

^

,

are odd. (For a real number x, txu denotes the largest integer not exceeding x.)
(Hong Kong)

N5. Find all triples pp, x, yq consisting of a prime number p and two positive integers x and y
such that xp´1 ` y and x ` yp´1 are both powers of p.

(Belgium)

N6. Let a1 ă a2 ă ¨ ¨ ¨ ă an be pairwise coprime positive integers with a1 being prime
and a1 ě n ` 2. On the segment I “ r0, a1a2 ¨ ¨ ¨ ans of the real line, mark all integers that are
divisible by at least one of the numbers a1, . . . , an. These points split I into a number of smaller
segments. Prove that the sum of the squares of the lengths of these segments is divisible by a1.

(Serbia)

N7. Let c ě 1 be an integer. Define a sequence of positive integers by a1 “ c and

an`1 “ a3n ´ 4c ¨ a2n ` 5c2 ¨ an ` c

for all n ě 1. Prove that for each integer n ě 2 there exists a prime number p dividing an but
none of the numbers a1, . . . , an´1.

(Austria)

N8. For every real number x, let }x} denote the distance between x and the nearest integer.
Prove that for every pair pa, bq of positive integers there exist an odd prime p and a positive
integer k satisfying

›

›

›

›

a

pk

›

›

›

›

`
›

›

›

›

b

pk

›

›

›

›

`
›

›

›

›

a ` b

pk

›

›

›

›

“ 1.

(Hungary)
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Solutions

Algebra

A1. Let z0 ă z1 ă z2 ă ¨ ¨ ¨ be an infinite sequence of positive integers. Prove that there
exists a unique integer n ě 1 such that

zn ă z0 ` z1 ` ¨ ¨ ¨ ` zn
n

ď zn`1. p1q

(Austria)

Solution. For n “ 1, 2, . . . define

dn “ pz0 ` z1 ` ¨ ¨ ¨ ` znq ´ nzn.

The sign of dn indicates whether the first inequality in (1) holds; i.e., it is satisfied if and only
if dn ą 0.

Notice that

nzn`1 ´ pz0 ` z1 ` ¨ ¨ ¨ ` znq “ pn ` 1qzn`1 ´ pz0 ` z1 ` ¨ ¨ ¨ ` zn ` zn`1q “ ´dn`1,

so the second inequality in (1) is equivalent to dn`1 ď 0. Therefore, we have to prove that there
is a unique index n ě 1 that satisfies dn ą 0 ě dn`1.

By its definition the sequence d1, d2, . . . consists of integers and we have

d1 “ pz0 ` z1q ´ 1 ¨ z1 “ z0 ą 0.

From

dn`1 ´ dn “
`

pz0 ` ¨ ¨ ¨ ` zn ` zn`1q ´ pn ` 1qzn`1

˘

´
`

pz0 ` ¨ ¨ ¨ ` znq ´ nzn
˘

“ npzn ´ zn`1q ă 0

we can see that dn`1 ă dn and thus the sequence strictly decreases.

Hence, we have a decreasing sequence d1 ą d2 ą . . . of integers such that its first element d1
is positive. The sequence must drop below 0 at some point, and thus there is a unique index n,
that is the index of the last positive term, satisfying dn ą 0 ě dn`1.

Comment. Omitting the assumption that z1, z2, . . . are integers allows the numbers dn to be all
positive. In such cases the desired n does not exist. This happens for example if zn “ 2 ´ 1

2n for all
integers n ě 0.
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A2. Define the function f : p0, 1q Ñ p0, 1q by

fpxq “
#

x ` 1
2

if x ă 1
2
,

x2 if x ě 1
2
.

Let a and b be two real numbers such that 0 ă a ă b ă 1. We define the sequences an and bn
by a0 “ a, b0 “ b, and an “ fpan´1q, bn “ fpbn´1q for n ą 0. Show that there exists a positive
integer n such that

pan ´ an´1qpbn ´ bn´1q ă 0.

(Denmark)

Solution. Note that
fpxq ´ x “ 1

2
ą 0

if x ă 1
2
and

fpxq ´ x “ x2 ´ x ă 0

if x ě 1
2
. So if we consider p0, 1q as being divided into the two subintervals I1 “ p0, 1

2
q and

I2 “ r1
2
, 1q, the inequality

pan ´ an´1qpbn ´ bn´1q “
`

fpan´1q ´ an´1

˘`

fpbn´1q ´ bn´1

˘

ă 0

holds if and only if an´1 and bn´1 lie in distinct subintervals.
Let us now assume, to the contrary, that ak and bk always lie in the same subinterval.

Consider the distance dk “ |ak ´ bk|. If both ak and bk lie in I1, then

dk`1 “ |ak`1 ´ bk`1| “
ˇ

ˇak ` 1
2

´ bk ´ 1
2

ˇ

ˇ “ dk.

If, on the other hand, ak and bk both lie in I2, then minpak, bkq ě 1
2
and maxpak, bkq “

minpak, bkq ` dk ě 1
2

` dk, which implies

dk`1 “ |ak`1 ´ bk`1| “
ˇ

ˇa2k ´ b2k
ˇ

ˇ “
ˇ

ˇpak ´ bkqpak ` bkq
ˇ

ˇ ě |ak ´ bk|
`

1
2

` 1
2

` dk
˘

“ dkp1` dkq ě dk.

This means that the difference dk is non-decreasing, and in particular dk ě d0 ą 0 for all k.
We can even say more. If ak and bk lie in I2, then

dk`2 ě dk`1 ě dkp1 ` dkq ě dkp1 ` d0q.

If ak and bk both lie in I1, then ak`1 and bk`1 both lie in I2, and so we have

dk`2 ě dk`1p1 ` dk`1q ě dk`1p1 ` d0q “ dkp1 ` d0q.

In either case, dk`2 ě dkp1 ` d0q, and inductively we get

d2m ě d0p1 ` d0qm.

For sufficiently large m, the right-hand side is greater than 1, but since a2m, b2m both lie in
p0, 1q, we must have d2m ă 1, a contradiction.

Thus there must be a positive integer n such that an´1 and bn´1 do not lie in the same
subinterval, which proves the desired statement.
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A3. For a sequence x1, x2, . . . , xn of real numbers, we define its price as

max
1ďiďn

|x1 ` ¨ ¨ ¨ ` xi|.

Given n real numbers, Dave and George want to arrange them into a sequence with a
low price. Diligent Dave checks all possible ways and finds the minimum possible price D.
Greedy George, on the other hand, chooses x1 such that |x1| is as small as possible; among
the remaining numbers, he chooses x2 such that |x1 ` x2| is as small as possible, and so on.
Thus, in the ith step he chooses xi among the remaining numbers so as to minimise the value
of |x1 ` x2 ` ¨ ¨ ¨ ` xi|. In each step, if several numbers provide the same value, George chooses
one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection
of n real numbers, and for every possible sequence that George might obtain, the resulting
values satisfy the inequality G ď cD.

(Georgia)

Answer. c “ 2.

Solution. If the initial numbers are 1, ´1, 2, and ´2, then Dave may arrange them as
1,´2, 2,´1, while George may get the sequence 1,´1, 2,´2, resulting in D “ 1 and G “ 2. So
we obtain c ě 2.

Therefore, it remains to prove that G ď 2D. Let x1, x2, . . . , xn be the numbers Dave and
George have at their disposal. Assume that Dave and George arrange them into sequences
d1, d2, . . . , dn and g1, g2, . . . , gn, respectively. Put

M “ max
1ďiďn

|xi|, S “ |x1 ` ¨ ¨ ¨ ` xn|, and N “ maxtM,Su.

We claim that

D ě S, (1)

D ě M

2
, and (2)

G ď N “ maxtM,Su. (3)

These inequalities yield the desired estimate, as G ď maxtM,Su ď maxtM, 2Su ď 2D.

The inequality (1) is a direct consequence of the definition of the price.

To prove (2), consider an index i with |di| “ M . Then we have

M “ |di| “
ˇ

ˇpd1 ` ¨ ¨ ¨ ` diq ´ pd1 ` ¨ ¨ ¨ ` di´1q
ˇ

ˇ ď |d1 ` ¨ ¨ ¨ ` di| ` |d1 ` ¨ ¨ ¨ ` di´1| ď 2D,

as required.

It remains to establish (3). Put hi “ g1 ` g2 ` ¨ ¨ ¨ ` gi. We will prove by induction on
i that |hi| ď N . The base case i “ 1 holds, since |h1| “ |g1| ď M ď N . Notice also that
|hn| “ S ď N .

For the induction step, assume that |hi´1| ď N . We distinguish two cases.

Case 1. Assume that no two of the numbers gi, gi`1, . . . , gn have opposite signs.

Without loss of generality, we may assume that they are all nonnegative. Then one has
hi´1 ď hi ď ¨ ¨ ¨ ď hn, thus

|hi| ď max
 

|hi´1|, |hn|
(

ď N.

Case 2. Among the numbers gi, gi`1, . . . , gn there are positive and negative ones.
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Then there exists some index j ě i such that hi´1gj ď 0. By the definition of George’s
sequence we have

|hi| “ |hi´1 ` gi| ď |hi´1 ` gj| ď max
 

|hi´1|, |gj|
(

ď N.

Thus, the induction step is established.

Comment 1. One can establish the weaker inequalities D ě M
2 and G ď D ` M

2 from which the
result also follows.

Comment 2. One may ask a more specific question to find the maximal suitable c if the number n
is fixed. For n “ 1 or 2, the answer is c “ 1. For n “ 3, the answer is c “ 3

2 , and it is reached e.g.,
for the collection 1, 2,´4. Finally, for n ě 4 the answer is c “ 2. In this case the arguments from the
solution above apply, and the answer is reached e.g., for the same collection 1,´1, 2,´2, augmented
by several zeroes.
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A4. Determine all functions f : Z Ñ Z satisfying

f
`

fpmq ` n
˘

` fpmq “ fpnq ` fp3mq ` 2014 (1)

for all integers m and n.
(Netherlands)

Answer. There is only one such function, namely n ÞÝÑ 2n ` 1007.

Solution. Let f be a function satisfying (1). Set C “ 1007 and define the function g : Z Ñ Z
by gpmq “ fp3mq ´ fpmq ` 2C for all m P Z; in particular, gp0q “ 2C. Now (1) rewrites as

f
`

fpmq ` n
˘

“ gpmq ` fpnq

for all m,n P Z. By induction in both directions it follows that

f
`

tfpmq ` n
˘

“ tgpmq ` fpnq (2)

holds for all m,n, t P Z. Applying this, for any r P Z, to the triples
`

r, 0, fp0q
˘

and
`

0, 0, fprq
˘

in place of pm,n, tq we obtain

fp0qgprq “ f
`

fprqfp0q
˘

´ fp0q “ fprqgp0q .

Now if fp0q vanished, then gp0q “ 2C ą 0 would entail that f vanishes identically, contrary

to (1). Thus fp0q ‰ 0 and the previous equation yields gprq “ α fprq, where α “ gp0q
fp0q

is some
nonzero constant.

So the definition of g reveals fp3mq “ p1 ` αqfpmq ´ 2C, i.e.,

fp3mq ´ β “ p1 ` αq
`

fpmq ´ β
˘

(3)

for all m P Z, where β “ 2C
α
. By induction on k this implies

fp3kmq ´ β “ p1 ` αqk
`

fpmq ´ β
˘

(4)

for all integers k ě 0 and m.
Since 3 ∤ 2014, there exists by (1) some value d “ fpaq attained by f that is not divisible

by 3. Now by (2) we have fpn ` tdq “ fpnq ` tgpaq “ fpnq ` α ¨ tfpaq, i.e.,

fpn ` tdq “ fpnq ` α ¨ td (5)

for all n, t P Z.
Let us fix any positive integer k with d | p3k ´ 1q, which is possible, since gcdp3, dq “ 1.

E.g., by the Euler–Fermat theorem, we may take k “ ϕp|d|q. Now for each m P Z we get

fp3kmq “ fpmq ` αp3k ´ 1qm

from (5), which in view of (4) yields
`

p1 ` αqk ´ 1
˘`

fpmq ´ β
˘

“ αp3k ´ 1qm. Since α ‰ 0,
the right hand side does not vanish for m ‰ 0, wherefore the first factor on the left hand side
cannot vanish either. It follows that

fpmq “ αp3k ´ 1q
p1 ` αqk ´ 1

¨ m ` β .
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So f is a linear function, say fpmq “ Am`β for all m P Z with some constant A P Q. Plugging
this into (1) one obtains pA2 ´ 2Aqm ` pAβ ´ 2Cq “ 0 for all m, which is equivalent to the
conjunction of

A2 “ 2A and Aβ “ 2C . (6)

The first equation is equivalent to A P t0, 2u, and as C ‰ 0 the second one gives

A “ 2 and β “ C . (7)

This shows that f is indeed the function mentioned in the answer and as the numbers found
in (7) do indeed satisfy the equations (6) this function is indeed as desired.

Comment 1. One may see that α “ 2. A more pedestrian version of the above solution starts with
a direct proof of this fact, that can be obtained by substituting some special values into (1), e.g., as
follows.

Set D “ fp0q. Plugging m “ 0 into (1) and simplifying, we get

fpn ` Dq “ fpnq ` 2C (8)

for all n P Z. In particular, for n “ 0,D, 2D we obtain fpDq “ 2C `D, fp2Dq “ fpDq`2C “ 4C`D,
and fp3Dq “ fp2Dq ` 2C “ 6C `D. So substituting m “ D and n “ r ´D into (1) and applying (8)
with n “ r ´ D afterwards we learn

fpr ` 2Cq ` 2C ` D “
`

fprq ´ 2C
˘

` p6C ` Dq ` 2C ,

i.e., fpr ` 2Cq “ fprq ` 4C. By induction in both directions it follows that

fpn ` 2Ctq “ fpnq ` 4Ct (9)

holds for all n, t P Z.

Claim. If a and b denote two integers with the property that fpn ` aq “ fpnq ` b holds for all n P Z,
then b “ 2a.

Proof. Applying induction in both directions to the assumption we get fpn ` taq “ fpnq ` tb for all
n, t P Z. Plugging pn, tq “ p0, 2Cq into this equation and pn, tq “ p0, aq into (9) we get fp2aCq´fp0q “
2bC “ 4aC, and, as C ‰ 0, the claim follows. l

Now by (1), for any m P Z, the numbers a “ fpmq and b “ fp3mq ´ fpmq ` 2C have the property
mentioned in the claim, whence we have

fp3mq ´ C “ 3
`

fpmq ´ C
˘

.

In view of (3) this tells us indeed that α “ 2.
Now the solution may be completed as above, but due to our knowledge of α “ 2 we get the

desired formula fpmq “ 2m ` C directly without having the need to go through all linear functions.
Now it just remains to check that this function does indeed satisfy (1).

Comment 2. It is natural to wonder what happens if one replaces the number 2014 appearing in
the statement of the problem by some arbitrary integer B.

If B is odd, there is no such function, as can be seen by using the same ideas as in the above
solution.

If B ‰ 0 is even, however, then the only such function is given by n ÞÝÑ 2n`B{2. In case 3 ∤ B this
was essentially proved above, but for the general case one more idea seems to be necessary. Writing
B “ 3ν ¨ k with some integers ν and k such that 3 ∤ k one can obtain fpnq “ 2n ` B{2 for all n that
are divisible by 3ν in the same manner as usual; then one may use the formula fp3nq “ 3fpnq ´ B to
establish the remaining cases.
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Finally, in case B “ 0 there are more solutions than just the function n ÞÝÑ 2n. It can be shown
that all these other functions are periodic; to mention just one kind of example, for any even integers
r and s the function

fpnq “
#

r if n is even,

s if n is odd,

also has the property under discussion.
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A5. Consider all polynomials P pxq with real coefficients that have the following property:
for any two real numbers x and y one has

|y2 ´ P pxq| ď 2 |x| if and only if |x2 ´ P pyq| ď 2 |y| . (1)

Determine all possible values of P p0q.
(Belgium)

Answer. The set of possible values of P p0q is p´8, 0q Y t1u.
Solution.

Part I. We begin by verifying that these numbers are indeed possible values of P p0q. To see
that each negative real number ´C can be P p0q, it suffices to check that for every C ą 0 the

polynomial P pxq “ ´
´

2x2

C
` C

¯

has the property described in the statement of the problem.

Due to symmetry it is enough for this purpose to prove |y2 ´ P pxq| ą 2 |x| for any two real
numbers x and y. In fact we have

|y2 ´ P pxq| “ y2 ` x2

C
` p|x| ´ Cq2

C
` 2 |x| ě x2

C
` 2 |x| ě 2 |x| ,

where in the first estimate equality can only hold if |x| “ C, whilst in the second one it can
only hold if x “ 0. As these two conditions cannot be met at the same time, we have indeed
|y2 ´ P pxq| ą 2 |x|.

To show that P p0q “ 1 is possible as well, we verify that the polynomial P pxq “ x2 ` 1
satisfies (1). Notice that for all real numbers x and y we have

|y2 ´ P pxq| ď 2 |x| ðñ py2 ´ x2 ´ 1q2 ď 4x2

ðñ 0 ď
`

py2 ´ px ´ 1q2
˘`

px ` 1q2 ´ y2
˘

ðñ 0 ď py ´ x ` 1qpy ` x ´ 1qpx ` 1 ´ yqpx ` 1 ` yq
ðñ 0 ď

`

px ` yq2 ´ 1
˘ `

1 ´ px ´ yq2
˘

.

Since this inequality is symmetric in x and y, we are done.

Part II. Now we show that no values other than those mentioned in the answer are possible
for P p0q. To reach this we let P denote any polynomial satisfying (1) and P p0q ě 0; as we shall
see, this implies P pxq “ x2 ` 1 for all real x, which is actually more than what we want.

First step: We prove that P is even.

By (1) we have

|y2 ´ P pxq| ď 2 |x| ðñ |x2 ´ P pyq| ď 2 |y| ðñ |y2 ´ P p´xq| ď 2 |x|
for all real numbers x and y. Considering just the equivalence of the first and third statement
and taking into account that y2 may vary through Rě0 we infer that

“

P pxq ´ 2 |x|, P pxq ` 2 |x|
‰

X Rě0 “
“

P p´xq ´ 2 |x|, P p´xq ` 2 |x|
‰

X Rě0

holds for all x P R. We claim that there are infinitely many real numbers x such that
P pxq ` 2 |x| ě 0. This holds in fact for any real polynomial with P p0q ě 0; in order to see
this, we may assume that the coefficient of P appearing in front of x is nonnegative. In this
case the desired inequality holds for all sufficiently small positive real numbers.

For such numbers x satisfying P pxq ` 2 |x| ě 0 we have P pxq ` 2 |x| “ P p´xq ` 2 |x| by
the previous displayed formula, and hence also P pxq “ P p´xq. Consequently the polynomial
P pxq ´ P p´xq has infinitely many zeros, wherefore it has to vanish identically. Thus P is
indeed even.
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Second step: We prove that P ptq ą 0 for all t P R.

Let us assume for a moment that there exists a real number t ‰ 0 with P ptq “ 0. Then
there is some open interval I around t such that |P pyq| ď 2 |y| holds for all y P I. Plugging
x “ 0 into (1) we learn that y2 “ P p0q holds for all y P I, which is clearly absurd. We have
thus shown P ptq ‰ 0 for all t ‰ 0.

In combination with P p0q ě 0 this informs us that our claim could only fail if P p0q “ 0. In
this case there is by our first step a polynomial Qpxq such that P pxq “ x2Qpxq. Applying (1)
to x “ 0 and an arbitrary y ‰ 0 we get |y Qpyq| ą 2, which is surely false when y is sufficiently
small.

Third step: We prove that P is a quadratic polynomial.

Notice that P cannot be constant, for otherwise if x “
a

P p0q and y is sufficiently large, the
first part of (1) is false whilst the second part is true. So the degree n of P has to be at least 1.
By our first step n has to be even as well, whence in particular n ě 2.

Now assume that n ě 4. Plugging y “
a

P pxq into (1) we get
ˇ

ˇx2 ´P
`
a

P pxq
˘ˇ

ˇ ď 2
a

P pxq
and hence

P
`
a

P pxq
˘

ď x2 ` 2
a

P pxq
for all real x. Choose positive real numbers x0, a, and b such that if x P px0,8q, then axn ă
P pxq ă bxn; this is indeed possible, for if d ą 0 denotes the leading coefficient of P , then

lim
xÑ8

P pxq
xn “ d, whence for instance the numbers a “ d

2
and b “ 2d work provided that x0 is

chosen large enough.
Now for all sufficiently large real numbers x we have

an{2`1xn2{2 ă aP pxqn{2 ă P
`
a

P pxq
˘

ď x2 ` 2
a

P pxq ă xn{2 ` 2b1{2xn{2 ,

i.e.

xpn2´nq{2 ă 1 ` 2b1{2

an{2`1
,

which is surely absurd. Thus P is indeed a quadratic polynomial.

Fourth step: We prove that P pxq “ x2 ` 1.

In the light of our first three steps there are two real numbers a ą 0 and b such that P pxq “
ax2 ` b. Now if x is large enough and y “ ?

a x, the left part of (1) holds and the right part
reads |p1 ´ a2qx2 ´ b| ď 2

?
a x. In view of the fact that a ą 0 this is only possible if a “ 1.

Finally, substituting y “ x ` 1 with x ą 0 into (1) we get

|2x ` 1 ´ b| ď 2x ðñ |2x ` 1 ` b| ď 2x ` 2 ,

i.e.,
b P r1, 4x ` 1s ðñ b P r´4x ´ 3, 1s

for all x ą 0. Choosing x large enough, we can achieve that at least one of these two statements
holds; then both hold, which is only possible if b “ 1, as desired.

Comment 1. There are some issues with this problem in that its most natural solutions seem to
use some basic facts from analysis, such as the continuity of polynomials or the intermediate value
theorem. Yet these facts are intuitively obvious and implicitly clear to the students competing at this
level of difficulty, so that the Problem Selection Committee still thinks that the problem is suitable
for the IMO.

Comment 2. It seems that most solutions will in the main case, where P p0q is nonnegative, contain
an argument that is somewhat asymptotic in nature showing that P is quadratic, and some part
narrowing that case down to P pxq “ x2 ` 1.
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Comment 3. It is also possible to skip the first step and start with the second step directly, but
then one has to work a bit harder to rule out the case P p0q “ 0. Let us sketch one possibility of doing
this: Take the auxiliary polynomial Qpxq such that P pxq “ xQpxq. Applying (1) to x “ 0 and an
arbitrary y ‰ 0 we get |Qpyq| ą 2. Hence we either have Qpzq ě 2 for all real z or Qpzq ď ´2 for all
real z. In particular there is some η P t´1,`1u such that P pηq ě 2 and P p´ηq ď ´2. Substituting
x “ ˘η into (1) we learn

|y2 ´ P pηq| ď 2 ðñ |1 ´ P pyq| ď 2 |y| ðñ |y2 ´ P p´ηq| ď 2 .

But for y “
a

P pηq the first statement is true, whilst the third one is false.

Also, if one has not obtained the evenness of P before embarking on the fourth step, one needs to
work a bit harder there, but not in a way that is likely to cause major difficulties.

Comment 4. Truly curious people may wonder about the set of all polynomials having property (1).
As explained in the solution above, P pxq “ x2 ` 1 is the only one with P p0q “ 1. On the other hand,
it is not hard to notice that for negative P p0q there are more possibilities than those mentioned above.
E.g., as remarked by the proposer, if a and b denote two positive real numbers with ab ą 1 and Q
denotes a polynomial attaining nonnegative values only, then P pxq “ ´

`

ax2 ` b ` Qpxq
˘

works.

More generally, it may be proved that if P pxq satisfies (1) and P p0q ă 0, then ´P pxq ą 2 |x| holds
for all x P R so that one just considers the equivalence of two false statements. One may generate all
such polynomials P by going through all combinations of a solution of the polynomial equation

x “ ApxqBpxq ` CpxqDpxq

and a real E ą 0, and setting

P pxq “ ´
`

Apxq2 ` Bpxq2 ` Cpxq2 ` Dpxq2 ` E
˘

for each of them.
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A6. Find all functions f : Z Ñ Z such that

n2 ` 4fpnq “ fpfpnqq2 (1)

for all n P Z.
(United Kingdom)

Answer. The possibilities are:

• fpnq “ n ` 1 for all n;

• or, for some a ě 1, fpnq “
#

n ` 1, n ą ´a,

´n ` 1, n ď ´a;

• or fpnq “

$

’

&

’

%

n ` 1, n ą 0,

0, n “ 0,

´n ` 1, n ă 0.

Solution 1.

Part I. Let us first check that each of the functions above really satisfies the given functional
equation. If fpnq “ n ` 1 for all n, then we have

n2 ` 4fpnq “ n2 ` 4n ` 4 “ pn ` 2q2 “ fpn ` 1q2 “ fpfpnqq2.

If fpnq “ n ` 1 for n ą ´a and fpnq “ ´n ` 1 otherwise, then we have the same identity for
n ą ´a and

n2 ` 4fpnq “ n2 ´ 4n ` 4 “ p2 ´ nq2 “ fp1 ´ nq2 “ fpfpnqq2

otherwise. The same applies to the third solution (with a “ 0), where in addition one has

02 ` 4fp0q “ 0 “ fpfp0qq2.

Part II. It remains to prove that these are really the only functions that satisfy our func-
tional equation. We do so in three steps:

Step 1: We prove that fpnq “ n ` 1 for n ą 0.

Consider the sequence pakq given by ak “ fkp1q for k ě 0. Setting n “ ak in (1), we get

a2k ` 4ak`1 “ a2k`2.

Of course, a0 “ 1 by definition. Since a22 “ 1 ` 4a1 is odd, a2 has to be odd as well, so we set
a2 “ 2r ` 1 for some r P Z. Then a1 “ r2 ` r and consequently

a23 “ a21 ` 4a2 “ pr2 ` rq2 ` 8r ` 4.

Since 8r ` 4 ‰ 0, a23 ‰ pr2 ` rq2, so the difference between a23 and pr2 ` rq2 is at least the
distance from pr2 ` rq2 to the nearest even square (since 8r` 4 and r2 ` r are both even). This
implies that

|8r ` 4| “
ˇ

ˇa23 ´ pr2 ` rq2
ˇ

ˇ ě pr2 ` rq2 ´ pr2 ` r ´ 2q2 “ 4pr2 ` r ´ 1q,

(for r “ 0 and r “ ´1, the estimate is trivial, but this does not matter). Therefore, we ave

4r2 ď |8r ` 4| ´ 4r ` 4.
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If |r| ě 4, then

4r2 ě 16|r| ě 12|r| ` 16 ą 8|r| ` 4 ` 4|r| ` 4 ě |8r ` 4| ´ 4r ` 4,

a contradiction. Thus |r| ă 4. Checking all possible remaining values of r, we find that
pr2 ` rq2 ` 8r ` 4 is only a square in three cases: r “ ´3, r “ 0 and r “ 1. Let us now
distinguish these three cases:

• r “ ´3, thus a1 “ 6 and a2 “ ´5. For each k ě 1, we have

ak`2 “ ˘
b

a2k ` 4ak`1,

and the sign needs to be chosen in such a way that a2k`1 ` 4ak`2 is again a square. This
yields a3 “ ´4, a4 “ ´3, a5 “ ´2, a6 “ ´1, a7 “ 0, a8 “ 1, a9 “ 2. At this point
we have reached a contradiction, since fp1q “ fpa0q “ a1 “ 6 and at the same time
fp1q “ fpa8q “ a9 “ 2.

• r “ 0, thus a1 “ 0 and a2 “ 1. Then a23 “ a21 ` 4a2 “ 4, so a3 “ ˘2. This, however,
is a contradiction again, since it gives us fp1q “ fpa0q “ a1 “ 0 and at the same time
fp1q “ fpa2q “ a3 “ ˘2.

• r “ 1, thus a1 “ 2 and a2 “ 3. We prove by induction that ak “ k ` 1 for all k ě 0
in this case, which we already know for k ď 2 now. For the induction step, assume that
ak´1 “ k and ak “ k ` 1. Then

a2k`1 “ a2k´1 ` 4ak “ k2 ` 4k ` 4 “ pk ` 2q2,

so ak`1 “ ˘pk ` 2q. If ak`1 “ ´pk ` 2q, then

a2k`2 “ a2k ` 4ak`1 “ pk ` 1q2 ´ 4k ´ 8 “ k2 ´ 2k ´ 7 “ pk ´ 1q2 ´ 8.

The latter can only be a square if k “ 4 (since 1 and 9 are the only two squares whose
difference is 8). Then, however, a4 “ 5, a5 “ ´6 and a6 “ ˘1, so

a27 “ a25 ` 4a6 “ 36 ˘ 4,

but neither 32 nor 40 is a perfect square. Thus ak`1 “ k ` 2, which completes our
induction. This also means that fpnq “ fpan´1q “ an “ n ` 1 for all n ě 1.

Step 2: We prove that either fp0q “ 1, or fp0q “ 0 and fpnq ‰ 0 for n ‰ 0.

Set n “ 0 in (1) to get
4fp0q “ fpfp0qq2.

This means that fp0q ě 0. If fp0q “ 0, then fpnq ‰ 0 for all n ‰ 0, since we would otherwise
have

n2 “ n2 ` 4fpnq “ fpfpnqq2 “ fp0q2 “ 0.

If fp0q ą 0, then we know that fpfp0qq “ fp0q ` 1 from the first step, so

4fp0q “
`

fp0q ` 1
˘2
,

which yields fp0q “ 1.
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Step 3: We discuss the values of fpnq for n ă 0.

Lemma. For every n ě 1, we have fp´nq “ ´n ` 1 or fp´nq “ n ` 1. Moreover, if fp´nq “
´n ` 1 for some n ě 1, then also fp´n ` 1q “ ´n ` 2.

Proof. We prove this statement by strong induction on n. For n “ 1, we get

1 ` 4fp´1q “ fpfp´1qq2.
Thus fp´1q needs to be nonnegative. If fp´1q “ 0, then fpfp´1qq “ fp0q “ ˘1, so fp0q “ 1
(by our second step). Otherwise, we know that fpfp´1qq “ fp´1q ` 1, so

1 ` 4fp´1q “
`

fp´1q ` 1
˘2
,

which yields fp´1q “ 2 and thus establishes the base case. For the induction step, we consider
two cases:

• If fp´nq ď ´n, then

fpfp´nqq2 “ p´nq2 ` 4fp´nq ď n2 ´ 4n ă pn ´ 2q2,
so |fpfp´nqq| ď n´ 3 (for n “ 2, this case cannot even occur). If fpfp´nqq ě 0, then we
already know from the first two steps that fpfpfp´nqqq “ fpfp´nqq ` 1, unless perhaps
if fp0q “ 0 and fpfp´nqq “ 0. However, the latter would imply fp´nq “ 0 (as shown in
Step 2) and thus n “ 0, which is impossible. If fpfp´nqq ă 0, we can apply the induction
hypothesis to fpfp´nqq. In either case, fpfpfp´nqqq “ ˘fpfp´nqq ` 1. Therefore,

fp´nq2 ` 4fpfp´nqq “ fpfpfp´nqqq2 “
`

˘fpfp´nqq ` 1
˘2
,

which gives us

n2 ď fp´nq2 “
`

˘fpfp´nqq ` 1
˘2 ´ 4fpfp´nqq ď fpfp´nqq2 ` 6|fpfp´nqq| ` 1

ď pn ´ 3q2 ` 6pn ´ 3q ` 1 “ n2 ´ 8,

a contradiction.

• Thus, we are left with the case that fp´nq ą ´n. Now we argue as in the previous
case: if fp´nq ě 0, then fpfp´nqq “ fp´nq ` 1 by the first two steps, since fp0q “ 0
and fp´nq “ 0 would imply n “ 0 (as seen in Step 2) and is thus impossible. If
fp´nq ă 0, we can apply the induction hypothesis, so in any case we can infer that
fpfp´nqq “ ˘fp´nq ` 1. We obtain

p´nq2 ` 4fp´nq “
`

˘fp´nq ` 1
˘2
,

so either
n2 “ fp´nq2 ´ 2fp´nq ` 1 “

`

fp´nq ´ 1
˘2
,

which gives us fp´nq “ ˘n ` 1, or

n2 “ fp´nq2 ´ 6fp´nq ` 1 “
`

fp´nq ´ 3
˘2 ´ 8.

Since 1 and 9 are the only perfect squares whose difference is 8, we must have n “ 1,
which we have already considered.

Finally, suppose that fp´nq “ ´n ` 1 for some n ě 2. Then

fp´n ` 1q2 “ fpfp´nqq2 “ p´nq2 ` 4fp´nq “ pn ´ 2q2,
so fp´n`1q “ ˘pn´2q. However, we already know that fp´n`1q “ ´n`2 or fp´n`1q “ n,
so fp´n ` 1q “ ´n ` 2. l
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Combining everything we know, we find the solutions as stated in the answer:

• One solution is given by fpnq “ n ` 1 for all n.

• If fpnq is not always equal to n ` 1, then there is a largest integer m (which cannot be
positive) for which this is not the case. In view of the lemma that we proved, we must
then have fpnq “ ´n`1 for any integer n ă m. If m “ ´a ă 0, we obtain fpnq “ ´n`1
for n ď ´a (and fpnq “ n ` 1 otherwise). If m “ 0, we have the additional possibility
that fp0q “ 0, fpnq “ ´n ` 1 for negative n and fpnq “ n ` 1 for positive n.

Solution 2. Let us provide an alternative proof for Part II, which also proceeds in several
steps.

Step 1. Let a be an arbitrary integer and b “ fpaq. We first concentrate on the case where
|a| is sufficiently large.

1. If b “ 0, then (1) applied to a yields a2 “ fpfpaqq2, thus

fpaq “ 0 ñ a “ ˘fp0q. (2)

From now on, we set D “ |fp0q|. Throughout Step 1, we will assume that a R t´D, 0, Du,
thus b ‰ 0.

2. From (1), noticing that fpfpaqq and a have the same parity, we get

0 ‰ 4|b| “
ˇ

ˇfpfpaqq2 ´ a2
ˇ

ˇ ě a2 ´
`

|a| ´ 2
˘2 “ 4|a| ´ 4.

Hence we have
|b| “ |fpaq| ě |a| ´ 1 for a R t´D, 0, Du. (3)

For the rest of Step 1, we also assume that |a| ě E “ maxtD ` 2, 10u. Then by (3) we
have |b| ě D ` 1 and thus |fpbq| ě D.

3. Set c “ fpbq; by (3), we have |c| ě |b| ´ 1. Thus (1) yields

a2 ` 4b “ c2 ě
`

|b| ´ 1
˘2
,

which implies

a2 ě
`

|b| ´ 1
˘2 ´ 4|b| “

`

|b| ´ 3
˘2 ´ 8 ą

`

|b| ´ 4
˘2

because |b| ě |a| ´ 1 ě 9. Thus (3) can be refined to

|a| ` 3 ě |fpaq| ě |a| ´ 1 for |a| ě E.

Now, from c2 “ a2 ` 4b with |b| P r|a| ´ 1, |a| ` 3s we get c2 “ pa ˘ 2q2 ` d, where
d P t´16,´12,´8,´4, 0, 4, 8u. Since |a ˘ 2| ě 8, this can happen only if c2 “ pa ˘ 2q2,
which in turn yields b “ ˘a ` 1. To summarise,

fpaq “ 1 ˘ a for |a| ě E. (4)

We have shown that, with at most finitely many exceptions, fpaq “ 1 ˘ a. Thus it will be
convenient for our second step to introduce the sets

Z` “
 

a P Z : fpaq “ a ` 1
(

, Z´ “
 

a P Z : fpaq “ 1 ´ a
(

, and Z0 “ Zz
`

Z` Y Z´

˘

.
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Step 2. Now we investigate the structure of the sets Z`, Z´, and Z0.

4. Note that fpE`1q “ 1˘pE`1q. If fpE`1q “ E`2, then E`1 P Z`. Otherwise we have
fp1`Eq “ ´E; then the original equation (1) with n “ E`1 gives us pE´1q2 “ fp´Eq2,
so fp´Eq “ ˘pE ´ 1q. By (4) this may happen only if fp´Eq “ 1 ´ E, so in this case
´E P Z`. In any case we find that Z` ‰ ∅.

5. Now take any a P Z`. We claim that every integer x ě a also lies in Z`. We proceed by
induction on x, the base case x “ a being covered by our assumption. For the induction
step, assume that fpx ´ 1q “ x and plug n “ x ´ 1 into (1). We get fpxq2 “ px ` 1q2, so
either fpxq “ x ` 1 or fpxq “ ´px ` 1q.
Assume that fpxq “ ´px` 1q and x ‰ ´1, since otherwise we already have fpxq “ x` 1.
Plugging n “ x into (1), we obtain fp´x ´ 1q2 “ px ´ 2q2 ´ 8, which may happen only if
x´2 “ ˘3 and fp´x´1q “ ˘1. Plugging n “ ´x´1 into (1), we get fp˘1q2 “ px`1q2˘4,
which in turn may happen only if x ` 1 P t´2, 0, 2u.
Thus x P t´1, 5u and at the same time x P t´3,´1, 1u, which gives us x “ ´1. Since this
has already been excluded, we must have fpxq “ x ` 1, which completes our induction.

6. Now we know that either Z` “ Z (if Z` is not bounded below), or Z` “ ta P Z : a ě a0u,
where a0 is the smallest element of Z`. In the former case, fpnq “ n ` 1 for all n P Z,
which is our first solution. So we assume in the following that Z` is bounded below and
has a smallest element a0.

If Z0 “ ∅, then we have fpxq “ x ` 1 for x ě a0 and fpxq “ 1 ´ x for x ă a0. In
particular, fp0q “ 1 in any case, so 0 P Z` and thus a0 ď 0. Thus we end up with the
second solution listed in the answer. It remains to consider the case where Z0 ‰ ∅.

7. Assume that there exists some a P Z0 with b “ fpaq R Z0, so that fpbq “ 1 ˘ b. Then we
have a2 ` 4b “ p1 ˘ bq2, so either a2 “ pb ´ 1q2 or a2 “ pb ´ 3q2 ´ 8. In the former case
we have b “ 1 ˘ a, which is impossible by our choice of a. So we get a2 “ pb ´ 3q2 ´ 8,
which implies fpbq “ 1 ´ b and |a| “ 1, |b ´ 3| “ 3.

If b “ 0, then we have fpbq “ 1, so b P Z` and therefore a0 ď 0; hence a “ ´1. But then
fpaq “ 0 “ a ` 1, so a P Z`, which is impossible.

If b “ 6, then we have fp6q “ ´5, so fp´5q2 “ 16 and fp´5q P t´4, 4u. Then fpfp´5qq2 “
25 ` 4fp´5q P t9, 41u, so fp´5q “ ´4 and ´5 P Z`. This implies a0 ď ´5, which
contradicts our assumption that ˘1 “ a R Z`.

8. Thus we have shown that fpZ0q Ď Z0, and Z0 is finite. Take any element c P Z0, and
consider the sequence defined by ci “ f ipcq. All elements of the sequence pciq lie in Z0,
hence it is bounded. Choose an index k for which |ck| is maximal, so that in particular
|ck`1| ď |ck| and |ck`2| ď |ck|. Our functional equation (1) yields

p|ck| ´ 2q2 ´ 4 “ |ck|2 ´ 4|ck| ď c2k ` 4ck`1 “ c2k`2.

Since ck and ck`2 have the same parity and |ck`2| ď |ck|, this leaves us with three possi-
bilities: |ck`2| “ |ck|, |ck`2| “ |ck| ´ 2, and |ck| ´ 2 “ ˘2, ck`2 “ 0.

If |ck`2| “ |ck| ´ 2, then fpckq “ ck`1 “ 1 ´ |ck|, which means that ck P Z´ or ck P Z`,
and we reach a contradiction.

If |ck`2| “ |ck|, then ck`1 “ 0, thus c2k`3 “ 4ck`2. So either ck`3 ‰ 0 or (by maximality
of |ck`2| “ |ck|) ci “ 0 for all i. In the former case, we can repeat the entire argument
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with ck`2 in the place of ck. Now |ck`4| “ |ck`2| is not possible any more since ck`3 ‰ 0,
leaving us with the only possibility |ck| ´ 2 “ |ck`2| ´ 2 “ ˘2.

Thus we know now that either all ci are equal to 0, or |ck| “ 4. If ck “ ˘4, then either
ck`1 “ 0 and |ck`2| “ |ck| “ 4, or ck`2 “ 0 and ck`1 “ ´4. From this point onwards, all
elements of the sequence are either 0 or ˘4.

Let cr be the last element of the sequence that is not equal to 0 or ˘4 (if such an element
exists). Then cr`1, cr`2 P t´4, 0, 4u, so

c2r “ c2r`2 ´ 4cr`1 P t´16, 0, 16, 32u,

which gives us a contradiction. Thus all elements of the sequence are equal to 0 or ˘4,
and since the choice of c0 “ c was arbitrary, Z0 Ď t´4, 0, 4u.

9. Finally, we show that 4 R Z0 and ´4 R Z0. Suppose that 4 P Z0. Then in particular a0
(the smallest element of Z`) cannot be less than 4, since this would imply 4 P Z`. So
´3 P Z´, which means that fp´3q “ 4. Then 25 “ p´3q2 `4fp´3q “ fpfp´3qq2 “ fp4q2,
so fp4q “ ˘5 R Z0, and we reach a contradiction.

Suppose that ´4 P Z0. The only possible values for fp´4q that are left are 0 and ´4. Note
that 4fp0q “ fpfp0qq2, so fp0q ě 0. If fp´4q “ 0, then we get 16 “ p´4q2 ` 0 “ fp0q2,
thus fp0q “ 4. But then fpfp´4qq R Z0, which is impossible. Thus fp´4q “ ´4, which
gives us 0 “ p´4q2 ` 4fp´4q “ fpfp´4qq2 “ 16, and this is clearly absurd.

Now we are left with Z0 “ t0u and fp0q “ 0 as the only possibility. If 1 P Z´, then
fp1q “ 0, so 1 “ 12 `4fp1q “ fpfp1qq2 “ fp0q2 “ 0, which is another contradiction. Thus
1 P Z`, meaning that a0 ď 1. On the other hand, a0 ď 0 would imply 0 P Z`, so we can
only have a0 “ 1. Thus Z` comprises all positive integers, and Z´ comprises all negative
integers. This gives us the third solution.

Comment. All solutions known to the Problem Selection Committee are quite lengthy and technical,
as the two solutions presented here show. It is possible to make the problem easier by imposing
additional assumptions, such as fp0q ‰ 0 or fpnq ě 1 for all n ě 0, to remove some of the technicalities.
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Combinatorics

C1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel
to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides
parallel to the sides of R in such a way that none of these rectangles contains any of the given
points in its interior. Prove that we have to dissect R into at least n ` 1 smaller rectangles.

(Serbia)

Solution 1. Let k be the number of rectangles in the dissection. The set of all points that
are corners of one of the rectangles can be divided into three disjoint subsets:

• A, which consists of the four corners of the original rectangle R, each of which is the
corner of exactly one of the smaller rectangles,

• B, which contains points where exactly two of the rectangles have a common corner
(T-junctions, see the figure below),

• C, which contains points where four of the rectangles have a common corner (crossings,
see the figure below).

Figure 1: A T-junction and a crossing

We denote the number of points in B by b and the number of points in C by c. Since each
of the k rectangles has exactly four corners, we get

4k “ 4 ` 2b ` 4c.

It follows that 2b ď 4k ´ 4, so b ď 2k ´ 2.

Each of the n given points has to lie on a side of one of the smaller rectangles (but not
of the original rectangle R). If we extend this side as far as possible along borders between
rectangles, we obtain a line segment whose ends are T-junctions. Note that every point in B
can only be an endpoint of at most one such segment containing one of the given points, since
it is stated that no two of them lie on a common line parallel to the sides of R. This means
that

b ě 2n.

Combining our two inequalities for b, we get

2k ´ 2 ě b ě 2n,

thus k ě n ` 1, which is what we wanted to prove.
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Solution 2. Let k denote the number of rectangles. In the following, we refer to the directions
of the sides of R as ‘horizontal’ and ‘vertical’ respectively. Our goal is to prove the inequality
k ě n ` 1 for fixed n. Equivalently, we can prove the inequality n ď k ´ 1 for each k, which
will be done by induction on k. For k “ 1, the statement is trivial.

Now assume that k ą 1. If none of the line segments that form the borders between the
rectangles is horizontal, then we have k ´ 1 vertical segments dividing R into k rectangles. On
each of them, there can only be one of the n points, so n ď k ´ 1, which is exactly what we
want to prove.

Otherwise, consider the lowest horizontal line h that contains one or more of these line
segments. Let R1 be the rectangle that results when everything that lies below h is removed
from R (see the example in the figure below).

The rectangles that lie entirely below h form blocks of rectangles separated by vertical line
segments. Suppose there are r blocks and ki rectangles in the ith block. The left and right
border of each block has to extend further upwards beyond h. Thus we can move any points
that lie on these borders upwards, so that they now lie inside R1. This can be done without
violating the conditions, one only needs to make sure that they do not get to lie on a common
horizontal line with one of the other given points.

All other borders between rectangles in the ith block have to lie entirely below h. There are
ki ´ 1 such line segments, each of which can contain at most one of the given points. Finally,
there can be one point that lies on h. All other points have to lie in R1 (after moving some of
them as explained in the previous paragraph).

h

R′

Figure 2: Illustration of the inductive argument

We see that R1 is divided into k ´ řr
i“1 ki rectangles. Applying the induction hypothesis

to R1, we find that there are at most

´

k ´
r
ÿ

i“1

ki

¯

´ 1 `
r
ÿ

i“1

pki ´ 1q ` 1 “ k ´ r

points. Since r ě 1, this means that n ď k ´ 1, which completes our induction.
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C2. We have 2m sheets of paper, with the number 1 written on each of them. We perform
the following operation. In every step we choose two distinct sheets; if the numbers on the two
sheets are a and b, then we erase these numbers and write the number a ` b on both sheets.
Prove that after m2m´1 steps, the sum of the numbers on all the sheets is at least 4m.

(Iran)

Solution. Let Pk be the product of the numbers on the sheets after k steps.
Suppose that in the pk`1qth step the numbers a and b are replaced by a`b. In the product,

the number ab is replaced by pa`bq2, and the other factors do not change. Since pa`bq2 ě 4ab,
we see that Pk`1 ě 4Pk. Starting with P0 “ 1, a straightforward induction yields

Pk ě 4k

for all integers k ě 0; in particular

Pm¨2m´1 ě 4m¨2m´1 “ p2mq2m ,

so by the AM–GM inequality, the sum of the numbers written on the sheets after m2m´1 steps
is at least

2m ¨ 2m
a

Pm¨2m´1 ě 2m ¨ 2m “ 4m .

Comment 1. It is possible to achieve the sum 4m in m2m´1 steps. For example, starting from 2m

equal numbers on the sheets, in 2m´1 consecutive steps we can double all numbers. After m such
doubling rounds we have the number 2m on every sheet.

Comment 2. There are several versions of the solution above. E.g., one may try to assign to each
positive integer n a weight wn in such a way that the sum of the weights of the numbers written on
the sheets increases, say, by at least 2 in each step. For this purpose, one needs the inequality

2wa`b ě wa ` wb ` 2 (1)

to be satisfied for all positive integers a and b.
Starting from w1 “ 1 and trying to choose the weights as small as possible, one may find that

these weights can be defined as follows: For every positive integer n, one chooses k to be the maximal
integer such that n ě 2k, and puts

wn “ k ` n

2k
“ min

dPZě0

´

d ` n

2d

¯

. (2)

Now, in order to prove that these weights satisfy (1), one may take arbitrary positive integers a and b,
and choose an integer d ě 0 such that wa`b “ d ` a`b

2d
. Then one has

2wa`b “ 2d ` 2 ¨ a ` b

2d
“
´

pd ´ 1q ` a

2d´1

¯

`
ˆ

pd ´ 1q ` b

2d´1

˙

` 2 ě wa ` wb ` 2.

Since the initial sum of the weights was 2m, after m2m´1 steps the sum is at least pm ` 1q2m. To
finish the solution, one may notice that by (2) for every positive integer a one has

wa ď m ` a

2m
, i.e., a ě 2mp´m ` waq. (3)

So the sum of the numbers a1, a2, . . . , a2m on the sheets can be estimated as

2m
ÿ

i“1

ai ě
2m
ÿ

i“1

2mp´m ` waiq “ ´m2m ¨ 2m ` 2m
2m
ÿ

i“1

wai ě ´m4m ` pm ` 1q4m “ 4m,

as required.

For establishing the inequalities (1) and (3), one may also use the convexity argument, instead of
the second definition of wn in (2).

One may check that log2 n ď wn ď log2 n`1; thus, in some rough sense, this approach is obtained
by “taking the logarithm” of the solution above.
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Comment 3. An intuitive strategy to minimise the sum of numbers is that in every step we choose
the two smallest numbers. We may call this the greedy strategy. In the following paragraphs we prove
that the greedy strategy indeed provides the least possible sum of numbers.

Claim. Starting from any sequence x1, . . . , xN of positive real numbers on N sheets, for any number
k of steps, the greedy strategy achieves the lowest possible sum of numbers.

Proof. We apply induction on k; for k “ 1 the statement is obvious. Let k ě 2, and assume that the
claim is true for smaller values.

Every sequence of k steps can be encoded as S “
`

pi1, j1q, . . . , pik, jkq
˘

, where, for r “ 1, 2, . . . , k,
the numbers ir and jr are the indices of the two sheets that are chosen in the rth step. The resulting
final sum will be some linear combination of x1, . . . , xN , say, c1x1 ` ¨ ¨ ¨ ` cNxN with positive integers
c1, . . . , cN that depend on S only. Call the numbers pc1, . . . , cN q the characteristic vector of S.

Choose a sequence S0 “
`

pi1, j1q, . . . , pik, jkq
˘

of steps that produces the minimal sum, starting
from x1, . . . , xN , and let pc1, . . . , cN q be the characteristic vector of S. We may assume that the sheets
are indexed in such an order that c1 ě c2 ě ¨ ¨ ¨ ě cN . If the sheets (and the numbers) are permuted by
a permutation π of the indices p1, 2, . . . , Nq and then the same steps are performed, we can obtain the

sum
N
ř

t“1
ctxπptq. By the rearrangement inequality, the smallest possible sum can be achieved when the

numbers px1, . . . , xN q are in non-decreasing order. So we can assume that also x1 ď x2 ď ¨ ¨ ¨ ď xN .

Let ℓ be the largest index with c1 “ ¨ ¨ ¨ “ cℓ, and let the rth step be the first step for which cir “ c1
or cjr “ c1. The role of ir and jr is symmetrical, so we can assume cir “ c1 and thus ir ď ℓ. We show
that cjr “ c1 and jr ď ℓ hold, too.

Before the rth step, on the ir
th sheet we had the number xir . On the jr

th sheet there was a linear
combination that contains the number xjr with a positive integer coefficient, and possibly some other
terms. In the rth step, the number xir joins that linear combination. From this point, each sheet
contains a linear combination of x1, . . . , xN , with the coefficient of xjr being not smaller than the
coefficient of xir . This is preserved to the end of the procedure, so we have cjr ě cir . But cir “ c1 is
maximal among the coefficients, so we have cjr “ cir “ c1 and thus jr ď ℓ.

Either from cjr “ cir “ c1 or from the arguments in the previous paragraph we can see that none
of the ir

th and the jr
th sheets were used before step r. Therefore, the final linear combination of the

numbers does not change if the step pir, jrq is performed first: the sequence of steps

S1 “
`

pir, jrq, pi1, j1q, . . . , pir´1, jr´1q, pir`1, jr`1q, . . . , piN , jN q
˘

also produces the same minimal sum at the end. Therefore, we can replace S0 by S1 and we may
assume that r “ 1 and ci1 “ cj1 “ c1.

As i1 ‰ j1, we can see that ℓ ě 2 and c1 “ c2 “ ci1 “ cj1 . Let π be such a permutation of the
indices p1, 2, . . . , Nq that exchanges 1, 2 with ir, jr and does not change the remaining indices. Let

S2 “
`

pπpi1q, πpj1qq, . . . , pπpiN q, πpjN qq
˘

.

Since cπpiq “ ci for all indices i, this sequence of steps produces the same, minimal sum. Moreover, in
the first step we chose xπpi1q “ x1 and xπpj1q “ x2, the two smallest numbers.

Hence, it is possible to achieve the optimal sum if we follow the greedy strategy in the first step.
By the induction hypothesis, following the greedy strategy in the remaining steps we achieve the
optimal sum.
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C3. Let n ě 2 be an integer. Consider an n ˆ n chessboard divided into n2 unit squares.
We call a configuration of n rooks on this board happy if every row and every column contains
exactly one rook. Find the greatest positive integer k such that for every happy configuration
of rooks, we can find a k ˆ k square without a rook on any of its k2 unit squares.

(Croatia)

Answer.
X?

n ´ 1
\

.

Solution. Let ℓ be a positive integer. We will show that (i) if n ą ℓ2 then each happy
configuration contains an empty ℓ ˆ ℓ square, but (ii) if n ď ℓ2 then there exists a happy
configuration not containing such a square. These two statements together yield the answer.

(i). Assume that n ą ℓ2. Consider any happy configuration. There exists a row R containing
a rook in its leftmost square. Take ℓ consecutive rows with R being one of them. Their union
U contains exactly ℓ rooks. Now remove the n´ ℓ2 ě 1 leftmost columns from U (thus at least
one rook is also removed). The remaining part is an ℓ2 ˆ ℓ rectangle, so it can be split into ℓ
squares of size ℓ ˆ ℓ, and this part contains at most ℓ ´ 1 rooks. Thus one of these squares is
empty.

(ii). Now we assume that n ď ℓ2. Firstly, we will construct a happy configuration with no
empty ℓ ˆ ℓ square for the case n “ ℓ2. After that we will modify it to work for smaller values
of n.

Let us enumerate the rows from bottom to top as well as the columns from left to right
by the numbers 0, 1, . . . , ℓ2 ´ 1. Every square will be denoted, as usual, by the pair pr, cq of
its row and column numbers. Now we put the rooks on all squares of the form piℓ ` j, jℓ ` iq
with i, j “ 0, 1, . . . , ℓ ´ 1 (the picture below represents this arrangement for ℓ “ 3). Since each
number from 0 to ℓ2 ´ 1 has a unique representation of the form iℓ ` j (0 ď i, j ď ℓ ´ 1), each
row and each column contains exactly one rook.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
r

r

r

r

r

r

r

r

r

Next, we show that each ℓ ˆ ℓ square A on the board contains a rook. Consider such a
square A, and consider ℓ consecutive rows the union of which contains A. Let the lowest of
these rows have number pℓ ` q with 0 ď p, q ď ℓ ´ 1 (notice that pℓ ` q ď ℓ2 ´ ℓ). Then the
rooks in this union are placed in the columns with numbers qℓ`p, pq`1qℓ`p, . . . , pℓ´1qℓ`p,
p ` 1, ℓ ` pp ` 1q, . . . , pq ´ 1qℓ ` p ` 1, or, putting these numbers in increasing order,

p ` 1, ℓ ` pp ` 1q, . . . , pq ´ 1qℓ ` pp ` 1q, qℓ ` p, pq ` 1qℓ ` p, . . . , pℓ ´ 1qℓ ` p.

One readily checks that the first number in this list is at most ℓ ´ 1 (if p “ ℓ ´ 1, then q “ 0,
and the first listed number is qℓ` p “ ℓ´ 1), the last one is at least pℓ´ 1qℓ, and the difference
between any two consecutive numbers is at most ℓ. Thus, one of the ℓ consecutive columns
intersecting A contains a number listed above, and the rook in this column is inside A, as
required. The construction for n “ ℓ2 is established.
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It remains to construct a happy configuration of rooks not containing an empty ℓˆ ℓ square
for n ă ℓ2. In order to achieve this, take the construction for an ℓ2 ˆ ℓ2 square described above
and remove the ℓ2 ´ n bottom rows together with the ℓ2 ´ n rightmost columns. We will have
a rook arrangement with no empty ℓ ˆ ℓ square, but several rows and columns may happen to
be empty. Clearly, the number of empty rows is equal to the number of empty columns, so one
can find a bijection between them, and put a rook on any crossing of an empty row and an
empty column corresponding to each other.

Comment. Part (i) allows several different proofs. E.g., in the last paragraph of the solution, it
suffices to deal only with the case n “ ℓ2 ` 1. Notice now that among the four corner squares, at
least one is empty. So the rooks in its row and in its column are distinct. Now, deleting this row and
column we obtain an ℓ2 ˆ ℓ2 square with ℓ2 ´ 1 rooks in it. This square can be partitioned into ℓ2

squares of size ℓ ˆ ℓ, so one of them is empty.
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C4. Construct a tetromino by attaching two 2 ˆ 1 dominoes along their longer sides such
that the midpoint of the longer side of one domino is a corner of the other domino. This
construction yields two kinds of tetrominoes with opposite orientations. Let us call them S-
and Z-tetrominoes, respectively.

S-tetrominoes Z-tetrominoes

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove than no matter
how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

(Hungary)

Solution 1. We may assume that polygon P is the union of some squares of an infinite
chessboard. Colour the squares of the chessboard with two colours as the figure below illustrates.

Observe that no matter how we tile P , any S-tetromino covers an even number of black
squares, whereas any Z-tetromino covers an odd number of them. As P can be tiled exclusively
by S-tetrominoes, it contains an even number of black squares. But if some S-tetrominoes and
some Z-tetrominoes cover an even number of black squares, then the number of Z-tetrominoes
must be even.

Comment. An alternative approach makes use of the following two colourings, which are perhaps
somewhat more natural:

Let s1 and s2 be the number of S-tetrominoes of the first and second type (as shown in the figure above)
respectively that are used in a tiling of P . Likewise, let z1 and z2 be the number of Z-tetrominoes of
the first and second type respectively. The first colouring shows that s1 `z2 is invariant modulo 2, the
second colouring shows that s1 ` z1 is invariant modulo 2. Adding these two conditions, we find that
z1 ` z2 is invariant modulo 2, which is what we have to prove. Indeed, the sum of the two colourings
(regarding white as 0 and black as 1 and adding modulo 2) is the colouring shown in the solution.
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Solution 2. Let us assign coordinates to the squares of the infinite chessboard in such a way
that the squares of P have nonnegative coordinates only, and that the first coordinate increases
as one moves to the right, while the second coordinate increases as one moves upwards. Write
the integer 3i ¨ p´3qj into the square with coordinates pi, jq, as in the following figure:

1 3 9 27 81

�3 �9 �27 �81

9 27 81

�27 �81

81

...

...

...

� � �

� � �

� � �

The sum of the numbers written into four squares that can be covered by an S-tetromino
is either of the form

3i ¨ p´3qj ¨
`

1 ` 3 ` 3 ¨ p´3q ` 32 ¨ p´3q
˘

“ ´32 ¨ 3i ¨ p´3qj

(for the first type of S-tetrominoes), or of the form

3i ¨ p´3qj ¨
`

3 ` 3 ¨ p´3q ` p´3q ` p´3q2
˘

“ 0,

and thus divisible by 32. For this reason, the sum of the numbers written into the squares
of P , and thus also the sum of the numbers covered by Z-tetrominoes in the second covering,
is likewise divisible by 32. Now the sum of the entries of a Z-tetromino is either of the form

3i ¨ p´3qj ¨
`

3 ` 32 ` p´3q ` 3 ¨ p´3q
˘

“ 0

(for the first type of Z-tetrominoes), or of the form

3i ¨ p´3qj ¨
`

1 ` p´3q ` 3 ¨ p´3q ` 3 ¨ p´3q2
˘

“ 16 ¨ 3i ¨ p´3qj,

i.e., 16 times an odd number. Thus in order to obtain a total that is divisible by 32, an even
number of the latter kind of Z-tetrominoes needs to be used. Rotating everything by 90˝, we
find that the number of Z-tetrominoes of the first kind is even as well. So we have even proven
slightly more than necessary.

Comment 1. In the second solution, 3 and ´3 can be replaced by other combinations as well.
For example, for any positive integer a ” 3 pmod 4q, we can write ai ¨ p´aqj into the square with
coordinates pi, jq and apply the same argument.

Comment 2. As the second solution shows, we even have the stronger result that the parity of the
number of each of the four types of tetrominoes in a tiling of P by S- and Z-tetrominoes is an invariant
of P . This also remains true if there is no tiling of P that uses only S-tetrominoes.
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C5. Consider n ě 3 lines in the plane such that no two lines are parallel and no three have a
common point. These lines divide the plane into polygonal regions; let F be the set of regions
having finite area. Prove that it is possible to colour

Pa

n{2
T

of the lines blue in such a way
that no region in F has a completely blue boundary. (For a real number x, rxs denotes the
least integer which is not smaller than x.)

(Austria)

Solution. Let L be the given set of lines. Choose a maximal (by inclusion) subset B Ď L such
that when we colour the lines of B blue, no region in F has a completely blue boundary. Let
|B| “ k. We claim that k ě

Pa

n{2
T

.
Let us colour all the lines of LzB red. Call a point blue if it is the intersection of two blue

lines. Then there are
`

k
2

˘

blue points.
Now consider any red line ℓ. By the maximality of B, there exists at least one region A P F

whose only red side lies on ℓ. Since A has at least three sides, it must have at least one blue
vertex. Let us take one such vertex and associate it to ℓ.

Since each blue point belongs to four regions (some of which may be unbounded), it is
associated to at most four red lines. Thus the total number of red lines is at most 4

`

k
2

˘

. On
the other hand, this number is n ´ k, so

n ´ k ď 2kpk ´ 1q, thus n ď 2k2 ´ k ď 2k2,

and finally k ě
Pa

n{2
T

, which gives the desired result.

Comment 1. The constant factor in the estimate can be improved in different ways; we sketch
two of them below. On the other hand, the Problem Selection Committee is not aware of any results
showing that it is sometimes impossible to colour k lines satisfying the desired condition for k " ?

n.
In this situation we find it more suitable to keep the original formulation of the problem.

1. Firstly, we show that in the proof above one has in fact k “ |B| ě
Pa

2n{3
T

.

Let us make weighted associations as follows. Let a region A whose only red side lies on ℓ have
k vertices, so that k ´ 2 of them are blue. We associate each of these blue vertices to ℓ, and put the
weight 1

k´2 on each such association. So the sum of the weights of all the associations is exactly n´k.

Now, one may check that among the four regions adjacent to a blue vertex v, at most two are trian-
gles. This means that the sum of the weights of all associations involving v is at most 1 ` 1 ` 1

2 ` 1
2 “ 3.

This leads to the estimate

n ´ k ď 3

ˆ

k

2

˙

,

or

2n ď 3k2 ´ k ă 3k2,

which yields k ě
Pa

2n{3
T

.

2. Next, we even show that k “ |B| ě r
?
n s. For this, we specify the process of associating points

to red lines in one more different way.

Call a point red if it lies on a red line as well as on a blue line. Consider any red line ℓ, and take an
arbitrary region A P F whose only red side lies on ℓ. Let r1, r, b1, . . . , bk be its vertices in clockwise
order with r1, r P ℓ; then the points r1, r are red, while all the points b1, . . . , bk are blue. Let us
associate to ℓ the red point r and the blue point b1. One may notice that to each pair of a red point r
and a blue point b, at most one red line can be associated, since there is at most one region A having
r and b as two clockwise consecutive vertices.

We claim now that at most two red lines are associated to each blue point b; this leads to the
desired bound

n ´ k ď 2

ˆ

k

2

˙

ðñ n ď k2.
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Assume, to the contrary, that three red lines ℓ1, ℓ2, and ℓ3 are associated to the same blue point b.
Let r1, r2, and r3 respectively be the red points associated to these lines; all these points are distinct.
The point b defines four blue rays, and each point ri is the red point closest to b on one of these rays.
So we may assume that the points r2 and r3 lie on one blue line passing through b, while r1 lies on
the other one.

b

r3

r1

r2

ℓ1

A

Now consider the region A used to associate r1 and b with ℓ1. Three of its clockwise consecutive
vertices are r1, b, and either r2 or r3 (say, r2). Since A has only one red side, it can only be the
triangle r1br2; but then both ℓ1 and ℓ2 pass through r2, as well as some blue line. This is impossible
by the problem assumptions.

Comment 2. The condition that the lines be non-parallel is essentially not used in the solution, nor
in the previous comment; thus it may be omitted.
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C6. We are given an infinite deck of cards, each with a real number on it. For every real
number x, there is exactly one card in the deck that has x written on it. Now two players draw
disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that
declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down
in increasing order face down and we are told which card belongs to which player, but
not what numbers are written on them, we can still decide the winner.

2. If we write the elements of both sets in increasing order as A “ ta1, a2, . . . , a100u and
B “ tb1, b2, . . . , b100u, and ai ą bi for all i, then A beats B.

3. If three players draw three disjoint sets A,B,C from the deck, A beats B and B beats C,
then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there
exist two sets A and B such that A beats B according to one rule, but B beats A according to
the other.

(Russia)

Answer. 100.

Solution 1. We prove a more general statement for sets of cardinality n (the problem being
the special case n “ 100, then the answer is n). In the following, we write A ą B or B ă A for
“A beats B”.

Part I. Let us first define n different rules that satisfy the conditions. To this end, fix an
index k P t1, 2, . . . , nu. We write both A and B in increasing order as A “ ta1, a2, . . . , anu and
B “ tb1, b2, . . . , bnu and say that A beats B if and only if ak ą bk. This rule clearly satisfies all
three conditions, and the rules corresponding to different k are all different. Thus there are at
least n different rules.

Part II. Now we have to prove that there is no other way to define such a rule. Suppose
that our rule satisfies the conditions, and let k P t1, 2, . . . , nu be minimal with the property
that

Ak “ t1, 2, . . . , k, n ` k ` 1, n ` k ` 2, . . . , 2nu ă Bk “ tk ` 1, k ` 2, . . . , n ` ku.

Clearly, such a k exists, since this holds for k “ n by assumption. Now consider two disjoint sets
X “ tx1, x2, . . . , xnu and Y “ ty1, y2, . . . , ynu, both in increasing order (i.e., x1 ă x2 ă ¨ ¨ ¨ ă xn

and y1 ă y2 ă ¨ ¨ ¨ ă yn). We claim that X ă Y if (and only if – this follows automatically)
xk ă yk.

To prove this statement, pick arbitrary real numbers ui, vi, wi R X Y Y such that

u1 ă u2 ă ¨ ¨ ¨ ă uk´1 ă minpx1, y1q, maxpxn, ynq ă vk`1 ă vk`2 ă ¨ ¨ ¨ ă vn,

and

xk ă v1 ă v2 ă ¨ ¨ ¨ ă vk ă w1 ă w2 ă ¨ ¨ ¨ ă wn ă uk ă uk`1 ă ¨ ¨ ¨ ă un ă yk,

and set
U “ tu1, u2, . . . , unu, V “ tv1, v2, . . . , vnu, W “ tw1, w2, . . . , wnu.

Then

• ui ă yi and xi ă vi for all i, so U ă Y and X ă V by the second condition.
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• The elements of U Y W are ordered in the same way as those of Ak´1 Y Bk´1, and since
Ak´1 ą Bk´1 by our choice of k, we also have U ą W (if k “ 1, this is trivial).

• The elements of V Y W are ordered in the same way as those of Ak Y Bk, and since
Ak ă Bk by our choice of k, we also have V ă W .

It follows that

X ă V ă W ă U ă Y,

so X ă Y by the third condition, which is what we wanted to prove.

Solution 2. Another possible approach to Part II of this problem is induction on n. For
n “ 1, there is trivially only one rule in view of the second condition.

In the following, we assume that our claim (namely, that there are no possible rules other
than those given in Part I) holds for n´1 in place of n. We start with the following observation:

Claim. At least one of the two relations

`

t2u Y t2i ´ 1 | 2 ď i ď nu
˘

ă
`

t1u Y t2i | 2 ď i ď nu
˘

and
`

t2i ´ 1 | 1 ď i ď n ´ 1u Y t2nu
˘

ă
`

t2i | 1 ď i ď n ´ 1u Y t2n ´ 1u
˘

holds.

Proof. Suppose that the first relation does not hold. Since our rule may only depend on the
relative order, we must also have

`

t2u Y t3i ´ 2 | 2 ď i ď n ´ 1u Y t3n ´ 2u
˘

ą
`

t1u Y t3i ´ 1 | 2 ď i ď n ´ 1u Y t3nu
˘

.

Likewise, if the second relation does not hold, then we must also have

`

t1u Y t3i ´ 1 | 2 ď i ď n ´ 1u Y t3nu
˘

ą
`

t3u Y t3i | 2 ď i ď n ´ 1u Y t3n ´ 1u
˘

.

Now condition 3 implies that

`

t2u Y t3i ´ 2 | 2 ď i ď n ´ 1u Y t3n ´ 2u
˘

ą
`

t3u Y t3i | 2 ď i ď n ´ 1u Y t3n ´ 1u
˘

,

which contradicts the second condition. l

Now we distinguish two cases, depending on which of the two relations actually holds:

First case:
`

t2u Y t2i ´ 1 | 2 ď i ď nu
˘

ă
`

t1u Y t2i | 2 ď i ď nu
˘

.

Let A “ ta1, a2, . . . , anu and B “ tb1, b2, . . . , bnu be two disjoint sets, both in increasing
order. We claim that the winner can be decided only from the values of a2, . . . , an and b2, . . . , bn,
while a1 and b1 are actually irrelevant. Suppose that this was not the case, and assume without
loss of generality that a2 ă b2. Then the relative order of a1, a2, . . . , an, b2, . . . , bn is fixed, and
the position of b1 has to decide the winner. Suppose that for some value b1 “ x, B wins, while
for some other value b1 “ y, A wins.

Write Bx “ tx, b2, . . . , bnu and By “ ty, b2, . . . , bnu, and let ε ą 0 be smaller than half the
distance between any two of the numbers in Bx YBy YA. For any set M , let M ˘ ε be the set
obtained by adding/subtracting ε to all elements of M . By our choice of ε, the relative order
of the elements of pBy ` εq Y A is still the same as for By Y A, while the relative order of the
elements of pBx ´ εq Y A is still the same as for Bx Y A. Thus A ă Bx ´ ε, but A ą By ` ε.
Moreover, if y ą x, then Bx ´ ε ă By ` ε by condition 2, while otherwise the relative order of



38 IMO 2014 South Africa

the elements in pBx ´ εq Y pBy ` εq is the same as for the two sets t2u Y t2i ´ 1 | 2 ď i ď nu
and t1u Y t2i | 2 ď i ď nu, so that Bx ´ ε ă By ` ε. In either case, we obtain

A ă Bx ´ ε ă By ` ε ă A,

which contradicts condition 3.
So we know now that the winner does not depend on a1, b1. Therefore, we can define a new

rule ă˚ on sets of cardinality n´ 1 by saying that A ă˚ B if and only if AY tau ă B Y tbu for
some a, b (or equivalently, all a, b) such that a ă minA, b ă minB and A Y tau and B Y tbu
are disjoint. The rule ă˚ satisfies all conditions again, so by the induction hypothesis, there
exists an index i such that A ă˚ B if and only if the ith smallest element of A is less than the
ith smallest element of B. This implies that C ă D if and only if the pi` 1qth smallest element
of C is less than the pi ` 1qth smallest element of D, which completes our induction.

Second case:
`

t2i ´ 1 | 1 ď i ď n ´ 1u Y t2nu
˘

ă
`

t2i | 1 ď i ď n ´ 1u Y t2n ´ 1u
˘

.

Set ´A “ t´a | a P Au for any A Ď R. For any two disjoint sets A,B Ď R of cardinality n,
we write A ă˝ B to mean p´Bq ă p´Aq. It is easy to see that ă˝ defines a rule to determine
a winner that satisfies the three conditions of our problem as well as the relation of the first
case. So it follows in the same way as in the first case that for some i, A ă˝ B if and only if
the ith smallest element of A is less than the ith smallest element of B, which is equivalent to
the condition that the ith largest element of ´A is greater than the ith largest element of ´B.
This proves that the original rule ă also has the desired form.

Comment. The problem asks for all possible partial orders on the set of n-element subsets of R such
that any two disjoint sets are comparable, the order relation only depends on the relative order of the
elements, and ta1, a2, . . . , anu ă tb1, b2, . . . , bnu whenever ai ă bi for all i.

As the proposer points out, one may also ask for all total orders on all n-element subsets of R
(dropping the condition of disjointness and requiring that ta1, a2, . . . , anu ĺ tb1, b2, . . . , bnu whenever
ai ď bi for all i). It turns out that the number of possibilities in this case is n!, and all possible total
orders are obtained in the following way. Fix a permutation σ P Sn. Let A “ ta1, a2, . . . , anu and
B “ tb1, b2, . . . , bnu be two subsets of R with a1 ă a2 ă ¨ ¨ ¨ ă an and b1 ă b2 ă ¨ ¨ ¨ ă bn. Then we say
that A ąσ B if and only if paσp1q, . . . , aσpnqq is lexicographically greater than pbσp1q, . . . , bσpnqq.

It seems, however, that this formulation adds rather more technicalities to the problem than
additional ideas.
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C7. Let M be a set of n ě 4 points in the plane, no three of which are collinear. Initially these
points are connected with n segments so that each point in M is the endpoint of exactly two
segments. Then, at each step, one may choose two segments AB and CD sharing a common
interior point and replace them by the segments AC and BD if none of them is present at this
moment. Prove that it is impossible to perform n3{4 or more such moves.

(Russia)

Solution. A line is said to be red if it contains two points of M . As no three points of M are
collinear, each red line determines a unique pair of points of M . Moreover, there are precisely
`

n
2

˘

ă n2

2
red lines. By the value of a segment we mean the number of red lines intersecting it

in its interior, and the value of a set of segments is defined to be the sum of the values of its
elements. We will prove that piq the value of the initial set of segments is smaller than n3{2
and that piiq each step decreases the value of the set of segments present by at least 2. Since
such a value can never be negative, these two assertions imply the statement of the problem.

To show piq we just need to observe that each segment has a value that is smaller than n2{2.
Thus the combined value of the n initial segments is indeed below n ¨ n2{2 “ n3{2.

It remains to establish piiq. Suppose that at some moment we have two segments AB
and CD sharing an interior point S, and that at the next moment we have the two segments
AC and BD instead. Let XAB denote the set of red lines intersecting the segment AB in
its interior and let the sets XAC , XBD, and XCD be defined similarly. We are to prove that
|XAC | ` |XBD| ` 2 ď |XAB| ` |XCD|.

As a first step in this direction, we claim that

|XAC Y XBD| ` 2 ď |XAB Y XCD| . (1)

Indeed, if g is a red line intersecting, e.g. the segment AC in its interior, then it has to
intersect the triangle ACS once again, either in the interior of its side AS, or in the interior of
its side CS, or at S, meaning that it belongs to XAB or to XCD (see Figure 1). Moreover, the
red lines AB and CD contribute to XAB YXCD but not to XAC YXBD. Thereby (1) is proved.

B

A

D

C

Sg

B

A

D

C

S

h

B

A

D

C

S

h

Figure 1 Figure 2 Figure 3

Similarly but more easily one obtains

|XAC X XBD| ď |XAB X XCD| . (2)

Indeed, a red line h appearing in XAC X XBD belongs, for similar reasons as above, also to
XAB X XCD. To make the argument precise, one may just distinguish the cases S P h (see
Figure 2) and S R h (see Figure 3). Thereby (2) is proved.

Adding (1) and (2) we obtain the desired conclusion, thus completing the solution of this
problem.
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Comment 1. There is a problem belonging to the folklore, in the solution of which one may use the
same kind of operation:

Given n red and n green points in the plane, prove that one may draw n nonintersecting segments
each of which connects a red point with a green point.

A standard approach to this problem consists in taking n arbitrary segments connecting the red
points with the green points, and to perform the same operation as in the above proposal whenever
an intersection occurs. Now each time one performs such a step, the total length of the segments that
are present decreases due to the triangle inequality. So, as there are only finitely many possibilities
for the set of segments present, the process must end at some stage.

In the above proposal, however, considering the sum of the Euclidean lengths of the segment that
are present does not seem to help much, for even though it shows that the process must necessarily
terminate after some finite number of steps, it does not seem to easily yield any upper bound on the
number of these steps that grows polynomially with n.

One may regard the concept of the value of a segment introduced in the above solution as an
appropriately discretised version of Euclidean length suitable for obtaining such a bound.

The Problem Selection Committee still believes the problem to be sufficiently original for the
competition.

Comment 2. There are some other essentially equivalent ways of presenting the same solution. E.g.,
put M “ tA1, A2, . . . , Anu, denote the set of segments present at any moment by te1, e2, . . . , enu, and
called a triple pi, j, kq of indices with i ‰ j intersecting, if the line AiAj intersects the segment ek. It
may then be shown that the number S of intersecting triples satisfies 0 ď S ă n3 at the beginning
and decreases by at least 4 in each step.

Comment 3. It is not difficult to construct an example where cn2 moves are possible (for some
absolute constant c ą 0). It would be interesting to say more about the gap between cn2 and cn3.
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C8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is
written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two
players alternately take cards from the deck, one card per turn. After the deck is empty, each
player checks if he can throw out one of his cards so that each of the ten digits occurs on an
even number of his remaining cards. If one player can do this but the other one cannot, the
one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.
(Russia)

Answer. All the moves except for taking the empty card.

Solution. Let us identify each card with the set of digits written on it. For any collection of
cards C1, C2, . . . , Ck denote by their sum the set C1 △C2 △ ¨ ¨ ¨ △ Ck consisting of all elements
belonging to an odd number of the Ci’s. Denote the first and the second player by F and S,
respectively.

Since each digit is written on exactly 512 cards, the sum of all the cards is ∅. Therefore,
at the end of the game the sum of all the cards of F will be the same as that of S; denote this
sum by C. Then the player who took C can throw it out and get the desired situation, while
the other one cannot. Thus, the player getting card C wins, and no draw is possible.

Now, given a nonempty card B, one can easily see that all the cards can be split into 512
pairs of the form pX,X△Bq because pX△Bq△B “ X . The following lemma shows a property
of such a partition that is important for the solution.

Lemma. Let B ‰ ∅ be some card. Let us choose 512 cards so that exactly one card is chosen
from every pair pX,X △Bq. Then the sum of all chosen cards is either ∅ or B.

Proof. Let b be some element of B. Enumerate the pairs; let Xi be the card not containing b
in the ith pair, and let Yi be the other card in this pair. Then the sets Xi are exactly all the
sets not containing b, therefore each digit a ‰ b is written on exactly 256 of these cards, so
X1 △ X2 △ ¨ ¨ ¨ △ X512 “ ∅. Now, if we replace some summands in this sum by the other
elements from their pairs, we will simply add B several times to this sum, thus the sum will
either remain unchanged or change by B, as required. l

Now we consider two cases.

Case 1. Assume that F takes the card ∅ on his first move. In this case, we present a
winning strategy for S.

Let S take an arbitrary card A. Assume that F takes card B after that; then S takes A△ B.
Split all 1024 cards into 512 pairs of the form pX,X△Bq; we call two cards in one pair partners.
Then the four cards taken so far form two pairs p∅, Bq and pA,A△Bq belonging to F and S,
respectively. On each of the subsequent moves, when F takes some card, S should take the
partner of this card in response.

Consider the situation at the end of the game. Let us for a moment replace card A belonging
to S by ∅. Then he would have one card from each pair; by our lemma, the sum of all these
cards would be either ∅ or B. Now, replacing ∅ back by A we get that the actual sum of the
cards of S is either A or A△B, and he has both these cards. Thus S wins.

Case 2. Now assume that F takes some card A ‰ ∅ on his first move. Let us present a
winning strategy for F in this case.

Assume that S takes some card B ‰ ∅ on his first move; then F takes A△ B. Again, let
us split all the cards into pairs of the form pX,X △ Bq; then the cards which have not been
taken yet form several complete pairs and one extra element (card ∅ has not been taken while
its partner B has). Now, on each of the subsequent moves, if S takes some element from a
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complete pair, then F takes its partner. If S takes the extra element, then F takes an arbitrary
card Y , and the partner of Y becomes the new extra element.

Thus, on his last move S is forced to take the extra element. After that player F has cards
A and A△ B, player S has cards B and ∅, and F has exactly one element from every other
pair. Thus the situation is the same as in the previous case with roles reversed, and F wins.

Finally, if S takes ∅ on his first move then F denotes any card which has not been taken
yet by B and takes A△ B. After that, the same strategy as above is applicable.

Comment 1. If one wants to avoid the unusual question about the first move, one may change the
formulation as follows. (The difficulty of the problem would decrease somewhat.)

A card deck consists of 1023 cards; on each card, a nonempty set of distinct decimal digits is
written in such a way that no two of these sets coincide. Two players alternately take cards from
the deck, one card per turn. When the deck is empty, each player checks if he can throw out one of
his cards so that for each of the ten digits, he still holds an even number of cards with this digit. If
one player can do this but the other one cannot, the one who can is the winner; otherwise a draw is
declared.

Determine which of the players (if any) has a winning strategy.

The winner in this version is the first player. The analysis of the game from the first two paragraphs
of the previous solution applies to this version as well, except for the case C “ ∅ in which the result
is a draw. Then the strategy for S in Case 1 works for F in this version: the sum of all his cards at
the end is either A or A△B, thus nonempty in both cases.

Comment 2. Notice that all the cards form a vector space over F2, with △ the operation of addition.
Due to the automorphisms of this space, all possibilities for F ’s first move except ∅ are equivalent.
The same holds for the response by S if F takes the card ∅ on his first move.

Comment 3. It is not that hard to show that in the initial game, F has a winning move, by the
idea of “strategy stealing”.

Namely, assume that S has a winning strategy. Let us take two card decks and start two games, in
which S will act by his strategy. In the first game, F takes an arbitrary card A1; assume that S takes
some B1 in response. Then F takes the card B1 at the second game; let the response by S be A2.
Then F takes A2 in the first game and gets a response B2, and so on.

This process stops at some moment when in the second game S takes Ai “ A1. At this moment
the players hold the same sets of cards in both games, but with roles reversed. Now, if some cards
remain in the decks, F takes an arbitrary card from the first deck starting a similar cycle.

At the end of the game, player F ’s cards in the first game are exactly player S’s cards in the second
game, and vice versa. Thus in one of the games F will win, which is impossible by our assumption.

One may notice that the strategy in Case 2 is constructed exactly in this way from the strategy
in Case 1. This is possible since every response by S wins if F takes the card ∅ on his first move.
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C9. There are n circles drawn on a piece of paper in such a way that any two circles
intersect in two points, and no three circles pass through the same point. Turbo the snail slides
along the circles in the following fashion. Initially he moves on one of the circles in clockwise
direction. Turbo always keeps sliding along the current circle until he reaches an intersection
with another circle. Then he continues his journey on this new circle and also changes the
direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo’s path entirely covers all circles. Prove that n must be odd.
(India)

Solution 1. Replace every cross (i.e. intersection of two circles) by two small circle arcs that
indicate the direction in which the snail should leave the cross (see Figure 1.1). Notice that
the placement of the small arcs does not depend on the direction of moving on the curves; no
matter which direction the snail is moving on the circle arcs, he will follow the same curves
(see Figure 1.2). In this way we have a set of curves, that are the possible paths of the snail.
Call these curves snail orbits or just orbits. Every snail orbit is a simple closed curve that has
no intersection with any other orbit.

anticlockwiseanticlockwise

anticlockwise

clockwise

clockwise

clockwise

anticlockwise

clockwise

Figure 1.1 Figure 1.2

We prove the following, more general statement.

p˚q In any configuration of n circles such that no two of them are tangent, the
number of snail orbits has the same parity as the number n. (Note that it is not
assumed that all circle pairs intersect.)

This immediately solves the problem.
Let us introduce the following operation that will be called flipping a cross. At a cross,

remove the two small arcs of the orbits, and replace them by the other two arcs. Hence, when
the snail arrives at a flipped cross, he will continue on the other circle as before, but he will
preserve the orientation in which he goes along the circle arcs (see Figure 2).

c
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b

c

a

d d

b

Figure 2

Consider what happens to the number of orbits when a cross is flipped. Denote by a, b, c,
and d the four arcs that meet at the cross such that a and b belong to the same circle. Before
the flipping a and b were connected to c and d, respectively, and after the flipping a and b are
connected to d and c, respectively.

The orbits passing through the cross are closed curves, so each of the arcs a, b, c, and d is
connected to another one by orbits outside the cross. We distinguish three cases.

Case 1: a is connected to b and c is connected to d by the orbits outside the cross (see
Figure 3.1).
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We show that this case is impossible. Remove the two small arcs at the cross, connect a
to b, and connect c to d at the cross. Let γ be the new closed curve containing a and b, and
let δ be the new curve that connects c and d. These two curves intersect at the cross. So one
of c and d is inside γ and the other one is outside γ. Then the two closed curves have to meet
at least one more time, but this is a contradiction, since no orbit can intersect itself.
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Figure 3.1 Figure 3.2 Figure 3.3

Case 2: a is connected to c and b is connected to d (see Figure 3.2).

Before the flipping a and c belong to one orbit and b and d belong to another orbit. Flipping
the cross merges the two orbits into a single orbit. Hence, the number of orbits decreases by 1.

Case 3: a is connected to d and b is connected to c (see Figure 3.3).

Before the flipping the arcs a, b, c, and d belong to a single orbit. Flipping the cross splits
that orbit in two. The number of orbits increases by 1.

As can be seen, every flipping decreases or increases the number of orbits by one, thus
changes its parity.

Now flip every cross, one by one. Since every pair of circles has 0 or 2 intersections, the
number of crosses is even. Therefore, when all crosses have been flipped, the original parity of
the number of orbits is restored. So it is sufficient to prove p˚q for the new configuration, where
all crosses are flipped. Of course also in this new configuration the (modified) orbits are simple
closed curves not intersecting each other.

Orient the orbits in such a way that the snail always moves anticlockwise along the circle
arcs. Figure 4 shows the same circles as in Figure 1 after flipping all crosses and adding
orientation. (Note that this orientation may be different from the orientation of the orbit as a
planar curve; the orientation of every orbit may be negative as well as positive, like the middle
orbit in Figure 4.) If the snail moves around an orbit, the total angle change in his moving
direction, the total curvature, is either `2π or ´2π, depending on the orientation of the orbit.
Let P and N be the number of orbits with positive and negative orientation, respectively. Then
the total curvature of all orbits is pP ´ Nq ¨ 2π.

change (±)

Figure 4 Figure 5

Double-count the total curvature of all orbits. Along every circle the total curvature is 2π.
At every cross, the two turnings make two changes with some angles having the same absolute
value but opposite signs, as depicted in Figure 5. So the changes in the direction at the crosses
cancel out. Hence, the total curvature is n ¨ 2π.

Now we have pP ´ Nq ¨ 2π “ n ¨ 2π, so P ´ N “ n. The number of (modified) orbits is
P ` N , that has a same parity as P ´ N “ n.
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Solution 2. We present a different proof of p˚q.

We perform a sequence of small modification steps on the configuration of the circles in
such a way that at the end they have no intersection at all (see Figure 6.1). We use two kinds
of local changes to the structure of the orbits (see Figure 6.2):

• Type-1 step: An arc of a circle is moved over an arc of another circle; such a step creates
or removes two intersections.

• Type-2 step: An arc of a circle is moved through the intersection of two other circles.

Type-2Type-1

Figure 6.1 Figure 6.2

We assume that in every step only one circle is moved, and that this circle is moved over at
most one arc or intersection point of other circles.

We will show that the parity of the number of orbits does not change in any step. As every
circle becomes a separate orbit at the end of the procedure, this fact proves p˚q.

Consider what happens to the number of orbits when a Type-1 step is performed. The two
intersection points are created or removed in a small neighbourhood. Denote some points of the
two circles where they enter or leave this neighbourhood by a, b, c, and d in this order around
the neighbourhood; let a and b belong to one circle and let c and d belong to the other circle.
The two circle arcs may have the same or opposite orientations. Moreover, the four end-points
of the two arcs are connected by the other parts of the orbits. This can happen in two ways
without intersection: either a is connected to d and b is connected to c, or a is connected to b
and c is connected to d. Altogether we have four cases, as shown in Figure 7.
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We can see that the number of orbits is changed by ´2 or `2 in the leftmost case when the
arcs have the same orientation, a is connected to d, and b is connected to c. In the other three
cases the number of orbits is not changed. Hence, Type-1 steps do not change the parity of the
number of orbits.

Now consider a Type-2 step. The three circles enclose a small, triangular region; by the
step, this triangle is replaced by another triangle. Again, the modification of the orbits is done
in some small neighbourhood; the structure does not change outside. Each side of the triangle
shaped region can be convex or concave; the number of concave sides can be 0, 1, 2 or 3, so
there are 4 possible arrangements of the orbits inside the neighbourhood, as shown in Figure 8.
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Denote the points where the three circles enter or leave the neighbourhood by a, b, c, d,
e, and f in this order around the neighbourhood. As can be seen in Figure 8, there are only
two essentially different cases; either a, c, e are connected to b, d, f , respectively, or a, c, e are
connected to f, b, d, respectively. The step either preserves the set of connections or switches
to the other arrangement. Obviously, in the earlier case the number of orbits is not changed;
therefore we have to consider only the latter case.

The points a, b, c, d, e, and f are connected by the orbits outside, without intersection. If
a was connected to c, say, then this orbit would isolate b, so this is impossible. Hence, each of
a, b, c, d, e and f must be connected either to one of its neighbours or to the opposite point.
If say a is connected to d, then this orbit separates b and c from e and f , therefore b must be
connected to c and e must be connected to f . Altogether there are only two cases and their
reverses: either each point is connected to one of its neighbours or two opposite points are
connected and the the remaining neigh boring pairs are connected to each other. See Figure 9.
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We can see that if only neighbouring points are connected, then the number of orbits is
changed by `2 or ´2. If two opposite points are connected (a and d in the figure), then the
orbits are re-arranged, but their number is unchanged. Hence, Type-2 steps also preserve the
parity. This completes the proof of p˚q.

Solution 3. Like in the previous solutions, we do not need all circle pairs to intersect but we
assume that the circles form a connected set. Denote by C and P the sets of circles and their
intersection points, respectively.

The circles divide the plane into several simply connected, bounded regions and one un-
bounded region. Denote the set of these regions by R. We say that an intersection point or
a region is odd or even if it is contained inside an odd or even number of circles, respectively.
Let Podd and Rodd be the sets of odd intersection points and odd regions, respectively.

Claim.
|Rodd| ´ |Podd| ” n pmod 2q. p1q

Proof. For each circle c P C, denote by Rc, Pc, and Xc the number of regions inside c, the
number of intersection points inside c, and the number of circles intersecting c, respectively.
The circles divide each other into several arcs; denote by Ac the number of such arcs inside c.
By double counting the regions and intersection points inside the circles we get

|Rodd| ”
ÿ

cPC

Rc pmod 2q and |Podd| ”
ÿ

cPC

Pc pmod 2q.
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For each circle c, apply Euler’s polyhedron theorem to the (simply connected) regions in c.
There are 2Xc intersection points on c; they divide the circle into 2Xc arcs. The polyhedron
theorem yields pRc ` 1q ` pPc ` 2Xcq “ pAc ` 2Xcq ` 2, considering the exterior of c as a single
region. Therefore,

Rc ` Pc “ Ac ` 1. p2q
Moreover, we have four arcs starting from every interior points inside c and a single arc

starting into the interior from each intersection point on the circle. By double-counting the
end-points of the interior arcs we get 2Ac “ 4Pc ` 2Xc, so

Ac “ 2Pc ` Xc. p3q

The relations (2) and (3) together yield

Rc ´ Pc “ Xc ` 1. p4q

By summing up (4) for all circles we obtain

ÿ

cPC

Rc ´
ÿ

cPC

Pc “
ÿ

cPC

Xc ` |C|,

which yields

|Rodd| ´ |Podd| ”
ÿ

cPC

Xc ` n pmod 2q. p5q

Notice that in
ř

cPC

Xc each intersecting circle pair is counted twice, i.e., for both circles in the

pair, so
ÿ

cPC

Xc ” 0 pmod 2q,

which finishes the proof of the Claim. l

Now insert the same small arcs at the intersections as in the first solution, and suppose that
there is a single snail orbit b.

First we show that the odd regions are inside the curve b, while the even regions are outside.
Take a region r P R and a point x in its interior, and draw a ray y, starting from x, that does
not pass through any intersection point of the circles and is neither tangent to any of the circles.
As is well-known, x is inside the curve b if and only if y intersects b an odd number of times
(see Figure 10). Notice that if an arbitrary circle c contains x in its interior, then c intersects y
at a single point; otherwise, if x is outside c, then c has 2 or 0 intersections with y. Therefore,
y intersects b an odd number of times if and only if x is contained in an odd number of circles,
so if and only if r is odd.

b

y
x

r

Figure 10

Now consider an intersection point p of two circles c1 and c2 and a small neighbourhood
around p. Suppose that p is contained inside k circles.
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We have four regions that meet at p. Let r1 be the region that lies outside both c1 and c2,
let r2 be the region that lies inside both c1 and c2, and let r3 and r4 be the two remaining
regions, each lying inside exactly one of c1 and c2. The region r1 is contained inside the same
k circles as p; the region r2 is contained also by c1 and c2, so by k ` 2 circles in total; each of
the regions r3 and r4 is contained inside k ` 1 circles. After the small arcs have been inserted
at p, the regions r1 and r2 get connected, and the regions r3 and r4 remain separated at p (see
Figure 11). If p is an odd point, then r1 and r2 are odd, so two odd regions are connected at p.
Otherwise, if p is even, then we have two even regions connected at p.

r2

r4r3

r1

p
c2c1

Figure 11 Figure 12

Consider the system of odd regions and their connections at the odd points as a graph.
In this graph the odd regions are the vertices, and each odd point establishes an edge that
connects two vertices (see Figure 12). As b is a single closed curve, this graph is connected and
contains no cycle, so the graph is a tree. Then the number of vertices must be by one greater
than the number of edges, so

|Rodd| ´ |Podd| “ 1. p9q
The relations (1) and (9) together prove that n must be odd.

Comment. For every odd n there exists at least one configuration of n circles with a single snail orbit.
Figure 13 shows a possible configuration with 5 circles. In general, if a circle is rotated by k ¨ 360˝

n
(k “ 1, 2, . . . , n ´ 1q around an interior point other than the centre, the circle and its rotated copies
together provide a single snail orbit.

Figure 13
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Geometry

G1. The points P and Q are chosen on the side BC of an acute-angled triangle ABC so
that =PAB “ =ACB and =QAC “ =CBA. The points M and N are taken on the rays AP
and AQ, respectively, so that AP “ PM and AQ “ QN . Prove that the lines BM and CN
intersect on the circumcircle of the triangle ABC.

(Georgia)

Solution 1. Denote by S the intersection point of the lines BM and CN . Let moreover
β “ =QAC “ =CBA and γ “ =PAB “ =ACB. From these equalities it follows that the
triangles ABP and CAQ are similar (see Figure 1). Therefore we obtain

BP

PM
“ BP

PA
“ AQ

QC
“ NQ

QC
.

Moreover,
=BPM “ β ` γ “ =CQN .

Hence the triangles BPM and NQC are similar. This gives =BMP “ =NCQ, so the trian-
gles BPM and BSC are also similar. Thus we get

=CSB “ =BPM “ β ` γ “ 180˝ ´ =BAC ,

which completes the solution.
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Solution 2. As in the previous solution, denote by S the intersection point of the lines BM
and NC. Let moreover the circumcircle of the triangle ABC intersect the lines AP and AQ
again at K and L, respectively (see Figure 2).

Note that =LBC “ =LAC “ =CBA and similarly =KCB “ =KAB “ =BCA. It implies
that the lines BL and CK meet at a point X , being symmetric to the point A with respect
to the line BC. Since AP “ PM and AQ “ QN , it follows that X lies on the line MN .
Therefore, using Pascal’s theorem for the hexagon ALBSCK, we infer that S lies on the
circumcircle of the triangle ABC, which finishes the proof.

Comment. Both solutions can be modified to obtain a more general result, with the equalities

AP “ PM and AQ “ QN

replaced by
AP

PM
“ QN

AQ
.
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G2. Let ABC be a triangle. The points K, L, and M lie on the segments BC, CA, and AB,
respectively, such that the lines AK, BL, and CM intersect in a common point. Prove that it
is possible to choose two of the triangles ALM , BMK, and CKL whose inradii sum up to at
least the inradius of the triangle ABC.

(Estonia)

Solution. Denote

a “ BK

KC
, b “ CL

LA
, c “ AM

MB
.

By Ceva’s theorem, abc “ 1, so we may, without loss of generality, assume that a ě 1. Then at
least one of the numbers b or c is not greater than 1. Therefore at least one of the pairs pa, bq,
pb, cq has its first component not less than 1 and the second one not greater than 1. Without
loss of generality, assume that 1 ď a and b ď 1.

Therefore, we obtain bc ď 1 and 1 ď ca, or equivalently

AM

MB
ď LA

CL
and

MB

AM
ď BK

KC
.

The first inequality implies that the line passing through M and parallel to BC intersects the
segment AL at a point X (see Figure 1). Therefore the inradius of the triangle ALM is not
less than the inradius r1 of triangle AMX .

Similarly, the line passing through M and parallel to AC intersects the segment BK at
a point Y , so the inradius of the triangle BMK is not less than the inradius r2 of the trian-
gle BMY . Thus, to complete our solution, it is enough to show that r1 ` r2 ě r, where r is
the inradius of the triangle ABC. We prove that in fact r1 ` r2 “ r.

B

C

A

L

M

K

X
Y

r1 r2

r

Figure 1

Since MX ‖ BC, the dilation with centre A that takes M to B takes the incircle of the
triangle AMX to the incircle of the triangle ABC. Therefore

r1
r

“ AM

AB
, and similarly

r2
r

“ MB

AB
.

Adding these equalities gives r1 ` r2 “ r, as required.

Comment. Alternatively, one can use Desargues’ theorem instead of Ceva’s theorem, as follows:
The lines AB, BC, CA dissect the plane into seven regions. One of them is bounded, and amongst
the other six, three are two-sided and three are three-sided. Now define the points P “ BC X LM ,
Q “ CAXMK, and R “ ABXKL (in the projective plane). By Desargues’ theorem, the points P ,
Q, R lie on a common line ℓ. This line intersects only unbounded regions. If we now assume (without
loss of generality) that P , Q and R lie on ℓ in that order, then one of the segments PQ or QR lies
inside a two-sided region. If, for example, this segment is PQ, then the triangles ALM and BMK
will satisfy the statement of the problem for the same reason.
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G3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle ABC
with AB ą BC. The angle bisector of =ABC intersects Ω at M ‰ B. Let Γ be the circle
with diameter BM . The angle bisectors of =AOB and =BOC intersect Γ at points P and Q,
respectively. The point R is chosen on the line PQ so that BR “ MR. Prove that BR ‖ AC.
(Here we always assume that an angle bisector is a ray.)

(Russia)

Solution. Let K be the midpoint of BM , i.e., the centre of Γ. Notice that AB ‰ BC implies
K ‰ O. Clearly, the lines OM and OK are the perpendicular bisectors of AC and BM ,
respectively. Therefore, R is the intersection point of PQ and OK.

Let N be the second point of intersection of Γ with the line OM . Since BM is a diameter
of Γ, the lines BN and AC are both perpendicular to OM . Hence BN ‖ AC, and it suffices to
prove that BN passes through R. Our plan for doing this is to interpret the lines BN , OK,
and PQ as the radical axes of three appropriate circles.

Let ω be the circle with diameter BO. Since =BNO “ =BKO “ 90˝, the points N and K
lie on ω.

Next we show that the points O, K, P , and Q are concyclic. To this end, let D and E
be the midpoints of BC and AB, respectively. Clearly, D and E lie on the rays OQ and OP ,
respectively. By our assumptions about the triangle ABC, the points B, E, O, K, and D
lie in this order on ω. It follows that =EOR “ =EBK “ =KBD “ =KOD, so the line
KO externally bisects the angle POQ. Since the point K is the centre of Γ, it also lies on
the perpendicular bisector of PQ. So K coincides with the midpoint of the arc POQ of the
circumcircle γ of triangle POQ.

Thus the lines OK, BN , and PQ are pairwise radical axes of the circles ω, γ, and Γ. Hence
they are concurrent at R, as required.
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G4. Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix
a real number λ P p0, 1q. For a variable point P R tA,B,Cu on Γ, let M be the point on
the segment CP such that CM “ λ ¨ CP . Let Q be the second point of intersection of the
circumcircles of the triangles AMP and BMC. Prove that as P varies, the point Q lies on a
fixed circle.

(United Kingdom)

Solution 1. Throughout the solution, we denote by >pa, bq the directed angle between the
lines a and b.

Let D be the point on the segment AB such that BD “ λ ¨ BA. We will show that either
Q “ D, or >pDQ,QBq “ >pAB,BCq; this would mean that the point Q varies over the
constant circle through D tangent to BC at B, as required.

Denote the circumcircles of the triangles AMP and BMC by ωA and ωB, respectively. The
lines AP , BC, and MQ are pairwise radical axes of the circles Γ, ωA, and ωB, thus either they
are parallel, or they share a common point X .

Assume that these lines are parallel (see Figure 1). Then the segments AP , QM , and BC
have a common perpendicular bisector; the reflection in this bisector maps the segment CP
to BA, and maps M to Q. Therefore, in this case Q lies on AB, and BQ{AB “ CM{CP “
BD{AB; so we have Q “ D.
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Figure 1 Figure 2

Now assume that the lines AP , QM , and BC are concurrent at some point X (see Figure 2).
Notice that the points A, B, Q, and X lie on a common circle Ω by Miquel’s theorem
applied to the triangle XPC. Let us denote by Y the symmetric image of X about the
perpendicular bisector of AB. Clearly, Y lies on Ω, and the triangles Y AB and △XBA are
congruent. Moreover, the triangle XPC is similar to the triangle XBA, so it is also similar to
the triangle Y AB.

Next, the points D and M correspond to each other in similar triangles Y AB and XPC,
since BD{BA “ CM{CP “ λ. Moreover, the triangles Y AB and XPC are equi-oriented, so
>pMX,XP q “ >pDY, Y Aq. On the other hand, since the points A, Q, X , and Y lie on Ω, we
have >pQY, Y Aq “ >pMX,XP q. Therefore, >pQY, Y Aq “ >pDY, Y Aq, so the points Y , D,
and Q are collinear.

Finally, we have >pDQ,QBq “ >pY Q,QBq “ >pY A,ABq “ >pAB,BXq “ >pAB,BCq,
as desired.
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Comment. In the original proposal, λ was supposed to be an arbitrary real number distinct from 0
and 1, and the point M was defined by

ÝÝÑ
CM “ λ ¨ ÝÝÑ

CP . The Problem Selection Committee decided to
add the restriction λ P p0, 1q in order to avoid a large case distinction.

Solution 2. As in the previous solution, we introduce the radical centre X “ AP XBCXMQ
of the circles ωA, ωB, and Γ. Next, we also notice that the points A, Q, B, and X lie on a
common circle Ω.

If the point P lies on the arc BAC of Γ, then the point X is outside Γ, thus the point Q
belongs to the ray XM , and therefore the points P , A, and Q lie on the same side of BC.
Otherwise, if P lies on the arc BC not containing A, then X lies inside Γ, so M and Q lie on
different sides of BC; thus again Q and A lie on the same side of BC. So, in each case the
points Q and A lie on the same side of BC.
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Now we prove that the ratio

QB

sin=QBC
“ QB

QX
¨ QX

sin=QBX

is constant. Since the points A, Q, B, and X are concyclic, we have

QX

sin=QBX
“ AX

sin=ABC
.

Next, since the points B, Q, M , and C are concyclic, the triangles XBQ and XMC are similar,
so

QB

QX
“ CM

CX
“ λ ¨ CP

CX
.

Analogously, the triangles XCP and XAB are also similar, so

CP

CX
“ AB

AX
.

Therefore, we obtain

QB

sin=QBC
“ λ ¨ AB

AX
¨ AX

sin=ABC
“ λ ¨ AB

sin=ABC
,

so this ratio is indeed constant. Thus the circle passing through Q and tangent to BC at B is
also constant, and Q varies over this fixed circle.
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Comment. It is not hard to guess that the desired circle should be tangent to BC at B. Indeed, the
second paragraph of this solution shows that this circle lies on one side of BC; on the other hand, in
the limit case P “ B, the point Q also coincides with B.

Solution 3. Let us perform an inversion centred at C. Denote by X 1 the image of a point X
under this inversion.

The circle Γ maps to the line Γ1 passing through the constant points A1 and B1, and con-
taining the variable point P 1. By the problem condition, the point M varies over the circle γ
which is the homothetic image of Γ with centre C and coefficient λ. Thus M 1 varies over the
constant line γ1 ‖ A1B1 which is the homothetic image of A1B1 with centre C and coefficient 1{λ,
and M “ γ1 X CP 1. Next, the circumcircles ωA and ωB of the triangles AMP and BMC map
to the circumcircle ω1

A of the triangle A1M 1P 1 and to the line B1M 1, respectively; the point Q
thus maps to the second point of intersection of B1M 1 with ω1

A (see Figure 4).
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Let J be the (constant) common point of the lines γ1 and CA1, and let ℓ be the (constant)
line through J parallel to CB1. Let V be the common point of the lines ℓ and B1M 1. Applying
Pappus’ theorem to the triples pC, J, A1q and pV,B1,M 1q we get that the points CB1 X JV ,
JM 1 X A1B1, and CM 1 X A1V are collinear. The first two of these points are ideal, hence so is
the third, which means that CM 1 ‖ A1V .

Now we have >pQ1A1, A1P 1q “ >pQ1M 1,M 1P 1q “ =pVM 1, A1V q, which means that the
triangles B1Q1A1 and B1A1V are similar, and pB1A1q2 “ B1Q1 ¨ B1V . Thus Q1 is the image of V
under the second (fixed) inversion with centre B1 and radius B1A1. Since V varies over the
constant line ℓ, Q1 varies over some constant circle Θ. Thus, applying the first inversion back
we get that Q also varies over some fixed circle.

One should notice that this last circle is not a line; otherwise Θ would contain C, and thus
ℓ would contain the image of C under the second inversion. This is impossible, since CB1 ‖ ℓ.
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G5. Let ABCD be a convex quadrilateral with =B “ =D “ 90˝. Point H is the foot of
the perpendicular from A to BD. The points S and T are chosen on the sides AB and AD,
respectively, in such a way that H lies inside triangle SCT and

=SHC ´ =BSC “ 90˝, =THC ´ =DTC “ 90˝ .

Prove that the circumcircle of triangle SHT is tangent to the line BD.
(Iran)

Solution. Let the line passing through C and perpendicular to the line SC intersect the line AB
at Q (see Figure 1). Then

=SQC “ 90˝ ´ =BSC “ 180˝ ´ =SHC ,

which implies that the points C, H , S, and Q lie on a common circle. Moreover, since SQ is a
diameter of this circle, we infer that the circumcentre K of triangle SHC lies on the line AB.
Similarly, we prove that the circumcentre L of triangle CHT lies on the line AD.
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In order to prove that the circumcircle of triangle SHT is tangent to BD, it suffices to show
that the perpendicular bisectors of HS and HT intersect on the line AH . However, these two
perpendicular bisectors coincide with the angle bisectors of angles AKH and ALH . Therefore,
in order to complete the solution, it is enough (by the bisector theorem) to show that

AK

KH
“ AL

LH
. p1q

We present two proofs of this equality.

First proof. Let the lines KL and HC intersect at M (see Figure 2). Since KH “ KC
and LH “ LC, the points H and C are symmetric to each other with respect to the line KL.
Therefore M is the midpoint of HC. Denote by O the circumcentre of quadrilateral ABCD.
Then O is the midpoint of AC. Therefore we have OM ‖ AH and hence OM K BD. This
together with the equality OB “ OD implies that OM is the perpendicular bisector of BD
and therefore BM “ DM .

Since CM K KL, the points B, C, M , and K lie on a common circle with diameter KC.
Similarly, the points L, C, M , and D lie on a circle with diameter LC. Thus, using the sine
law, we obtain

AK

AL
“ sin=ALK

sin=AKL
“ DM

CL
¨ CK

BM
“ CK

CL
“ KH

LH
,
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which finishes the proof of p1q.
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Second proof. If the points A, H , and C are collinear, then AK “ AL and KH “ LH , so
the equality p1q follows. Assume therefore that the points A, H , and C do not lie in a line and
consider the circle ω passing through them (see Figure 3). Since the quadrilateral ABCD is
cyclic,

=BAC “ =BDC “ 90˝ ´ =ADH “ =HAD .

Let N ‰ A be the intersection point of the circle ω and the angle bisector of =CAH . Then
AN is also the angle bisector of =BAD. Since H and C are symmetric to each other with
respect to the line KL and HN “ NC, it follows that both N and the centre of ω lie on the
line KL. This means that the circle ω is an Apollonius circle of the points K and L. This
immediately yields p1q.

Comment. Either proof can be used to obtain the following generalised result:

Let ABCD be a convex quadrilateral and let H be a point in its interior with =BAC “ =DAH. The
points S and T are chosen on the sides AB and AD, respectively, in such a way that H lies inside
triangle SCT and

=SHC ´ =BSC “ 90˝, =THC ´ =DTC “ 90˝ .

Then the circumcentre of triangle SHT lies on the line AH (and moreover the circumcentre of trian-
gle SCT lies on AC).
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G6. Let ABC be a fixed acute-angled triangle. Consider some points E and F lying on
the sides AC and AB, respectively, and let M be the midpoint of EF . Let the perpendicular
bisector of EF intersect the line BC at K, and let the perpendicular bisector of MK intersect
the lines AC and AB at S and T , respectively. We call the pair pE, F q interesting , if the
quadrilateral KSAT is cyclic.

Suppose that the pairs pE1, F1q and pE2, F2q are interesting. Prove that

E1E2

AB
“ F1F2

AC
.

(Iran)

Solution 1. For any interesting pair pE, F q, we will say that the corresponding triangle EFK
is also interesting.

Let EFK be an interesting triangle. Firstly, we prove that =KEF “ =KFE “ =A, which
also means that the circumcircle ω1 of the triangle AEF is tangent to the lines KE and KF .

Denote by ω the circle passing through the points K, S, A, and T . Let the line AM intersect
the line ST and the circle ω (for the second time) at N and L, respectively (see Figure 1).

Since EF ‖ TS and M is the midpoint of EF , N is the midpoint of ST . Moreover, since K
and M are symmetric to each other with respect to the line ST , we have =KNS “ =MNS “
=LNT . Thus the pointsK and L are symmetric to each other with respect to the perpendicular
bisector of ST . Therefore KL ‖ ST .

Let G be the point symmetric to K with respect to N . Then G lies on the line EF , and we
may assume that it lies on the ray MF . One has

=KGE “ =KNS “ =SNM “ =KLA “ 180˝ ´ =KSA

(if K “ L, then the angle KLA is understood to be the angle between AL and the tangent
to ω at L). This means that the points K, G, E, and S are concyclic. Now, since KSGT is a
parallelogram, we obtain =KEF “ =KSG “ 180˝ ´ =TKS “ =A. Since KE “ KF , we also
have =KFE “ =KEF “ =A.

After having proved this fact, one may finish the solution by different methods.
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First method. We have just proved that all interesting triangles are similar to each other.
This allows us to use the following lemma.
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Lemma. Let ABC be an arbitrary triangle. Choose two points E1 and E2 on the side AC, two
points F1 and F2 on the side AB, and two points K1 and K2 on the side BC, in a way that the
triangles E1F1K1 and E2F2K2 are similar. Then the six circumcircles of the triangles AEiFi,
BFiKi, and CEiKi (i “ 1, 2) meet at a common point Z. Moreover, Z is the centre of the
spiral similarity that takes the triangle E1F1K1 to the triangle E2F2K2.

Proof. Firstly, notice that for each i “ 1, 2, the circumcircles of the triangles AEiFi, BFiKi,
and CKiEi have a common point Zi by Miquel’s theorem. Moreover, we have

>pZiFi, ZiEiq “ >pAB,CAq , >pZiKi, ZiFiq “ >pBC,ABq , >pZiEi, ZiKiq “ >pCA,BCq .

This yields that the points Z1 and Z2 correspond to each other in similar triangles E1F1K1

and E2F2K2. Thus, if they coincide, then this common point is indeed the desired centre of a
spiral similarity.

Finally, in order to show that Z1 “ Z2, one may notice that >pAB,AZ1q “ >pE1F1, E1Z1q “
>pE2F2, E2Z2q “ >pAB,AZ2q (see Figure 2). Similarly, one has >pBC,BZ1q “ >pBC,BZ2q
and >pCA,CZ1q “ >pCA,CZ2q. This yields Z1 “ Z2. l

Now, let P and Q be the feet of the perpendiculars from B and C onto AC and AB,
respectively, and let R be the midpoint of BC (see Figure 3). Then R is the circumcentre
of the cyclic quadrilateral BCPQ. Thus we obtain =APQ “ =B and =RPC “ =C, which
yields =QPR “ =A. Similarly, we show that =PQR “ =A. Thus, all interesting triangles are
similar to the triangle PQR.
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Denote now by Z the common point of the circumcircles of APQ, BQR, and CPR. Let
E1F1K1 and E2F2K2 be two interesting triangles. By the lemma, Z is the centre of any
spiral similarity taking one of the triangles E1F1K1, E2F2K2, and PQR to some other of them.
Therefore the triangles ZE1E2 and ZF1F2 are similar, as well as the triangles ZE1F1 and ZPQ.
Hence

E1E2

F1F2

“ ZE1

ZF1

“ ZP

ZQ
.

Moreover, the equalities =AZQ “ =APQ “ =ABC “ 180˝ ´ =QZR show that the point Z
lies on the line AR (see Figure 4). Therefore the triangles AZP and ACR are similar, as well
as the triangles AZQ and ABR. This yields

ZP

ZQ
“ ZP

RC
¨ RB

ZQ
“ AZ

AC
¨ AB
AZ

“ AB

AC
,

which completes the solution.
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Second method. Now we will start from the fact that ω1 is tangent to the lines KE and KF
(see Figure 5). We prove that if pE, F q is an interesting pair, then

AE

AB
` AF

AC
“ 2 cos=A. (1)

Let Y be the intersection point of the segments BE and CF . The points B, K, and C are
collinear, hence applying Pascal’s theorem to the degenerated hexagon AFFY EE, we infer
that Y lies on the circle ω1.

Denote by Z the second intersection point of the circumcircle of the triangle BFY with
the line BC (see Figure 6). By Miquel’s theorem, the points C, Z, Y , and E are concyclic.
Therefore we obtain

BF ¨ AB ` CE ¨ AC “ BY ¨ BE ` CY ¨ CF “ BZ ¨ BC ` CZ ¨ BC “ BC2 .

On the other hand, BC2 “ AB2 ` AC2 ´ 2AB ¨ AC cos=A, by the cosine law. Hence

pAB ´ AF q ¨ AB ` pAC ´ AEq ¨ AC “ AB2 ` AC2 ´ 2AB ¨ AC cos=A ,

which simplifies to the desired equality (1).

Let now pE1, F1q and pE2, F2q be two interesting pairs of points. Then we get

AE1

AB
` AF1

AC
“ AE2

AB
` AF2

AC
,

which gives the desired result.
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Third method. Again, we make use of the fact that all interesting triangles are similar (and
equi-oriented). Let us put the picture onto a complex plane such that A is at the origin, and
identify each point with the corresponding complex number.

Let EFK be any interesting triangle. The equalities =KEF “ =KFE “ =A yield that the
ratio ν “ K´E

F´E
is the same for all interesting triangles. This in turn means that the numbers E,

F , and K satisfy the linear equation

K “ µE ` νF, where µ “ 1 ´ ν. (2)
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Now let us choose the points X and Y on the rays AB and AC, respectively, so that
=CXA “ =AY B “ =A “ =KEF (see Figure 7). Then each of the triangles AXC and Y AB
is similar to any interesting triangle, which also means that

C “ µA ` νX “ νX and B “ µY ` νA “ µY. (3)

Moreover, one has X{Y “ C{B.

Since the points E, F , and K lie on AC, AB, and BC, respectively, one gets

E “ ρY, F “ σX, and K “ λB ` p1 ´ λqC

for some real ρ, σ, and λ. In view of (3), the equation (2) now reads λB ` p1 ´ λqC “ K “
µE ` νF “ ρB ` σC, or

pλ ´ ρqB “ pσ ` λ ´ 1qC.

Since the nonzero complex numbers B and C have different arguments, the coefficients in the
brackets vanish, so ρ “ λ and σ “ 1 ´ λ. Therefore,

E

Y
` F

X
“ ρ ` σ “ 1. (4)

Now, if pE1, F1q and pE2, F2q are two distinct interesting pairs, one may apply (4) to both
pairs. Subtracting, we get

E1 ´ E2

Y
“ F2 ´ F1

X
, so

E1 ´ E2

F2 ´ F1
“ Y

X
“ B

C
.

Taking absolute values provides the required result.
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Comment 1. One may notice that the triangle PQR is also interesting.

Comment 2. In order to prove that =KEF “ =KFE “ =A, one may also use the following
well-known fact:

Let AEF be a triangle with AE ‰ AF , and let K be the common point of the symmedian taken from A
and the perpendicular bisector of EF . Then the lines KE and KF are tangent to the circumcircle ω1

of the triangle AEF .

In this case, however, one needs to deal with the case AE “ AF separately.
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Solution 2. Let pE, F q be an interesting pair. This time we prove that

AM

AK
“ cos=A . (5)

As in Solution 1, we introduce the circle ω passing through the points K, S, A, and T , together
with the points N and L at which the line AM intersect the line ST and the circle ω for the
second time, respectively. Let moreover O be the centre of ω (see Figures 8 and 9). As in
Solution 1, we note that N is the midpoint of ST and show that KL ‖ ST , which implies
=FAM “ =EAK.
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Suppose now that K ‰ L (see Figure 8). Then KL ‖ ST , and consequently the lines KM
and KL are perpendicular. It implies that the lines LO and KM meet at a point X lying on the
circle ω. Since the lines ON and XM are both perpendicular to the line ST , they are parallel
to each other, and hence =LON “ =LXK “ =MAK. On the other hand, =OLN “ =MKA,
so we infer that triangles NOL and MAK are similar. This yields

AM

AK
“ ON

OL
“ ON

OT
“ cos=TON “ cos=A .

If, on the other hand, K “ L, then the points A, M , N , and K lie on a common line, and
this line is the perpendicular bisector of ST (see Figure 9). This implies that AK is a diameter
of ω, which yields AM “ 2OK ´ 2NK “ 2ON . So also in this case we obtain

AM

AK
“ 2ON

2OT
“ cos=TON “ cos=A .

Thus (5) is proved.

Let P and Q be the feet of the perpendiculars from B and C onto AC and AB, respectively
(see Figure 10). We claim that the point M lies on the line PQ. Consider now the composition
of the dilatation with factor cos=A and centre A, and the reflection with respect to the angle
bisector of =BAC. This transformation is a similarity that takes B, C, and K to P , Q, and M ,
respectively. Since K lies on the line BC, the point M lies on the line PQ.
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Suppose that E ‰ P . Then also F ‰ Q, and by Menelaus’ theorem, we obtain

AQ

FQ
¨ FM

EM
¨ EP

AP
“ 1 .

Using the similarity of the triangles APQ and ABC, we infer that

EP

FQ
“ AP

AQ
“ AB

AC
, and hence

EP

AB
“ FQ

AC
.

The last equality holds obviously also in case E “ P , because then F “ Q. Moreover, since
the line PQ intersects the segment EF , we infer that the point E lies on the segment AP if
and only if the point F lies outside of the segment AQ.

Let now pE1, F1q and pE2, F2q be two interesting pairs. Then we obtain

E1P

AB
“ F1Q

AC
and

E2P

AB
“ F2Q

AC
.

If P lies between the points E1 and E2, we add the equalities above, otherwise we subtract
them. In any case we obtain

E1E2

AB
“ F1F2

AC
,

which completes the solution.
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G7. Let ABC be a triangle with circumcircle Ω and incentre I. Let the line passing through I
and perpendicular to CI intersect the segment BC and the arc BC (not containing A) of Ω at
points U and V , respectively. Let the line passing through U and parallel to AI intersect AV
at X , and let the line passing through V and parallel to AI intersect AB at Y . Let W and Z be
the midpoints of AX and BC, respectively. Prove that if the points I, X , and Y are collinear,
then the points I, W , and Z are also collinear.

(U.S.A.)

Solution 1. We start with some general observations. Set α “ =A{2, β “ =B{2, γ “ =C{2.
Then obviously α ` β ` γ “ 90˝. Since =UIC “ 90˝, we obtain =IUC “ α ` β. Therefore
=BIV “ =IUC ´ =IBC “ α “ =BAI “ =BY V , which implies that the points B, Y , I,
and V lie on a common circle (see Figure 1).

Assume now that the points I, X and Y are collinear. We prove that =Y IA “ 90˝.
Let the line XU intersect AB at N . Since the lines AI, UX , and V Y are parallel, we get

NX

AI
“ Y N

Y A
“ V U

V I
“ XU

AI
,

implying NX “ XU . Moreover, =BIU “ α “ =BNU . This implies that the quadrilat-
eral BUIN is cyclic, and since BI is the angle bisector of =UBN , we infer that NI “ UI.
Thus in the isosceles triangle NIU , the point X is the midpoint of the base NU . This gives
=IXN “ 90˝, i.e., =Y IA “ 90˝.
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Let S be the midpoint of the segment V C. Let moreover T be the intersection point of the
lines AX and SI, and set x “ =BAV “ =BCV . Since =CIA “ 90˝ ` β and SI “ SC, we
obtain

=TIA “ 180˝ ´ =AIS “ 90˝ ´ β ´ =CIS “ 90˝ ´ β ´ γ ´ x “ α ´ x “ =TAI ,

which implies that TI “ TA. Therefore, since =XIA “ 90˝, the point T is the midpoint
of AX , i.e., T “ W .

To complete our solution, it remains to show that the intersection point of the lines IS
and BC coincide with the midpoint of the segment BC. But since S is the midpoint of the
segment V C, it suffices to show that the lines BV and IS are parallel.
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Since the quadrilateral BY IV is cyclic, =V BI “ =V Y I “ =Y IA “ 90˝. This implies that
BV is the external angle bisector of the angle ABC, which yields =V AC “ =V CA. Therefore
2α ´ x “ 2γ ` x, which gives α “ γ ` x. Hence =SCI “ α, so =V SI “ 2α.

On the other hand, =BV C “ 180˝ ´ =BAC “ 180˝ ´ 2α, which implies that the lines BV
and IS are parallel. This completes the solution.

Solution 2. As in Solution 1, we first prove that the points B, Y , I, V lie on a common circle
and =Y IA “ 90˝. The remaining part of the solution is based on the following lemma, which
holds true for any triangle ABC, not necessarily with the property that I, X , Y are collinear.

Lemma. Let ABC be the triangle inscribed in a circle Γ and let I be its incentre. Assume
that the line passing through I and perpendicular to the line AI intersects the side AB at the
point Y . Let the circumcircle of the triangle BY I intersect the circle Γ for the second time
at V , and let the excircle of the triangle ABC opposite to the vertex A be tangent to the
side BC at E. Then

=BAV “ =CAE .

Proof. Let ρ be the composition of the inversion with centre A and radius
?
AB ¨ AC, and the

symmetry with respect to AI. Clearly, ρ interchanges B and C.
Let J be the excentre of the triangle ABC opposite to A (see Figure 2). Then we have

=JAC “ =BAI and =JCA “ 90˝ ` γ “ =BIA, so the triangles ACJ and AIB are similar,
and therefore AB ¨ AC “ AI ¨ AJ . This means that ρ interchanges I and J . Moreover, since
Y lies on AB and =AIY “ 90˝, the point Y 1 “ ρpY q lies on AC, and =JY 1A “ 90˝. Thus ρ
maps the circumcircle γ of the triangle BY I to a circle γ1 with diameter JC.

Finally, since V lies on both Γ and γ, the point V 1 “ ρpV q lies on the line ρpΓq “ AB as
well as on γ1, which in turn means that V 1 “ E. This implies the desired result. l
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Now we turn to the solution of the problem.
Assume that the incircle ω1 of the triangle ABC is tangent to BC at D, and let the

excircle ω2 of the triangle ABC opposite to the vertex A touch the side BC at E (see Figure 3).
The homothety with centre A that takes ω2 to ω1 takes the point E to some point F , and the
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tangent to ω1 at F is parallel to BC. Therefore DF is a diameter of ω1. Moreover, Z is the
midpoint of DE. This implies that the lines IZ and FE are parallel.

Let K “ Y I X AE. Since =Y IA “ 90˝, the lemma yields that I is the midpoint of XK.
This implies that the segments IW and AK are parallel. Therefore, the points W , I and Z are
collinear.

Comment 1. The properties =Y IA “ 90˝ and V A “ V C can be established in various ways. The
main difficulty of the problem seems to find out how to use these properties in connection to the points
W and Z.

In Solution 2 this principal part is more or less covered by the lemma, for which we have presented
a direct proof. On the other hand, this lemma appears to be a combination of two well-known facts;
let us formulate them in terms of the lemma statement.

Let the line IY intersect AC at P (see Figure 4). The first fact states that the circumcircle ω of
the triangle V Y P is tangent to the segments AB and AC, as well as to the circle Γ. The second fact
states that for such a circle, the angles BAV and CAE are equal.

The awareness of this lemma may help a lot in solving this problem; so the Jury might also consider
a variation of the proposed problem, for which the lemma does not seem to be useful; see Comment 3.
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Comment 2. The proposed problem stated the equivalence: the point I lies on the line XY if and
only if I lies on the line WZ. Here we sketch the proof of the “if” part (see Figure 5).

As in Solution 2, let BC touch the circles ω1 and ω2 at D and E, respectively. Since IZ ‖ AE and W
lies on IZ, the line DX is also parallel to AE. Therefore, the triangles XUP and AIQ are similar.
Moreover, the line DX is symmetric to AE with respect to I, so IP “ IQ, where P “ UV XXD and
Q “ UV X AE. Thus we obtain

UV

V I
“ UX

IA
“ UP

IQ
“ UP

IP
.

So the pairs IU and PV are harmonic conjugates, and since =UDI “ 90˝, we get =V DB “ =BDX “
=BEA. Therefore the point V 1 symmetric to V with respect to the perpendicular bisector of BC lies
on the line AE. So we obtain =BAV “ =CAE.
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The rest can be obtained by simply reversing the arguments in Solution 2. The points B, V , I, and Y
are concyclic. The lemma implies that =Y IA “ 90˝. Moreover, the points B, U , I, and N , where
N “ UX X AB, lie on a common circle, so IN “ IU . Since IY K UN , the point X 1 “ IY X UN is
the midpoint of UN . But in the trapezoid AY V I, the line XU is parallel to the sides AI and Y V , so
NX “ UX 1. This yields X “ X 1.

The reasoning presented in Solution 1 can also be reversed, but it requires a lot of technicalities.
Therefore the Problem Selection Committee proposes to consider only the “only if” part of the original
proposal, which is still challenging enough.

Comment 3. The Jury might also consider the following variation of the proposed problem.

Let ABC be a triangle with circumcircle Ω and incentre I. Let the line through I perpendicular to CI
intersect the segment BC and the arc BC (not containing A) of Ω at U and V , respectively. Let the
line through U parallel to AI intersect AV at X. Prove that if the lines XI and AI are perpendicular,
then the midpoint of the segment AC lies on the line XI (see Figure 6).
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B C
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I
X
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X
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I

N

α

α

α

β γ




Figure 6 Figure 7

Since the solution contains the arguments used above, we only sketch it.

Let N “ XU XAB (see Figure 7). Then =BNU “ =BAI “ =BIU , so the points B, U , I, and N lie
on a common circle. Therefore IU “ IN , and since IX K NU , it follows that NX “ XU .

Now set Y “ XI X AB. The equality NX “ XU implies that

V X

V A
“ XU

AI
“ NX

AI
“ Y X

Y I
,

and therefore Y V ‖ AI. Hence =BY V “ =BAI “ =BIV , so the points B, V , I, Y are concyclic.
Next we have IY K Y V , so =IBV “ 90˝. This implies that BV is the external angle bisector of the
angle ABC, which gives =V AC “ =V CA.

So in order to show that M “ XI XAC is the midpoint of AC, it suffices to prove that =VMC “ 90˝.
But this follows immediately from the observation that the points V , C, M , and I are concyclic, as
=MIV “ =Y BV “ 180˝ ´ =ACV .

The converse statement is also true, but its proof requires some technicalities as well.



68 IMO 2014 South Africa

Number Theory

N1. Let n ě 2 be an integer, and let An be the set

An “ t2n ´ 2k | k P Z, 0 ď k ă nu.

Determine the largest positive integer that cannot be written as the sum of one or more (not
necessarily distinct) elements of An.

(Serbia)

Answer. pn ´ 2q2n ` 1.

Solution 1.

Part I. First we show that every integer greater than pn ´ 2q2n ` 1 can be represented as
such a sum. This is achieved by induction on n.

For n “ 2, the set An consists of the two elements 2 and 3. Every positive integer m except
for 1 can be represented as the sum of elements of An in this case: as m “ 2 ` 2 ` ¨ ¨ ¨ ` 2 if m
is even, and as m “ 3 ` 2 ` 2 ` ¨ ¨ ¨ ` 2 if m is odd.

Now consider some n ą 2, and take an integer m ą pn´2q2n `1. If m is even, then consider

m

2
ě pn ´ 2q2n ` 2

2
“ pn ´ 2q2n´1 ` 1 ą pn ´ 3q2n´1 ` 1.

By the induction hypothesis, there is a representation of the form

m

2
“ p2n´1 ´ 2k1q ` p2n´1 ´ 2k2q ` ¨ ¨ ¨ ` p2n´1 ´ 2krq

for some ki with 0 ď ki ă n ´ 1. It follows that

m “ p2n ´ 2k1`1q ` p2n ´ 2k2`1q ` ¨ ¨ ¨ ` p2n ´ 2kr`1q,

giving us the desired representation as a sum of elements of An. If m is odd, we consider

m ´ p2n ´ 1q
2

ą pn ´ 2q2n ` 1 ´ p2n ´ 1q
2

“ pn ´ 3q2n´1 ` 1.

By the induction hypothesis, there is a representation of the form

m ´ p2n ´ 1q
2

“ p2n´1 ´ 2k1q ` p2n´1 ´ 2k2q ` ¨ ¨ ¨ ` p2n´1 ´ 2krq

for some ki with 0 ď ki ă n ´ 1. It follows that

m “ p2n ´ 2k1`1q ` p2n ´ 2k2`1q ` ¨ ¨ ¨ ` p2n ´ 2kr`1q ` p2n ´ 1q,

giving us the desired representation of m once again.

Part II. It remains to show that there is no representation for pn ´ 2q2n ` 1. Let N be
the smallest positive integer that satisfies N ” 1 pmod 2nq, and which can be represented as a
sum of elements of An. Consider a representation of N , i.e.,

N “ p2n ´ 2k1q ` p2n ´ 2k2q ` ¨ ¨ ¨ ` p2n ´ 2krq, (1)

where 0 ď k1, k2, . . . , kr ă n. Suppose first that two of the terms in the sum are the same, i.e.,
ki “ kj for some i ‰ j. If ki “ kj “ n ´ 1, then we can simply remove these two terms to get a
representation for

N ´ 2p2n ´ 2n´1q “ N ´ 2n
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as a sum of elements of An, which contradicts our choice of N . If ki “ kj “ k ă n ´ 1, replace
the two terms by 2n ´ 2k`1, which is also an element of An, to get a representation for

N ´ 2p2n ´ 2kq ` 2n ´ 2k`1 “ N ´ 2n.

This is a contradiction once again. Therefore, all ki have to be distinct, which means that

2k1 ` 2k2 ` ¨ ¨ ¨ ` 2kr ď 20 ` 21 ` 22 ` ¨ ¨ ¨ ` 2n´1 “ 2n ´ 1.

On the other hand, taking (1) modulo 2n, we find

2k1 ` 2k2 ` ¨ ¨ ¨ ` 2kr ” ´N ” ´1 pmod 2nq.

Thus we must have 2k1 ` 2k2 ` ¨ ¨ ¨ ` 2kr “ 2n ´ 1, which is only possible if each element of
t0, 1, . . . , n ´ 1u occurs as one of the ki. This gives us

N “ n2n ´ p20 ` 21 ` ¨ ¨ ¨ ` 2n´1q “ pn ´ 1q2n ` 1.

In particular, this means that pn ´ 2q2n ` 1 cannot be represented as a sum of elements of An.

Solution 2. The fact that m “ pn ´ 2q2n ` 1 cannot be represented as a sum of elements
of An can also be shown in other ways. We prove the following statement by induction on n:

Claim. If a, b are integers with a ě 0, b ě 1, and a ` b ă n, then a2n ` b cannot be written as
a sum of elements of An.

Proof. The claim is clearly true for n “ 2 (since a “ 0, b “ 1 is the only possibility). For
n ą 2, assume that there exist integers a, b with a ě 0, b ě 1 and a ` b ă n as well as elements
m1, m2, . . . , mr of An such that

a2n ` b “ m1 ` m2 ` ¨ ¨ ¨ ` mr.

We can suppose, without loss of generality, that m1 ě m2 ě ¨ ¨ ¨ ě mr. Let ℓ be the largest
index for which mℓ “ 2n ´ 1 (ℓ “ 0 if m1 ‰ 2n ´ 1). Clearly, ℓ and b must have the same parity.
Now

pa ´ ℓq2n ` pb ` ℓq “ mℓ`1 ` mℓ`2 ` ¨ ¨ ¨ ` mr

and thus

pa ´ ℓq2n´1 ` b ` ℓ

2
“ mℓ`1

2
` mℓ`2

2
` ¨ ¨ ¨ ` mr

2
.

Note that mℓ`1{2, mℓ`2{2, . . . , mr{2 are elements of An´1. Moreover, a ´ ℓ and pb ` ℓq{2 are
integers, and pb ` ℓq{2 ě 1. If a ´ ℓ was negative, then we would have

a2n ` b ě ℓp2n ´ 1q ě pa ` 1qp2n ´ 1q “ a2n ` 2n ´ a ´ 1,

thus n ě a ` b ` 1 ě 2n, which is impossible. So a ´ ℓ ě 0. By the induction hypothesis, we
must have a ´ ℓ ` b`ℓ

2
ě n ´ 1, which gives us a contradiction, since

a ´ ℓ ` b ` ℓ

2
ď a ´ ℓ ` b ` ℓ ´ 1 “ a ` b ´ 1 ă n ´ 1. l

Considering the special case a “ n ´ 2, b “ 1 now completes the proof.
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Solution 3. Denote by Bn the set of all positive integers that can be written as a sum of
elements of An. In this solution, we explicitly describe all the numbers in Bn by an argument
similar to the first solution.

For a positive integer n, we denote by σ2pnq the sum of its digits in the binary representation.
Notice that every positive integer m has a unique representation of the form m “ s2n ´ t with
some positive integer s and 0 ď t ď 2n ´ 1.

Lemma. For any two integers s ě 1 and 0 ď t ď 2n ´ 1, the number m “ s2n ´ t belongs to Bn

if and only if s ě σ2ptq.
Proof. For t “ 0, the statement of the Lemma is obvious, since m “ 2s ¨ p2n ´ 2n´1q.

Now suppose that t ě 1, and let

t “ 2k1 ` ¨ ¨ ¨ ` 2kσ p0 ď k1 ă ¨ ¨ ¨ ă kσ ď n ´ 1, σ “ σ2ptqq

be its binary expansion. If s ě σ, then m P Bn since

m “ ps ´ σq2n ` pσ2n ´ tq “ 2ps ´ σq ¨ p2n ´ 2n´1q `
σ
ÿ

i“1

p2n ´ 2kiq.

Assume now that there exist integers s and t with 1 ď s ă σ2ptq and 0 ď t ď 2n ´ 1 such
that the number m “ s2n ´ t belongs to Bn. Among all such instances, choose the one for
which m is smallest, and let

m “
d
ÿ

i“1

p2n ´ 2ℓiq p0 ď ℓi ď n ´ 1q

be the corresponding representation. If all the ℓi’s are distinct, then
řd

i“1 2
ℓi ď řn´1

j“0 2
j “ 2n´1,

so one has s “ d and t “ řd
i“1 2

ℓi , whence s “ d “ σ2ptq; this is impossible. Therefore, two of
the ℓi’s must be equal, say ℓd´1 “ ℓd. Then m ě 2p2n ´ 2ℓdq ě 2n, so s ě 2.

Now we claim that the number m1 “ m ´ 2n “ ps ´ 1q2n ´ t also belongs to Bn, which
contradicts the minimality assumption. Indeed, one has

p2n ´ 2ℓd´1q ` p2n ´ 2ℓdq “ 2p2n ´ 2ℓdq “ 2n ` p2n ´ 2ℓd`1q,

so

m1 “
d´2
ÿ

i“1

p2n ´ 2ℓiq ` p2n ´ 2ℓd`1q

is the desired representation of m1 (if ℓd “ n ´ 1, then the last summand is simply omitted).
This contradiction finishes the proof. l

By our lemma, the largest number M which does not belong to Bn must have the form

mt “ pσ2ptq ´ 1q2n ´ t

for some t with 1 ď t ď 2n ´ 1, so M is just the largest of these numbers. For t0 “ 2n ´ 1 we
have mt0 “ pn´1q2n ´ p2n ´1q “ pn´2q2n `1; for every other value of t one has σ2ptq ď n´1,
thus mt ď pσptq ´ 1q2n ď pn ´ 2q2n ă mt0 . This means that M “ mt0 “ pn ´ 2q2n ` 1.
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N2. Determine all pairs px, yq of positive integers such that

3
a

7x2 ´ 13xy ` 7y2 “ |x ´ y| ` 1 . (1)

(U.S.A.)

Answer. Either px, yq “ p1, 1q or tx, yu “ tm3 ` m2 ´ 2m ´ 1, m3 ` 2m2 ´ m ´ 1u for some
positive integer m ě 2.

Solution. Let px, yq be any pair of positive integers solving (1). We shall prove that it appears
in the list displayed above. The converse assertion that all these pairs do actually satisfy (1)
either may be checked directly by means of a somewhat laborious calculation, or it can be seen
by going in reverse order through the displayed equations that follow.

In case x “ y the given equation reduces to x2{3 “ 1, which is equivalent to x “ 1, whereby
he have found the first solution.

To find the solutions with x ‰ y we may assume x ą y due to symmetry. Then the integer
n “ x ´ y is positive and (1) may be rewritten as

3
a

7py ` nq2 ´ 13py ` nqy ` 7y2 “ n ` 1 .

Raising this to the third power and simplifying the result one obtains

y2 ` yn “ n3 ´ 4n2 ` 3n ` 1 .

To complete the square on the left hand side, we multiply by 4 and add n2, thus getting

p2y ` nq2 “ 4n3 ´ 15n2 ` 12n ` 4 “ pn ´ 2q2p4n ` 1q .

This shows that the cases n “ 1 and n “ 2 are impossible, whence n ą 2, and 4n ` 1 is the
square of the rational number 2y`n

n´2
. Consequently, it has to be a perfect square, and, since it

is odd as well, there has to exist some nonnegative integer m such that 4n` 1 “ p2m` 1q2, i.e.

n “ m2 ` m.

Notice that n ą 2 entails m ě 2. Substituting the value of n just found into the previous
displayed equation we arrive at

p2y ` m2 ` mq2 “ pm2 ` m ´ 2q2p2m ` 1q2 “ p2m3 ` 3m2 ´ 3m ´ 2q2 .

Extracting square roots and taking 2m3 ` 3m2 ´ 3m ´ 2 “ pm ´ 1qp2m2 ` 5m ` 2q ą 0 into
account we derive 2y ` m2 ` m “ 2m3 ` 3m2 ´ 3m ´ 2, which in turn yields

y “ m3 ` m2 ´ 2m ´ 1 .

Notice that m ě 2 implies that y “ pm3 ´ 1q ` pm´ 2qm is indeed positive, as it should be. In
view of x “ y ` n “ y ` m2 ` m it also follows that

x “ m3 ` 2m2 ´ m ´ 1 ,

and that this integer is positive as well.

Comment. Alternatively one could ask to find all pairs px, yq of – not necessarily positive – integers
solving (1). The answer to that question is a bit nicer than the answer above: the set of solutions are
now described by

tx, yu “ tm3 ` m2 ´ 2m ´ 1,m3 ` 2m2 ´ m ´ 1u ,
where m varies through Z. This may be shown using essentially the same arguments as above. We
finally observe that the pair px, yq “ p1, 1q, that appears to be sporadic above, corresponds to m “ ´1.
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N3. A coin is called a Cape Town coin if its value is 1{n for some positive integer n. Given
a collection of Cape Town coins of total value at most 99 ` 1

2
, prove that it is possible to split

this collection into at most 100 groups each of total value at most 1.
(Luxembourg)

Solution. We will show that for every positive integer N any collection of Cape Town coins
of total value at most N ´ 1

2
can be split into N groups each of total value at most 1. The

problem statement is a particular case for N “ 100.

We start with some preparations. If several given coins together have a total value also of
the form 1

k
for a positive integer k, then we may merge them into one new coin. Clearly, if the

resulting collection can be split in the required way then the initial collection can also be split.
After each such merging, the total number of coins decreases, thus at some moment we

come to a situation when no more merging is possible. At this moment, for every even k there
is at most one coin of value 1

k
(otherwise two such coins may be merged), and for every odd

k ą 1 there are at most k ´ 1 coins of value 1
k
(otherwise k such coins may also be merged).

Now, clearly, each coin of value 1 should form a single group; if there are d such coins then
we may remove them from the collection and replace N by N ´ d. So from now on we may
assume that there are no coins of value 1.

Finally, we may split all the coins in the following way. For each k “ 1, 2, . . . , N we put all
the coins of values 1

2k´1
and 1

2k
into a group Gk; the total value of Gk does not exceed

p2k ´ 2q ¨ 1

2k ´ 1
` 1

2k
ă 1.

It remains to distribute the “small” coins of values which are less than 1
2N

; we will add them one
by one. In each step, take any remaining small coin. The total value of coins in the groups at
this moment is at most N ´ 1

2
, so there exists a group of total value at most 1

N

`

N ´ 1
2

˘

“ 1´ 1
2N

;
thus it is possible to put our small coin into this group. Acting so, we will finally distribute all
the coins.

Comment 1. The algorithm may be modified, at least the step where one distributes the coins of
values ě 1

2N . One different way is to put into Gk all the coins of values 1
p2k´1q2s for all integer s ě 0.

One may easily see that their total value also does not exceed 1.

Comment 2. The original proposal also contained another part, suggesting to show that a required
splitting may be impossible if the total value of coins is at most 100. There are many examples of
such a collection, e.g. one may take 98 coins of value 1, one coin of value 1

2 , two coins of value 1
3 , and

four coins of value 1
5 .

The Problem Selection Committee thinks that this part is less suitable for the competition.
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N4. Let n ą 1 be a given integer. Prove that infinitely many terms of the sequence pakqkě1,
defined by

ak “
Z

nk

k

^

,

are odd. (For a real number x, txu denotes the largest integer not exceeding x.)
(Hong Kong)

Solution 1. If n is odd, let k “ nm for m “ 1, 2, . . .. Then ak “ nnm´m, which is odd for
each m.

Henceforth, assume that n is even, say n “ 2t for some integer t ě 1. Then, for any m ě 2,
the integer n2m ´2m “ 2mp22m´m ¨ t2m ´1q has an odd prime divisor p, since 2m ´m ą 1. Then,
for k “ p ¨ 2m, we have

nk “ pn2mqp ” p2mqp “ p2pqm ” 2m,

where the congruences are taken modulo p (recall that 2p ” 2 pmod pq, by Fermat’s little

theorem). Also, from nk ´ 2m ă nk ă nk ` 2mpp ´ 1q, we see that the fraction
nk

k
lies strictly

between the consecutive integers
nk ´ 2m

p ¨ 2m and
nk ` 2mpp ´ 1q

p ¨ 2m , which gives

Z

nk

k

^

“ nk ´ 2m

p ¨ 2m .

We finally observe that
nk ´ 2m

p ¨ 2m “
nk

2m
´ 1

p
is an odd integer, since the integer

nk

2m
´ 1 is odd

(recall that k ą m). Note that for different values of m, we get different values of k, due to the
different powers of 2 in the prime factorisation of k.

Solution 2. Treat the (trivial) case when n is odd as in Solution 1.
Now assume that n is even and n ą 2. Let p be a prime divisor of n ´ 1.
Proceed by induction on i to prove that pi`1 is a divisor of npi ´ 1 for every i ě 0. The case

i “ 0 is true by the way in which p is chosen. Suppose the result is true for some i ě 0. The
factorisation

npi`1 ´ 1 “ pnpi ´ 1qrnpipp´1q ` npipp´2q ` ¨ ¨ ¨ ` npi ` 1s,
together with the fact that each of the p terms between the square brackets is congruent to 1
modulo p, implies that the result is also true for i ` 1.

Hence

Z

npi

pi

^

“ npi ´ 1

pi
, an odd integer for each i ě 1.

Finally, we consider the case n “ 2. We observe that 3 ¨ 4i is a divisor of 23¨4i ´ 4i for every
i ě 1: Trivially, 4i is a divisor of 23¨4i ´ 4i, since 3 ¨ 4i ą 2i. Furthermore, since 23¨4i and 4i are

both congruent to 1 modulo 3, we have 3
ˇ

ˇ 23¨4i ´4i. Hence,

Z

23¨4i

3 ¨ 4i
^

“ 23¨4i ´ 4i

3 ¨ 4i “ 23¨4i´2i ´ 1

3
,

which is odd for every i ě 1.

Comment. The case n even and n ą 2 can also be solved by recursively defining the sequence pkiqiě1

by k1 “ 1 and ki`1 “ nki ´ 1 for i ě 1. Then pkiq is strictly increasing and it follows (by induction
on i) that ki | nki ´ 1 for all i ě 1, so the ki are as desired.

The case n “ 2 can also be solved as follows: Let i ě 2. By Bertrand’s postulate, there exists a
prime number p such that 22

i´1 ă p ¨ 2i ă 22
i

. This gives

p ¨ 2i ă 22
i ă 2p ¨ 2i. (1)
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Also, we have that p ¨ 2i is a divisor of 2p¨2i ´ 22
i
, hence, using (1), we get that

Z

2p¨2i

p ¨ 2i
^

“ 2p¨2i ´ 22
i ` p ¨ 2i

p ¨ 2i “ 2p¨2i´i ´ 22
i´i ` p

p
,

which is an odd integer.

Solution 3. Treat the (trivial) case when n is odd as in Solution 1.
Let n be even, and let p be a prime divisor of n ` 1. Define the sequence paiqiě1 by

ai “ min
 

a P Zą0 : 2
i divides ap ` 1

(

.

Recall that there exists a with 1 ď a ă 2i such that ap ” ´1 pmod 2iq, so each ai satisfies
1 ď ai ă 2i. This implies that aip ` 1 ă p ¨ 2i. Also, ai Ñ 8 as i Ñ 8, whence there are
infinitely many i such that ai ă ai`1. From now on, we restrict ourselves only to these i.

Notice that p is a divisor of np ` 1, which, in turn, divides np¨2i ´ 1. It follows that p ¨ 2i is a
divisor of np¨2i ´ paip` 1q, and we consequently see that the integer

Z

np¨2i

p ¨ 2i
^

“ np¨2i ´ paip ` 1q
p ¨ 2i

is odd, since 2i`1 divides np¨2i, but not aip ` 1.
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N5. Find all triples pp, x, yq consisting of a prime number p and two positive integers x and y
such that xp´1 ` y and x ` yp´1 are both powers of p.

(Belgium)

Answer. pp, x, yq P
 

p3, 2, 5q, p3, 5, 2q
(

Y
 

p2, n, 2k ´ nq | 0 ă n ă 2k
(

.

Solution 1. For p “ 2, clearly all pairs of two positive integers x and y whose sum is a power
of 2 satisfy the condition. Thus we assume in the following that p ą 2, and we let a and b be
positive integers such that xp´1 ` y “ pa and x ` yp´1 “ pb. Assume further, without loss of
generality, that x ď y, so that pa “ xp´1 ` y ď x ` yp´1 “ pb, which means that a ď b (and
thus pa | pb).

Now we have
pb “ yp´1 ` x “ ppa ´ xp´1qp´1 ` x.

We take this equation modulo pa and take into account that p ´ 1 is even, which gives us

0 ” xpp´1q2 ` x pmod paq.
If p | x, then pa | x, since xpp´1q2´1 ` 1 is not divisible by p in this case. However, this is
impossible, since x ď xp´1 ă pa. Thus we know that p ∤ x, which means that

pa | xpp´1q2´1 ` 1 “ xppp´2q ` 1.

By Fermat’s little theorem, xpp´1q2 ” 1 pmod pq, thus p divides x`1. Let pr be the highest
power of p that divides x ` 1. By the binomial theorem, we have

xppp´2q “
ppp´2q
ÿ

k“0

ˆ

ppp ´ 2q
k

˙

p´1qppp´2q´kpx ` 1qk.

Except for the terms corresponding to k “ 0, k “ 1 and k “ 2, all terms in the sum are clearly
divisible by p3r and thus by pr`2. The remaining terms are

´ppp ´ 2qpp2 ´ 2p ´ 1q
2

px ` 1q2,

which is divisible by p2r`1 and thus also by pr`2,

ppp ´ 2qpx ` 1q,
which is divisible by pr`1, but not pr`2 by our choice of r, and the final term ´1 corresponding
to k “ 0. It follows that the highest power of p that divides xppp´2q ` 1 is pr`1.

On the other hand, we already know that pa divides xppp´2q `1, which means that a ď r`1.
Moreover,

pr ď x ` 1 ď xp´1 ` y “ pa.

Hence we either have a “ r or a “ r ` 1.
If a “ r, then x “ y “ 1 needs to hold in the inequality above, which is impossible for

p ą 2. Thus a “ r ` 1. Now since pr ď x ` 1, we get

x “ x2 ` x

x ` 1
ď xp´1 ` y

x ` 1
“ pa

x ` 1
ď pa

pr
“ p,

so we must have x “ p ´ 1 for p to divide x ` 1.
It follows that r “ 1 and a “ 2. If p ě 5, we obtain

pa “ xp´1 ` y ą pp ´ 1q4 “ pp2 ´ 2p ` 1q2 ą p3pq2 ą p2 “ pa,

a contradiction. So the only case that remains is p “ 3, and indeed x “ 2 and y “ pa ´xp´1 “ 5
satisfy the conditions.
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Comment 1. In this solution, we are implicitly using a special case of the following lemma known
as “lifting the exponent”:

Lemma. Let n be a positive integer, let p be an odd prime, and let vppmq denote the exponent of the
highest power of p that divides m.

If x and y are integers not divisible by p such that p | x ´ y, then we have

vppxn ´ ynq “ vppx ´ yq ` vppnq.

Likewise, if x and y are integers not divisible by p such that p | x ` y, then we have

vppxn ` ynq “ vppx ` yq ` vppnq.

Comment 2. There exist various ways of solving the problem involving the “lifting the exponent”
lemma. Let us sketch another one.

The cases x “ y and p | x are ruled out easily, so we assume that p ą 2, x ă y, and p ∤ x. In this
case we also have pa ă pb and p | x ` 1.

Now one has

yp ´ xp ” ypyp´1 ` xq ´ xpxp´1 ` yq ” 0 pmod paq,
so by the lemma mentioned above one has pa´1 | y ´ x and hence y “ x ` tpa´1 for some positive
integer t. Thus one gets

xpxp´2 ` 1q “ xp´1 ` x “ pxp´1 ` yq ´ py ´ xq “ pa´1pp ´ tq.

The factors on the left-hand side are coprime. So if p | x, then xp´2 ` 1 | p ´ t, which is impossible
since x ă xp´2 ` 1. Therefore, p ∤ x, and thus x | p ´ t. Since p | x ` 1, the only remaining case is
x “ p´ 1, t “ 1, and y “ pa´1 ` p´ 1. Now the solution can be completed in the same way as before.

Solution 2. Again, we can focus on the case that p ą 2. If p | x, then also p | y. In this case,
let pk and pℓ be the highest powers of p that divide x and y respectively, and assume without
loss of generality that k ď ℓ. Then pk divides x ` yp´1 while pk`1 does not, but pk ă x ` yp´1,
which yields a contradiction. So x and y are not divisible by p. Fermat’s little theorem yields
0 ” xp´1 ` y ” 1 ` y pmod pq, so y ” ´1 pmod pq and for the same reason x ” ´1 pmod pq.

In particular, x, y ě p ´ 1 and thus xp´1 ` y ě 2pp ´ 1q ą p, so xp´1 ` y and yp´1 ` x are
both at least equal to p2. Now we have

xp´1 ” ´y pmod p2q and yp´1 ” ´x pmod p2q.

These two congruences, together with the Euler–Fermat theorem, give us

1 ” xppp´1q ” p´yqp ” ´yp ” xy pmod p2q.

Since x ” y ” ´1 pmod pq, x´ y is divisible by p, so px´ yq2 is divisible by p2. This means
that

px ` yq2 “ px ´ yq2 ` 4xy ” 4 pmod p2q,
so p2 divides px` y ´ 2qpx` y ` 2q. We already know that x` y ” ´2 pmod pq, so x` y ´ 2 ”
´4 ı 0 pmod pq. This means that p2 divides x ` y ` 2.

Using the same notation as in the first solution, we subtract the two original equations to
obtain

pb ´ pa “ yp´1 ´ xp´1 ` x ´ y “ py ´ xqpyp´2 ` yp´3x ` ¨ ¨ ¨ ` xp´2 ´ 1q. (1)

The second factor is symmetric in x and y, so it can be written as a polynomial of the elementary
symmetric polynomials x ` y and xy with integer coefficients. In particular, its value modulo
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p2 is characterised by the two congruences xy ” 1 pmod p2q and x ` y ” ´2 pmod p2q. Since
both congruences are satisfied when x “ y “ ´1, we must have

yp´2 ` yp´3x ` ¨ ¨ ¨ ` xp´2 ´ 1 ” p´1qp´2 ` p´1qp´3p´1q ` ¨ ¨ ¨ ` p´1qp´2 ´ 1 pmod p2q,

which simplifies to yp´2 ` yp´3x` ¨ ¨ ¨ ` xp´2 ´ 1 ” ´p pmod p2q. Thus the second factor in (1)
is divisible by p, but not p2.

This means that pa´1 has to divide the other factor y ´ x. It follows that

0 ” xp´1 ` y ” xp´1 ` x ” xpx ` 1qpxp´3 ´ xp´4 ` ¨ ¨ ¨ ` 1q pmod pa´1q.

Since x ” ´1 pmod pq, the last factor is xp´3 ´xp´4 ` ¨ ¨ ¨`1 ” p´2 pmod pq and in particular
not divisible by p. We infer that pa´1 | x ` 1 and continue as in the first solution.

Comment. Instead of reasoning by means of elementary symmetric polynomials, it is possible to
provide a more direct argument as well. For odd r, px ` 1q2 divides pxr ` 1q2, and since p divides
x ` 1, we deduce that p2 divides pxr ` 1q2. Together with the fact that xy ” 1 pmod p2q, we obtain

0 ” yrpxr ` 1q2 ” x2ryr ` 2xryr ` yr ” xr ` 2 ` yr pmod p2q.

We apply this congruence with r “ p ´ 2 ´ 2k (where 0 ď k ă pp ´ 2q{2) to find that

xkyp´2´k ` xp´2´kyk ” pxyqkpxp´2´2k ` yp´2´2kq ” 1k ¨ p´2q ” ´2 pmod p2q.

Summing over all k yields

yp´2 ` yp´3x ` ¨ ¨ ¨ ` xp´2 ´ 1 ” p´1
2 ¨ p´2q ´ 1 ” ´p pmod p2q

once again.
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N6. Let a1 ă a2 ă ¨ ¨ ¨ ă an be pairwise coprime positive integers with a1 being prime
and a1 ě n ` 2. On the segment I “ r0, a1a2 ¨ ¨ ¨ ans of the real line, mark all integers that are
divisible by at least one of the numbers a1, . . . , an. These points split I into a number of smaller
segments. Prove that the sum of the squares of the lengths of these segments is divisible by a1.

(Serbia)

Solution 1. Let A “ a1 ¨ ¨ ¨ an. Throughout the solution, all intervals will be nonempty and
have integer end-points. For any interval X , the length of X will be denoted by |X|.

Define the following two families of intervals:

S “
 

rx, ys : x ă y are consecutive marked points
(

T “
 

rx, ys : x ă y are integers, 0 ď x ď A ´ 1, and no point is marked in px, yq
(

We are interested in computing
ř

XPS

|X|2 modulo a1.

Note that the number A is marked, so in the definition of T the condition y ď A is enforced
without explicitly prescribing it.

Assign weights to the intervals in T , depending only on their lengths. The weight of an
arbitrary interval Y P T will be w

`

|Y |
˘

, where

wpkq “
#

1 if k “ 1,

2 if k ě 2 .

Consider an arbitrary interval X P S and its sub-intervals Y P T . Clearly, X has one
sub-interval of length |X|, two sub-intervals of length |X| ´ 1 and so on; in general X has
|X| ´ d ` 1 sub-intervals of length d for every d “ 1, 2, . . . , |X|. The sum of the weights of the
sub-intervals of X is

ÿ

Y PT , Y ĎX

w
`

|Y |
˘

“
|X|
ÿ

d“1

p|X| ´ d` 1q ¨wpdq “ |X| ¨ 1`
`

p|X| ´ 1q ` p|X| ´ 2q ` ¨ ¨ ¨ ` 1
˘

¨ 2 “ |X|2.

Since the intervals in S are non-overlapping, every interval Y P T is a sub-interval of a single
interval X P S. Therefore,

ÿ

XPS

|X|2 “
ÿ

XPS

˜

ÿ

Y PT , Y ĎX

w
`

|Y |
˘

¸

“
ÿ

Y PT

w
`

|Y |
˘

. (1)

For every d “ 1, 2, . . . , a1, we count how many intervals in T are of length d. Notice that
the multiples of a1 are all marked, so the lengths of the intervals in S and T cannot exceed a1.
Let x be an arbitrary integer with 0 ď x ď A ´ 1 and consider the interval rx, x ` ds. Let r1,
. . . , rn be the remainders of x modulo a1, . . . , an, respectively. Since a1, . . . , an are pairwise
coprime, the number x is uniquely identified by the sequence pr1, . . . , rnq, due to the Chinese
remainder theorem.

For every i “ 1, . . . , n, the property that the interval px, x`dq does not contain any multiple
of ai is equivalent with ri ` d ď ai, i.e. ri P t0, 1, . . . , ai ´ du, so there are ai ´ d ` 1 choices for
the number ri for each i. Therefore, the number of the remainder sequences pr1, . . . , rnq that
satisfy rx, x ` ds P T is precisely pa1 ` 1 ´ dq ¨ ¨ ¨ pan ` 1 ´ dq. Denote this product by fpdq.
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Now we can group the last sum in (1) by length of the intervals. As we have seen, for every
d “ 1, . . . , a1 there are fpdq intervals Y P T with |Y | “ d. Therefore, (1) can be continued as

ÿ

XPS

|X|2 “
ÿ

Y PT

w
`

|Y |
˘

“
a1
ÿ

d“1

fpdq ¨ wpdq “ 2
a1
ÿ

d“1

fpdq ´ fp1q. (2)

Having the formula (2), the solution can be finished using the following well-known fact:

Lemma. If p is a prime, F pxq is a polynomial with integer coefficients, and degF ď p´ 2, then
p
ř

x“1

F pxq is divisible by p.

Proof. Obviously, it is sufficient to prove the lemma for monomials of the form xk with k ď p´2.
Apply induction on k. If k “ 0 then F “ 1, and the statement is trivial.

Let 1 ď k ď p ´ 2, and assume that the lemma is proved for all lower degrees. Then

0 ” pk`1 “
p
ÿ

x“1

`

xk`1 ´ px ´ 1qk`1
˘

“
p
ÿ

x“1

˜

k
ÿ

ℓ“0

p´1qk´ℓ

ˆ

k ` 1

ℓ

˙

xℓ

¸

“ pk ` 1q
p
ÿ

x“1

xk `
k´1
ÿ

ℓ“0

p´1qk´ℓ

ˆ

k ` 1

ℓ

˙ p
ÿ

x“1

xℓ ” pk ` 1q
p
ÿ

x“1

xk pmod pq.

Since 0 ă k ` 1 ă p, this proves
p
ř

x“1

xk ” 0 pmod pq. l

In (2), by applying the lemma to the polynomial f and the prime a1, we obtain that
a1
ř

d“1

fpdq
is divisible by a1. The term fp1q “ a1 ¨ ¨ ¨ an is also divisible by a1; these two facts together
prove that

ř

XPS

|X|2 is divisible by a1.

Comment 1. With suitable sets of weights, the same method can be used to sum up other expressions
on the lengths of the segments. For example, wp1q “ 1 and wpkq “ 6pk ´ 1q for k ě 2 can be used to
compute

ř

XPS
|X|3 and to prove that this sum is divisible by a1 if a1 is a prime with a1 ě n ` 3. See

also Comment 2 after the second solution.

Solution 2. The conventions from the first paragraph of the first solution are still in force.
We shall prove the following more general statement:

p‘q Let p denote a prime number, let p “ a1 ă a2 ă ¨ ¨ ¨ ă an be n pairwise
coprime positive integers, and let d be an integer with 1 ď d ď p ´ n. Mark all
integers that are divisible by at least one of the numbers a1, . . . , an on the interval
I “ r0, a1a2 ¨ ¨ ¨ ans of the real line. These points split I into a number of smaller

segments, say of lengths b1, . . . , bk. Then the sum
k
ř

i“1

`

bi
d

˘

is divisible by p.

Applying p‘q to d “ 1 and d “ 2 and using the equation x2 “ 2
`

x
2

˘

`
`

x
1

˘

, one easily gets
the statement of the problem.

To prove p‘q itself, we argue by induction on n. The base case n “ 1 follows from the
known fact that the binomial coefficient

`

p
d

˘

is divisible by p whenever 1 ď d ď p ´ 1.
Let us now assume that n ě 2, and that the statement is known whenever n ´ 1 rather

than n coprime integers are given together with some integer d P r1, p ´ n ` 1s. Suppose that
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the numbers p “ a1 ă a2 ă ¨ ¨ ¨ ă an and d are as above. Write A1 “ śn´1
i“1 ai and A “ A1 an.

Mark the points on the real axis divisible by one of the numbers a1, . . . , an´1 green and those
divisible by an red. The green points divide r0, A1s into certain sub-intervals, say J1, J2, . . . ,
and Jℓ.

To translate intervals we use the notation ra, bs ` m “ ra ` m, b ` ms whenever a, b,m P Z.
For each i P t1, 2, . . . , ℓu let Fi be the family of intervals into which the red points partition

the intervals Ji, Ji ` A1, . . . , and Ji ` pan ´ 1qA1. We are to prove that

ℓ
ÿ

i“1

ÿ

XPFi

ˆ|X|
d

˙

is divisible by p.
Let us fix any index i with 1 ď i ď ℓ for a while. Since the numbers A1 and an are coprime

by hypothesis, the numbers 0, A1, . . . , pan ´1qA1 form a complete system of residues modulo an.
Moreover, we have |Ji| ď p ă an, as in particular all multiples of p are green. So each of the
intervals Ji, Ji ` A1, . . . , and Ji ` pan ´ 1qA1 contains at most one red point. More precisely,
for each j P t1, . . . , |Ji| ´ 1u there is exactly one amongst those intervals containing a red point
splitting it into an interval of length j followed by an interval of length |Ji| ´ j, while the
remaining an ´ |Ji| ` 1 such intervals have no red points in their interiors. For these reasons

ÿ

XPFi

ˆ|X|
d

˙

“ 2

ˆˆ

1

d

˙

` ¨ ¨ ¨ `
ˆ|Ji| ´ 1

d

˙˙

` pan ´ |Ji| ` 1q
ˆ|Ji|

d

˙

“ 2

ˆ |Ji|
d ` 1

˙

` pan ´ d ` 1q
ˆ|Ji|

d

˙

´ pd ` 1q
ˆ |Ji|
d ` 1

˙

“ p1 ´ dq
ˆ |Ji|
d ` 1

˙

` pan ´ d ` 1q
ˆ|Ji|

d

˙

.

So it remains to prove that

p1 ´ dq
ℓ
ÿ

i“1

ˆ |Ji|
d ` 1

˙

` pan ´ d ` 1q
ℓ
ÿ

i“1

ˆ|Ji|
d

˙

is divisible by p. By the induction hypothesis, however, it is even true that both summands
are divisible by p, for 1 ď d ă d ` 1 ď p ´ pn ´ 1q. This completes the proof of p‘q and hence
the solution of the problem.

Comment 2. The statement p‘q can also be proved by the method of the first solution, using the
weights wpxq “

`

x´2
d´2

˘

.
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N7. Let c ě 1 be an integer. Define a sequence of positive integers by a1 “ c and

an`1 “ a3n ´ 4c ¨ a2n ` 5c2 ¨ an ` c

for all n ě 1. Prove that for each integer n ě 2 there exists a prime number p dividing an but
none of the numbers a1, . . . , an´1.

(Austria)

Solution. Let us define x0 “ 0 and xn “ an{c for all integers n ě 1. It is easy to see that the
sequence pxnq thus obtained obeys the recursive law

xn`1 “ c2px3
n ´ 4x2

n ` 5xnq ` 1 (1)

for all integers n ě 0. In particular, all of its terms are positive integers; notice that x1 “ 1
and x2 “ 2c2 ` 1. Since

xn`1 “ c2xnpxn ´ 2q2 ` c2xn ` 1 ą xn (2)

holds for all integers n ě 0, it is also strictly increasing. Since xn`1 is by (1) coprime to c for
any n ě 0, it suffices to prove that for each n ě 2 there exists a prime number p dividing xn

but none of the numbers x1, . . . , xn´1. Let us begin by establishing three preliminary claims.

Claim 1. If i ” j pmod mq holds for some integers i, j ě 0 and m ě 1, then xi ” xj pmod xmq
holds as well.

Proof. Evidently, it suffices to show xi`m ” xi pmod xmq for all integers i ě 0 and m ě 1. For
this purpose we may argue for fixed m by induction on i using x0 “ 0 in the base case i “ 0.
Now, if we have xi`m ” xi pmod xmq for some integer i, then the recursive equation (1) yields

xi`m`1 ” c2px3
i`m ´ 4x2

i`m ` 5xi`mq ` 1 ” c2px3
i ´ 4x2

i ` 5xiq ` 1 ” xi`1 pmod xmq ,

which completes the induction. l

Claim 2. If the integers i, j ě 2 and m ě 1 satisfy i ” j pmod mq, then xi ” xj pmod x2
mq

holds as well.

Proof. Again it suffices to prove xi`m ” xi pmod x2
mq for all integers i ě 2 and m ě 1. As

above, we proceed for fixed m by induction on i. The induction step is again easy using (1),
but this time the base case i “ 2 requires some calculation. Set L “ 5c2. By (1) we have
xm`1 ” Lxm ` 1 pmod x2

mq, and hence

x3
m`1 ´ 4x2

m`1 ` 5xm`1 ” pLxm ` 1q3 ´ 4pLxm ` 1q2 ` 5pLxm ` 1q
” p3Lxm ` 1q ´ 4p2Lxm ` 1q ` 5pLxm ` 1q ” 2 pmod x2

mq ,

which in turn gives indeed xm`2 ” 2c2 ` 1 ” x2 pmod x2
mq. l

Claim 3. For each integer n ě 2, we have xn ą x1 ¨ x2 ¨ ¨ ¨xn´2.

Proof. The cases n “ 2 and n “ 3 are clear. Arguing inductively, we assume now that
the claim holds for some n ě 3. Recall that x2 ě 3, so by monotonicity and (2) we get
xn ě x3 ě x2px2 ´ 2q2 ` x2 ` 1 ě 7. It follows that

xn`1 ą x3
n ´ 4x2

n ` 5xn ą 7x2
n ´ 4x2

n ą x2
n ą xnxn´1,

which by the induction hypothesis yields xn`1 ą x1 ¨ x2 ¨ ¨ ¨xn´1, as desired. l
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Now we direct our attention to the problem itself: let any integer n ě 2 be given. By Claim 3
there exists a prime number p appearing with a higher exponent in the prime factorisation of xn

than in the prime factorisation of x1 ¨ ¨ ¨xn´2. In particular, p | xn, and it suffices to prove that
p divides none of x1, . . . , xn´1.

Otherwise let k P t1, . . . , n ´ 1u be minimal such that p divides xk. Since xn´1 and xn are
coprime by (1) and x1 “ 1, we actually have 2 ď k ď n ´ 2. Write n “ qk ` r with some
integers q ě 0 and 0 ď r ă k. By Claim 1 we have xn ” xr pmod xkq, whence p | xr. Due to
the minimality of k this entails r “ 0, i.e. k | n.

Thus from Claim 2 we infer
xn ” xk pmod x2

kq .
Now let α ě 1 be maximal with the property pα | xk. Then x2

k is divisible by pα`1 and by our
choice of p so is xn. So by the previous congruence xk is a multiple of pα`1 as well, contrary to
our choice of α. This is the final contradiction concluding the solution.
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N8. For every real number x, let }x} denote the distance between x and the nearest integer.
Prove that for every pair pa, bq of positive integers there exist an odd prime p and a positive
integer k satisfying

›

›

›

›

a

pk

›

›

›

›

`
›

›

›

›

b

pk

›

›

›

›

`
›

›

›

›

a ` b

pk

›

›

›

›

“ 1. (1)

(Hungary)

Solution. Notice first that
X

x ` 1
2

\

is an integer nearest to x, so }x} “
ˇ

ˇ

X

x ` 1
2

\

´ x
ˇ

ˇ. Thus we
have

Z

x ` 1

2

^

“ x ˘ }x}. (2)

For every rational number r and every prime number p, denote by vpprq the exponent of p
in the prime factorisation of r. Recall the notation p2n´1q!! for the product of all odd positive
integers not exceeding 2n ´ 1, i.e., p2n ´ 1q!! “ 1 ¨ 3 ¨ ¨ ¨ p2n ´ 1q.
Lemma. For every positive integer n and every odd prime p, we have

vp
`

p2n ´ 1q!!
˘

“
8
ÿ

k“1

Z

n

pk
` 1

2

^

.

Proof. For every positive integer k, let us count the multiples of pk among the factors 1, 3, . . . ,
2n ´ 1. If ℓ is an arbitrary integer, the number p2ℓ ´ 1qpk is listed above if and only if

0 ă p2ℓ ´ 1qpk ď 2n ðñ 1

2
ă ℓ ď n

pk
` 1

2
ðñ 1 ď ℓ ď

Z

n

pk
` 1

2

^

.

Hence, the number of multiples of pk among the factors is precisely mk “
X

n
pk

` 1
2

\

. Thus we
obtain

vp
`

p2n ´ 1q!!
˘

“
n
ÿ

i“1

vpp2i ´ 1q “
n
ÿ

i“1

vpp2i´1q
ÿ

k“1

1 “
8
ÿ

k“1

mk
ÿ

ℓ“1

1 “
8
ÿ

k“1

Z

n

pk
` 1

2

^

. l

In order to prove the problem statement, consider the rational number

N “ p2a ` 2b ´ 1q!!
p2a ´ 1q!! ¨ p2b ´ 1q!! “ p2a ` 1qp2a ` 3q ¨ ¨ ¨ p2a ` 2b ´ 1q

1 ¨ 3 ¨ ¨ ¨ p2b ´ 1q .

Obviously, N ą 1, so there exists a prime p with vppNq ą 0. Since N is a fraction of two odd
numbers, p is odd.

By our lemma,

0 ă vppNq “
8
ÿ

k“1

ˆZ

a ` b

pk
` 1

2

^

´
Z

a

pk
` 1

2

^

´
Z

b

pk
` 1

2

^˙

.

Therefore, there exists some positive integer k such that the integer number

dk “
Z

a ` b

pk
` 1

2

^

´
Z

a

pk
` 1

2

^

´
Z

b

pk
` 1

2

^

is positive, so dk ě 1. By (2) we have

1 ď dk “ a ` b

pk
´ a

pk
´ b

pk
˘
›

›

›

›

a ` b

pk

›

›

›

›

˘
›

›

›

›

a

pk

›

›

›

›

˘
›

›

›

›

b

pk

›

›

›

›

“ ˘
›

›

›

›

a ` b

pk

›

›

›

›

˘
›

›

›

›

a

pk

›

›

›

›

˘
›

›

›

›

b

pk

›

›

›

›

. (3)
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Since }x} ă 1
2
for every rational x with odd denominator, the relation (3) can only be satisfied

if all three signs on the right-hand side are positive and dk “ 1. Thus we get
›

›

›

›

a

pk

›

›

›

›

`
›

›

›

›

b

pk

›

›

›

›

`
›

›

›

›

a ` b

pk

›

›

›

›

“ dk “ 1,

as required.

Comment 1. There are various choices for the number N in the solution. Here we sketch such a
version.

Let x and y be two rational numbers with odd denominators. It is easy to see that the condi-
tion }x} ` }y} ` }x ` y} “ 1 is satisfied if and only if

either txu ă 1
2 , tyu ă 1

2 , tx ` yu ą 1
2 , or txu ą 1

2 , tyu ą 1
2 , tx ` yu ă 1

2 ,

where txu denotes the fractional part of x.
In the context of our problem, the first condition seems easier to deal with. Also, one may notice

that
txu ă 1

2 ðñ κpxq “ 0 and txu ě 1
2 ðñ κpxq “ 1, (4)

where
κpxq “ t2xu ´ 2txu.

Now it is natural to consider the number

M “

ˆ

2a ` 2b

a ` b

˙

ˆ

2a

a

˙ˆ

2b

b

˙ ,

since

vppMq “
8
ÿ

k“1

˜

κ

ˆ

2pa ` bq
pk

˙

´ κ

ˆ

2a

pk

˙

´ κ

ˆ

2b

pk

˙

¸

.

One may see that M ą 1, and that v2pMq ď 0. Thus, there exist an odd prime p and a positive
integer k with

κ

ˆ

2pa ` bq
pk

˙

´ κ

ˆ

2a

pk

˙

´ κ

ˆ

2b

pk

˙

ą 0.

In view of (4), the last inequality yields
"

a

pk

*

ă 1

2
,

"

b

pk

*

ă 1

2
, and

"

a ` b

pk

*

ą 1

2
, (5)

which is what we wanted to obtain.

Comment 2. Once one tries to prove the existence of suitable p and k satisfying (5), it seems somehow
natural to suppose that a ď b and to add the restriction pk ą a. In this case the inequalities (5) can
be rewritten as

2a ă pk, 2mpk ă 2b ă p2m ` 1qpk, and p2m ` 1qpk ă 2pa ` bq ă p2m ` 2qpk

for some positive integer m. This means exactly that one of the numbers 2a`1, 2a`3, . . . , 2a`2b´1
is divisible by some number of the form pk which is greater than 2a.

Using more advanced techniques, one can show that such a number pk exists even with k “ 1.
This was shown in 2004 by Laishram and Shorey; the methods used for this proof are elementary
but still quite involved. In fact, their result generalises a theorem by Sylvester which states that
for every pair of integers pn, kq with n ě k ě 1, the product pn ` 1qpn ` 2q ¨ ¨ ¨ pn ` kq is divisible by
some prime p ą k. We would like to mention here that Sylvester’s theorem itself does not seem to
suffice for solving the problem.
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Problems

Algebra

A1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak`1 ě kak
a2k ` pk ´ 1q

for every positive integer k. Prove that a1 ` a2 ` ¨ ¨ ¨ ` an ě n for every n ě 2.
(Serbia)

A2. Determine all functions f : Z Ñ Z with the property that

f
`

x ´ fpyq
˘

“ f
`

fpxq
˘

´ fpyq ´ 1

holds for all x, y P Z.
(Croatia)

A3. Let n be a fixed positive integer. Find the maximum possible value of

ÿ

1ďrăsď2n

ps ´ r ´ nqxrxs ,

where ´1 ď xi ď 1 for all i “ 1, 2, . . . , 2n.
(Austria)

A4. Find all functions f : R Ñ R satisfying the equation

f
`

x ` fpx` yq
˘

` fpxyq “ x` fpx ` yq ` yfpxq

for all real numbers x and y.
(Albania)

A5. Let 2Z ` 1 denote the set of odd integers. Find all functions f : Z Ñ 2Z ` 1 satisfying

f
`

x` fpxq ` y
˘

` f
`

x´ fpxq ´ y
˘

“ fpx` yq ` fpx´ yq
for every x, y P Z.

(U.S.A.)

A6. Let n be a fixed integer with n ě 2. We say that two polynomials P and Q with real
coefficients are block-similar if for each i P t1, 2, . . . , nu the sequences

P p2015iq, P p2015i´ 1q, . . . , P p2015i´ 2014q and

Qp2015iq, Qp2015i´ 1q, . . . , Qp2015i´ 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degree n` 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)
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Combinatorics

C1. In Lineland there are n ě 1 towns, arranged along a road running from left to right.
Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer
(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one
off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets.
Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.
(Estonia)

C2. Let V be a finite set of points in the plane. We say that V is balanced if for any two
distinct points A,B P V, there exists a point C P V such that AC “ BC. We say that V is
center-free if for any distinct points A,B,C P V, there does not exist a point P P V such that
PA “ PB “ PC.

(a) Show that for all n ě 3, there exists a balanced set consisting of n points.

(b) For which n ě 3 does there exist a balanced, center-free set consisting of n points?

(Netherlands)

C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty
subsets A1 and A2 good if the least common multiple of the elements in A1 is equal to the
greatest common divisor of the elements in A2. Determine the minimum value of n such that
there exists a set of n positive integers with exactly 2015 good partitions.

(Ukraine)

C4. Let n be a positive integer. Two players A and B play a game in which they take turns
choosing positive integers k ď n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

piiq A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piiiq The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

(Finland)
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C5. Consider an infinite sequence a1, a2, . . . of positive integers with ai ď 2015 for all i ě 1.
Suppose that for any two distinct indices i and j we have i` ai ‰ j ` aj.

Prove that there exist two positive integers b and N such that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 10072

whenever n ą m ě N .
(Australia)

C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if
it has a unique representation as a sum of an odd number of distinct elements from S. Prove
that there exist infinitely many positive integers that are not clean.

(U.S.A.)

C7. In a company of people some pairs are enemies. A group of people is called unsociable
if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

(Russia)
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Geometry

G1. Let ABC be an acute triangle with orthocenter H . Let G be the point such that the
quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC
bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C
and J . Prove that IJ “ AH .

(Australia)

G2. Let ABC be a triangle inscribed into a circle Ω with center O. A circle Γ with center A
meets the side BC at points D and E such that D lies between B and E. Moreover, let F and
G be the common points of Γ and Ω. We assume that F lies on the arc AB of Ω not containing
C, and G lies on the arc AC of Ω not containing B. The circumcircles of the triangles BDF
and CEG meet the sides AB and AC again at K and L, respectively. Suppose that the lines
FK and GL are distinct and intersect at X . Prove that the points A, X , and O are collinear.

(Greece)

G3. Let ABC be a triangle with =C “ 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection
point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the
segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the
lines CQ and AD meet on ω.

(Georgia)

G4. Let ABC be an acute triangle, and let M be the midpoint of AC. A circle ω passing
through B and M meets the sides AB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose that T lies on the
circumcircle of the triangle ABC. Determine all possible values of BT {BM .

(Russia)

G5. Let ABC be a triangle with CA ‰ CB. Let D, F , and G be the midpoints of the
sides AB, AC, and BC, respectively. A circle Γ passing through C and tangent to AB at D
meets the segments AF and BG at H and I, respectively. The points H 1 and I 1 are symmetric
to H and I about F and G, respectively. The line H 1I 1 meets CD and FG at Q and M ,
respectively. The line CM meets Γ again at P . Prove that CQ “ QP .

(El Salvador)

G6. Let ABC be an acute triangle with AB ą AC, and let Γ be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint of BC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on Γ that satisfy =AQH “ 900 and
=QKH “ 900. Prove that the circumcircles of the triangles KQH and KFM are tangent to
each other.

(Ukraine)

G7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segments PR and QS meet at O. Suppose
that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, PQ, and RS are either concurrent or parallel to each other.

(Bulgaria)

G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals
having no common points other than the vertices of the polygon. We say that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the first
Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)

(Bulgaria)
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Number Theory

N1. Determine all positive integers M for which the sequence a0, a1, a2, . . ., defined by
a0 “ 2M`1

2
and ak`1 “ aktaku for k “ 0, 1, 2, . . ., contains at least one integer term.

(Luxembourg)

N2. Let a and b be positive integers such that a!b! is a multiple of a! ` b!. Prove that
3a ě 2b` 2.

(United Kingdom)

N3. Let m and n be positive integers such that m ą n. Define xk “ pm` kq{pn` kq for k “
1, 2, . . . , n` 1. Prove that if all the numbers x1, x2, . . . , xn`1 are integers, then x1x2 ¨ ¨ ¨xn`1 ´ 1
is divisible by an odd prime.

(Austria)

N4. Suppose that a0, a1, . . . and b0, b1, . . . are two sequences of positive integers satisfying
a0, b0 ě 2 and

an`1 “ gcdpan, bnq ` 1, bn`1 “ lcmpan, bnq ´ 1

for all n ě 0. Prove that the sequence (an) is eventually periodic; in other words, there exist
integers N ě 0 and t ą 0 such that an`t “ an for all n ě N .

(France)

N5. Determine all triples pa, b, cq of positive integers for which ab´ c, bc´ a, and ca´ b are
powers of 2.

Explanation: A power of 2 is an integer of the form 2n, where n denotes some nonnegative
integer.

(Serbia)

N6. Let Zą0 denote the set of positive integers. Consider a function f : Zą0 Ñ Zą0. For
any m,n P Zą0 we write fnpmq “ fpfp. . . f

looomooon

n

pmq . . .qq. Suppose that f has the following two

properties:

piq If m,n P Zą0, then
fnpmq ´ m

n
P Zą0;

piiq The set Zą0 z tfpnq |n P Zą0u is finite.

Prove that the sequence fp1q ´ 1, fp2q ´ 2, fp3q ´ 3, . . . is periodic.

(Singapore)

N7. Let Zą0 denote the set of positive integers. For any positive integer k, a function
f : Zą0 Ñ Zą0 is called k-good if gcd

`

fpmq ` n, fpnq ` m
˘

ď k for all m ‰ n. Find all k such
that there exists a k-good function.

(Canada)

N8. For every positive integer n with prime factorization n “ śk
i“1 p

αi

i , define

℧pnq “
ÿ

i : pią10100

αi.

That is, ℧pnq is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

℧
`

fpaq ´ fpbq
˘

ď ℧pa ´ bq for all integers a and b with a ą b.

(Brazil)
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Solutions

Algebra

A1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak`1 ě kak
a2k ` pk ´ 1q (1)

for every positive integer k. Prove that a1 ` a2 ` ¨ ¨ ¨ ` an ě n for every n ě 2.
(Serbia)

Solution. From the constraint (1), it can be seen that

k

ak`1

ď a2k ` pk ´ 1q
ak

“ ak ` k ´ 1

ak
,

and so

ak ě k

ak`1

´ k ´ 1

ak
.

Summing up the above inequality for k “ 1, . . . , m, we obtain

a1 ` a2 ` ¨ ¨ ¨ ` am ě
ˆ

1

a2
´ 0

a1

˙

`
ˆ

2

a3
´ 1

a2

˙

` ¨ ¨ ¨ `
ˆ

m

am`1

´ m´ 1

am

˙

“ m

am`1

. (2)

Now we prove the problem statement by induction on n. The case n “ 2 can be done by
applying (1) to k “ 1:

a1 ` a2 ě a1 ` 1

a1
ě 2.

For the induction step, assume that the statement is true for some n ě 2. If an`1 ě 1, then
the induction hypothesis yields

`

a1 ` ¨ ¨ ¨ ` an
˘

` an`1 ě n ` 1. (3)

Otherwise, if an`1 ă 1 then apply (2) as

`

a1 ` ¨ ¨ ¨ ` an
˘

` an`1 ě n

an`1

` an`1 “ n ´ 1

an`1

`
ˆ

1

an`1

` an`1

˙

ą pn´ 1q ` 2.

That completes the solution.

Comment 1. It can be seen easily that having equality in the statement requires a1 “ a2 “ 1 in the
base case n “ 2, and an`1 “ 1 in (3). So the equality a1 ` ¨ ¨ ¨ ` an “ n is possible only in the trivial
case a1 “ ¨ ¨ ¨ “ an “ 1.

Comment 2. After obtaining (2), there are many ways to complete the solution. We outline three
such possibilities.

• With defining sn “ a1 ` ¨ ¨ ¨ ` an, the induction step can be replaced by

sn`1 “ sn ` an`1 ě sn ` n

sn
ě n` 1,

because the function x ÞÑ x` n

x
increases on rn,8q.
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• By applying the AM–GM inequality to the numbers a1 ` ¨ ¨ ¨ ` ak and kak`1, we can conclude

a1 ` ¨ ¨ ¨ ` ak ` kak`1 ě 2k

and sum it up for k “ 1, . . . , n´ 1.

• We can derive the symmetric estimate

ÿ

1ďiăjďn

aiaj “
n
ÿ

j“2

pa1 ` ¨ ¨ ¨ ` aj´1qaj ě
n
ÿ

j“2

pj ´ 1q “ npn´ 1q
2

and combine it with the AM–QM inequality.
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A2. Determine all functions f : Z Ñ Z with the property that

f
`

x ´ fpyq
˘

“ f
`

fpxq
˘

´ fpyq ´ 1 (1)

holds for all x, y P Z.
(Croatia)

Answer. There are two such functions, namely the constant function x ÞÑ ´1 and the successor
function x ÞÑ x` 1.

Solution 1. It is immediately checked that both functions mentioned in the answer are as
desired.

Now let f denote any function satisfying (1) for all x, y P Z. Substituting x “ 0 and
y “ fp0q into (1) we learn that the number z “ ´f

`

fp0q
˘

satisfies fpzq “ ´1. So by plugging
y “ z into (1) we deduce that

fpx` 1q “ f
`

fpxq
˘

(2)

holds for all x P Z. Thereby (1) simplifies to

f
`

x´ fpyq
˘

“ fpx` 1q ´ fpyq ´ 1 . (3)

We now work towards showing that f is linear by contemplating the difference fpx`1q´fpxq
for any x P Z. By applying (3) with y “ x and (2) in this order, we obtain

fpx ` 1q ´ fpxq “ f
`

x ´ fpxq
˘

` 1 “ f
`

fpx´ 1 ´ fpxqq
˘

` 1 .

Since (3) shows f
`

x´ 1 ´ fpxq
˘

“ fpxq ´ fpxq ´ 1 “ ´1, this simplifies to

fpx` 1q “ fpxq ` A ,

where A “ fp´1q ` 1 is some absolute constant.

Now a standard induction in both directions reveals that f is indeed linear and that in fact
we have fpxq “ Ax ` B for all x P Z, where B “ fp0q. Substituting this into (2) we obtain
that

Ax ` pA` Bq “ A2x ` pAB ` Bq

holds for all x P Z; applying this to x “ 0 and x “ 1 we infer A ` B “ AB ` B and A2 “ A.
The second equation leads to A “ 0 or A “ 1. In case A “ 1, the first equation gives B “ 1,
meaning that f has to be the successor function. If A “ 0, then f is constant and (1) shows
that its constant value has to be ´1. Thereby the solution is complete.

Comment. After (2) and (3) have been obtained, there are several other ways to combine them so as
to obtain linearity properties of f . For instance, using (2) thrice in a row and then (3) with x “ fpyq
one may deduce that

fpy ` 2q “ f
`

fpy ` 1q
˘

“ f
`

f
`

fpyq
˘˘

“ f
`

fpyq ` 1
˘

“ fpyq ` fp0q ` 1

holds for all y P Z. It follows that f behaves linearly on the even numbers and on the odd numbers
separately, and moreover that the slopes of these two linear functions coincide. From this point, one
may complete the solution with some straightforward case analysis.

A different approach using the equations (2) and (3) will be presented in Solution 2. To show
that it is also possible to start in a completely different way, we will also present a third solution that
avoids these equations entirely.
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Solution 2. We commence by deriving (2) and (3) as in the first solution. Now provided that f
is injective, (2) tells us that f is the successor function. Thus we may assume from now on that
f is not injective, i.e., that there are two integers a ą b with fpaq “ fpbq. A straightforward
induction using (2) in the induction step reveals that we have fpa ` nq “ fpb ` nq for all
nonnegative integers n. Consequently, the sequence γn “ fpb ` nq is periodic and thus in
particular bounded, which means that the numbers

ϕ “ min
ně0

γn and ψ “ max
ně0

γn

exist.
Let us pick any integer y with fpyq “ ϕ and then an integer x ě a with f

`

x ´ fpyq
˘

“ ϕ.
Due to the definition of ϕ and (3) we have

ϕ ď fpx` 1q “ f
`

x ´ fpyq
˘

` fpyq ` 1 “ 2ϕ ` 1 ,

whence ϕ ě ´1. The same reasoning applied to ψ yields ψ ď ´1. Since ϕ ď ψ holds trivially,
it follows that ϕ “ ψ “ ´1, or in other words that we have fptq “ ´1 for all integers t ě a.

Finally, if any integer y is given, we may find an integer x which is so large that x` 1 ě a
and x ´ fpyq ě a hold. Due to (3) and the result from the previous paragraph we get

fpyq “ fpx` 1q ´ f
`

x ´ fpyq
˘

´ 1 “ p´1q ´ p´1q ´ 1 “ ´1 .

Thereby the problem is solved.

Solution 3. Set d “ fp0q. By plugging x “ fpyq into (1) we obtain

f 3pyq “ fpyq ` d` 1 (4)

for all y P Z, where the left-hand side abbreviates f
`

fpfpyqq
˘

. When we replace x in (1) by
fpxq we obtain f

`

fpxq ´ fpyq
˘

“ f 3pxq ´ fpyq ´ 1 and as a consequence of (4) this simplifies to

f
`

fpxq ´ fpyq
˘

“ fpxq ´ fpyq ` d . (5)

Now we consider the set
E “ tfpxq ´ d | x P Zu .

Given two integers a and b from E, we may pick some integers x and y with fpxq “ a ` d
and fpyq “ b ` d; now (5) tells us that fpa ´ bq “ pa ´ bq ` d, which means that a ´ b itself
exemplifies a´ b P E. Thus,

E is closed under taking differences. (6)

Also, the definitions of d and E yield 0 P E. If E “ t0u, then f is a constant function
and (1) implies that the only value attained by f is indeed ´1.

So let us henceforth suppose that E contains some number besides zero. It is known that in
this case (6) entails E to be the set of all integer multiples of some positive integer k. Indeed,
this holds for

k “ min
 

|x|
ˇ

ˇ x P E and x ‰ 0
(

,

as one may verify by an argument based on division with remainder.
Thus we have

tfpxq | x P Zu “ tk ¨ t ` d | t P Zu . (7)

Due to (5) and (7) we get
fpk ¨ tq “ k ¨ t ` d
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for all t P Z, whence in particular fpkq “ k ` d. So by comparing the results of substituting
y “ 0 and y “ k into (1) we learn that

fpz ` kq “ fpzq ` k (8)

holds for all integers z. In plain English, this means that on any residue class modulo k the
function f is linear with slope 1.

Now by (7) the set of all values attained by f is such a residue class. Hence, there exists an
absolute constant c such that f

`

fpxq
˘

“ fpxq ` c holds for all x P Z. Thereby (1) simplifies to

f
`

x ´ fpyq
˘

“ fpxq ´ fpyq ` c´ 1 . (9)

On the other hand, considering (1) modulo k we obtain d ” ´1 pmod kq because of (7). So
by (7) again, f attains the value ´1.

Thus we may apply (9) to some integer y with fpyq “ ´1, which gives fpx` 1q “ fpxq ` c.
So f is a linear function with slope c. Hence, (8) leads to c “ 1, wherefore there is an absolute
constant d1 with fpxq “ x`d1 for all x P Z. Using this for x “ 0 we obtain d1 “ d and finally (4)
discloses d “ 1, meaning that f is indeed the successor function.
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A3. Let n be a fixed positive integer. Find the maximum possible value of
ÿ

1ďrăsď2n

ps ´ r ´ nqxrxs ,

where ´1 ď xi ď 1 for all i “ 1, 2, . . . , 2n.
(Austria)

Answer. npn´ 1q.
Solution 1. Let Z be the expression to be maximized. Since this expression is linear in every
variable xi and ´1 ď xi ď 1, the maximum of Z will be achieved when xi “ ´1 or 1. Therefore,
it suffices to consider only the case when xi P t´1, 1u for all i “ 1, 2, . . . , 2n.

For i “ 1, 2, . . . , 2n, we introduce auxiliary variables

yi “
i
ÿ

r“1

xr ´
2n
ÿ

r“i`1

xr .

Taking squares of both sides, we have

y2i “
2n
ÿ

r“1

x2r `
ÿ

răsďi

2xrxs `
ÿ

iărăs

2xrxs ´
ÿ

rďiăs

2xrxs

“ 2n `
ÿ

răsďi

2xrxs `
ÿ

iărăs

2xrxs ´
ÿ

rďiăs

2xrxs , (1)

where the last equality follows from the fact that xr P t´1, 1u. Notice that for every r ă s, the
coefficient of xrxs in (1) is 2 for each i “ 1, . . . , r´1, s, . . . , 2n, and this coefficient is ´2 for each
i “ r, . . . , s´ 1. This implies that the coefficient of xrxs in

ř2n
i“1 y

2
i is 2p2n´ s` rq ´ 2ps´ rq “

4pn ´ s ` rq. Therefore, summing (1) for i “ 1, 2, . . . , 2n yields

2n
ÿ

i“1

y2i “ 4n2 `
ÿ

1ďrăsď2n

4pn´ s ` rqxrxs “ 4n2 ´ 4Z. (2)

Hence, it suffices to find the minimum of the left-hand side.

Since xr P t´1, 1u, we see that yi is an even integer. In addition, yi ´ yi´1 “ 2xi “ ˘2,
and so yi´1 and yi are consecutive even integers for every i “ 2, 3, . . . , 2n. It follows that
y2i´1 ` y2i ě 4, which implies

2n
ÿ

i“1

y2i “
n
ÿ

j“1

`

y22j´1 ` y22j
˘

ě 4n. (3)

Combining (2) and (3), we get

4n ď
2n
ÿ

i“1

y2i “ 4n2 ´ 4Z. (4)

Hence, Z ď npn´ 1q.
If we set xi “ 1 for odd indices i and xi “ ´1 for even indices i, then we obtain equality

in (3) (and thus in (4)). Therefore, the maximum possible value of Z is npn ´ 1q, as desired.

Comment 1. Z “ npn ´ 1q can be achieved by several other examples. In particular, xi needs not
be ˘1. For instance, setting xi “ p´1qi for all 2 ď i ď 2n, we find that the coefficient of x1 in Z is 0.
Therefore, x1 can be chosen arbitrarily in the interval r´1, 1s.

Nevertheless, if xi P t´1, 1u for all i “ 1, 2, . . . , 2n, then the equality Z “ npn ´ 1q holds only
when py1, y2, . . . , y2nq “ p0,˘2, 0,˘2, . . . , 0,˘2q or p˘2, 0,˘2, 0, . . . ,˘2, 0q. In each case, we can
reconstruct xi accordingly. The sum

ř2n
i“1 xi in the optimal cases needs not be 0, but it must equal 0

or ˘2.
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Comment 2. Several variations in setting up the auxiliary variables are possible. For instance, one
may let x2n`i “ ´xi and y1

i “ xi ` xi`1 ` ¨ ¨ ¨ ` xi`n´1 for any 1 ď i ď 2n. Similarly to Solution 1,
we obtain Y :“ y12

1 ` y12
2 ` ¨ ¨ ¨ ` y12

2n “ 2n2 ´ 2Z. Then, it suffices to show that Y ě 2n. If n is odd,
then each y1

i is odd, and so y12
i ě 1. If n is even, then each y1

i is even. We can check that at least one
of y1

i, y
1
i`1, y

1
n`i, and y

1
n`i`1 is nonzero, so that y12

i ` y12
i`1 ` y12

n`i ` y12
n`i`1 ě 4; summing these up for

i “ 1, 3, . . . , n´ 1 yields Y ě 2n.

Solution 2. We present a different method of obtaining the bound Z ď npn ´ 1q. As in
the previous solution, we reduce the problem to the case xi P t´1, 1u. For brevity, we use the
notation r2ns “ t1, 2, . . . , 2nu.

Consider any x1, x2, . . . , x2n P t´1, 1u. Let

A “ ti P r2ns : xi “ 1u and B “ ti P r2ns : xi “ ´1u .

For any subsets X and Y of r2ns we define

epX, Y q “
ÿ

răs, rPX, sPY

ps ´ r ´ nq .

One may observe that

epA,Aq`epA,Bq`epB,Aq`epB,Bq “ epr2ns, r2nsq “
ÿ

1ďrăsď2n

ps´r´nq “ ´pn´ 1qnp2n´ 1q
3

.

Therefore, we have

Z “ epA,Aq ´ epA,Bq ´ epB,Aq ` epB,Bq “ 2
`

epA,Aq ` epB,Bq
˘

` pn ´ 1qnp2n´ 1q
3

. (5)

Thus, we need to maximize epA,Aq ` epB,Bq, where A and B form a partition of r2ns.
Due to the symmetry, we may assume that |A| “ n ´ p and |B| “ n ` p, where 0 ď p ď n.

From now on, we fix the value of p and find an upper bound for Z in terms of n and p.

Let a1 ă a2 ă ¨ ¨ ¨ ă an´p and b1 ă b2 ă ¨ ¨ ¨ ă bn`p list all elements of A and B, respectively.
Then

epA,Aq “
ÿ

1ďiăjďn´p

paj ´ ai ´ nq “
n´p
ÿ

i“1

p2i ´ 1 ´ n ` pqai ´
ˆ

n´ p

2

˙

¨ n (6)

and similarly

epB,Bq “
n`p
ÿ

i“1

p2i ´ 1 ´ n ´ pqbi ´
ˆ

n` p

2

˙

¨ n . (7)

Thus, now it suffices to maximize the value of

M “
n´p
ÿ

i“1

p2i´ 1 ´ n` pqai `
n`p
ÿ

i“1

p2i´ 1 ´ n´ pqbi . (8)

In order to get an upper bound, we will apply the rearrangement inequality to the se-
quence a1, a2, . . . , an´p, b1, b2, . . . , bn`p (which is a permutation of 1, 2, . . . , 2n), together with
the sequence of coefficients of these numbers in (8). The coefficients of ai form the sequence

n´ p ´ 1, n´ p ´ 3, . . . , 1 ´ n` p ,

and those of bi form the sequence

n` p ´ 1, n` p ´ 3, . . . , 1 ´ n´ p .
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Altogether, these coefficients are, in descending order:

‚ n ` p ` 1 ´ 2i, for i “ 1, 2, . . . , p;

‚ n ´ p ` 1 ´ 2i, counted twice, for i “ 1, 2, . . . , n´ p; and

‚ ´pn` p ` 1 ´ 2iq, for i “ p, p´ 1, . . . , 1.

Thus, the rearrangement inequality yields

M ď
p
ÿ

i“1

pn ` p ` 1 ´ 2iqp2n` 1 ´ iq

`
n´p
ÿ

i“1

pn´ p ` 1 ´ 2iq
`

p2n` 2 ´ p ´ 2iq ` p2n` 1 ´ p ´ 2iq
˘

´
p
ÿ

i“1

pn` p ` 1 ´ 2iqi . (9)

Finally, combining the information from (5), (6), (7), and (9), we obtain

Z ď pn´ 1qnp2n´ 1q
3

´ 2n

ˆˆ

n´ p

2

˙

`
ˆ

n` p

2

˙˙

` 2
p
ÿ

i“1

pn ` p ` 1 ´ 2iqp2n` 1 ´ 2iq ` 2
n´p
ÿ

i“1

pn ´ p ` 1 ´ 2iqp4n´ 2p` 3 ´ 4iq ,

which can be simplified to

Z ď npn ´ 1q ´ 2

3
ppp ´ 1qpp ` 1q .

Since p is a nonnegative integer, this yields Z ď npn ´ 1q.
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A4. Find all functions f : R Ñ R satisfying the equation

f
`

x ` fpx` yq
˘

` fpxyq “ x` fpx ` yq ` yfpxq (1)

for all real numbers x and y.
(Albania)

Answer. There are two such functions, namely the identity function and x ÞÑ 2 ´ x.

Solution. Clearly, each of the functions x ÞÑ x and x ÞÑ 2 ´ x satisfies (1). It suffices now to
show that they are the only solutions to the problem.

Suppose that f is any function satisfying (1). Then setting y “ 1 in (1), we obtain

f
`

x ` fpx` 1q
˘

“ x ` fpx` 1q; (2)

in other words, x` fpx` 1q is a fixed point of f for every x P R.

We distinguish two cases regarding the value of fp0q.
Case 1. fp0q ‰ 0.

By letting x “ 0 in (1), we have

f
`

fpyq
˘

` fp0q “ fpyq ` yfp0q.
So, if y0 is a fixed point of f , then substituting y “ y0 in the above equation we get y0 “ 1.
Thus, it follows from (2) that x`fpx`1q “ 1 for all x P R. That is, fpxq “ 2´x for all x P R.

Case 2. fp0q “ 0.

By letting y “ 0 and replacing x by x` 1 in (1), we obtain

f
`

x ` fpx` 1q ` 1
˘

“ x ` fpx` 1q ` 1. (3)

From (1), the substitution x “ 1 yields

f
`

1 ` fpy ` 1q
˘

` fpyq “ 1 ` fpy ` 1q ` yfp1q. (4)

By plugging x “ ´1 into (2), we see that fp´1q “ ´1. We then plug y “ ´1 into (4) and
deduce that fp1q “ 1. Hence, (4) reduces to

f
`

1 ` fpy ` 1q
˘

` fpyq “ 1 ` fpy ` 1q ` y. (5)

Accordingly, if both y0 and y0 ` 1 are fixed points of f , then so is y0 ` 2. Thus, it follows
from (2) and (3) that x ` fpx` 1q ` 2 is a fixed point of f for every x P R; i.e.,

f
`

x ` fpx` 1q ` 2
˘

“ x ` fpx` 1q ` 2.

Replacing x by x ´ 2 simplifies the above equation to

f
`

x ` fpx´ 1q
˘

“ x ` fpx´ 1q.
On the other hand, we set y “ ´1 in (1) and get

f
`

x ` fpx´ 1q
˘

“ x ` fpx´ 1q ´ fpxq ´ fp´xq.
Therefore, fp´xq “ ´fpxq for all x P R.

Finally, we substitute px, yq by p´1,´yq in (1) and use the fact that fp´1q “ ´1 to get

f
`

´1 ` fp´y ´ 1q
˘

` fpyq “ ´1 ` fp´y ´ 1q ` y.

Since f is an odd function, the above equation becomes

´f
`

1 ` fpy ` 1q
˘

` fpyq “ ´1 ´ fpy ` 1q ` y.

By adding this equation to (5), we conclude that fpyq “ y for all y P R.
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A5. Let 2Z ` 1 denote the set of odd integers. Find all functions f : Z Ñ 2Z ` 1 satisfying

f
`

x` fpxq ` y
˘

` f
`

x´ fpxq ´ y
˘

“ fpx` yq ` fpx´ yq (1)

for every x, y P Z.
(U.S.A.)

Answer. Fix an odd positive integer d, an integer k, and odd integers ℓ0, ℓ1, . . . , ℓd´1. Then
the function defined as

fpmd ` iq “ 2kmd ` ℓid pm P Z, i “ 0, 1, . . . , d ´ 1q

satisfies the problem requirements, and these are all such functions.

Solution. Throughout the solution, all functions are assumed to map integers to integers.

For any function g and any nonzero integer t, define

∆tgpxq “ gpx` tq ´ gpxq.

For any nonzero integers a and b, notice that ∆a∆bg “ ∆b∆ag. Moreover, if ∆ag “ 0 and
∆bg “ 0, then ∆a`bg “ 0 and ∆atg “ 0 for all nonzero integers t. We say that g is t-quasi-
periodic if ∆tg is a constant function (in other words, if ∆1∆tg “ 0, or ∆1g is t-periodic). In
this case, we call t a quasi-period of g. We say that g is quasi-periodic if it is t-quasi-periodic
for some nonzero integer t.

Notice that a quasi-period of g is a period of ∆1g. So if g is quasi-periodic, then its minimal
positive quasi-period t divides all its quasi-periods.

We now assume that f satisfies (1). First, by setting a “ x` y, the problem condition can
be rewritten as

∆fpxqfpaq “ ∆fpxqf
`

2x ´ a´ fpxq
˘

for all x, a P Z. (2)

Let b be an arbitrary integer and let k be an arbitrary positive integer. Applying (2) when
a is substituted by b, b` fpxq, . . . , b` pk ´ 1qfpxq and summing up all these equations, we get

∆kfpxqfpbq “ ∆kfpxqf
`

2x´ b´ kfpxq
˘

.

Notice that a similar argument works when k is negative, so that

∆Mfpbq “ ∆Mfp2x´ b ´ Mq for any nonzero integer M such that fpxq | M . (3)

We now prove two lemmas.

Lemma 1. For any distinct integers x and y, the function ∆lcmpfpxq,fpyqqf is 2py ´ xq-periodic.
Proof. Denote L “ lcm

`

fpxq, fpyq
˘

. Applying (3) twice, we obtain

∆Lfpbq “ ∆Lfp2x´ b´ Lq “ ∆Lf
`

2y ´ pb` 2py ´ xqq ´ L
˘

“ ∆Lf
`

b ` 2py ´ xq
˘

.

Thus, the function ∆Lf is 2py ´ xq-periodic, as required. l

Lemma 2. Let g be a function. If t and s are nonzero integers such that ∆tsg “ 0 and
∆t∆tg “ 0, then ∆tg “ 0.

Proof. Assume, without loss of generality, that s is positive. Let a be an arbitrary integer.
Since ∆t∆tg “ 0, we have

∆tgpaq “ ∆tgpa` tq “ ¨ ¨ ¨ “ ∆tg
`

a` ps ´ 1qt
˘

.

The sum of these s equal numbers is ∆tsgpaq “ 0, so each of them is zero, as required. l
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We now return to the solution.

Step 1. We prove that f is quasi-periodic.

Let Q “ lcm
`

fp0q, fp1q
˘

. Applying Lemma 1, we get that the function g “ ∆Qf is
2-periodic. In other words, the values of g are constant on even numbers and on odd numbers
separately. Moreover, setting M “ Q and x “ b “ 0 in (3), we get gp0q “ gp´Qq. Since 0 and
´Q have different parities, the value of g at even numbers is the same as that at odd numbers.
Thus, g is constant, which means that Q is a quasi-period of f .

Step 2. Denote the minimal positive quasi-period of f by T . We prove that T | fpxq for all
integers x.

Since an odd number Q is a quasi-period of f , the number T is also odd. Now suppose, to
the contrary, that there exist an odd prime p, a positive integer α, and an integer u such that
pα | T but pα ∤ fpuq. Setting x “ u and y “ 0 in (1), we have 2fpuq “ f

`

u`fpuq
˘

`f
`

u´fpuq
˘

,
so pα does not divide the value of f at one of the points u`fpuq or u´fpuq. Denote this point
by v.

Let L “ lcm
`

fpuq, fpvq
˘

. Since |u ´ v| “ fpuq, from Lemma 1 we get ∆2fpuq∆Lf “ 0.
Hence the function ∆Lf is 2fpuq-periodic as well as T -periodic, so it is gcd

`

T, 2fpuq
˘

-periodic,
or ∆gcdpT,2fpuqq∆Lf “ 0. Similarly, observe that the function ∆gcdpT,2fpuqqf is L-periodic as
well as T -periodic, so we may conclude that ∆gcdpT,Lq∆gcdpT,2fpuqqf “ 0. Since pα ∤ L, both
gcd

`

T, 2fpuq
˘

and gcdpT, Lq divide T {p. We thus obtain ∆T {p∆T {pf “ 0, which yields

∆T {p∆T {p∆1f “ 0.

Since ∆T∆1f “ 0, we can apply Lemma 2 to the function ∆1f , obtaining ∆T {p∆1f “ 0.
However, this means that f is pT {pq-quasi-periodic, contradicting the minimality of T . Our
claim is proved.

Step 3. We describe all functions f .

Let d be the greatest common divisor of all values of f . Then d is odd. By Step 2, d is a
quasi-period of f , so that ∆df is constant. Since the value of ∆df is even and divisible by d,
we may denote this constant by 2dk, where k is an integer. Next, for all i “ 0, 1, . . . , d ´ 1,
define ℓi “ fpiq{d; notice that ℓi is odd. Then

fpmd` iq “ ∆mdfpiq ` fpiq “ 2kmd ` ℓid for all m P Z and i “ 0, 1, . . . , d´ 1.

This shows that all functions satisfying (1) are listed in the answer.
It remains to check that all such functions indeed satisfy (1). This is equivalent to check-

ing (2), which is true because for every integer x, the value of fpxq is divisible by d, so that
∆fpxqf is constant.

Comment. After obtaining Lemmas 1 and 2, it is possible to complete the steps in a different order.
Here we sketch an alternative approach.

For any function g and any nonzero integer t, we say that g is t-pseudo-periodic if ∆t∆tg “ 0. In
this case, we call t a pseudo-period of g, and we say that g is pseudo-periodic.

Let us first prove a basic property: if a function g is pseudo-periodic, then its minimal positive
pseudo-period divides all its pseudo-periods. To establish this, it suffices to show that if t and s
are pseudo-periods of g with t ‰ s, then so is t ´ s. Indeed, suppose that ∆t∆tg “ ∆s∆sg “ 0.
Then ∆t∆t∆sg “ ∆ts∆sg “ 0, so that ∆t∆sg “ 0 by Lemma 2. Taking differences, we obtain
∆t∆t´sg “ ∆s∆t´sg “ 0, and thus ∆t´s∆t´sg “ 0.

Now let f satisfy the problem condition. We will show that f is pseudo-periodic. When this is
done, we will let T 1 be the minimal pseudo-period of f , and show that T 1 divides 2fpxq for every
integer x, using arguments similar to Step 2 of the solution. Then we will come back to Step 1 by
showing that T 1 is also a quasi-period of f .
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First, Lemma 1 yields that ∆2py´xq∆lcmpfpxq,fpyqqf “ 0 for every distinct integers x and y. Hence
f is pseudo-periodic with pseudo-period Lx,y “ lcm

`

2py ´ xq, fpxq, fpyq
˘

.
We now show that T 1 | 2fpxq for every integer x. Suppose, to the contrary, that there exists an

integer u, a prime p, and a positive integer α such that pα | T 1 and pα ∤ 2fpuq. Choose v as in Step 2 and
employ Lemma 1 to obtain ∆2fpuq∆lcmpfpuq,fpvqqf “ 0. However, this implies that ∆T 1{p∆T 1{pf “ 0, a
contradiction with the minimality of T 1.

We now claim that ∆T 1∆2f “ 0. Indeed, Lemma 1 implies that there exists an integer s such that
∆s∆2f “ 0. Hence ∆T 1s∆2f “ ∆T 1∆T 1∆2f “ 0, which allows us to conclude that ∆T 1∆2f “ 0 by
Lemma 2. (The last two paragraphs are similar to Step 2 of the solution.)

Now, it is not difficult to finish the solution, though more work is needed to eliminate the factors
of 2 from the subscripts of ∆T 1∆2f “ 0. Once this is done, we will obtain an odd quasi-period of f
that divides fpxq for all integers x. Then we can complete the solution as in Step 3.
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A6. Let n be a fixed integer with n ě 2. We say that two polynomials P and Q with real
coefficients are block-similar if for each i P t1, 2, . . . , nu the sequences

P p2015iq, P p2015i´ 1q, . . . , P p2015i´ 2014q and

Qp2015iq, Qp2015i´ 1q, . . . , Qp2015i´ 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degree n` 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)

Solution 1. For convenience, we set k “ 2015 “ 2ℓ ` 1.

Part (a). Consider the following polynomials of degree n` 1:

P pxq “
n
ź

i“0

px ´ ikq and Qpxq “
n
ź

i“0

px´ ik ´ 1q.

Since Qpxq “ P px ´ 1q and P p0q “ P pkq “ P p2kq “ ¨ ¨ ¨ “ P pnkq, these polynomials are
block-similar (and distinct).

Part (b). For every polynomial F pxq and every nonnegative integer m, define ΣF pmq “
řm

i“1 F piq; in particular, ΣF p0q “ 0. It is well-known that for every nonnegative integer d the
sum

řm
i“1 i

d is a polynomial in m of degree d ` 1. Thus ΣF may also be regarded as a real
polynomial of degree degF ` 1 (with the exception that if F “ 0, then ΣF “ 0 as well). This
allows us to consider the values of ΣF at all real points (where the initial definition does not
apply).

Assume for the sake of contradiction that there exist two distinct block-similar polynomials
P pxq and Qpxq of degree n. Then both polynomials ΣP´Qpxq and ΣP 2´Q2pxq have roots at the
points 0, k, 2k, . . . , nk. This motivates the following lemma, where we use the special polynomial

T pxq “
n
ź

i“0

px´ ikq.

Lemma. Assume that F pxq is a nonzero polynomial such that 0, k, 2k, . . . , nk are among the
roots of the polynomial ΣF pxq. Then degF ě n, and there exists a polynomial Gpxq such that
degG “ degF ´ n and F pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q.
Proof. If deg F ă n, then ΣF pxq has at least n ` 1 roots, while its degree is less than n ` 1.
Therefore, ΣF pxq “ 0 and hence F pxq “ 0, which is impossible. Thus degF ě n.

The lemma condition yields that ΣF pxq “ T pxqGpxq for some polynomial Gpxq such that
degG “ deg ΣF ´ pn ` 1q “ degF ´ n.

Now, let us define F1pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q. Then for every positive integer n
we have

ΣF1pnq “
n
ÿ

i“1

`

T pxqGpxq ´ T px´ 1qGpx´ 1q
˘

“ T pnqGpnq ´ T p0qGp0q “ T pnqGpnq “ ΣF pnq,

so the polynomial ΣF´F1pxq “ ΣF pxq ´ ΣF1pxq has infinitely many roots. This means that this
polynomial is zero, which in turn yields F pxq “ F1pxq, as required. l
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First, we apply the lemma to the nonzero polynomial R1pxq “ P pxq´Qpxq. Since the degree
of R1pxq is at most n, we conclude that it is exactly n. Moreover, R1pxq “ α ¨

`

T pxq ´T px´1q
˘

for some nonzero constant α.

Our next aim is to prove that the polynomial Spxq “ P pxq `Qpxq is constant. Assume the
contrary. Then, notice that the polynomial R2pxq “ P pxq2´Qpxq2 “ R1pxqSpxq is also nonzero
and satisfies the lemma condition. Since n ă degR1 ` deg S “ degR2 ď 2n, the lemma yields

R2pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q

with some polynomial Gpxq with 0 ă degG ď n.
Since the polynomial R1pxq “ α

`

T pxq ´ T px´ 1q
˘

divides the polynomial

R2pxq “ T pxq
`

Gpxq ´ Gpx´ 1q
˘

` Gpx´ 1q
`

T pxq ´ T px´ 1q
˘

,

we get R1pxq | T pxq
`

Gpxq ´ Gpx ´ 1q
˘

. On the other hand,

gcd
`

T pxq, R1pxq
˘

“ gcd
`

T pxq, T pxq ´ T px ´ 1q
˘

“ gcd
`

T pxq, T px´ 1q
˘

“ 1,

since both T pxq and T px´1q are the products of linear polynomials, and their roots are distinct.
Thus R1pxq | Gpxq ´Gpx´ 1q. However, this is impossible since Gpxq ´ Gpx´ 1q is a nonzero
polynomial of degree less than n “ degR1.

Thus, our assumption is wrong, and Spxq is a constant polynomial, say Spxq “ β. Notice
that the polynomials

`

2P pxq ´ β
˘

{α and
`

2Qpxq ´ βq{α are also block-similar and distinct.
So we may replace the initial polynomials by these ones, thus obtaining two block-similar
polynomials P pxq and Qpxq with P pxq “ ´Qpxq “ T pxq ´ T px ´ 1q. It remains to show that
this is impossible.

For every i “ 1, 2 . . . , n, the values T pik ´ k ` 1q and T pik ´ 1q have the same sign. This
means that the values P pik ´ k ` 1q “ T pik ´ k ` 1q and P pikq “ ´T pik ´ 1q have opposite
signs, so P pxq has a root in each of the n segments rik ´ k ` 1, iks. Since degP “ n, it must
have exactly one root in each of them.

Thus, the sequence P p1q, P p2q, . . . , P pkq should change sign exactly once. On the other
hand, since P pxq and ´P pxq are block-similar, this sequence must have as many positive terms
as negative ones. Since k “ 2ℓ ` 1 is odd, this shows that the middle term of the sequence
above must be zero, so P pℓ ` 1q “ 0, or T pℓ ` 1q “ T pℓq. However, this is not true since

|T pℓ ` 1q| “ |ℓ ` 1| ¨ |ℓ| ¨
n
ź

i“2

|ℓ ` 1 ´ ik| ă |ℓ| ¨ |ℓ ` 1| ¨
n
ź

i“2

|ℓ ´ ik| “ |T pℓq| ,

where the strict inequality holds because n ě 2. We come to the final contradiction.

Comment 1. In the solution above, we used the fact that k ą 1 is odd. One can modify the
arguments of the last part in order to work for every (not necessarily odd) sufficiently large value of k;
namely, when k is even, one may show that the sequence P p1q, P p2q, . . . , P pkq has different numbers
of positive and negative terms.

On the other hand, the problem statement with k replaced by 2 is false, since the polynomials
P pxq “ T pxq ´T px´1q and Qpxq “ T px´1q ´T pxq are block-similar in this case, due to the fact that
P p2i ´ 1q “ ´P p2iq “ Qp2iq “ ´Qp2i ´ 1q “ T p2i ´ 1q for all i “ 1, 2, . . . , n. Thus, every complete
solution should use the relation k ą 2.

One may easily see that the condition n ě 2 is also substantial, since the polynomials x and
k ` 1 ´ x become block-similar if we set n “ 1.

It is easily seen from the solution that the result still holds if we assume that the polynomials have
degree at most n.
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Solution 2. We provide an alternative argument for part pbq.
Assume again that there exist two distinct block-similar polynomials P pxq and Qpxq of

degree n. Let Rpxq “ P pxq ´ Qpxq and Spxq “ P pxq ` Qpxq. For brevity, we also denote the
segment

“

pi ´ 1qk ` 1, ik
‰

by Ii, and the set
 

pi´ 1qk ` 1, pi´ 1qk ` 2, . . . , ik
(

of all integer
points in Ii by Zi.

Step 1. We prove that Rpxq has exactly one root in each segment Ii, i “ 1, 2, . . . , n, and all
these roots are simple.

Indeed, take any i P t1, 2, . . . , nu and choose some points p´, p` P Zi so that

P pp´q “ min
xPZi

P pxq and P pp`q “ max
xPZi

P pxq.

Since the sequences of values of P and Q in Zi are permutations of each other, we have
Rpp´q “ P pp´q ´Qpp´q ď 0 and Rpp`q “ P pp`q ´Qpp`q ě 0. Since Rpxq is continuous, there
exists at least one root of Rpxq between p´ and p` — thus in Ii.

So, Rpxq has at least one root in each of the n disjoint segments Ii with i “ 1, 2, . . . , n.
Since Rpxq is nonzero and its degree does not exceed n, it should have exactly one root in each
of these segments, and all these roots are simple, as required.

Step 2. We prove that Spxq is constant.

We start with the following claim.

Claim. For every i “ 1, 2, . . . , n, the sequence of values S
`

pi´ 1qk ` 1
˘

, S
`

pi´ 1qk ` 2
˘

, . . . ,
Spikq cannot be strictly increasing.

Proof. Fix any i P t1, 2, . . . , nu. Due to the symmetry, we may assume that P
`

ikq ď Qpikq.
Choose now p´ and p` as in Step 1. If we had P pp`q “ P pp´q, then P would be constant
on Zi, so all the elements of Zi would be the roots of Rpxq, which is not the case. In particular,
we have p` ‰ p´. If p´ ą p`, then Spp´q “ P pp´q ` Qpp´q ď Qpp`q ` P pp`q “ Spp`q, so our
claim holds.

We now show that the remaining case p´ ă p` is impossible. Assume first that P pp`q ą
Qpp`q. Then, like in Step 1, we have Rpp´q ď 0, Rpp`q ą 0, and Rpikq ď 0, so Rpxq has a root
in each of the intervals rp´, p`q and pp`, iks. This contradicts the result of Step 1.

We are left only with the case p´ ă p` and P pp`q “ Qpp`q (thus p` is the unique root of
Rpxq in Ii). If p` “ ik, then the values of Rpxq on Zi z tiku are all of the same sign, which
is absurd since their sum is zero. Finally, if p´ ă p` ă ik, then Rpp´q and Rpikq are both
negative. This means that Rpxq should have an even number of roots in rp´, iks, counted with
multiplicity. This also contradicts the result of Step 1. l

In a similar way, one may prove that for every i “ 1, 2, . . . , n, the sequence S
`

pi ´ 1qk ` 1
˘

,
S
`

pi´ 1qk ` 2
˘

, . . . , Spikq cannot be strictly decreasing. This means that the polynomial
∆Spxq “ Spxq ´ Spx ´ 1q attains at least one nonnegative value, as well as at least one non-
positive value, on the set Zi (and even on Zi z

 

pi´ 1qk ` 1
(

); so ∆S has a root in Ii.
Thus ∆S has at least n roots; however, its degree is less than n, so ∆S should be identically

zero. This shows that Spxq is a constant, say Spxq ” β.

Step 3. Notice that the polynomials P pxq ´ β{2 and Qpxq ´ β{2 are also block-similar and
distinct. So we may replace the initial polynomials by these ones, thus reaching P pxq “ ´Qpxq.

Then Rpxq “ 2P pxq, so P pxq has exactly one root in each of the segments Ii, i “ 1, 2, . . . , n.
On the other hand, P pxq and ´P pxq should attain the same number of positive values on Zi.
Since k is odd, this means that Zi contains exactly one root of P pxq; moreover, this root should
be at the center of Zi, because P pxq has the same number of positive and negative values on Zi.

Thus we have found all n roots of P pxq, so

P pxq “ c
n
ź

i“1

px´ ik ` ℓq for some c P R z t0u,
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where ℓ “ pk ´ 1q{2. It remains to notice that for every t P Z1 z t1u we have

|P ptq| “ |c| ¨ |t ´ ℓ ´ 1| ¨
n
ź

i“2

|t´ ik ` ℓ| ă |c| ¨ ℓ ¨
n
ź

i“2

|1 ´ ik ` ℓ| “ |P p1q|,

so P p1q ‰ ´P ptq for all t P Z1. This shows that P pxq is not block-similar to ´P pxq. The final
contradiction.

Comment 2. One may merge Steps 1 and 2 in the following manner. As above, we set Rpxq “
P pxq ´Qpxq and Spxq “ P pxq `Qpxq.

We aim to prove that the polynomial Spxq “ 2P pxq ´Rpxq “ 2Qpxq `Rpxq is constant. Since the
degrees of Rpxq and Spxq do not exceed n, it suffices to show that the total number of roots of Rpxq
and ∆Spxq “ Spxq ´ Spx´ 1q is at least 2n. For this purpose, we prove the following claim.

Claim. For every i “ 1, 2, . . . , n, either each of R and ∆S has a root in Ii, or R has at least two roots
in Ii.

Proof. Fix any i P t1, 2, . . . , nu. Let r P Zi be a point such that |Rprq| “ maxxPZi
|Rpxq|; we may

assume that Rprq ą 0. Next, let p´, q` P Ii be some points such that P pp´q “ minxPZi
P pxq and

Qpq`q “ maxxPZi
Qpxq. Notice that P pp´q ď Qprq ă P prq and Qpq`q ě P prq ą Qprq, so r is different

from p´ and q`.

Without loss of generality, we may assume that p´ ă r. Then we have Rpp´q “ P pp´q ´Qpp´q ď
0 ă Rprq, so Rpxq has a root in rp´, rq. If q` ą r, then, similarly, Rpq`q ď 0 ă Rprq, and Rpxq also
has a root in pr, q`s; so Rpxq has two roots in Ii, as required.

In the remaining case we have q` ă r; it suffices now to show that in this case ∆S has a root in Ii.
Since P pp´q ď Qprq and |Rpp´q| ď Rprq, we have Spp´q “ 2P pp´q ´ Rpp´q ď 2Qprq ` Rprq “ Sprq.
Similarly, we get Spq`q “ 2Qpq`q `Rpq`q ě 2P prq ´Rprq “ Sprq. Therefore, the sequence of values
of S on Zi is neither strictly increasing nor strictly decreasing, which shows that ∆S has a root
in Ii. l

Comment 3. After finding the relation P pxq ´ Qpxq “ α
`

T pxq ´ T px ´ 1q
˘

from Solution 1, one
may also follow the approach presented in Solution 2. Knowledge of the difference of polynomials
may simplify some steps; e.g., it is clear now that P pxq ´ Qpxq has exactly one root in each of the
segments Ii.
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Combinatorics

C1. In Lineland there are n ě 1 towns, arranged along a road running from left to right.
Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer
(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one
off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets.
Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.
(Estonia)

Solution 1. Let T1, T2, . . . , Tn be the towns enumerated from left to right. Observe first that,
if town Ti can sweep away town Tj , then Ti also can sweep away every town located between Ti
and Tj .

We prove the problem statement by strong induction on n. The base case n “ 1 is trivial.

For the induction step, we first observe that the left bulldozer in T1 and the right bulldozer
in Tn are completely useless, so we may forget them forever. Among the other 2n´2 bulldozers,
we choose the largest one. Without loss of generality, it is the right bulldozer of some town Tk
with k ă n.

Surely, with this large bulldozer Tk can sweep away all the towns to the right of it. Moreover,
none of these towns can sweep Tk away; so they also cannot sweep away any town to the left
of Tk. Thus, if we remove the towns Tk`1, Tk`2, . . . , Tn, none of the remaining towns would
change its status of being (un)sweepable away by the others.

Applying the induction hypothesis to the remaining towns, we find a unique town among
T1, T2, . . . , Tk which cannot be swept away. By the above reasons, it is also the unique such
town in the initial situation. Thus the induction step is established.

Solution 2. We start with the same enumeration and the same observation as in Solution 1.
We also denote by ℓi and ri the sizes of the left and the right bulldozers belonging to Ti,
respectively. One may easily see that no two towns Ti and Tj with i ă j can sweep each other
away, for this would yield ri ą ℓj ą ri.

Clearly, there is no town which can sweep Tn away from the right. Then we may choose the
leftmost town Tk which cannot be swept away from the right. One can observe now that no
town Ti with i ą k may sweep away some town Tj with j ă k, for otherwise Ti would be able
to sweep Tk away as well.

Now we prove two claims, showing together that Tk is the unique town which cannot be
swept away, and thus establishing the problem statement.

Claim 1. Tk also cannot be swept away from the left.

Proof. Let Tm be some town to the left of Tk. By the choice of Tk, town Tm can be swept
away from the right by some town Tp with p ą m. As we have already observed, p cannot be
greater than k. On the other hand, Tm cannot sweep Tp away, so a fortiori it cannot sweep Tk
away. l

Claim 2. Any town Tm with m ‰ k can be swept away by some other town.
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Proof. If m ă k, then Tm can be swept away from the right due to the choice of Tk. In the
remaining case we have m ą k.

Let Tp be a town among Tk, Tk`1, . . . , Tm´1 having the largest right bulldozer. We claim
that Tp can sweep Tm away. If this is not the case, then rp ă ℓq for some q with p ă q ď m. But
this means that ℓq is greater than all the numbers ri with k ď i ď m ´ 1, so Tq can sweep Tk
away. This contradicts the choice of Tk. l

Comment 1. One may employ the same ideas within the inductive approach. Here we sketch such
a solution.

Assume that the problem statement holds for the collection of towns T1, T2, . . . , Tn´1, so that there
is a unique town Ti among them which cannot be swept away by any other of them. Thus we need
to prove that in the full collection T1, T2, . . . , Tn, exactly one of the towns Ti and Tn cannot be swept
away.

If Tn cannot sweep Ti away, then it remains to prove that Tn can be swept away by some other
town. This can be established as in the second paragraph of the proof of Claim 2.

If Tn can sweep Ti away, then it remains to show that Tn cannot be swept away by any other town.
Since Tn can sweep Ti away, it also can sweep all the towns Ti, Ti`1, . . . , Tn´1 away, so Tn cannot be
swept away by any of those. On the other hand, none of the remaining towns T1, T2, . . . , Ti´1 can
sweep Ti away, so that they cannot sweep Tn away as well.

Comment 2. Here we sketch yet another inductive approach. Assume that n ą 1. Firstly, we find a
town which can be swept away by each of its neighbors (each town has two neighbors, except for the
bordering ones each of which has one); we call such town a loser. Such a town exists, because there
are n´ 1 pairs of neighboring towns, and in each of them there is only one which can sweep the other
away; so there exists a town which is a winner in none of these pairs.

Notice that a loser can be swept away, but it cannot sweep any other town away (due to its
neighbors’ protection). Now we remove a loser, and suggest its left bulldozer to its right neighbor (if
it exists), and its right bulldozer to a left one (if it exists). Surely, a town accepts a suggestion if a
suggested bulldozer is larger than the town’s one of the same orientation.

Notice that suggested bulldozers are useless in attack (by the definition of a loser), but may serve
for defensive purposes. Moreover, each suggested bulldozer’s protection works for the same pairs of
remaining towns as before the removal.

By the induction hypothesis, the new configuration contains exactly one town which cannot be
swept away. The arguments above show that the initial one also satisfies this property.

Solution 3. We separately prove that piq there exists a town which cannot be swept away,
and that piiq there is at most one such town. We also make use of the two observations from
the previous solutions.

To prove piq, assume contrariwise that every town can be swept away. Let t1 be the leftmost
town; next, for every k “ 1, 2, . . . we inductively choose tk`1 to be some town which can sweep
tk away. Now we claim that for every k “ 1, 2, . . . , the town tk`1 is to the right of tk; this leads
to the contradiction, since the number of towns is finite.

Induction on k. The base case k “ 1 is clear due to the choice of t1. Assume now that for
all j with 1 ď j ă k, the town tj`1 is to the right of tj . Suppose that tk`1 is situated to the left
of tk; then it lies between tj and tj`1 (possibly coinciding with tj) for some j ă k. Therefore,
tk`1 can be swept away by tj`1, which shows that it cannot sweep tj`1 away — so tk`1 also
cannot sweep tk away. This contradiction proves the induction step.

To prove piiq, we also argue indirectly and choose two towns A and B neither of which can
be swept away, with A being to the left of B. Consider the largest bulldozer b between them
(taking into consideration the right bulldozer of A and the left bulldozer of B). Without loss
of generality, b is a left bulldozer; then it is situated in some town to the right of A, and this
town may sweep A away since nothing prevents it from doing that. A contradiction.
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Comment 3. The Problem Selection Committee decided to reformulate this problem. The original
formulation was as follows.

Let n be a positive integer. There are n cards in a deck, enumerated from bottom to top with
numbers 1, 2, . . . , n. For each i “ 1, 2, . . . , n, an even number ai is printed on the lower side and an
odd number bi is printed on the upper side of the ith card. We say that the ith card opens the jth card,
if i ă j and bi ă ak for every k “ i ` 1, i ` 2, . . . , j. Similarly, we say that the ith card closes the
jth card, if i ą j and ai ă bk for every k “ i´ 1, i´ 2, . . . , j. Prove that the deck contains exactly one
card which is neither opened nor closed by any other card.
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C2. Let V be a finite set of points in the plane. We say that V is balanced if for any two
distinct points A,B P V, there exists a point C P V such that AC “ BC. We say that V is
center-free if for any distinct points A,B,C P V, there does not exist a point P P V such that
PA “ PB “ PC.

(a) Show that for all n ě 3, there exists a balanced set consisting of n points.

(b) For which n ě 3 does there exist a balanced, center-free set consisting of n points?

(Netherlands)

Answer for part (b). All odd integers n ě 3.

Solution.

Part (a). Assume that n is odd. Consider a regular n-gon. Label the vertices of the n-gon
as A1, A2, . . . , An in counter-clockwise order, and set V “ tA1, . . . , Anu. We check that V is
balanced. For any two distinct vertices Ai and Aj , let k P t1, 2, . . . , nu be the solution of
2k ” i ` j pmod nq. Then, since k ´ i ” j ´ k pmod nq, we have AiAk “ AjAk, as required.

Now assume that n is even. Consider a regular p3n ´ 6q-gon, and let O be its circum-
center. Again, label its vertices as A1, . . . , A3n´6 in counter-clockwise order, and choose V “
tO,A1, A2, . . . , An´1u. We check that V is balanced. For any two distinct vertices Ai and Aj, we
always have OAi “ OAj. We now consider the vertices O and Ai. First note that the triangle
OAiAn{2´1`i is equilateral for all i ď n

2
. Hence, if i ď n

2
, then we have OAn{2´1`i “ AiAn{2´1`i;

otherwise, if i ą n
2
, then we have OAi´n{2`1 “ AiAi´n{2`1. This completes the proof.

An example of such a construction when n “ 10 is shown in Figure 1.

O

A1

A2

A3

A4 A5
A6

A7

A8

A9
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

A1

B1

A2

B2A3

B3

C

D

E

Figure 1 Figure 2

Comment (a). There are many ways to construct an example by placing equilateral triangles in a
circle. Here we present one general method.

Let O be the center of a circle and let A1, B1, . . . , Ak, Bk be distinct points on the circle such
that the triangle OAiBi is equilateral for each i. Then V “ tO,A1, B1, . . . , Ak, Bku is balanced. To
construct a set of even cardinality, put extra points C,D,E on the circle such that triangles OCD
and ODE are equilateral (see Figure 2). Then V “ tO,A1, B1, . . . , Ak, Bk, C,D,Eu is balanced.

Part (b). We now show that there exists a balanced, center-free set containing n points for
all odd n ě 3, and that one does not exist for any even n ě 3.

If n is odd, then let V be the set of vertices of a regular n-gon. We have shown in part (a)
that V is balanced. We claim that V is also center-free. Indeed, if P is a point such that
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PA “ PB “ PC for some three distinct vertices A,B and C, then P is the circumcenter of
the n-gon, which is not contained in V.

Now suppose that V is a balanced, center-free set of even cardinality n. We will derive a
contradiction. For a pair of distinct points A,B P V, we say that a point C P V is associated
with the pair tA,Bu if AC “ BC. Since there are npn´1q

2
pairs of points, there exists a point

P P V which is associated with at least
P

npn´1q
2

L

n
T

“ n
2
pairs. Note that none of these n

2
pairs

can contain P , so that the union of these n
2
pairs consists of at most n ´ 1 points. Hence

there exist two such pairs that share a point. Let these two pairs be tA,Bu and tA,Cu. Then
PA “ PB “ PC, which is a contradiction.

Comment (b). We can rephrase the argument in graph theoretic terms as follows. Let V be a
balanced, center-free set consisting of n points. For any pair of distinct vertices A,B P V and for
any C P V such that AC “ BC, draw directed edges A Ñ C and B Ñ C. Then all pairs of vertices
generate altogether at least npn´1q directed edges; since the set is center-free, these edges are distinct.
So we must obtain a graph in which any two vertices are connected in both directions. Now, each
vertex has exactly n´ 1 incoming edges, which means that n´ 1 is even. Hence n is odd.
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C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty
subsets A1 and A2 good if the least common multiple of the elements in A1 is equal to the
greatest common divisor of the elements in A2. Determine the minimum value of n such that
there exists a set of n positive integers with exactly 2015 good partitions.

(Ukraine)

Answer. 3024.

Solution. Let A “ ta1, a2, . . . , anu, where a1 ă a2 ă ¨ ¨ ¨ ă an. For a finite nonempty set B
of positive integers, denote by lcmB and gcdB the least common multiple and the greatest
common divisor of the elements in B, respectively.

Consider any good partition pA1, A2q of A. By definition, lcmA1 “ d “ gcdA2 for some
positive integer d. For any ai P A1 and aj P A2, we have ai ď d ď aj. Therefore, we have
A1 “ ta1, a2, . . . , aku and A2 “ tak`1, ak`2, . . . , anu for some k with 1 ď k ă n. Hence, each
good partition is determined by an element ak, where 1 ď k ă n. We call such ak partitioning.

It is convenient now to define ℓk “ lcmpa1, a2, . . . , akq and gk “ gcdpak`1, ak`2, . . . , anq for
1 ď k ď n´ 1. So ak is partitioning exactly when ℓk “ gk.

We proceed by proving some properties of partitioning elements, using the following claim.

Claim. If ak´1 and ak are partitioning where 2 ď k ď n ´ 1, then gk´1 “ gk “ ak.

Proof. Assume that ak´1 and ak are partitioning. Since ℓk´1 “ gk´1, we have ℓk´1 | ak.
Therefore, gk “ ℓk “ lcmpℓk´1, akq “ ak, and gk´1 “ gcdpak, gkq “ ak, as desired. l

Property 1. For every k “ 2, 3, . . . , n´ 2, at least one of ak´1, ak, and ak`1 is not partitioning.

Proof. Suppose, to the contrary, that all three numbers ak´1, ak, and ak`1 are partitioning. The
claim yields that ak`1 “ gk “ ak, a contradiction. l

Property 2. The elements a1 and a2 cannot be simultaneously partitioning. Also, an´2 and
an´1 cannot be simultaneously partitioning

Proof. Assume that a1 and a2 are partitioning. By the claim, it follows that a2 “ g1 “ ℓ1 “
lcmpa1q “ a1, a contradiction.

Similarly, assume that an´2 and an´1 are partitioning. The claim yields that an´1 “ gn´1 “
gcdpanq “ an, a contradiction. l

Now let A be an n-element set with exactly 2015 good partitions. Clearly, we have
n ě 5. Using Property 2, we find that there is at most one partitioning element in each
of ta1, a2u and tan´2, an´1u. By Property 1, there are at least

X

n´5
3

\

non-partitioning elements

in ta3, a4, . . . , an´3u. Therefore, there are at most pn ´ 1q ´ 2 ´
X

n´5
3

\

“
P

2pn´2q
3

T

partitioning

elements in A. Thus,
P

2pn´2q
3

T

ě 2015, which implies that n ě 3024.
Finally, we show that there exists a set of 3024 positive integers with exactly 2015 parti-

tioning elements. Indeed, in the set A “ t2 ¨ 6i, 3 ¨ 6i, 6i`1 | 0 ď i ď 1007u, each element of the
form 3 ¨ 6i or 6i, except 61008, is partitioning.

Therefore, the minimum possible value of n is 3024.

Comment. Here we will work out the general case when 2015 is replaced by an arbitrary positive
integer m. Note that the bound

P2pn´2q
3

T

ě m obtained in the solution is, in fact, true for any positive

integers m and n. Using this bound, one can find that n ě
P 3m

2

T

` 1.

To show that the bound is sharp, one constructs a set of
P

3m
2

T

` 1 elements with exactly m good
partitions. Indeed, the minimum is attained on the set t6i, 2 ¨ 6i, 3 ¨ 6i | 0 ď i ď t´ 1u Y t6tu for every
even m “ 2t, and t2 ¨ 6i, 3 ¨ 6i, 6i`1 | 0 ď i ď t´ 1u for every odd m “ 2t ´ 1.
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C4. Let n be a positive integer. Two players A and B play a game in which they take turns
choosing positive integers k ď n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

piiq A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piiiq The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

(Finland)

Answer. The game ends in a draw when n “ 1, 2, 4, 6; otherwise B wins.

Solution. For brevity, we denote by rns the set t1, 2, . . . , nu.
Firstly, we show that B wins whenever n ‰ 1, 2, 4, 6. For this purpose, we provide a strategy

which guarantees that B can always make a move after A’s move, and also guarantees that the
game does not end in a draw.

We begin with an important observation.

Lemma. Suppose that B’s first pick is n and that A has made the kthmove where k ě 2. Then
B can also make the kthmove.

Proof. Let S be the set of the first k numbers chosen by A. Since S does not contain consecutive
integers, we see that the set rns z S consists of k “contiguous components” if 1 P S, and k ` 1
components otherwise. Since B has chosen only k´1 numbers, there is at least one component
of rns z S consisting of numbers not yet picked by B. Hence, B can choose a number from this
component. l

We will now describe a winning strategy for B, when n ‰ 1, 2, 4, 6. By symmetry, we may
assume that A’s first choice is a number not exceeding n`1

2
. So B can pick the number n in

B’s first turn. We now consider two cases.

Case 1. n is odd and n ě 3. The only way the game ends in a draw is that A eventually picks
all the odd numbers from the set rns. However, B has already chosen n, so this cannot happen.
Thus B can continue to apply the lemma until A cannot make a move.

Case 2. n is even and n ě 8. Since B has picked n, the game is a draw only if A can
eventually choose all the odd numbers from the set rn´ 1s. So B picks a number from the set
t1, 3, 5, . . . , n´ 3u not already chosen by A, on B’s second move. This is possible since the set
consists of n´2

2
ě 3 numbers and A has chosen only 2 numbers. Hereafter B can apply the

lemma until A cannot make a move.

Hence, in both cases A loses.

We are left with the cases n “ 1, 2, 4, 6. The game is trivially a draw when n “ 1, 2. When
n “ 4, A has to first pick 1 to avoid losing. Similarly, B has to choose 4 as well. It then follows
that the game ends in a draw.

When n “ 6, B gets at least a draw by the lemma or by using a mirror strategy. On the
other hand, A may also get at least a draw in the following way. In the first turn, A chooses 1.
After B’s response by a number b, A finds a neighbor c of b which differs from 1 and 2, and
reserves c for A’s third move. Now, clearly A can make the second move by choosing a number
different from 1, 2, c´ 1, c, c` 1. Therefore A will not lose.
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Comment 1. We present some explicit winning strategies for B.

We start with the case n is odd and n ě 3. B starts by picking n in the first turn. On the kthmove
for k ě 2, B chooses the number exactly 1 less than A’s kth pick. The only special case is when A’s
kth choice is 1. In this situation, A’s first pick was a number a ą 1 and B can respond by choosing
a ´ 1 on the kthmove instead.

We now give an alternative winning strategy in the case n is even and n ě 8. We first present a
winning strategy for the case when A’s first pick is 1. We consider two cases depending on A’s second
move.

Case 1. A’s second pick is 3. Then B chooses n´3 on the second move. On the kthmove, B chooses
the number exactly 1 less than A’s kth pick except that B chooses 2 if A’s kth pick is n´ 2 or n´ 1.

Case 2. A’s second pick is a ą 3. Then B chooses a ´ 2 on the second move. Afterwards on the
kthmove, B picks the number exactly 1 less than A’s kth pick.

One may easily see that this strategy guarantees B’s victory, when A’s first pick is 1.

The following claim shows how to extend the strategy to the general case.

Claim. Assume that B has an explicit strategy leading to a victory after A picks 1 on the first move.
Then B also has an explicit strategy leading to a victory after any first moves of A.

Proof. Let S be an optimal strategy of B after A picks 1 on the first move. Assume that A picks some
number a ą 1 on this move; we show how B can make use of S in order to win in this case.

In parallel to the real play, B starts an imaginary play. The positions in these plays differ by
flipping the segment r1, as; so, if a player chooses some number x in the real play, then the same player
chooses a number x or a ` 1 ´ x in the imaginary play, depending on whether x ą a or x ď a. Thus
A’s first pick in the imaginary play is 1.

Clearly, a number is chosen in the real play exactly if the corresponding number is chosen in the
imaginary one. Next, if an unchosen number is neighboring to one chosen by A in the imaginary play,
then the corresponding number also has this property in the real play, so A also cannot choose it.
One can easily see that a similar statement with real and imaginary plays interchanged holds for B
instead of A.

Thus, when A makes some move in the real play, B may imagine the corresponding legal move in
the imaginary one. Then B chooses the response according to S in the imaginary game and makes
the corresponding legal move in the real one. Acting so, B wins the imaginary game, thus B will also
win the real one. l

Hence, B has a winning strategy for all even n greater or equal to 8.

Notice that the claim can also be used to simplify the argument when n is odd.

Comment 2. One may also employ symmetry when n is odd. In particular, B could use a mirror
strategy. However, additional ideas are required to modify the strategy after A picks n`1

2
.
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C5. Consider an infinite sequence a1, a2, . . . of positive integers with ai ď 2015 for all i ě 1.
Suppose that for any two distinct indices i and j we have i` ai ‰ j ` aj.

Prove that there exist two positive integers b and N such that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 10072

whenever n ą m ě N .
(Australia)

Solution 1. We visualize the set of positive integers as a sequence of points. For each n we
draw an arrow emerging from n that points to n` an; so the length of this arrow is an. Due to
the condition that m`am ‰ n`an for m ‰ n, each positive integer receives at most one arrow.
There are some positive integers, such as 1, that receive no arrows; these will be referred to as
starting points in the sequel. When one starts at any of the starting points and keeps following
the arrows, one is led to an infinite path, called its ray, that visits a strictly increasing sequence
of positive integers. Since the length of any arrow is at most 2015, such a ray, say with starting
point s, meets every interval of the form rn, n` 2014s with n ě s at least once.

Suppose for the sake of contradiction that there would be at least 2016 starting points.
Then we could take an integer n that is larger than the first 2016 starting points. But now the
interval rn, n` 2014s must be met by at least 2016 rays in distinct points, which is absurd. We
have thereby shown that the number b of starting points satisfies 1 ď b ď 2015. Let N denote
any integer that is larger than all starting points. We contend that b and N are as required.

To see this, let any two integers m and n with n ą m ě N be given. The sum
řn

i“m`1 ai
gives the total length of the arrows emerging from m` 1, . . . , n. Taken together, these arrows
form b subpaths of our rays, some of which may be empty. Now on each ray we look at
the first number that is larger than m; let x1, . . . , xb denote these numbers, and let y1, . . . , yb
enumerate in corresponding order the numbers defined similarly with respect to n. Then the
list of differences y1 ´ x1, . . . , yb ´ xb consists of the lengths of these paths and possibly some
zeros corresponding to empty paths. Consequently, we obtain

n
ÿ

i“m`1

ai “
b
ÿ

j“1

pyj ´ xjq ,

whence
n
ÿ

i“m`1

pai ´ bq “
b
ÿ

j“1

pyj ´ nq ´
b
ÿ

j“1

pxj ´ mq .

Now each of the b rays meets the interval rm ` 1, m ` 2015s at some point and thus x1 ´
m, . . . , xb ´m are b distinct members of the set t1, 2, . . . , 2015u. Moreover, since m` 1 is not a
starting point, it must belong to some ray; so 1 has to appear among these numbers, wherefore

1 `
b´1
ÿ

j“1

pj ` 1q ď
b
ÿ

j“1

pxj ´ mq ď 1 `
b´1
ÿ

j“1

p2016 ´ b ` jq .

The same argument applied to n and y1, . . . , yb yields

1 `
b´1
ÿ

j“1

pj ` 1q ď
b
ÿ

j“1

pyj ´ nq ď 1 `
b´1
ÿ

j“1

p2016 ´ b` jq .
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So altogether we get

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď
b´1
ÿ

j“1

`

p2016 ´ b ` jq ´ pj ` 1q
˘

“ pb´ 1qp2015 ´ bq

ď
ˆpb ´ 1q ` p2015 ´ bq

2

˙2

“ 10072 ,

as desired.

Solution 2. Set sn “ n` an for all positive integers n. By our assumptions, we have

n ` 1 ď sn ď n` 2015

for all n P Zą0. The members of the sequence s1, s2, . . . are distinct. We shall investigate the
set

M “ Zą0 z ts1, s2, . . .u .

Claim. At most 2015 numbers belong to M .

Proof. Otherwise let m1 ă m2 ă ¨ ¨ ¨ ă m2016 be any 2016 distinct elements from M . For
n “ m2016 we have

ts1, . . . , snu Y tm1, . . . , m2016u Ď t1, 2, . . . , n` 2015u ,

where on the left-hand side we have a disjoint union containing altogether n ` 2016 elements.
But the set on the right-hand side has only n ` 2015 elements. This contradiction proves our
claim. l

Now we work towards proving that the positive integers b “ |M | and N “ maxpMq are as
required. Recall that we have just shown b ď 2015.

Let us consider any integer r ě N . As in the proof of the above claim, we see that

Br “ M Y ts1, . . . , sru (1)

is a subset of r1, r`2015sXZ with precisely b`r elements. Due to the definitions ofM and N ,
we also know r1, r ` 1s X Z Ď Br. It follows that there is a set Cr Ď t1, 2, . . . , 2014u with
|Cr| “ b´ 1 and

Br “
`

r1, r ` 1s X Z
˘

Y
 

r ` 1 ` x
ˇ

ˇ x P Cr

(

. (2)

For any finite set of integers J we denote the sum of its elements by
ř

J . Now the equations (1)
and (2) give rise to two ways of computing

ř

Br and the comparison of both methods leads to

ÿ

M `
r
ÿ

i“1

si “
r
ÿ

i“1

i ` bpr ` 1q `
ÿ

Cr ,

or in other words to
ÿ

M `
r
ÿ

i“1

pai ´ bq “ b`
ÿ

Cr . (3)

After this preparation, we consider any two integers m and n with n ą m ě N . Plugging
r “ n and r “ m into (3) and subtracting the estimates that result, we deduce

n
ÿ

i“m`1

pai ´ bq “
ÿ

Cn ´
ÿ

Cm .
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Since Cn and Cm are subsets of t1, 2, . . . , 2014u with |Cn| “ |Cm| “ b ´ 1, it is clear that the
absolute value of the right-hand side of the above inequality attains its largest possible value if
either Cm “ t1, 2, . . . , b ´ 1u and Cn “ t2016 ´ b, . . . , 2014u, or the other way around. In these
two cases we have

ˇ

ˇ

ˇ

ÿ

Cn ´
ÿ

Cm

ˇ

ˇ

ˇ
“ pb ´ 1qp2015 ´ bq ,

so in the general case we find

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď pb´ 1qp2015 ´ bq ď
ˆpb´ 1q ` p2015 ´ bq

2

˙2

“ 10072 ,

as desired.

Comment. The sets Cn may be visualized by means of the following process: Start with an empty
blackboard. For n ě 1, the following happens during the nth step. The number an gets written on
the blackboard, then all numbers currently on the blackboard are decreased by 1, and finally all zeros
that have arisen get swept away.

It is not hard to see that the numbers present on the blackboard after n steps are distinct and
form the set Cn. Moreover, it is possible to complete a solution based on this idea.
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C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if
it has a unique representation as a sum of an odd number of distinct elements from S. Prove
that there exist infinitely many positive integers that are not clean.

(U.S.A.)

Solution 1. Define an odd (respectively, even) representation of n to be a representation of n
as a sum of an odd (respectively, even) number of distinct elements of S. Let Zą0 denote the
set of all positive integers.

Suppose, to the contrary, that there exist only finitely many positive integers that are not
clean. Therefore, there exists a positive integer N such that every integer n ą N has exactly
one odd representation.

Clearly, S is infinite. We now claim the following properties of odd and even representations.

Property 1. Any positive integer n has at most one odd and at most one even representation.

Proof.We first show that every integer n has at most one even representation. Since S is infinite,
there exists x P S such that x ą maxtn,Nu. Then, the number n`x must be clean, and x does
not appear in any even representation of n. If n has more than one even representation, then
we obtain two distinct odd representations of n ` x by adding x to the even representations
of n, which is impossible. Therefore, n can have at most one even representation.

Similarly, there exist two distinct elements y, z P S such that y, z ą maxtn,Nu. If n has
more than one odd representation, then we obtain two distinct odd representations of n` y` z
by adding y and z to the odd representations of n. This is again a contradiction. l

Property 2. Fix s P S. Suppose that a number n ą N has no even representation. Then
n ` 2as has an even representation containing s for all integers a ě 1.

Proof. It is sufficient to prove the following statement: If n has no even representation without s,
then n`2s has an even representation containing s (and hence no even representation without s
by Property 1).

Notice that the odd representation of n` s does not contain s; otherwise, we have an even
representation of n without s. Then, adding s to this odd representation of n` s, we get that
n ` 2s has an even representation containing s, as desired. l

Property 3. Every sufficiently large integer has an even representation.

Proof. Fix any s P S, and let r be an arbitrary element in t1, 2, . . . , 2su. Then, Property 2
implies that the set Zr “ tr ` 2as : a ě 0u contains at most one number exceeding N with
no even representation. Therefore, Zr contains finitely many positive integers with no even
representation, and so does Zą0 “ Ť2s

r“1 Zr. l

In view of Properties 1 and 3, we may assume that N is chosen such that every n ą N has
exactly one odd and exactly one even representation. In particular, each element s ą N of S
has an even representation.

Property 4. For any s, t P S with N ă s ă t, the even representation of t contains s.

Proof. Suppose the contrary. Then, s` t has at least two odd representations: one obtained by
adding s to the even representation of t and one obtained by adding t to the even representation
of s. Since the latter does not contain s, these two odd representations of s ` t are distinct, a
contradiction. l

Let s1 ă s2 ă ¨ ¨ ¨ be all the elements of S, and set σn “ řn
i“1 si for each nonnegative

integer n. Fix an integer k such that sk ą N . Then, Property 4 implies that for every i ą k
the even representation of si contains all the numbers sk, sk`1, . . . , si´1. Therefore,

si “ sk ` sk`1 ` ¨ ¨ ¨ ` si´1 ` Ri “ σi´1 ´ σk´1 ` Ri, (1)

where Ri is a sum of some of s1, . . . , sk´1. In particular, 0 ď Ri ď s1 ` ¨ ¨ ¨ ` sk´1 “ σk´1.
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Let j0 be an integer satisfying j0 ą k and σj0 ą 2σk´1. Then (1) shows that, for every j ą j0,

sj`1 ě σj ´ σk´1 ą σj{2. (2)

Next, let p ą j0 be an index such that Rp “ miniąj0 Ri. Then,

sp`1 “ sk ` sk`1 ` ¨ ¨ ¨ ` sp ` Rp`1 “ psp ´ Rpq ` sp ` Rp`1 ě 2sp.

Therefore, there is no element of S larger than sp but smaller than 2sp. It follows that the
even representation τ of 2sp does not contain any element larger than sp. On the other hand,
inequality (2) yields 2sp ą s1 ` ¨ ¨ ¨ ` sp´1, so τ must contain a term larger than sp´1. Thus,
it must contain sp. After removing sp from τ , we have that sp has an odd representation not
containing sp, which contradicts Property 1 since sp itself also forms an odd representation
of sp.

Solution 2. We will also use Property 1 from Solution 1.
We first define some terminology and notations used in this solution. Let Zě0 denote the set

of all nonnegative integers. All sums mentioned are regarded as sums of distinct elements of S.
Moreover, a sum is called even or odd depending on the parity of the number of terms in it. All
closed or open intervals refer to sets of all integers inside them, e.g., ra, bs “ tx P Z : a ď x ď bu.

Again, let s1 ă s2 ă ¨ ¨ ¨ be all elements of S, and denote σn “ řn
i“1 si for each positive

integer n. Let On (respectively, En) be the set of numbers representable as an odd (respectively,
even) sum of elements of ts1, . . . , snu. Set E “ Ť8

n“1En and O “ Ť8
n“1On. We assume that

0 P En since 0 is representable as a sum of 0 terms.

We now proceed to our proof. Assume, to the contrary, that there exist only finitely
many positive integers that are not clean and denote the number of non-clean positive integers
by m´ 1. Clearly, S is infinite. By Property 1 from Solution 1, every positive integer n has at
most one odd and at most one even representation.

Step 1. We estimate sn`1 and σn`1.

Upper bounds: Property 1 yields |On| “ |En| “ 2n´1, so
ˇ

ˇr1, 2n´1 ` ms z On

ˇ

ˇ ě m. Hence,
there exists a clean integer xn P r1, 2n´1 ` ms z On. The definition of On then yields that the
odd representation of xn contains a term larger than sn. Therefore, sn`1 ď xn ď 2n´1 ` m for
every positive integer n. Moreover, since s1 is the smallest clean number, we get σ1 “ s1 ď m.
Then,

σn`1 “
n`1
ÿ

i“2

si ` s1 ď
n`1
ÿ

i“2

p2i´2 ` mq ` m “ 2n ´ 1 ` pn` 1qm

for every positive integer n. Notice that this estimate also holds for n “ 0.

Lower bounds: Since On`1 Ď r1, σn`1s, we have σn`1 ě |On`1| “ 2n for all positive integers n.
Then,

sn`1 “ σn`1 ´ σn ě 2n ´ p2n´1 ´ 1 ` nmq “ 2n´1 ` 1 ´ nm

for every positive integer n.

Combining the above inequalities, we have

2n´1 ` 1 ´ nm ď sn`1 ď 2n´1 ` m and 2n ď σn`1 ď 2n ´ 1 ` pn` 1qm, (3)

for every positive integer n.

Step 2. We prove Property 3 from Solution 1.

For every integer x and set of integers Y , define x ˘ Y “ tx ˘ y : y P Y u.
In view of Property 1, we get

En`1 “ En \ psn`1 ` Onq and On`1 “ On \ psn`1 ` Enq,
where \ denotes the disjoint union operator. Notice also that sn`2 ě 2n ` 1 ´ pn ` 1qm ą
2n´1 ´ 1 ` nm ě σn for every sufficiently large n. We now claim the following.
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Claim 1. pσn ´ sn`1, sn`2 ´ sn`1q Ď En for every sufficiently large n.

Proof. For sufficiently large n, all elements of pσn, sn`2q are clean. Clearly, the elements
of pσn, sn`2q can be in neither On nor O z On`1. So, pσn, sn`2q Ď On`1 z On “ sn`1 ` En,
which yields the claim. l

Now, Claim 1 together with inequalities (3) implies that, for all sufficiently large n,

E Ě En Ě pσn ´ sn`1, sn`2 ´ sn`1q Ě
`

2nm, 2n´1 ´ pn` 2qm
˘

.

This easily yields that Zě0 z E is also finite. Since Zě0 z O is also finite, by Property 1, there
exists a positive integer N such that every integer n ą N has exactly one even and one odd
representation.

Step 3. We investigate the structures of En and On.

Suppose that z P E2n. Since z can be represented as an even sum using ts1, s2, . . . , s2nu, so
can its complement σ2n ´ z. Thus, we get E2n “ σ2n ´ E2n. Similarly, we have

E2n “ σ2n´E2n, O2n “ σ2n´O2n, E2n`1 “ σ2n`1 ´O2n`1, O2n`1 “ σ2n`1´E2n`1. (4)

Claim 2. For every sufficiently large n, we have

r0, σns Ě On Ě pN, σn ´ Nq and r0, σns Ě En Ě pN, σn ´ Nq.

Proof. Clearly On, En Ď r0, σns for every positive integer n. We now prove On, En Ě pN, σn´Nq.
Taking n sufficiently large, we may assume that sn`1 ě 2n´1`1´nm ą 1

2
p2n´1´1`nmq ě σn{2.

Therefore, the odd representation of every element of pN, σn{2s cannot contain a term larger
than sn. Thus, pN, σn{2s Ď On. Similarly, since sn`1 ` s1 ą σn{2, we also have pN, σn{2s Ď En.
Equations (4) then yield that, for sufficiently large n, the interval pN, σn ´ Nq is a subset of
both On and En, as desired. l

Step 4. We obtain a final contradiction.

Notice that 0 P Zě0 z O and 1 P Zě0 z E. Therefore, the sets Zě0 z O and Zě0 z E are
nonempty. Denote o “ maxpZě0 zOq and e “ maxpZě0 z Eq. Observe also that e, o ď N .

Taking k sufficiently large, we may assume that σ2k ą 2N and that Claim 2 holds for
all n ě 2k. Due to (4) and Claim 2, we have that σ2k ´e is the minimal number greater than N
which is not in E2k, i.e., σ2k ´ e “ s2k`1 ` s1. Similarly,

σ2k ´ o “ s2k`1, σ2k`1 ´ e “ s2k`2, and σ2k`1 ´ o “ s2k`2 ` s1.

Therefore, we have

s1 “ ps2k`1 ` s1q ´ s2k`1 “ pσ2k ´ eq ´ pσ2k ´ oq “ o ´ e

“ pσ2k`1 ´ eq ´ pσ2k`1 ´ oq “ s2k`2 ´ ps2k`2 ` s1q “ ´s1,

which is impossible since s1 ą 0.
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C7. In a company of people some pairs are enemies. A group of people is called unsociable
if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

(Russia)

Solution 1. Let G “ pV,Eq be a graph where V is the set of people in the company and E
is the set of the enemy pairs — the edges of the graph. In this language, partitioning into 11
disjoint enemy-free subsets means properly coloring the vertices of this graph with 11 colors.

We will prove the following more general statement.

Claim. Let G be a graph with chromatic number k ě 3. Then G contains at least 2k´1 ´ k
unsociable groups.

Recall that the chromatic number of G is the least k such that a proper coloring

V “ V1 \ ¨ ¨ ¨ \ Vk (1)

exists. In view of 211 ´ 12 ą 2015, the claim implies the problem statement.

Let G be a graph with chromatic number k. We say that a proper coloring (1) of G is
leximinimal, if the k-tuple p|V1|, |V2|, . . . , |Vk|q is lexicographically minimal; in other words, the
following conditions are satisfied: the number n1 “ |V1| is minimal; the number n2 “ |V2| is
minimal, subject to the previously chosen value of n1; . . . ; the number nk´1 “ |Vk´1| is minimal,
subject to the previously chosen values of n1, . . . , nk´2.

The following lemma is the core of the proof.

Lemma 1. Suppose that G “ pV,Eq is a graph with odd chromatic number k ě 3, and let (1)
be one of its leximinimal colorings. Then G contains an odd cycle which visits all color classes
V1, V2, . . . , Vk.

Proof of Lemma 1. Let us call a cycle colorful if it visits all color classes.

Due to the definition of the chromatic number, V1 is nonempty. Choose an arbitrary vertex
v P V1. We construct a colorful odd cycle that has only one vertex in V1, and this vertex is v.

We draw a subgraph of G as follows. Place v in the center, and arrange the sets V2, V3, . . . , Vk
in counterclockwise circular order around it. For convenience, let Vk`1 “ V2. We will draw
arrows to add direction to some edges of G, and mark the vertices these arrows point to. First
we draw arrows from v to all its neighbors in V2, and mark all those neighbors. If some vertex
u P Vi with i P t2, 3, . . . , ku is already marked, we draw arrows from u to all its neighbors
in Vi`1 which are not marked yet, and we mark all of them. We proceed doing this as long as
it is possible. The process of marking is exemplified in Figure 1.

Notice that by the rules of our process, in the final state, marked vertices in Vi cannot have
unmarked neighbors in Vi`1. Moreover, v is connected to all marked vertices by directed paths.

Now move each marked vertex to the next color class in circular order (see an example in
Figure 3). In view of the arguments above, the obtained coloring V1 \W2 \ ¨ ¨ ¨ \Wk is proper.
Notice that v has a neighbor w P W2, because otherwise

`

V1 z tvu
˘

\
`

W2 Y tvu
˘

\ W3 \ ¨ ¨ ¨ \ Wk

would be a proper coloring lexicographically smaller than (1). If w was unmarked, i.e., w was
an element of V2, then it would be marked at the beginning of the process and thus moved
to V3, which did not happen. Therefore, w is marked and w P Vk.
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−→

Figure 1 Figure 2

Since w is marked, there exists a directed path from v to w. This path moves through the
sets V2, . . . , Vk in circular order, so the number of edges in it is divisible by k´1 and thus even.
Closing this path by the edge w Ñ v, we get a colorful odd cycle, as required. l

Proof of the claim. Let us choose a leximinimal coloring (1) ofG. For every set C Ď t1, 2, . . . , ku
such that |C| is odd and greater than 1, we will provide an odd cycle visiting exactly those
color classes whose indices are listed in the set C. This property ensures that we have different
cycles for different choices of C, and it proves the claim because there are 2k´1 ´ k choices for
the set C.

Let VC “ Ť

cPC Vc, and let GC be the induced subgraph of G on the vertex set VC . We
also have the induced coloring of VC with |C| colors; this coloring is of course proper. Notice
further that the induced coloring is leximinimal: if we had a lexicographically smaller coloring
pWcqcPC of GC , then these classes, together the original color classes Vi for i R C, would provide
a proper coloring which is lexicographically smaller than (1). Hence Lemma 1, applied to the
subgraph GC and its leximinimal coloring pVcqcPC , provides an odd cycle that visits exactly
those color classes that are listed in the set C. l

Solution 2. We provide a different proof of the claim from the previous solution.
We say that a graph is critical if deleting any vertex from the graph decreases the graph’s

chromatic number. Obviously every graph contains a critical induced subgraph with the same
chromatic number.

Lemma 2. Suppose that G “ pV,Eq is a critical graph with chromatic number k ě 3. Then
every vertex v of G is contained in at least 2k´2 ´ 1 unsociable groups.

Proof. For every set X Ď V , denote by npXq the number of neighbors of v in the set X .
Since G is critical, there exists a proper coloring of G z tvu with k´ 1 colors, so there exists

a proper coloring V “ V1 \ V2 \ ¨ ¨ ¨ \ Vk of G such that V1 “ tvu. Among such colorings,
take one for which the sequence

`

npV2q, npV3q, . . . , npVkq
˘

is lexicographically minimal. Clearly,
npViq ą 0 for every i “ 2, 3, . . . , k; otherwise V2 \ . . . \ Vi´1 \ pVi Y V1q \ Vi`1 \ . . . Vk would
be a proper coloring of G with k ´ 1 colors.

We claim that for every C Ď t2, 3, . . . , ku with |C| ě 2 being even, G contains an unsociable
group so that the set of its members’ colors is precisely C Y t1u. Since the number of such
sets C is 2k´2 ´ 1, this proves the lemma. Denote the elements of C by c1, . . . , c2ℓ in increasing
order. For brevity, let Ui “ Vci. Denote by Ni the set of neighbors of v in Ui.
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We show that for every i “ 1, . . . , 2ℓ ´ 1 and x P Ni, the subgraph induced by Ui Y Ui`1

contains a path that connects x with another point in Ni`1. For the sake of contradiction,
suppose that no such path exists. Let S be the set of vertices that lie in the connected component
of x in the subgraph induced by Ui YUi`1, and let P “ Ui XS, and Q “ Ui`1 XS (see Figure 3).
Since x is separated from Ni`1, the sets Q and Ni`1 are disjoint. So, if we re-color G by
replacing Ui and Ui`1 by pUi Y Qq z P and pUi`1 Y P q z Q, respectively, we obtain a proper
coloring such that npUiq “ npVciq is decreased and only npUi`1q “ npVci`1

q is increased. That
contradicts the lexicographical minimality of

`

npV2q, npV3q, . . . , npVkq
˘

.

Ui Ui+1

Ni+1x
Ni

v

QP

S

Figure 3

Next, we build a path through U1, U2, . . . , U2ℓ as follows. Let the starting point of the path
be an arbitrary vertex v1 in the set N1. For i ď 2ℓ´ 1, if the vertex vi P Ni is already defined,
connect vi to some vertex in Ni`1 in the subgraph induced by Ui YUi`1, and add these edges to
the path. Denote the new endpoint of the path by vi`1; by the construction we have vi`1 P Ni`1

again, so the process can be continued. At the end we have a path that starts at v1 P N1 and
ends at some v2ℓ P N2ℓ. Moreover, all edges in this path connect vertices in neighboring classes:
if a vertex of the path lies in Ui, then the next vertex lies in Ui`1 or Ui´1. Notice that the path
is not necessary simple, so take a minimal subpath of it. The minimal subpath is simple and
connects the same endpoints v1 and v2ℓ. The property that every edge steps to a neighboring
color class (i.e., from Ui to Ui`1 or Ui´1) is preserved. So the resulting path also visits all of
U1, . . . , U2ℓ, and its length must be odd. Closing the path with the edges vv1 and v2ℓv we obtain
the desired odd cycle (see Figure 4). l

N2ℓN1 N2 N3

v1 v2
v3 v2ℓ

v2ℓ−1

N2ℓ−1

v

U2ℓU2ℓ−1U3U2U1

. . .

Figure 4

Now we prove the claim by induction on k ě 3. The base case k “ 3 holds by applying
Lemma 2 to a critical subgraph. For the induction step, let G0 be a critical k-chromatic sub-
graph of G, and let v be an arbitrary vertex of G0. By Lemma 2, G0 has at least 2k´2 ´ 1
unsociable groups containing v. On the other hand, the graph G0 z tvu has chromatic num-
ber k ´ 1, so it contains at least 2k´2 ´ pk ´ 1q unsociable groups by the induction hypothesis.
Altogether, this gives 2k´2 ´1`2k´2 ´ pk´1q “ 2k´1 ´k distinct unsociable groups in G0 (and
thus in G).



Shortlisted problems – solutions 41

Comment 1. The claim we proved is sharp. The complete graph with k vertices has chromatic
number k and contains exactly 2k´1 ´ k unsociable groups.

Comment 2. The proof of Lemma 2 works for odd values of |C| ě 3 as well. Hence, the second
solution shows the analogous statement that the number of even sized unsociable groups is at least
2k ´ 1 ´

`

k
2

˘

.
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Geometry

G1. Let ABC be an acute triangle with orthocenter H . Let G be the point such that the
quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC
bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C
and J . Prove that IJ “ AH .

(Australia)

Solution 1. Since HG ‖ AB and BG ‖ AH , we have BG K BC and CH K GH . There-
fore, the quadrilateral BGCH is cyclic. Since H is the orthocenter of the triangle ABC, we
have =HAC “ 900´=ACB “ =CBH . Using that BGCH and CGJI are cyclic quadrilaterals,
we get

=CJI “ =CGH “ =CBH “ =HAC.

Let M be the intersection of AC and GH , and let D ‰ A be the point on the line AC such
that AH “ HD. Then =MJI “ =HAC “ =MDH .

Since =MJI “ =MDH , =IMJ “ =HMD, and IM “ MH , the triangles IMJ and
HMD are congruent, and thus IJ “ HD “ AH .

A B

C

H

G
MI

J

D

Comment. Instead of introducing the point D, one can complete the solution by using the law of
sines in the triangles IJM and AMH, yielding

IJ

IM
“ sin=IMJ

sin=MJI
“ sin=AMH

sin=HAM
“ AH

MH
“ AH

IM
.

Solution 2. Obtain =CGH “ =HAC as in the previous solution. In the parallelogram
ABGH we have =BAH “ =HGB. It follows that

=HMC “ =BAC “ =BAH ` =HAC “ =HGB ` =CGH “ =CGB.

So the right triangles CMH and CGB are similar. Also, in the circumcircle of triangle GCI
we have similar triangles MIJ and MCG. Therefore,

IJ

CG
“ MI

MC
“ MH

MC
“ GB

GC
“ AH

CG
.

Hence IJ “ AH .
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G2. Let ABC be a triangle inscribed into a circle Ω with center O. A circle Γ with center A
meets the side BC at points D and E such that D lies between B and E. Moreover, let F and
G be the common points of Γ and Ω. We assume that F lies on the arc AB of Ω not containing
C, and G lies on the arc AC of Ω not containing B. The circumcircles of the triangles BDF
and CEG meet the sides AB and AC again at K and L, respectively. Suppose that the lines
FK and GL are distinct and intersect at X . Prove that the points A, X , and O are collinear.

(Greece)

Solution 1. It suffices to prove that the lines FK and GL are symmetric about AO. Now
the segments AF and AG, being chords of Ω with the same length, are clearly symmetric with
respect to AO. Hence it is enough to show

=KFA “ =AGL . (1)

Let us denote the circumcircles of BDF and CEG by ωB and ωC, respectively. To prove (1),
we start from

=KFA “ =DFG ` =GFA´ =DFK .

In view of the circles ωB, Γ, and Ω, this may be rewritten as

=KFA “ =CEG ` =GBA ´ =DBK “ =CEG ´ =CBG .

Due to the circles ωC and Ω, we obtain =KFA “ =CLG ´ =CAG “ =AGL. Thereby the
problem is solved.

A

B C
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

O

X

Ω

Γ

ωB

ωC

Figure 1

Solution 2. Again, we denote the circumcircle of BDKF by ωB. In addition, we set α “
=BAC, ϕ “ =ABF , and ψ “ =EDA “ =AED (see Figure 2). Notice that AF “ AG entails
ϕ “ =GCA, so all three of α, ϕ, and ψ respect the “symmetry” between B and C of our
configuration. Again, we reduce our task to proving (1).

This time, we start from

2=KFA “ 2p=DFA´ =DFKq .

Since the triangle AFD is isosceles, we have

=DFA “ =ADF “ =EDF ´ ψ “ =BFD ` =EBF ´ ψ .
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Moreover, because of the circle ωB we have =DFK “ =CBA. Altogether, this yields

2=KFA “ =DFA`
`

=BFD ` =EBF ´ ψ
˘

´ 2=CBA ,

which simplifies to
2=KFA “ =BFA ` ϕ ´ ψ ´ =CBA .

Now the quadrilateral AFBC is cyclic, so this entails 2=KFA “ α ` ϕ ´ ψ.

Due to the “symmetry” between B and C alluded to above, this argument also shows that
2=AGL “ α ` ϕ ´ ψ. This concludes the proof of (1).

ψ
ϕ

ψ
ϕ

A

B C
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Comment 1. As the first solution shows, the assumption that A be the center of Γ may be weakened
to the following one: The center of Γ lies on the line OA. The second solution may be modified to
yield the same result.

Comment 2. It might be interesting to remark that =GDK “ 900. To prove this, let G1 denote
the point on Γ diametrically opposite to G. Because of =KDF “ =KBF “ =AGF “ =G1DF , the
points D, K, and G1 are collinear, which leads to the desired result. Notice that due to symmetry we
also have =LEF “ 900.

Moreover, a standard argument shows that the triangles AGL and BGE are similar. By symmetry
again, also the triangles AFK and CDF are similar.

There are several ways to derive a solution from these facts. For instance, one may argue that

=KFA “ =BFA´ =BFK “ =BFA´ =EDG1 “ p1800 ´ =AGBq ´ p1800 ´ =G1GEq
“ =AGE ´ =AGB “ =BGE “ =AGL .

Comment 3. The original proposal did not contain the point X in the assumption and asked instead
to prove that the lines FK, GL, and AO are concurrent. This differs from the version given above only
insofar as it also requires to show that these lines cannot be parallel. The Problem Selection Committee
removed this part from the problem intending to make it thus more suitable for the Olympiad.

For the sake of completeness, we would still like to sketch one possibility for proving FK ∦ AO here.
As the points K and O lie in the angular region =FAG, it suffices to check =KFA` =FAO ă 1800.
Multiplying by 2 and making use of the formulae from the second solution, we see that this is equivalent
to pα ` ϕ ´ ψq ` p1800 ´ 2ϕq ă 3600, which in turn is an easy consequence of α ă 1800.
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G3. Let ABC be a triangle with =C “ 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection
point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the
segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the
lines CQ and AD meet on ω.

(Georgia)

Solution 1. Let K be the projection of D onto AB; then AH “ HK (see Figure 1). Since
PH ‖ DK, we have

PD

PB
“ HK

HB
“ AH

HB
. (1)

Let L be the projection of Q onto DB. Since PQ is tangent to ω and =DQB “ =BLQ “
900, we have =PQD “ =QBP “ =DQL. Therefore, QD and QB are respectively the internal
and the external bisectors of =PQL. By the angle bisector theorem, we obtain

PD

DL
“ PQ

QL
“ PB

BL
. (2)

The relations (1) and (2) yield
AH

HB
“ PD

PB
“ DL

LB
. So, the spiral similarity τ centered at B

and sending A to D maps H to L. Moreover, τ sends the semicircle with diameter AB passing
through C to ω. Due to CH K AB and QL K DB, it follows that τpCq “ Q.

Hence, the triangles ABD and CBQ are similar, so =ADB “ =CQB. This means that the
lines AD and CQ meet at some point T , and this point satisfies =BDT “ =BQT . Therefore,
T lies on ω, as needed.

A B

C

D

H K

P

Q
T

L

ω

A B

C

D

H K

P

Q′

T

Γ

ω

Figure 1 Figure 2

Comment 1. Since =BAD “ =BCQ, the point T lies also on the circumcircle of the triangle ABC.

Solution 2. Let Γ be the circumcircle of ABC, and let AD meet ω at T . Then =ATB “
=ACB “ 900, so T lies on Γ as well. As in the previous solution, let K be the projection of D
onto AB; then AH “ HK (see Figure 2).

Our goal now is to prove that the points C, Q, and T are collinear. Let CT meet ω again
at Q1. Then, it suffices to show that PQ1 is tangent to ω, or that =PQ1D “ =Q1BD.

Since the quadrilateral BDQ1T is cyclic and the triangles AHC andKHC are congruent, we
have =Q1BD “ =Q1TD “ =CTA “ =CBA “ =ACH “ =HCK. Hence, the right triangles

CHK and BQ1D are similar. This implies that
HK

CK
“ Q1D

BD
, and thus HK ¨BD “ CK ¨Q1D.

Notice that PH ‖ DK; therefore, we have
PD

BD
“ HK

BK
, and so PD ¨ BK “ HK ¨ BD.

Consequently, PD ¨ BK “ HK ¨BD “ CK ¨Q1D, which yields
PD

Q1D
“ CK

BK
.

Since =CKA “ =KAC “ =BDQ1, the triangles CKB and PDQ1 are similar, so =PQ1D “
=CBA “ =Q1BD, as required.
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Comment 2. There exist several other ways to prove that PQ1 is tangent to ω. For instance, one

may compute
PD

PB
and

PQ1

PB
in terms of AH and HB to verify that PQ12 “ PD ¨PB, concluding that

PQ1 is tangent to ω.

Another possible approach is the following. As in Solution 2, we introduce the points T and Q1

and mention that the triangles ABC and DBQ1 are similar (see Figure 3).
Let M be the midpoint of AD, and let L be the projection of Q1 onto AB. Construct E on the

line AB so that EP is parallel to AD. Projecting from P , we get pA,B;H,Eq “ pA,D;M,8q “ ´1.

Since
EA

AB
“ PD

DB
, the point P is the image of E under the similarity transform mapping ABC

to DBQ1. Therefore, we have pD,B;L,P q “ pA,B;H,Eq “ ´1, which means that Q1D and Q1B are
respectively the internal and the external bisectors of =PQ1L. This implies that PQ1 is tangent to ω,
as required.

M

A B

C

D

E H K

P

Q′

T

L

ω

Figure 3

Solution 3. Introduce the points T and Q1 as in the previous solution. Note that T lies on
the circumcircle of ABC. Here we present yet another proof that PQ1 is tangent to ω.

Let Ω be the circle completing the semicircle ω. Construct a point F symmetric to C with
respect to AB. Let S ‰ T be the second intersection point of FT and Ω (see Figure 4).

A B

C

D

H K

P

Q′

T

F

S

Ω

Figure 4

Since AC “ AF , we have =DKC “ =HCK “ =CBA “ =CTA “ =DTS “ 1800 ´
=SKD. Thus, the points C,K, and S are collinear. Notice also that =Q1KD “ =Q1TD “
=HCK “ =KFH “ 1800 ´ =DKF . This implies that the points F,K, and Q1 are collinear.

Applying Pascal’s theorem to the degenerate hexagon KQ1Q1TSS, we get that the tan-
gents to Ω passing through Q1 and S intersect on CF . The relation =Q1TD “ =DTS yields
that Q1 and S are symmetric with respect to BD. Therefore, the two tangents also intersect
on BD. Thus, the two tangents pass through P . Hence, PQ1 is tangent to ω, as needed.
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G4. Let ABC be an acute triangle, and let M be the midpoint of AC. A circle ω passing
through B and M meets the sides AB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose that T lies on the
circumcircle of the triangle ABC. Determine all possible values of BT {BM .

(Russia)

Answer.
?
2.

Solution 1. Let S be the center of the parallelogram BPTQ, and let B1 ‰ B be the point on
the ray BM such that BM “ MB1 (see Figure 1). It follows that ABCB1 is a parallelogram.
Then, =ABB1 “ =PQM and =BB1A “ =B1BC “ =MPQ, and so the triangles ABB1 and
MQP are similar. It follows that AM and MS are corresponding medians in these triangles.
Hence,

=SMP “ =B1AM “ =BCA “ =BTA. (1)

Since =ACT “ =PBT and =TAC “ =TBC “ =BTP , the triangles TCA and PBT are
similar. Again, as TM and PS are corresponding medians in these triangles, we have

=MTA “ =TPS “ =BQP “ =BMP. (2)

Now we deal separately with two cases.

Case 1. S does not lie on BM . Since the configuration is symmetric between A and C, we
may assume that S and A lie on the same side with respect to the line BM .

Applying (1) and (2), we get

=BMS “ =BMP ´ =SMP “ =MTA ´ =BTA “ =MTB,

and so the triangles BSM and BMT are similar. We now have BM2 “ BS ¨BT “ BT 2{2, so
BT “

?
2BM .

Case 2. S lies on BM . It follows from (2) that =BCA “ =MTA “ =BQP “ =BMP
(see Figure 2). Thus, PQ ‖ AC and PM ‖ AT . Hence, BS{BM “ BP {BA “ BM{BT , so
BT 2 “ 2BM2 and BT “

?
2BM .
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Comment 1. Here is another way to show that the triangles BSM and BMT are similar. Denote
by Ω the circumcircle of the triangle ABC. Let R be the second point of intersection of ω and Ω, and
let τ be the spiral similarity centered at R mapping ω to Ω. Then, one may show that τ maps each
point X on ω to a point Y on Ω such that B, X, and Y are collinear (see Figure 3). If we let K and L
be the second points of intersection of BM with Ω and of BT with ω, respectively, then it follows that
the triangle MKT is the image of SML under τ . We now obtain =BSM “ =TMB, which implies
the desired result.
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Solution 2. Again, we denote by Ω the circumcircle of the triangle ABC.
Choose the pointsX and Y on the rays BA and BC respectively, so that =MXB “ =MBC

and =BYM “ =ABM (see Figure 4). Then the triangles BMX and YMB are similar. Since
=XPM “ =BQM , the points P and Q correspond to each other in these triangles. So, ifÝÝÑ
BP “ µ ¨ ÝÝÑ

BX , then
ÝÝÑ
BQ “ p1 ´ µq ¨ ÝÝÑ

BY . Thus

ÝÝÑ
BT “ ÝÝÑ

BP ` ÝÝÑ
BQ “ ÝÝÑ

BY ` µ ¨ pÝÝÑ
BX ´ ÝÝÑ

BY q “ ÝÝÑ
BY ` µ ¨ ÝÝÑ

Y X,

which means that T lies on the line XY .
Let B1 ‰ B be the point on the ray BM such that BM “ MB1. Then =MB1A “

=MBC “ =MXB and =CB1M “ =ABM “ =BYM . This means that the triangles BMX ,
BAB1, YMB, and B1CB are all similar; hence BA ¨ BX “ BM ¨ BB1 “ BC ¨ BY . Thus
there exists an inversion centered at B which swaps A with X , M with B1, and C with Y .
This inversion then swaps Ω with the line XY , and hence it preserves T . Therefore, we have
BT 2 “ BM ¨BB1 “ 2BM2, and BT “

?
2BM .

Solution 3. We begin with the following lemma.

Lemma. Let ABCT be a cyclic quadrilateral. Let P and Q be points on the sides BA and BC
respectively, such that BPTQ is a parallelogram. Then BP ¨BA` BQ ¨BC “ BT 2.

Proof. Let the circumcircle of the triangle QTC meet the line BT again at J (see Figure 5).
The power of B with respect to this circle yields

BQ ¨BC “ BJ ¨BT. (3)
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We also have =TJQ “ 1800 ´ =QCT “ =TAB and =QTJ “ =ABT , and so the triangles
TJQ and BAT are similar. We now have TJ{TQ “ BA{BT . Therefore,

TJ ¨BT “ TQ ¨BA “ BP ¨ BA. (4)

Combining (3) and (4) now yields the desired result. l

Let X and Y be the midpoints of BA and BC respectively (see Figure 6). Applying the
lemma to the cyclic quadrilaterals PBQM and ABCT , we obtain

BX ¨BP ` BY ¨ BQ “ BM2

and
BP ¨BA` BQ ¨BC “ BT 2.

Since BA “ 2BX and BC “ 2BY , we have BT 2 “ 2BM2, and so BT “
?
2BM .
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Comment 2. Here we give another proof of the lemma using Ptolemy’s theorem. We readily have

TC ¨BA` TA ¨BC “ AC ¨BT.

The lemma now follows from
BP

TC
“ BQ

TA
“ BT

AC
“ sin=BCT

sin=ABC
.
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G5. Let ABC be a triangle with CA ‰ CB. Let D, F , and G be the midpoints of the
sides AB, AC, and BC, respectively. A circle Γ passing through C and tangent to AB at D
meets the segments AF and BG at H and I, respectively. The points H 1 and I 1 are symmetric
to H and I about F and G, respectively. The line H 1I 1 meets CD and FG at Q and M ,
respectively. The line CM meets Γ again at P . Prove that CQ “ QP .

(El Salvador)

Solution 1. We may assume that CA ą CB. Observe that H 1 and I 1 lie inside the segments
CF and CG, respectively. Therefore, M lies outside △ABC (see Figure 1).

Due to the powers of points A and B with respect to the circle Γ, we have

CH 1 ¨ CA “ AH ¨AC “ AD2 “ BD2 “ BI ¨BC “ CI 1 ¨ CB.

Therefore, CH 1¨CF “ CI 1¨CG. Hence, the quadrilateralH 1I 1GF is cyclic, and so =I 1H 1C “
=CGF .

Let DF and DG meet Γ again at R and S, respectively. We claim that the points R and S
lie on the line H 1I 1.

Observe that FH 1¨FA “ FH ¨FC “ FR¨FD. Thus, the quadrilateral ADH 1R is cyclic, and
hence =RH 1F “ =FDA “ =CGF “ =I 1H 1C. Therefore, the pointsR,H 1, and I 1 are collinear.
Similarly, the points S,H 1, and I 1 are also collinear, and so all the points R,H 1, Q, I 1, S, andM
are all collinear.
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Then, =RSD “ =RDA “ =DFG. Hence, the quadrilateral RSGF is cyclic (see Figure 2).
Therefore, MH 1 ¨MI 1 “ MF ¨MG “ MR ¨MS “ MP ¨MC. Thus, the quadrilateral CPI 1H 1

is also cyclic. Let ω be its circumcircle.
Notice that =H 1CQ “ =SDC “ =SRC and =QCI 1 “ =CDR “ =CSR. Hence,

△CH 1Q „ △RCQ and △CI 1Q „ △SCQ, and therefore QH 1 ¨QR “ QC2 “ QI 1 ¨QS.
We apply the inversion with center Q and radius QC. Observe that the points R,C, and S

are mapped to H 1, C, and I 1, respectively. Therefore, the circumcircle Γ of △RCS is mapped
to the circumcircle ω of △H 1CI 1. Since P and C belong to both circles and the point C is
preserved by the inversion, we have that P is also mapped to itself. We then get QP 2 “ QC2.
Hence, QP “ QC.

Comment 1. The problem statement still holds when Γ intersects the sides CA and CB outside
segments AF and BG, respectively.
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Solution 2. Let X “ HI X AB, and let the tangent to Γ at C meet AB at Y . Let XC
meet Γ again at X 1 (see Figure 3). Projecting from C, X , and C again, we have pX,A;D,Bq “
pX 1, H ;D, Iq “ pC, I;D,Hq “ pY,B;D,Aq. Since A and B are symmetric about D, it follows
that X and Y are also symmetric about D.

Now, Menelaus’ theorem applied to △ABC with the line HIX yields

1 “ CH

HA
¨ BI
IC

¨ AX
XB

“ AH 1

H 1C
¨ CI

1

I 1B
¨ BY
Y A

.

By the converse of Menelaus’ theorem applied to △ABC with points H 1, I 1, Y , we get that
the points H 1, I 1, Y are collinear.
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Figure 3

Let T be the midpoint of CD, and let O be the center of Γ. Let CM meet TY at N . To
avoid confusion, we clean some superfluous details out of the picture (see Figure 4).

Let V “ MT X CY . Since MT ‖ Y D and DT “ TC, we get CV “ V Y . Then Ceva’s
theorem applied to △CTY with the point M yields

1 “ TQ

QC
¨ CV
V Y

¨ Y N
NT

“ TQ

QC
¨ Y N
NT

.

Therefore, TQ
QC

“ TN
NY

. So, NQ ‖ CY , and thus NQ K OC.
Note that the points O,N, T , and Y are collinear. Therefore, CQ K ON . So, Q is the

orthocenter of △OCN , and hence OQ K CP . Thus, Q lies on the perpendicular bisector
of CP , and therefore CQ “ QP , as required.
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D
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Comment 2. The second part of Solution 2 provides a proof of the following more general statement,
which does not involve a specific choice of Q on CD.

Let Y C and Y D be two tangents to a circle Γ with center O (see Figure 4). Let ℓ be the midline
of △Y CD parallel to Y D. Let Q and M be two points on CD and ℓ, respectively, such that the
line QM passes through Y . Then OQ K CM .
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G6. Let ABC be an acute triangle with AB ą AC, and let Γ be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint of BC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on Γ that satisfy =AQH “ 900 and
=QKH “ 900. Prove that the circumcircles of the triangles KQH and KFM are tangent to
each other.

(Ukraine)

Solution 1. Let A1 be the point diametrically opposite to A on Γ. Since =AQA1 “ 900 and
=AQH “ 900, the points Q, H , and A1 are collinear. Similarly, if Q1 denotes the point on Γ
diametrically opposite to Q, then K, H , and Q1 are collinear. Let the line AHF intersect Γ
again at E; it is known that M is the midpoint of the segment HA1 and that F is the midpoint
of HE. Let J be the midpoint of HQ1.

Consider any point T such that TK is tangent to the circle KQH at K with Q and T
lying on different sides of KH (see Figure 1). Then =HKT “ =HQK and we are to prove
that =MKT “ =CFK. Thus it remains to show that =HQK “ =CFK ` =HKM . Due
to =HQK “ 900 ´ =Q1HA1 and =CFK “ 900 ´ =KFA, this means the same as =Q1HA1 “
=KFA´ =HKM . Now, since the triangles KHE and AHQ1 are similar with F and J being
the midpoints of corresponding sides, we have =KFA “ =HJA, and analogously one may
obtain =HKM “ =JQH . Thereby our task is reduced to verifying

=Q1HA1 “ =HJA ´ =JQH .

K

Γ

A

T

C

EA′

Q′
B

H

J

M F

Q

A′

J

Q

Q′

Γ

O

A

H

Figure 1 Figure 2

To avoid confusion, let us draw a new picture at this moment (see Figure 2). Owing to
=Q1HA1 “ =JQH ` =HJQ and =HJA “ =QJA ` =HJQ, we just have to show that
2=JQH “ =QJA. To this end, it suffices to remark that AQA1Q1 is a rectangle and that J ,
being defined to be the midpoint of HQ1, has to lie on the mid parallel of QA1 and Q1A.

Solution 2. We define the points A1 and E and prove that the ray MH passes through Q
in the same way as in the first solution. Notice that the points A1 and E can play analogous
roles to the points Q and K, respectively: point A1 is the second intersection of the line MH
with Γ, and E is the point on Γ with the property =HEA1 “ 900 (see Figure 3).

In the circles KQH and EA1H , the line segments HQ and HA1 are diameters, respectively;
so, these circles have a common tangent t at H , perpendicular to MH . Let R be the radical
center of the circles ABC, KQH and EA1H . Their pairwise radical axes are the lines QK,
A1E and the line t; they all pass through R. Let S be the midpoint of HR; by =QKH “
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Figure 3

=HEA1 “ 900, the quadrilateral HERK is cyclic and its circumcenter is S; hence we have
SK “ SE “ SH . The line BC, being the perpendicular bisector of HE, passes through S.

The circle HMF also is tangent to t at H ; from the power of S with respect to the circle
HMF we have

SM ¨ SF “ SH2 “ SK2.

So, the power of S with respect to the circles KQH and KFM is SK2. Therefore, the line
segment SK is tangent to both circles at K.
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G7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segments PR and QS meet at O. Suppose
that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, PQ, and RS are either concurrent or parallel to each other.

(Bulgaria)

Solution 1. Denote by γA, γB, γC , and γD the incircles of the quadrilaterals APOS, BQOP ,
CROQ, and DSOR, respectively.

We start with proving that the quadrilateral ABCD also has an incircle which will be
referred to as Ω. Denote the points of tangency as in Figure 1. It is well-known thatQQ1 “ OO1

(if BC ‖ PR, this is obvious; otherwise, one may regard the two circles involved as the incircle
and an excircle of the triangle formed by the lines OQ, PR, and BC). Similarly, OO1 “ PP1.
Hence we have QQ1 “ PP1. The other equalities of segment lengths marked in Figure 1 can
be proved analogously. These equalities, together with AP1 “ AS1 and similar ones, yield
AB ` CD “ AD ` BC, as required.

A

B

C

D

P

Q

R

S

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

P1
O1

Q1

S1

γA

γB

γC

γD

Figure 1

Next, let us draw the lines parallel to QS through P and R, and also draw the lines parallel
to PR through Q and S. These lines form a parallelogram; denote its vertices by A1, B1, C 1,
and D1 as shown in Figure 2.

Since the quadrilateral APOS has an incircle, we have AP ´AS “ OP ´OS “ A1S´A1P .
It is well-known that in this case there also exists a circle ωA tangent to the four rays AP ,
AS, A1P , and A1S. It is worth mentioning here that in case when, say, the lines AB and A1B1

coincide, the circle ωA is just tangent to AB at P . We introduce the circles ωB, ωC, and ωD in
a similar manner.

Assume that the radii of the circles ωA and ωC are different. Let X be the center of the
homothety having a positive scale factor and mapping ωA to ωC .

Now, Monge’s theorem applied to the circles ωA, Ω, and ωC shows that the points A, C,
and X are collinear. Applying the same theorem to the circles ωA, ωB, and ωC , we see that
the points P , Q, and X are also collinear. Similarly, the points R, S, and X are collinear, as
required.

If the radii of ωA and ωC are equal but these circles do not coincide, then the degenerate
version of the same theorem yields that the three lines AC, PQ, and RS are parallel to the
line of centers of ωA and ωC .

Finally, we need to say a few words about the case when ωA and ωC coincide (and thus they
also coincide with Ω, ωB, and ωD). It may be regarded as the limit case in the following manner.
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Let us fix the positions of A, P , O, and S (thus we also fix the circles ωA, γA, γB, and γD). Now
we vary the circle γC inscribed into =QOR; for each of its positions, one may reconstruct the
lines BC and CD as the external common tangents to γB, γC and γC, γD different from PR
and QS, respectively. After such variation, the circle Ω changes, so the result obtained above
may be applied.

Solution 2. Applying Menelaus’ theorem to △ABC with the line PQ and to △ACD with
the line RS, we see that the line AC meets PQ and RS at the same point (possibly at infinity)
if and only if

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ 1. (1)

So, it suffices to prove (1).

We start with the following result.

Lemma 1. Let EFGH be a circumscribed quadrilateral, and let M be its incenter. Then

EF ¨ FG
GH ¨HE “ FM2

HM2
.

Proof. Notice that =EMH ` =GMF “ =FME ` =HMG “ 1800, =FGM “ =MGH , and
=HEM “ =MEF (see Figure 3). By the law of sines, we get

EF

FM
¨ FG
FM

“ sin=FME ¨ sin=GMF

sin=MEF ¨ sin=FGM
“ sin=HMG ¨ sin=EMH

sin=MGH ¨ sin=HEM
“ GH

HM
¨ HE
HM

. l
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Figure 3 Figure 4

We denote by I, J , K, and L the incenters of the quadrilaterals APOS, BQOP , CROQ,
and DSOR, respectively. Applying Lemma 1 to these four quadrilaterals we get

AP ¨ PO
OS ¨ SA ¨ BQ ¨QO

OP ¨ PB ¨ CR ¨ RO
OQ ¨QC ¨ DS ¨ SO

OR ¨RD “ PI2

SI2
¨ QJ

2

PJ2
¨ RK

2

QK2
¨ SL

2

RL2
,

which reduces to

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ PI2

PJ2
¨ QJ

2

QK2
¨ RK

2

RL2
¨ SL

2

SI2
. (2)

Next, we have =IPJ “ =JOI “ 900, and the line OP separates I and J (see Figure 4).
This means that the quadrilateral IPJO is cyclic. Similarly, we get that the quadrilateral
JQKO is cyclic with =JQK “ 900. Thus, =QKJ “ =QOJ “ =JOP “ =JIP . Hence,

the right triangles IPJ and KQJ are similar. Therefore,
PI

PJ
“ QK

QJ
. Likewise, we obtain

RK

RL
“ SI

SL
. These two equations together with (2) yield (1).

Comment. Instead of using the sine law, one may prove Lemma 1 by the following approach.

F
G

H

E

M

N

Figure 5

Let N be the point such that △NHG „ △MEF and such that N and M lie on different sides
of the line GH, as shown in Figure 5. Then =GNH ` =HMG “ =FME ` =HMG “ 1800. So,
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the quadrilateral GNHM is cyclic. Thus, =MNH “ =MGH “ =FGM and =HMN “ =HGN “
=EFM “ =MFG. Hence, △HMN „ △MFG. Therefore,

HM

HG
“ HM

HN
¨ HN
HG

“ MF

MG
¨ EM
EF

.

Similarly, we obtain
HM

HE
“ MF

ME
¨ GM
GF

. By multiplying these two equations, we complete the proof.

Solution 3. We present another approach for showing (1) from Solution 2.

Lemma 2. Let EFGH and E 1F 1G1H 1 be circumscribed quadrilaterals such that =E ` =E 1 “
=F ` =F 1 “ =G ` =G1 “ =H ` =H 1 “ 1800. Then

EF ¨GH
FG ¨HE “ E 1F 1 ¨G1H 1

F 1G1 ¨H 1E 1
.

Proof. Let M and M 1 be the incenters of EFGH and E 1F 1G1H 1, respectively. We use the
notation rXY Zs for the area of a triangle XY Z.

Taking into account the relation =FME ` =F 1M 1E 1 “ 1800 together with the analogous
ones, we get

EF ¨GH
FG ¨HE “ rMEF s ¨ rMGHs

rMFGs ¨ rMHEs “ ME ¨ MF ¨ sin=FME ¨MG ¨MH ¨ sin=HMG

MF ¨MG ¨ sin=GMF ¨MH ¨ ME ¨ sin=EMH

“ M 1E 1 ¨M 1F 1 ¨ sin=F 1M 1E 1 ¨M 1G1 ¨M 1H 1 ¨ sin=H 1M 1G1

M 1F 1 ¨M 1G1 ¨ sin=G1M 1F 1 ¨M 1H 1 ¨ M 1E 1 ¨ sin=E 1M 1H 1
“ E 1F 1 ¨G1H 1

F 1G1 ¨H 1E 1
. l
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Figure 6

Denote by h the homothety centered at O that maps the incircle of CROQ to the incircle
of APOS. Let Q1 “ hpQq, C 1 “ hpCq, R1 “ hpRq, O1 “ O, S 1 “ S, A1 “ A, and P 1 “ P .
Furthermore, define B1 “ A1P 1 X C 1Q1 and D1 “ A1S 1 X C 1R1 as shown in Figure 6. Then

AP ¨OS
PO ¨ SA “ A1P 1 ¨O1S 1

P 1O1 ¨ S 1A1

holds trivially. We also have
CR ¨OQ
RO ¨QC “ C 1R1 ¨O1Q1

R1O1 ¨ Q1C 1

by the similarity of the quadrilaterals CROQ and C 1R1O1Q1.
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Next, consider the circumscribed quadrilaterals BQOP and B1Q1O1P 1 whose incenters lie
on different sides of the quadrilaterals’ shared side line OP “ O1P 1. Observe that BQ ‖ B1Q1

and that B1 and Q1 lie on the lines BP and QO, respectively. It is now easy to see that the
two quadrilaterals satisfy the hypotheses of Lemma 2. Thus, we deduce

BQ ¨ OP
QO ¨ PB “ B1Q1 ¨O1P 1

Q1O1 ¨ P 1B1
.

Similarly, we get
DS ¨OR
SO ¨ RD “ D1S 1 ¨O1R1

S 1O1 ¨R1D1
.

Multiplying these four equations, we obtain

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ A1P 1

P 1B1
¨ B

1Q1

Q1C 1
¨ C

1R1

R1D1
¨ D

1S 1

S 1A1
. (3)

Finally, we apply Brianchon’s theorem to the circumscribed hexagon A1P 1R1C 1Q1S 1 and
deduce that the lines A1C 1, P 1Q1, and R1S 1 are either concurrent or parallel to each other. So,
by Menelaus’ theorem, we obtain

A1P 1

P 1B1
¨ B

1Q1

Q1C 1
¨ C

1R1

R1D1
¨ D

1S 1

S 1A1
“ 1.

This equation together with (3) yield (1).
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G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals
having no common points other than the vertices of the polygon. We say that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the first
Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)

(Bulgaria)

Solution 1. We denote by rSs the area of a polygon S.

Recall that each triangulation of a convex n-gon has exactly n ´ 2 triangles. This means
that all triangles in any two Thaiangulations of a convex polygon Π have the same area.

Let T be a triangulation of a convex polygon Π. If four vertices A, B, C, and D of Π
form a parallelogram, and T contains two triangles whose union is this parallelogram, then we
say that T contains parallelogram ABCD. Notice here that if two Thaiangulations T1 and T2

of Π differ by two triangles, then the union of these triangles is a quadrilateral each of whose
diagonals bisects its area, i.e., a parallelogram.

We start with proving two properties of triangulations.

Lemma 1. A triangulation of a convex polygon Π cannot contain two parallelograms.

Proof. Arguing indirectly, assume that P1 and P2 are two parallelograms contained in some
triangulation T . If they have a common triangle in T , then we may assume that P1 consists of
triangles ABC and ADC of T , while P2 consists of triangles ADC and CDE (see Figure 1).
But then BC ‖ AD ‖ CE, so the three vertices B, C, and E of Π are collinear, which is absurd.

Assume now that P1 and P2 contain no common triangle. Let P1 “ ABCD. The sides AB,
BC, CD, and DA partition Π into several parts, and P2 is contained in one of them; we may
assume that this part is cut off from P1 by AD. Then one may label the vertices of P2 by X ,
Y , Z, and T so that the polygon ABCDXY ZT is convex (see Figure 2; it may happen that
D “ X and/or T “ A, but still this polygon has at least six vertices). But the sum of the
external angles of this polygon at B, C, Y , and Z is already 3600, which is impossible. A final
contradiction. l

B

C

E

A

D

AB ZT

C
D X Y

A′

B′

C ′

X

Y

Z

H

Figure 1 Figure 2 Figure 3

Lemma 2. Every triangle in a Thaiangulation T of Π contains a side of Π.

Proof. Let ABC be a triangle in T . Apply an affine transform such that ABC maps to an
equilateral triangle; let A1B1C 1 be the image of this triangle, and Π1 be the image of Π. Clearly,
T maps into a Thaiangulation T 1 of Π1.

Assume that none of the sides of △A1B1C 1 is a side of Π1. Then T 1 contains some other
triangles with these sides, say, A1B1Z, C 1A1Y , and B1C 1X ; notice that A1ZB1XC 1Y is a convex
hexagon (see Figure 3). The sum of its external angles at X , Y , and Z is less than 3600. So one
of these angles (say, at Z) is less than 1200, hence =A1ZB1 ą 600. Then Z lies on a circular arc
subtended by A1B1 and having angular measure less than 2400; consequently, the altitude ZH
of △A1B1Z is less than

?
3A1B1{2. Thus rA1B1Zs ă rA1B1C 1s, and T 1 is not a Thaiangulation.

A contradiction. l
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Now we pass to the solution. We say that a triangle in a triangulation of Π is an ear if it
contains two sides of Π. Note that each triangulation of a polygon contains some ear.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides
such that some two Thaiangulations T1 and T2 of Π violate the problem statement (thus Π has
at least five sides). Consider now any ear ABC in T1, with AC being a diagonal of Π. If T2

also contains △ABC, then one may cut △ABC off from Π, getting a polygon with a smaller
number of sides which also violates the problem statement. This is impossible; thus T2 does
not contain △ABC.

Next, T1 contains also another triangle with side AC, say △ACD. By Lemma 2, this
triangle contains a side of Π, so D is adjacent to either A or C on the boundary of Π. We may
assume that D is adjacent to C.

Assume that T2 does not contain the triangle BCD. Then it contains two different trian-
gles BCX and CDY (possibly, with X “ Y ); since these triangles have no common interior
points, the polygon ABCDYX is convex (see Figure 4). But, since rABCs “ rBCXs “
rACDs “ rCDY s, we get AX ‖ BC and AY ‖ CD which is impossible. Thus T2 con-
tains △BCD.

Therefore, rABDs “ rABCs ` rACDs ´ rBCDs “ rABCs, and ABCD is a parallelogram
contained in T1. Let T 1 be the Thaiangulation of Π obtained from T1 by replacing the diago-
nal AC with BD; then T 1 is distinct from T2 (otherwise T1 and T2 would differ by two triangles).
Moreover, T 1 shares a common ear BCD with T2. As above, cutting this ear away we obtain
that T2 and T 1 differ by two triangles forming a parallelogram different from ABCD. Thus T 1

contains two parallelograms, which contradicts Lemma 1.
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Figure 4 Figure 5

Comment 1. Lemma 2 is equivalent to the well-known Erdős–Debrunner inequality stating that
for any triangle PQR and any points A, B, C lying on the sides QR, RP , and PQ, respectively, we
have

rABCs ě min
 

rABRs, rBCP s, rCAQs
(

. (1)

To derive this inequality from Lemma 2, one may assume that (1) does not hold, and choose
some points X, Y , and Z inside the triangles BCP , CAQ, and ABR, respectively, so that rABCs “
rABZs “ rBCXs “ rCAY s. Then a convex hexagon AZBXCY has a Thaiangulation contain-
ing △ABC, which contradicts Lemma 2.

Conversely, assume that a Thaiangulation T of Π contains a triangle ABC none of whose sides
is a side of Π, and let ABZ, AY C, and XBC be other triangles in T containing the corresponding
sides. Then AZBXCY is a convex hexagon.

Consider the lines through A, B, and C parallel to Y Z, ZX, and XY , respectively. They form a
triangle X 1Y 1Z 1 similar to △XY Z (see Figure 5). By (1) we have

rABCs ě min
 

rABZ 1s, rBCX 1s, rCAY 1s
(

ą min
 

rABZs, rBCXs, rCAY s
(

,

so T is not a Thaiangulation.
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Solution 2. We will make use of the preliminary observations from Solution 1, together with
Lemma 1.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides
such that some two Thaiangulations T1 and T2 of Π violate the statement (thus Π has at least
five sides). Assume that T1 and T2 share a diagonal d splitting Π into two smaller polygons Π1

and Π2. Since the problem statement holds for any of them, the induced Thaiangulations of
each of Πi differ by two triangles forming a parallelogram (the Thaiangulations induced on Πi

by T1 and T2 may not coincide, otherwise T1 and T2 would differ by at most two triangles). But
both these parallelograms are contained in T1; this contradicts Lemma 1. Therefore, T1 and T2

share no diagonal. Hence they also share no triangle.
We consider two cases.

Case 1. Assume that some vertex B of Π is an endpoint of some diagonal in T1, as well as an
endpoint of some diagonal in T2.

Let A and C be the vertices of Π adjacent to B. Then T1 contains some triangles ABX
and BCY , while T2 contains some triangles ABX 1 and BCY 1. Here, some of the points X ,
X 1, Y , and Y 1 may coincide; however, in view of our assumption together with the fact that T1

and T2 share no triangle, all four triangles ABX , BCY , ABX 1, and BCY 1 are distinct.
Since rABXs “ rBCY s “ rABX 1s “ rBCY 1s, we have XX 1 ‖ AB and Y Y 1 ‖ BC. Now,

if X “ Y , then X 1 and Y 1 lie on different lines passing through X and are distinct from that
point, so that X 1 ‰ Y 1. In this case, we may switch the two Thaiangulations. So, hereafter we
assume that X ‰ Y .

In the convex pentagon ABCYX we have either =BAX ` =AXY ą 1800 or =XY C `
=Y CB ą 1800 (or both); due to the symmetry, we may assume that the first inequality holds.
Let r be the ray emerging from X and co-directed with

ÝÝÑ
AB; our inequality shows that r points

to the interior of the pentagon (and thus to the interior of Π). Therefore, the ray opposite to r
points outside Π, so X 1 lies on r; moreover, X 1 lies on the “arc” CY of Π not containing X .
So the segments XX 1 and Y B intersect (see Figure 6).

Let O be the intersection point of the rays r and BC. Since the triangles ABX 1 and BCY 1

have no common interior points, Y 1 must lie on the “arc” CX 1 which is situated inside the
triangle XBO. Therefore, the line Y Y 1 meets two sides of △XBO, none of which may be XB
(otherwise the diagonals XB and Y Y 1 would share a common point). Thus Y Y 1 intersects BO,
which contradicts Y Y 1 ‖ BC.
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Figure 6

Case 2. In the remaining case, each vertex of Π is an endpoint of a diagonal in at most one
of T1 and T2. On the other hand, a triangulation cannot contain two consecutive vertices with
no diagonals from each. Therefore, the vertices of Π alternatingly emerge diagonals in T1 and
in T2. In particular, Π has an even number of sides.
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Next, we may choose five consecutive vertices A, B, C, D, and E of Π in such a way that

=ABC ` =BCD ą 1800 and =BCD ` =CDE ą 1800. (2)

In order to do this, it suffices to choose three consecutive vertices B, C, and D of Π such that
the sum of their external angles is at most 1800. This is possible, since Π has at least six sides.

A

B

C

D

E

X Y

Z

Figure 7

We may assume that T1 has no diagonals from B and D (and thus contains the trian-
gles ABC and CDE), while T2 has no diagonals from A, C, and E (and thus contains the
triangle BCD). Now, since rABCs “ rBCDs “ rCDEs, we have AD ‖ BC and BE ‖ CD
(see Figure 7). By (2) this yields that AD ą BC and BE ą CD. Let X “ AC X BD and
Y “ CE X BD; then the inequalities above imply that AX ą CX and EY ą CY .

Finally, T2 must also contain some triangle BDZ with Z ‰ C; then the ray CZ lies in
the angle ACE. Since rBCDs “ rBDZs, the diagonal BD bisects CZ. Together with the
inequalities above, this yields that Z lies inside the triangle ACE (but Z is distinct from A
and E), which is impossible. The final contradiction.

Comment 2. Case 2 may also be accomplished with the use of Lemma 2. Indeed, since each
triangulation of an n-gon contains n ´ 2 triangles neither of which may contain three sides of Π,
Lemma 2 yields that each Thaiangulation contains exactly two ears. But each vertex of Π is a vertex
of an ear either in T1 or in T2, so Π cannot have more than four vertices.
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Number Theory

N1. Determine all positive integers M for which the sequence a0, a1, a2, . . ., defined by
a0 “ 2M`1

2
and ak`1 “ aktaku for k “ 0, 1, 2, . . ., contains at least one integer term.

(Luxembourg)

Answer. All integers M ě 2.

Solution 1. Define bk “ 2ak for all k ě 0. Then

bk`1 “ 2ak`1 “ 2aktaku “ bk

Z

bk
2

^

.

Since b0 is an integer, it follows that bk is an integer for all k ě 0.
Suppose that the sequence a0, a1, a2, . . . does not contain any integer term. Then bk must

be an odd integer for all k ě 0, so that

bk`1 “ bk

Z

bk
2

^

“ bkpbk ´ 1q
2

. (1)

Hence

bk`1 ´ 3 “ bkpbk ´ 1q
2

´ 3 “ pbk ´ 3qpbk ` 2q
2

(2)

for all k ě 0.
Suppose that b0 ´ 3 ą 0. Then equation (2) yields bk ´ 3 ą 0 for all k ě 0. For each k ě 0,

define ck to be the highest power of 2 that divides bk ´ 3. Since bk ´ 3 is even for all k ě 0, the
number ck is positive for every k ě 0.

Note that bk `2 is an odd integer. Therefore, from equation (2), we have that ck`1 “ ck ´1.
Thus, the sequence c0, c1, c2, . . . of positive integers is strictly decreasing, a contradiction. So,
b0 ´ 3 ď 0, which implies M “ 1.

ForM “ 1, we can check that the sequence is constant with ak “ 3
2
for all k ě 0. Therefore,

the answer is M ě 2.

Solution 2. We provide an alternative way to show M “ 1 once equation (1) has been
reached. We claim that bk ” 3 pmod 2mq for all k ě 0 and m ě 1. If this is true, then we
would have bk “ 3 for all k ě 0 and hence M “ 1.

To establish our claim, we proceed by induction on m. The base case bk ” 3 pmod 2q is
true for all k ě 0 since bk is odd. Now suppose that bk ” 3 pmod 2mq for all k ě 0. Hence
bk “ 2mdk ` 3 for some integer dk. We have

3 ” bk`1 ” p2mdk ` 3qp2m´1dk ` 1q ” 3 ¨ 2m´1dk ` 3 pmod 2mq,

so that dk must be even. This implies that bk ” 3 pmod 2m`1q, as required.

Comment. The reason the number 3 which appears in both solutions is important, is that it is a
nontrivial fixed point of the recurrence relation for bk.
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N2. Let a and b be positive integers such that a!b! is a multiple of a! ` b!. Prove that
3a ě 2b` 2.

(United Kingdom)

Solution 1. If a ą b, we immediately get 3a ě 2b ` 2. In the case a “ b, the required
inequality is equivalent to a ě 2, which can be checked easily since pa, bq “ p1, 1q does not
satisfy a! ` b! | a!b!. We now assume a ă b and denote c “ b ´ a. The required inequality
becomes a ě 2c` 2.

Suppose, to the contrary, that a ď 2c` 1. Define M “ b!
a!

“ pa` 1qpa` 2q ¨ ¨ ¨ pa` cq. Since
a!`b! | a!b! implies 1`M | a!M , we obtain 1`M | a!. Note that we must have c ă a; otherwise
1 `M ą a!, which is impossible. We observe that c! | M since M is a product of c consecutive
integers. Thus gcdp1 ` M, c!q “ 1, which implies

1 ` M

ˇ

ˇ

ˇ

ˇ

a!

c!
“ pc` 1qpc` 2q ¨ ¨ ¨ a. (1)

If a ď 2c, then a!
c!
is a product of a´ c ď c integers not exceeding a whereas M is a product of

c integers exceeding a. Therefore, 1 ` M ą a!
c!
, which is a contradiction.

It remains to exclude the case a “ 2c` 1. Since a` 1 “ 2pc` 1q, we have c` 1 | M . Hence,
we can deduce from (1) that 1 ` M | pc ` 2qpc ` 3q ¨ ¨ ¨a. Now pc ` 2qpc ` 3q ¨ ¨ ¨ a is a product
of a ´ c´ 1 “ c integers not exceeding a; thus it is smaller than 1 ` M . Again, we arrive at a
contradiction.

Comment 1. One may derive a weaker version of (1) and finish the problem as follows. After
assuming a ď 2c ` 1, we have

X

a
2

\

ď c, so
X

a
2

\

! | M . Therefore,

1 `M

ˇ

ˇ

ˇ

ˇ

´Ya

2

]

` 1
¯´Ya

2

]

` 2
¯

¨ ¨ ¨ a.

Observe that
`X

a
2

\

` 1
˘ `X

a
2

\

` 2
˘

¨ ¨ ¨ a is a product of
P

a
2

T

integers not exceeding a. This leads to a
contradiction when a is even since

P

a
2

T

“ a
2

ď c and M is a product of c integers exceeding a.
When a is odd, we can further deduce that 1 `M |

`

a`3
2

˘ `

a`5
2

˘

¨ ¨ ¨ a since
X

a
2

\

` 1 “ a`1
2

ˇ

ˇ a` 1.
Now

`

a`3
2

˘ `

a`5
2

˘

¨ ¨ ¨ a is a product of a´1
2

ď c numbers not exceeding a, and we get a contradiction.

Solution 2. As in Solution 1, we may assume that a ă b and let c “ b ´ a. Suppose, to the
contrary, that a ď 2c` 1. From a! ` b! | a!b!, we have

N “ 1 ` pa` 1qpa` 2q ¨ ¨ ¨ pa` cq
ˇ

ˇ pa` cq!,

which implies that all prime factors of N are at most a ` c.
Let p be a prime factor of N . If p ď c or p ě a ` 1, then p divides one of a ` 1, . . . , a ` c

which is impossible. Hence a ě p ě c ` 1. Furthermore, we must have 2p ą a ` c; otherwise,
a ` 1 ď 2c ` 2 ď 2p ď a ` c so p | N ´ 1, again impossible. Thus, we have p P

`

a`c
2
, a
‰

, and
p2 ∤ pa` cq! since 2p ą a` c. Therefore, p2 ∤ N as well.

If a ď c ` 2, then the interval
`

a`c
2
, a
‰

contains at most one integer and hence at most one
prime number, which has to be a. Since p2 ∤ N , we must have N “ p “ a or N “ 1, which is
absurd since N ą a ě 1. Thus, we have a ě c ` 3, and so a`c`1

2
ě c ` 2. It follows that p lies

in the interval rc` 2, as.
Thus, every prime appearing in the prime factorization of N lies in the interval rc`2, as, and

its exponent is exactly 1. So we must have N | pc`2qpc`3q ¨ ¨ ¨a. However, pc`2qpc`3q ¨ ¨ ¨a is
a product of a´c´1 ď c numbers not exceeding a, so it is less than N . This is a contradiction.

Comment 2. The original problem statement also asks to determine when the equality 3a “ 2b` 2
holds. It can be checked that the answer is pa, bq “ p2, 2q, p4, 5q.
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N3. Let m and n be positive integers such that m ą n. Define xk “ pm` kq{pn` kq for k “
1, 2, . . . , n` 1. Prove that if all the numbers x1, x2, . . . , xn`1 are integers, then x1x2 ¨ ¨ ¨xn`1 ´ 1
is divisible by an odd prime.

(Austria)

Solution. Assume that x1, x2, . . . , xn`1 are integers. Define the integers

ak “ xk ´ 1 “ m ` k

n` k
´ 1 “ m´ n

n` k
ą 0

for k “ 1, 2, . . . , n` 1.
Let P “ x1x2 ¨ ¨ ¨xn`1 ´ 1. We need to prove that P is divisible by an odd prime, or in

other words, that P is not a power of 2. To this end, we investigate the powers of 2 dividing
the numbers ak.

Let 2d be the largest power of 2 dividing m ´ n, and let 2c be the largest power of 2 not
exceeding 2n` 1. Then 2n` 1 ď 2c`1 ´ 1, and so n` 1 ď 2c. We conclude that 2c is one of the
numbers n` 1, n` 2, . . . , 2n` 1, and that it is the only multiple of 2c appearing among these
numbers. Let ℓ be such that n ` ℓ “ 2c. Since m´n

n`ℓ
is an integer, we have d ě c. Therefore,

2d´c`1 ∤ aℓ “ m´n
n`ℓ

, while 2d´c`1 | ak for all k P t1, . . . , n` 1u z tℓu.
Computing modulo 2d´c`1, we get

P “ pa1 ` 1qpa2 ` 1q ¨ ¨ ¨ pan`1 ` 1q ´ 1 ” paℓ ` 1q ¨ 1n ´ 1 ” aℓ ı 0 pmod 2d´c`1q.

Therefore, 2d´c`1 ∤ P .
On the other hand, for any k P t1, . . . , n`1u z tℓu, we have 2d´c`1 | ak. So P ě ak ě 2d´c`1,

and it follows that P is not a power of 2.

Comment. Instead of attempting to show that P is not a power of 2, one may try to find an odd
factor of P (greater than 1) as follows:

From ak “ m´n
n`k P Zą0, we get that m ´ n is divisible by n ` 1, n ` 2, . . . , 2n ` 1, and thus

it is also divisible by their least common multiple L. So m ´ n “ qL for some positive integer q;
hence xk “ q ¨ L

n`k ` 1.

Then, since n ` 1 ď 2c “ n ` ℓ ď 2n ` 1 ď 2c`1 ´ 1, we have 2c | L, but 2c`1 ∤ L. So L
n`ℓ is odd,

while L
n`k is even for k ‰ ℓ. Computing modulo 2q yields

x1x2 ¨ ¨ ¨ xn`1 ´ 1 ” pq ` 1q ¨ 1n ´ 1 ” q pmod 2qq.

Thus, x1x2 ¨ ¨ ¨ xn`1 ´ 1 “ 2qr ` q “ qp2r ` 1q for some integer r.
Since x1x2 ¨ ¨ ¨ xn`1 ´ 1 ě x1x2 ´ 1 ě pq ` 1q2 ´ 1 ą q, we have r ě 1. This implies that

x1x2 ¨ ¨ ¨ xn`1 ´ 1 is divisible by an odd prime.
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N4. Suppose that a0, a1, . . . and b0, b1, . . . are two sequences of positive integers satisfying
a0, b0 ě 2 and

an`1 “ gcdpan, bnq ` 1, bn`1 “ lcmpan, bnq ´ 1

for all n ě 0. Prove that the sequence (an) is eventually periodic; in other words, there exist
integers N ě 0 and t ą 0 such that an`t “ an for all n ě N .

(France)

Solution 1. Let sn “ an ` bn. Notice that if an | bn, then an`1 “ an ` 1, bn`1 “ bn ´ 1 and
sn`1 “ sn. So, an increases by 1 and sn does not change until the first index is reached with
an ∤ sn. Define

Wn “
 

m P Zą0 : m ě an and m ∤ sn
(

and wn “ minWn.

Claim 1. The sequence pwnq is non-increasing.

Proof. If an | bn then an`1 “ an ` 1. Due to an | sn, we have an R Wn. Moreover sn`1 “ sn;
therefore, Wn`1 “ Wn and wn`1 “ wn.

Otherwise, if an ∤ bn, then an ∤ sn, so an P Wn and thus wn “ an. We show that an P Wn`1;
this implies wn`1 ď an “ wn. By the definition of Wn`1, we need that an ě an`1 and an ∤ sn`1.
The first relation holds because of gcdpan, bnq ă an. For the second relation, observe that in
sn`1 “ gcdpan, bnq ` lcmpan, bnq, the second term is divisible by an, but the first term is not.
So an ∤ sn`1; that completes the proof of the claim. l

Let w “ min
n
wn and let N be an index with w “ wN . Due to Claim 1, we have wn “ w for

all n ě N .

Let gn “ gcdpw, snq. As we have seen, starting from an arbitrary index n ě N , the sequence
an, an`1, . . . increases by 1 until it reaches w, which is the first value not dividing sn; then it
drops to gcdpw, snq ` 1 “ gn ` 1.

Claim 2. The sequence pgnq is constant for n ě N .

Proof. If an | bn, then sn`1 “ sn and hence gn`1 “ gn. Otherwise we have an “ w,

gcdpan, bnq “ gcdpan, snq “ gcdpw, snq “ gn,

sn`1 “ gcdpan, bnq ` lcmpan, bnq “ gn ` anbn
gn

“ gn ` wpsn ´ wq
gn

, (1)

and gn`1 “ gcdpw, sn`1q “ gcd

ˆ

w, gn ` sn ´ w

gn
w

˙

“ gcdpw, gnq “ gn. l

Let g “ gN . We have proved that the sequence panq eventually repeats the following cycle:

g ` 1 ÞÑ g ` 2 ÞÑ . . . ÞÑ w ÞÑ g ` 1.

Solution 2. By Claim 1 in the first solution, we have an ď wn ď w0, so the sequence panq is
bounded, and hence it has only finitely many values.

Let M “ lcmpa1, a2, . . .q, and consider the sequence bn modulo M . Let rn be the remainder
of bn, divided byM . For every index n, since an | M | bn´rn, we have gcdpan, bnq “ gcdpan, rnq,
and therefore

an`1 “ gcdpan, rnq ` 1.

Moreover,

rn`1 ” bn`1 “ lcmpan, bnq ´ 1 “ an
gcdpan, bnqbn ´ 1

“ an
gcdpan, rnqbn ´ 1 ” an

gcdpan, rnqrn ´ 1 pmod Mq.
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Hence, the pair pan, rnq uniquely determines the pair pan`1, rn`1q. Since there are finitely many
possible pairs, the sequence of pairs pan, rnq is eventually periodic; in particular, the sequence
panq is eventually periodic.

Comment. We show that there are only four possibilities for g and w (as defined in Solution 1),
namely

pw, gq P
 

p2, 1q, p3, 1q, p4, 2q, p5, 1q
(

. (2)

This means that the sequence panq eventually repeats one of the following cycles:

p2q, p2, 3q, p3, 4q, or p2, 3, 4, 5q. (3)

Using the notation of Solution 1, for n ě N the sequence panq has a cycle pg ` 1, g ` 2, . . . , wq
such that g “ gcdpw, snq. By the observations in the proof of Claim 2, the numbers g`1, . . . , w´1 all
divide sn; so the number L “ lcmpg ` 1, g ` 2, . . . , w ´ 1q also divides sn. Moreover, g also divides w.

Now choose any n ě N such that an “ w. By (1), we have

sn`1 “ g ` wpsn ´ wq
g

“ sn ¨ w
g

´ w2 ´ g2

g
.

Since L divides both sn and sn`1, it also divides the number T “ w2´g2

g .
Suppose first that w ě 6, which yields g ` 1 ď w

2
` 1 ď w ´ 2. Then pw ´ 2qpw ´ 1q | L | T , so we

have either w2 ´ g2 ě 2pw ´ 1qpw ´ 2q, or g “ 1 and w2 ´ g2 “ pw ´ 1qpw ´ 2q. In the former case we
get pw ´ 1qpw ´ 5q ` pg2 ´ 1q ď 0 which is false by our assumption. The latter equation rewrites as
3w “ 3, so w “ 1, which is also impossible.

Now we are left with the cases when w ď 5 and g | w. The case pw, gq “ p4, 1q violates the

condition L | w2´g2

g ; all other such pairs are listed in (2).

In the table below, for each pair pw, gq, we provide possible sequences panq and pbnq. That shows
that the cycles shown in (3) are indeed possible.

w “ 2 g “ 1 an “ 2 bn “ 2 ¨ 2n ` 1
w “ 3 g “ 1 pa2k, a2k`1q “ p2, 3q pb2k, b2k`1q “ p6 ¨ 3k ` 2, 6 ¨ 3k ` 1q
w “ 4 g “ 2 pa2k, a2k`1q “ p3, 4q pb2k, b2k`1q “ p12 ¨ 2k ` 3, 12 ¨ 2k ` 2q
w “ 5 g “ 1 pa4k, . . . , a4k`3q “ p2, 3, 4, 5q pb4k, . . . , b4k`3q “ p6 ¨ 5k ` 4, . . . , 6 ¨ 5k ` 1q
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N5. Determine all triples pa, b, cq of positive integers for which ab´ c, bc´ a, and ca´ b are
powers of 2.

Explanation: A power of 2 is an integer of the form 2n, where n denotes some nonnegative
integer.

(Serbia)

Answer. There are sixteen such triples, namely p2, 2, 2q, the three permutations of p2, 2, 3q,
and the six permutations of each of p2, 6, 11q and p3, 5, 7q.
Solution 1. It can easily be verified that these sixteen triples are as required. Now let pa, b, cq
be any triple with the desired property. If we would have a “ 1, then both b´ c and c´ b were
powers of 2, which is impossible since their sum is zero; because of symmetry, this argument
shows a, b, c ě 2.

Case 1. Among a, b, and c there are at least two equal numbers.

Without loss of generality we may suppose that a “ b. Then a2 ´ c and apc ´ 1q are powers
of 2. The latter tells us that actually a and c ´ 1 are powers of 2. So there are nonnegative
integers α and γ with a “ 2α and c “ 2γ ` 1. Since a2 ´ c “ 22α ´ 2γ ´ 1 is a power of 2 and
thus incongruent to ´1 modulo 4, we must have γ ď 1. Moreover, each of the terms 22α ´ 2
and 22α ´ 3 can only be a power of 2 if α “ 1. It follows that the triple pa, b, cq is either p2, 2, 2q
or p2, 2, 3q.

Case 2. The numbers a, b, and c are distinct.

Due to symmetry we may suppose that

2 ď a ă b ă c . (1)

We are to prove that the triple pa, b, cq is either p2, 6, 11q or p3, 5, 7q. By our hypothesis, there
exist three nonnegative integers α, β, and γ such that

bc ´ a “ 2α , (2)

ac ´ b “ 2β , (3)

and ab ´ c “ 2γ . (4)

Evidently we have
α ą β ą γ . (5)

Depending on how large a is, we divide the argument into two further cases.

Case 2.1. a “ 2.

We first prove that γ “ 0. Assume for the sake of contradiction that γ ą 0. Then c is even
by (4) and, similarly, b is even by (5) and (3). So the left-hand side of (2) is congruent to 2
modulo 4, which is only possible if bc “ 4. As this contradicts (1), we have thereby shown that
γ “ 0, i.e., that c “ 2b´ 1.

Now (3) yields 3b ´ 2 “ 2β. Due to b ą 2 this is only possible if β ě 4. If β “ 4, then we
get b “ 6 and c “ 2 ¨ 6 ´ 1 “ 11, which is a solution. It remains to deal with the case β ě 5.
Now (2) implies

9 ¨ 2α “ 9bp2b ´ 1q ´ 18 “ p3b´ 2qp6b` 1q ´ 16 “ 2βp2β`1 ` 5q ´ 16 ,

and by β ě 5 the right-hand side is not divisible by 32. Thus α ď 4 and we get a contradiction
to (5).
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Case 2.2. a ě 3.

Pick an integer ϑ P t´1,`1u such that c´ ϑ is not divisible by 4. Now

2α ` ϑ ¨ 2β “ pbc ´ aϑ2q ` ϑpca ´ bq “ pb ` aϑqpc´ ϑq

is divisible by 2β and, consequently, b`aϑ is divisible by 2β´1. On the other hand, 2β “ ac´b ą
pa´ 1qc ě 2c implies in view of (1) that a and b are smaller than 2β´1. All this is only possible
if ϑ “ 1 and a` b “ 2β´1. Now (3) yields

ac´ b “ 2pa` bq , (6)

whence 4b ą a ` 3b “ apc´ 1q ě ab, which in turn yields a “ 3.
So (6) simplifies to c “ b ` 2 and (2) tells us that bpb ` 2q ´ 3 “ pb ´ 1qpb ` 3q is a power

of 2. Consequently, the factors b´1 and b`3 are powers of 2 themselves. Since their difference
is 4, this is only possible if b “ 5 and thus c “ 7. Thereby the solution is complete.

Solution 2. As in the beginning of the first solution, we observe that a, b, c ě 2. Depending
on the parities of a, b, and c we distinguish three cases.

Case 1. The numbers a, b, and c are even.

Let 2A, 2B, and 2C be the largest powers of 2 dividing a, b, and c respectively. We may assume
without loss of generality that 1 ď A ď B ď C. Now 2B is the highest power of 2 dividing
ac ´ b, whence ac´ b “ 2B ď b. Similarly, we deduce bc ´ a “ 2A ď a. Adding both estimates
we get pa ` bqc ď 2pa ` bq, whence c ď 2. So c “ 2 and thus A “ B “ C “ 1; moreover, we
must have had equality throughout, i.e., a “ 2A “ 2 and b “ 2B “ 2. We have thereby found
the solution pa, b, cq “ p2, 2, 2q.

Case 2. The numbers a, b, and c are odd.

If any two of these numbers are equal, say a “ b, then ac ´ b “ apc ´ 1q has a nontrivial odd
divisor and cannot be a power of 2. Hence a, b, and c are distinct. So we may assume without
loss of generality that a ă b ă c.

Let α and β denote the nonnegative integers for which bc ´ a “ 2α and ac ´ b “ 2β hold.
Clearly, we have α ą β, and thus 2β divides

a ¨ 2α ´ b ¨ 2β “ apbc ´ aq ´ bpac ´ bq “ b2 ´ a2 “ pb ` aqpb ´ aq .

Since a is odd, it is not possible that both factors b`a and b´a are divisible by 4. Consequently,
one of them has to be a multiple of 2β´1. Hence one of the numbers 2pb ` aq and 2pb ´ aq is
divisible by 2β and in either case we have

ac ´ b “ 2β ď 2pa` bq . (7)

This in turn yields pa ´ 1qb ă ac ´ b ă 4b and thus a “ 3 (recall that a is odd and larger
than 1). Substituting this back into (7) we learn c ď b` 2. But due to the parity b ă c entails
that b` 2 ď c holds as well. So we get c “ b` 2 and from bc´ a “ pb´ 1qpb` 3q being a power
of 2 it follows that b “ 5 and c “ 7.

Case 3. Among a, b, and c both parities occur.

Without loss of generality, we suppose that c is odd and that a ď b. We are to show that
pa, b, cq is either p2, 2, 3q or p2, 6, 11q. As at least one of a and b is even, the expression ab ´ c
is odd; since it is also a power of 2, we obtain

ab ´ c “ 1 . (8)

If a “ b, then c “ a2 ´ 1, and from ac´ b “ apa2 ´ 2q being a power of 2 it follows that both a
and a2 ´ 2 are powers of 2, whence a “ 2. This gives rise to the solution p2, 2, 3q.
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We may suppose a ă b from now on. As usual, we let α ą β denote the integers satisfying

2α “ bc ´ a and 2β “ ac ´ b . (9)

If β “ 0 it would follow that ac´ b “ ab´ c “ 1 and hence that b “ c “ 1, which is absurd. So
β and α are positive and consequently a and b are even. Substituting c “ ab ´ 1 into (9) we
obtain

2α “ ab2 ´ pa` bq , (10)

and 2β “ a2b ´ pa` bq . (11)

The addition of both equation yields 2α ` 2β “ pab ´ 2qpa ` bq. Now ab ´ 2 is even but not
divisible by 4, so the highest power of 2 dividing a ` b is 2β´1. For this reason, the equations
(10) and (11) show that the highest powers of 2 dividing either of the numbers ab2 and a2b is
likewise 2β´1. Thus there is an integer τ ě 1 together with odd integers A, B, and C such that
a “ 2τA, b “ 2τB, a` b “ 23τC, and β “ 1 ` 3τ .

Notice that A ` B “ 22τC ě 4C. Moreover, (11) entails A2B ´ C “ 2. Thus 8 “
4A2B ´ 4C ě 4A2B ´ A ´ B ě A2p3B ´ 1q. Since A and B are odd with A ă B, this is only
possible if A “ 1 and B “ 3. Finally, one may conclude C “ 1, τ “ 1, a “ 2, b “ 6, and
c “ 11. We have thereby found the triple p2, 6, 11q. This completes the discussion of the third
case, and hence the solution.

Comment. In both solutions, there are many alternative ways to proceed in each of its cases. Here
we present a different treatment of the part “a ă b” of Case 3 in Solution 2, assuming that (8) and (9)
have already been written down:

Put d “ gcdpa, bq and define the integers p and q by a “ dp and b “ dq; notice that p ă q and
gcdpp, qq “ 1. Now (8) implies c “ d2pq ´ 1 and thus we have

2α “ dpd2pq2 ´ p´ qq
and 2β “ dpd2p2q ´ p´ qq . (12)

Now 2β divides 2α ´ 2β “ d3pqpq ´ pq and, as p and q are easily seen to be coprime to d2p2q ´ p´ q,
it follows that

pd2p2q ´ p´ qq | d2pq ´ pq . (13)

In particular, we have d2p2q´ p´ q ď d2pq ´ pq, i.e., d2pp2q` p´ qq ď p` q. As p2q` p´ q ą 0, this
may be weakened to p2q ` p´ q ď p` q. Hence p2q ď 2q, which is only possible if p “ 1.

Going back to (13), we get
pd2q ´ q ´ 1q | d2pq ´ 1q . (14)

Now 2pd2q ´ q ´ 1q ď d2pq ´ 1q would entail d2pq ` 1q ď 2pq ` 1q and thus d “ 1. But this would
tell us that a “ dp “ 1, which is absurd. This argument proves 2pd2q ´ q ´ 1q ą d2pq ´ 1q and in the
light of (14) it follows that d2q´ q´ 1 “ d2pq´ 1q, i.e., q “ d2 ´ 1. Plugging this together with p “ 1
into (12) we infer 2β “ d3pd2 ´ 2q. Hence d and d2 ´ 2 are powers of 2. Consequently, d “ 2, q “ 3,
a “ 2, b “ 6, and c “ 11, as desired.
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N6. Let Zą0 denote the set of positive integers. Consider a function f : Zą0 Ñ Zą0. For
any m,n P Zą0 we write fnpmq “ fpfp. . . f

looomooon

n

pmq . . .qq. Suppose that f has the following two

properties:

piq If m,n P Zą0, then
fnpmq ´ m

n
P Zą0;

piiq The set Zą0 z tfpnq |n P Zą0u is finite.

Prove that the sequence fp1q ´ 1, fp2q ´ 2, fp3q ´ 3, . . . is periodic.

(Singapore)

Solution. We split the solution into three steps. In the first of them, we show that the function
f is injective and explain how this leads to a useful visualization of f . Then comes the second
step, in which most of the work happens: its goal is to show that for any n P Zą0 the sequence
n, fpnq, f 2pnq, . . . is an arithmetic progression. Finally, in the third step we put everything
together, thus solving the problem.

Step 1. We commence by checking that f is injective. For this purpose, we consider any

m, k P Zą0 with fpmq “ fpkq. By piq, every positive integer n has the property that

k ´ m

n
“ fnpmq ´ m

n
´ fnpkq ´ k

n

is a difference of two integers and thus integral as well. But for n “ |k ´ m| ` 1 this is only
possible if k “ m. Thereby, the injectivity of f is established.

Now recall that due to condition piiq there are finitely many positive integers a1, . . . , ak
such that Zą0 is the disjoint union of ta1, . . . , aku and tfpnq |n P Zą0u. Notice that by plugging
n “ 1 into condition piq we get fpmq ą m for all m P Zą0.

We contend that every positive integer n may be expressed uniquely in the form n “ f jpaiq
for some j ě 0 and i P t1, . . . , ku. The uniqueness follows from the injectivity of f . The
existence can be proved by induction on n in the following way. If n P ta1, . . . , aku, then
we may take j “ 0; otherwise there is some n1 ă n with fpn1q “ n to which the induction
hypothesis may be applied.

The result of the previous paragraph means that every positive integer appears exactly once
in the following infinite picture, henceforth referred to as “the Table”:

a1 fpa1q f 2pa1q f 3pa1q . . .
a2 fpa2q f 2pa2q f 3pa2q . . .
...

...
...

...
ak fpakq f 2pakq f 3pakq . . .

The Table

Step 2. Our next goal is to prove that each row of the Table is an arithmetic progression.
Assume contrariwise that the number t of rows which are arithmetic progressions would satisfy
0 ď t ă k. By permuting the rows if necessary we may suppose that precisely the first t rows
are arithmetic progressions, say with steps T1, . . . , Tt. Our plan is to find a further row that
is “not too sparse” in an asymptotic sense, and then to prove that such a row has to be an
arithmetic progression as well.

Let us write T “ lcmpT1, T2, . . . , Ttq and A “ maxta1, a2, . . . , atu if t ą 0; and T “ 1 and
A “ 0 if t “ 0. For every integer n ě A, the interval ∆n “ rn` 1, n` T s contains exactly T {Ti
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elements of the ith row (1 ď i ď t). Therefore, the number of elements from the last pk ´ tq
rows of the Table contained in ∆n does not depend on n ě A. It is not possible that none
of these intervals ∆n contains an element from the k ´ t last rows, because infinitely many
numbers appear in these rows. It follows that for each n ě A the interval ∆n contains at least
one member from these rows.

This yields that for every positive integer d, the interval
“

A`1, A`pd`1qpk´ tqT s contains
at least pd` 1qpk´ tq elements from the last k ´ t rows; therefore, there exists an index x with
t` 1 ď x ď k, possibly depending on d, such that our interval contains at least d` 1 elements
from the xth row. In this situation we have

f dpaxq ď A` pd ` 1qpk ´ tqT .

Finally, since there are finitely many possibilities for x, there exists an index x ě t` 1 such
that the set

X “
 

d P Zą0

ˇ

ˇ f dpaxq ď A` pd ` 1qpk ´ tqT
(

is infinite. Thereby we have found the “dense row” promised above.

By assumption piq, for every d P X the number

βd “ f dpaxq ´ ax
d

is a positive integer not exceeding

A` pd ` 1qpk ´ tqT
d

ď Ad ` 2dpk ´ tqT
d

“ A` 2pk ´ tqT .

This leaves us with finitely many choices for βd, which means that there exists a number Tx
such that the set

Y “
 

d P X
ˇ

ˇ βd “ Tx
(

is infinite. Notice that we have f dpaxq “ ax ` d ¨ Tx for all d P Y .

Now we are prepared to prove that the numbers in the xth row form an arithmetic progres-
sion, thus coming to a contradiction with our assumption. Let us fix any positive integer j.
Since the set Y is infinite, we can choose a number y P Y such that y´j ą

ˇ

ˇf jpaxq´pax `jTxq
ˇ

ˇ.
Notice that both numbers

f ypaxq ´ f jpaxq “ f y´j
`

f jpaxq
˘

´ f jpaxq and f ypaxq ´ pax ` jTxq “ py ´ jqTx

are divisible by y ´ j. Thus, the difference between these numbers is also divisible by y ´ j.
Since the absolute value of this difference is less than y´ j, it has to vanish, so we get f jpaxq “
ax ` j ¨ Tx.

Hence, it is indeed true that all rows of the Table are arithmetic progressions.

Step 3. Keeping the above notation in force, we denote the step of the ith row of the table by Ti.
Now we claim that we have fpnq ´ n “ fpn` T q ´ pn ` T q for all n P Zą0, where

T “ lcmpT1, . . . , Tkq .

To see this, let any n P Zą0 be given and denote the index of the row in which it appears in
the Table by i. Then we have f jpnq “ n` j ¨ Ti for all j P Zą0, and thus indeed

fpn` T q ´ fpnq “ f 1`T {Tipnq ´ fpnq “ pn ` T ` Tiq ´ pn` Tiq “ T .

This concludes the solution.
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Comment 1. There are some alternative ways to complete the second part once the index x
corresponding to a “dense row” is found. For instance, one may show that for some integer T ˚

x the set

Y ˚ “
 

j P Zą0

ˇ

ˇ f j`1paxq ´ f jpaxq “ T ˚
x

(

is infinite, and then one may conclude with a similar divisibility argument.

Comment 2. It may be checked that, conversely, any way to fill out the Table with finitely many
arithmetic progressions so that each positive integer appears exactly once, gives rise to a function f
satisfying the two conditions mentioned in the problem. For example, we may arrange the positive
integers as follows:

2 4 6 8 10 . . .

1 5 9 13 17 . . .

3 7 11 15 19 . . .

This corresponds to the function

fpnq “
#

n` 2 if n is even;

n` 4 if n is odd.

As this example shows, it is not true that the function n ÞÑ fpnq ´ n has to be constant.
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N7. Let Zą0 denote the set of positive integers. For any positive integer k, a function
f : Zą0 Ñ Zą0 is called k-good if gcd

`

fpmq ` n, fpnq ` m
˘

ď k for all m ‰ n. Find all k such
that there exists a k-good function.

(Canada)

Answer. k ě 2.

Solution 1. For any function f : Zą0 Ñ Zą0, let Gfpm,nq “ gcd
`

fpmq ` n, fpnq ` m
˘

. Note
that a k-good function is also pk` 1q-good for any positive integer k. Hence, it suffices to show
that there does not exist a 1-good function and that there exists a 2-good function.

We first show that there is no 1-good function. Suppose that there exists a function f such
that Gf pm,nq “ 1 for all m ‰ n. Now, if there are two distinct even numbers m and n such
that fpmq and fpnq are both even, then 2 | Gfpm,nq, a contradiction. A similar argument
holds if there are two distinct odd numbers m and n such that fpmq and fpnq are both odd.
Hence we can choose an even m and an odd n such that fpmq is odd and fpnq is even. This
also implies that 2 | Gfpm,nq, a contradiction.

We now construct a 2-good function. Define fpnq “ 2gpnq`1 ´ n ´ 1, where g is defined
recursively by gp1q “ 1 and gpn` 1q “ p2gpnq`1q!.

For any positive integers m ą n, set

A “ fpmq ` n “ 2gpmq`1 ´ m` n´ 1, B “ fpnq ` m “ 2gpnq`1 ´ n` m´ 1.

We need to show that gcdpA,Bq ď 2. First, note that A ` B “ 2gpmq`1 ` 2gpnq`1 ´ 2 is not
divisible by 4, so that 4 ∤ gcdpA,Bq. Now we suppose that there is an odd prime p for which
p | gcdpA,Bq and derive a contradiction.

We first claim that 2gpm´1q`1 ě B. This is a rather weak bound; one way to prove it is as fol-
lows. Observe that gpk`1q ą gpkq and hence 2gpk`1q`1 ě 2gpkq`1`1 for every positive integer k.
By repeatedly applying this inequality, we obtain 2gpm´1q`1 ě 2gpnq`1 ` pm ´ 1q ´ n “ B.

Now, since p | B, we have p ´ 1 ă B ď 2gpm´1q`1, so that p ´ 1 | p2gpm´1q`1q! “ gpmq.
Hence 2gpmq ” 1 pmod pq, which yields A ` B ” 2gpnq`1 pmod pq. However, since p | A ` B,
this implies that p “ 2, a contradiction.

Solution 2. We provide an alternative construction of a 2-good function f .

Let P be the set consisting of 4 and all odd primes. For every p P P, we say that a number
a P t0, 1, . . . , p ´ 1u is p-useful if a ı ´a pmod pq. Note that a residue modulo p which is
neither 0 nor 2 is p-useful (the latter is needed only when p “ 4).

We will construct f recursively; in some steps, we will also define a p-useful number ap.
After the mth step, the construction will satisfy the following conditions:

(i) The values of fpnq have already been defined for all n ď m, and p-useful numbers ap have
already been defined for all p ď m ` 2;

(ii) If n ď m and p ď m` 2, then fpnq ` n ı ap pmod pq;

(iii) gcd
`

fpn1q ` n2, fpn2q ` n1

˘

ď 2 for all n1 ă n2 ď m.

If these conditions are satisfied, then f will be a 2-good function.

Step 1. Set fp1q “ 1 and a3 “ 1. Clearly, all the conditions are satisfied.

Step m, for m ě 2. We need to determine fpmq and, if m` 2 P P, the number am`2.

Defining fpmq. Let Xm “ tp P P : p | fpnq ` m for some n ă mu. We will determine
fpmq mod p for all p P Xm and then choose fpmq using the Chinese Remainder Theorem.
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Take any p P Xm. If p ď m ` 1, then we define fpmq ” ´ap ´ m pmod pq. Otherwise, if
p ě m` 2, then we define fpmq ” 0 pmod pq.
Defining am`2. Now let p “ m ` 2 and suppose that p P P. We choose ap to be a residue
modulo p that is not congruent to 0, 2, or fpnq ` n for any n ď m. Since fp1q ` 1 “ 2, there
are at most m ` 1 ă p residues to avoid, so we can always choose a remaining residue.

We first check that (ii) is satisfied. We only need to check it if p “ m` 2 or n “ m. In the
former case, we have fpnq ` n ı ap pmod pq by construction. In the latter case, if n “ m and
p ď m ` 1, then we have fpmq ` m ” ´ap ı ap pmod pq, where we make use of the fact that
ap is p-useful.

Now we check that (iii) holds. Suppose, to the contrary, that p | gcd
`

fpnq ` m, fpmq ` n
˘

for some n ă m. Then p P Xm and p | fpmq`n. If p ě m`2, then 0 ” fpmq`n ” n pmod pq,
which is impossible since n ă m ă p.

Otherwise, if p ď m` 1, then

0 ”
`

fpmq ` n
˘

`
`

fpnq ` m
˘

”
`

fpnq ` n
˘

`
`

fpmq ` m
˘

”
`

fpnq ` n
˘

´ ap pmod pq.

This implies that fpnq ` n ” ap pmod pq, a contradiction with (ii).

Comment 1. For any p P P, we may also define ap at step m for an arbitrary m ď p ´ 2. The
construction will work as long as we define a finite number of ap at each step.

Comment 2. When attempting to construct a 2-good function f recursively, the following way
seems natural. Start with setting fp1q “ 1. Next, for each integer m ą 1, introduce the set Xm like
in Solution 2 and define fpmq so as to satisfy

fpmq ” fpm´ pq pmod pq for all p P Xm with p ă m, and

fpmq ” 0 pmod pq for all p P Xm with p ě m.

This construction might seem to work. Indeed, consider a fixed p P P, and suppose that p
divides gcd

`

fpnq ` m, fpmq ` n
˘

for some n ă m. Choose such m and n so that maxpm,nq is
minimal. Then p P Xm. We can check that p ă m, so that the construction implies that p di-
vides gcd

`

fpnq ` pm ´ pq, fpm´ pq ` n
˘

. Since maxpn,m ´ pq ă maxpm,nq, this almost leads to a
contradiction—the only trouble is the possibility that n “ m´ p. However, this flaw may happen to
be not so easy to fix.

We will present one possible way to repair this argument in the next comment.

Comment 3. There are many recursive constructions for a 2-good function f . Here we sketch one
general approach which may be specified in different ways. For convenience, we denote by Zp the set
of residues modulo p; all operations on elements of Zp are also performed modulo p.

The general structure is the same as in Solution 2, i.e. using the Chinese Remainder Theorem to
successively determine fpmq. But instead of designating a common “safe” residue ap for future steps,
we act as follows.

For every p P P, in some step of the process we define p subsets B
p1q
p , B

p2q
p , . . . , B

ppq
p Ă Zp. The

meaning of these sets is that

fpmq `m should be congruent to some element in Bpiq
p whenever m ” i pmod pq for i P Zp. (1)

Moreover, in every such subset we specify a safe element b
piq
p P Bpiq

p . The meaning now is that in

future steps, it is safe to set fpmq ` m ” b
piq
p pmod pq whenever m ” i pmod pq. In view of (1), this

safety will follow from the condition that p ∤ gcd
`

b
piq
p ` pj ´ iq, cpjq ´ pj ´ iq

˘

for all j P Zp and all

cpjq P Bpjq
p . In turn, this condition can be rewritten as

´ bpiq
p R Bpjq

p , where j ” i´ bpiq
p pmod pq. (2)
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The construction in Solution 2 is equivalent to setting b
piq
p “ ´ap and B

piq
p “ Zp z tapu for all i.

However, there are different, more technical specifications of our approach.

One may view the (incomplete) construction in Comment 2 as defining B
piq
p and b

piq
p at step p´ 1

by setting B
p0q
p “

 

b
p0q
p

(

“ t0u and B
piq
p “

 

b
piq
p

(

“ tfpiq ` i mod pu for every i “ 1, 2, . . . , p ´ 1.
However, this construction violates (2) as soon as some number of the form fpiq ` i is divisible by

some p with i ` 2 ď p P P, since then ´bpiq
p “ b

piq
p P Bpiq

p .

Here is one possible way to repair this construction. For all p P P, we define the sets B
piq
p and the

elements b
piq
p at step pp´2q as follows. Set Bp1q

p “
 

b
p1q
p

(

“ t2u and B
p´1q
p “ B

p0q
p “

 

b
p´1q
p

(

“
 

b
p0q
p

(

“
t´1u. Next, for all i “ 2, . . . , p ´ 2, define B

piq
p “ ti, fpiq ` i mod pu and b

piq
p “ i. One may see that

these definitions agree with both (1) and (2).
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N8. For every positive integer n with prime factorization n “ śk
i“1 p

αi

i , define

℧pnq “
ÿ

i : pią10100

αi.

That is, ℧pnq is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

℧
`

fpaq ´ fpbq
˘

ď ℧pa ´ bq for all integers a and b with a ą b. (1)

(Brazil)

Answer. fpxq “ ax ` b, where b is an arbitrary integer, and a is an arbitrary positive integer
with ℧paq “ 0.

Solution. A straightforward check shows that all the functions listed in the answer satisfy the
problem condition. It remains to show the converse.

Assume that f is a function satisfying the problem condition. Notice that the function
gpxq “ fpxq ´ fp0q also satisfies this condition. Replacing f by g, we assume from now on that
fp0q “ 0; then fpnq ą 0 for any positive integer n. Thus, we aim to prove that there exists a
positive integer a with ℧paq “ 0 such that fpnq “ an for all n P Z.

We start by introducing some notation. Set N “ 10100. We say that a prime p is large
if p ą N , and p is small otherwise; let S be the set of all small primes. Next, we say that
a positive integer is large or small if all its prime factors are such (thus, the number 1 is the
unique number which is both large and small). For a positive integer k, we denote the greatest
large divisor of k and the greatest small divisor of k by Lpkq and Spkq, respectively; thus,
k “ LpkqSpkq.

We split the proof into three steps.

Step 1. We prove that for every large k, we have k | fpaq ´ fpbq ðñ k | a ´ b. In other

words, L
`

fpaq ´ fpbq
˘

“ Lpa ´ bq for all integers a and b with a ą b.

We use induction on k. The base case k “ 1 is trivial. For the induction step, assume that
k0 is a large number, and that the statement holds for all large numbers k with k ă k0.

Claim 1. For any integers x and y with 0 ă x ´ y ă k0, the number k0 does not divide
fpxq ´ fpyq.
Proof. Assume, to the contrary, that k0 | fpxq ´ fpyq. Let ℓ “ Lpx ´ yq; then ℓ ď x ´ y ă k0.
By the induction hypothesis, ℓ | fpxq ´ fpyq, and thus lcmpk0, ℓq | fpxq ´ fpyq. Notice that
lcmpk0, ℓq is large, and lcmpk0, ℓq ě k0 ą ℓ. But then

℧
`

fpxq ´ fpyq
˘

ě ℧
`

lcmpk0, ℓq
˘

ą ℧pℓq “ ℧px ´ yq,

which is impossible. l

Now we complete the induction step. By Claim 1, for every integer a each of the sequences

fpaq, fpa` 1q, . . . , fpa` k0 ´ 1q and fpa` 1q, fpa` 2q, . . . , fpa` k0q

forms a complete residue system modulo k0. This yields fpaq ” fpa ` k0q pmod k0q. Thus,
fpaq ” fpbq pmod k0q whenever a ” b pmod k0q.

Finally, if a ı b pmod k0q then there exists an integer b1 such that b1 ” b pmod k0q and
|a ´ b1| ă k0. Then fpbq ” fpb1q ı fpaq pmod k0q. The induction step is proved.

Step 2. We prove that for some small integer a there exist infinitely many integers n such that
fpnq “ an. In other words, f is linear on some infinite set.

We start with the following general statement.



80 IMO 2015 Thailand

Claim 2. There exists a constant c such that fptq ă ct for every positive integer t ą N .

Proof. Let d be the product of all small primes, and let α be a positive integer such that
2α ą fpNq. Then, for every p P S the numbers fp0q, fp1q, . . . , fpNq are distinct modulo pα.
Set P “ dα and c “ P ` fpNq.

Choose any integer t ą N . Due to the choice of α, for every p P S there exists at most one
nonnegative integer i ď N with pα | fptq ´ fpiq. Since |S| ă N , we can choose a nonnegative
integer j ď N such that pα ∤ fptq ´ fpjq for all p P S. Therefore, S

`

fptq ´ fpjq
˘

ă P .
On the other hand, Step 1 shows that L

`

fptq ´ fpjq
˘

“ Lpt´ jq ď t´ j. Since 0 ď j ď N ,
this yields

fptq “ fpjq ` L
`

fptq ´ fpjq
˘

¨ S
`

fptq ´ fpjq
˘

ă fpNq ` pt´ jqP ď
`

P ` fpNq
˘

t “ ct. l

Now let T be the set of large primes. For every t P T , Step 1 implies L
`

fptq
˘

“ t, so the
ratio fptq{t is an integer. Now Claim 2 leaves us with only finitely many choices for this ratio,
which means that there exists an infinite subset T 1 Ď T and a positive integer a such that
fptq “ at for all t P T 1, as required.

Since Lptq “ L
`

fptq
˘

“ LpaqLptq for all t P T 1, we get Lpaq “ 1, so the number a is small.

Step 3. We show that fpxq “ ax for all x P Z.

Let Ri “
 

x P Z : x ” i pmod N !q
(

denote the residue class of i modulo N !.

Claim 3. Assume that for some r, there are infinitely many n P Rr such that fpnq “ an. Then
fpxq “ ax for all x P Rr`1.

Proof. Choose any x P Rr`1. By our assumption, we can select n P Rr such that fpnq “ an
and |n ´ x| ą

ˇ

ˇfpxq ´ ax
ˇ

ˇ. Since n ´ x ” r ´ pr ` 1q “ ´1 pmod N !q, the number |n ´ x| is
large. Therefore, by Step 1 we have fpxq ” fpnq “ an ” ax pmod n´ xq, so n´ x | fpxq ´ ax.
Due to the choice of n, this yields fpxq “ ax. l

To complete Step 3, notice that the set T 1 found in Step 2 contains infinitely many elements
of some residue class Ri. Applying Claim 3, we successively obtain that fpxq “ ax for all
x P Ri`1, Ri`2, . . . , Ri`N ! “ Ri. This finishes the solution.

Comment 1. As the proposer also mentions, one may also consider the version of the problem where
the condition (1) is replaced by the condition that L

`

fpaq ´ fpbq
˘

“ Lpa ´ bq for all integers a and b
with a ą b. This allows to remove of Step 1 from the solution.

Comment 2. Step 2 is the main step of the solution. We sketch several different approaches allowing
to perform this step using statements which are weaker than Claim 2.

Approach 1. Let us again denote the product of all small primes by d. We focus on the values fpdiq,
i ě 0. In view of Step 1, we have L

`

fpdiq ´ fpdkq
˘

“ Lpdi ´ dkq “ di´k ´ 1 for all i ą k ě 0.
Acting similarly to the beginning of the proof of Claim 2, one may choose a number α ě 0 such

that the residues of the numbers fpdiq, i “ 0, 1, . . . , N , are distinct modulo pα for each p P S. Then,
for every i ą N , there exists an exponent k “ kpiq ď N such that S

`

fpdiq ´ fpdkq
˘

ă P “ dα.
Since there are only finitely many options for kpiq, as well as for the corresponding numbers

S
`

fpdiq ´ fpdkq
˘

, there exists an infinite set I of exponents i ą N such that kpiq attains the same
value k0 for all i P I, and such that, moreover, S

`

fpdiq ´ fpdk0q
˘

attains the same value s0 for all
i P I. Therefore, for all such i we have

fpdiq “ fpdk0q ` L
`

fpdiq ´ fpdk0q
˘

¨ S
`

fpdiq ´ fpdk0q
˘

“ fpdk0q `
`

di´k0 ´ 1
˘

s0,

which means that f is linear on the infinite set tdi : i P Iu (although with rational coefficients).
Finally, one may implement the relation fpdiq ” fp1q pmod di ´ 1q in order to establish that in

fact fpdiq{di is a (small and fixed) integer for all i P I.
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Approach 2. Alternatively, one may start with the following lemma.

Lemma. There exists a positive constant c such that

L

˜

3N
ź

i“1

`

fpkq ´ fpiq
˘

¸

“
3N
ź

i“1

L
`

fpkq ´ fpiq
˘

ě c
`

fpkq
˘2N

for all k ą 3N .

Proof. Let k be an integer with k ą 3N . Set Π “ ś3N
i“1

`

fpkq ´ fpiq
˘

.
Notice that for every prime p P S, at most one of the numbers in the set

H “
 

fpkq ´ fpiq : 1 ď i ď 3N
(

is divisible by a power of p which is greater than fp3Nq; we say that such elements of H are bad.
Now, for each element h P H which is not bad we have Sphq ď fp3NqN , while the bad elements do
not exceed fpkq. Moreover, there are less than N bad elements in H. Therefore,

SpΠq “
ź

hPH

S phq ď
`

fp3Nq
˘3N2

¨
`

fpkq
˘N
.

This easily yields the lemma statement in view of the fact that LpΠqSpΠq “ Π ě µ
`

fpkq
˘3N

for some
absolute constant µ. l

As a corollary of the lemma, one may get a weaker version of Claim 2 stating that there exists a
positive constant C such that fpkq ď Ck3{2 for all k ą 3N . Indeed, from Step 1 we have

k3N ě
3N
ź

i“1

Lpk ´ iq “
3N
ź

i“1

L
`

fpkq ´ fpiq
˘

ě c
`

fpkq
˘2N

,

so fpkq ď c´1{p2Nqk3{2.

To complete Step 2 now, set a “ fp1q. Due to the estimates above, we may choose a positive

integer n0 such that
ˇ

ˇfpnq ´ an
ˇ

ˇ ă npn´1q
2

for all n ě n0.
Take any n ě n0 with n ” 2 pmod N !q. Then L

`

fpnq ´fp0q
˘

“ Lpnq “ n{2 and L
`

fpnq ´fp1q
˘

“
Lpn ´ 1q “ n ´ 1; these relations yield fpnq ” fp0q “ 0 ” an pmod n{2q and fpnq ” fp1q “ a ” an

pmod n ´ 1q, respectively. Thus, npn´1q
2

ˇ

ˇ fpnq ´ an, which shows that fpnq “ an in view of the
estimate above.

Comment 3. In order to perform Step 3, it suffices to establish the equality fpnq “ an for any
infinite set of values of n. However, if this set has some good structure, then one may find easier ways
to complete this step.

For instance, after showing, as in Approach 2, that fpnq “ an for all n ě n0 with n ” 2 pmod N !q,
one may proceed as follows. Pick an arbitrary integer x and take any large prime p which is greater
than |fpxq ´ ax|. By the Chinese Remainder Theorem, there exists a positive integer n ą maxpx, n0q
such that n ” 2 pmod N !q and n ” x pmod pq. By Step 1, we have fpxq ” fpnq “ an ” ax pmod pq.
Due to the choice of p, this is possible only if fpxq “ ax.
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Problems

Algebra

A1. Let a, b and c be positive real numbers such that min {ab, bc, ca} > 1. Prove that

3
»

(a2 + 1)(b2 + 1)(c2 + 1) 6
Ç
a+ b+ c

3

å2

+ 1.

A2. Find the smallest real constant C such that for any positive real numbers a1, a2, a3, a4
and a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such
that ∣∣∣∣∣aiaj − ak

al

∣∣∣∣∣ 6 C.

A3. Find all integers n > 3 with the following property: for all real numbers a1, a2, . . . , an
and b1, b2, . . . , bn satisfying |ak| + |bk| = 1 for 1 6 k 6 n, there exist x1, x2, . . . , xn, each of
which is either −1 or 1, such that∣∣∣∣∣∣

n∑
k=1

xkak

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
k=1

xkbk

∣∣∣∣∣∣ 6 1.

A4. Denote by R+ the set of all positive real numbers. Find all functions f : R+ → R+ such
that

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
Ä
f(f(x2)) + f(f(y2))

ä
for all positive real numbers x and y.

A5.

(a) Prove that for every positive integer n, there exists a fraction a
b

where a and b are integers

satisfying 0 < b 6
√
n+ 1 and

√
n 6 a

b
6
√
n+ 1.

(b) Prove that there are infinitely many positive integers n such that there is no fraction a
b

where a and b are integers satisfying 0 < b 6
√
n and

√
n 6 a

b
6
√
n+ 1.
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A6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board. One tries to erase some linear factors from both sides so that each
side still has at least one factor, and the resulting equation has no real roots. Find the least
number of linear factors one needs to erase to achieve this.

A7. Denote by R the set of all real numbers. Find all functions f : R → R such that
f(0) 6= 0 and

f(x+ y)2 = 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)}

for all real numbers x and y.

A8. Determine the largest real number a such that for all n > 1 and for all real numbers
x0, x1, . . . , xn satisfying 0 = x0 < x1 < x2 < · · · < xn, we have

1

x1 − x0
+

1

x2 − x1
+ · · ·+ 1

xn − xn−1
> a

Ç
2

x1
+

3

x2
+ · · ·+ n+ 1

xn

å
.
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Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with n > k, and announces
them to the deputy leader and a contestant. The leader then secretly tells the deputy leader
an n-digit binary string, and the deputy leader writes down all n-digit binary strings which
differ from the leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant
is allowed to look at the strings written by the deputy leader and guess the leader’s string.
What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct
answer?

C2. Find all positive integers n for which all positive divisors of n can be put into the cells
of a rectangular table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal; and

• the sums of all columns are equal.

C3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular
n-gon with three colours so that there is an odd number of vertices of each colour. Show that
there exists an isosceles triangle whose three vertices are of different colours.

C4. Find all positive integers n for which we can fill in the entries of an n × n table with
the following properties:

• each entry can be one of I, M and O;

• in each row and each column, the letters I, M and O occur the same number of times;
and

• in any diagonal whose number of entries is a multiple of three, the letters I, M and O
occur the same number of times.

C5. Let n > 3 be a positive integer. Find the maximum number of diagonals of a regular
n-gon one can select, so that any two of them do not intersect in the interior or they are
perpendicular to each other.
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C6. There are n > 3 islands in a city. Initially, the ferry company offers some routes between
some pairs of islands so that it is impossible to divide the islands into two groups such that
no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X
and Y . At the same time, in order to maintain its service, the company will open new routes
according to the following rule: for any island which is connected by a ferry route to exactly
one of X and Y , a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way,
then it is known that the ferry company will close a certain route connecting two islands from
the two groups after some years. Prove that after some years there will be an island which is
connected to all other islands by ferry routes.

C7. Let n > 2 be an integer. In the plane, there are n segments given in such a way that
any two segments have an intersection point in the interior, and no three segments intersect
at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps
his hands n−1 times. Each time when he claps his hands, all the snails move along their own
segments and stay at the next intersection points until the next clap. Since there are n − 1
intersection points on each segment, all snails will reach the furthest intersection points from
their starting points after n− 1 claps.

(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever
occupy the same intersection point.

(b) Prove that if n is even then there must be a moment when some two snails occupy the
same intersection point no matter how Jeff places the snails.

C8. Let n be a positive integer. Determine the smallest positive integer k with the following
property: it is possible to mark k cells on a 2n × 2n board so that there exists a unique
partition of the board into 1 × 2 and 2 × 1 dominoes, none of which contains two marked
cells.
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Geometry

G1. In a convex pentagon ABCDE, let F be a point on AC such that ∠FBC = 90◦.
Suppose triangles ABF , ACD and ADE are similar isosceles triangles with

∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA.

Let M be the midpoint of CF . Point X is chosen such that AMXE is a parallelogram. Show
that BD,EM and FX are concurrent.

G2. Let ABC be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of
side BC. Denote by D the foot of perpendicular from I to side BC. The line through I per-
pendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle
of triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet
on Γ.

G3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty,
bounded subset S of the plane is said to be nice if

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely
in S; and

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the
indices {1, 2, 3} for which triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S ′ of the set {(x, y) : x > 0, y > 0}
such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (ii), then the product
BA ·BA′ is a constant independent of the triangle P1P2P3.

G4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI
meets AC at D, and the line through D perpendicular to AC meets AI at E. Prove that the
reflection of I in AC lies on the circumcircle of triangle BDE.

G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the
circumcentre and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre
S passes through A and D, and it intersects sides AB and AC at X and Y respectively. Let
P be the foot of altitude from A to BC, and let M be the midpoint of BC. Prove that the
circumcentre of triangle XSY is equidistant from P and M .
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G6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal
angle bisectors of ∠ABC and ∠ADC meet AC at E and F respectively, and meet each
other at point P . Let M be the midpoint of AC and let ω be the circumcircle of triangle
BPD. Segments BM and DM intersect ω again at X and Y respectively. Denote by Q the
intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

G7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be
the reflection of IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB, I

′
B

and line lB analogously. Let P be the intersection point of lA and lB.

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at
points X and Y . Show that ∠XIY = 120◦.

G8. Let A1, B1 and C1 be points on sides BC,CA and AB of an acute triangle ABC
respectively, such that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC.
Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A1B1C1. Show
that

AH +BH + CH > AI +BI + CI.
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Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by
S(k). Find all polynomials P (x) with integer coefficients such that for any positive integer
n > 2016, the integer P (n) is positive and

S(P (n)) = P (S(n)).

N2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive
divisors of n which have remainders 1 when divided by 3. Find all possible integral values of
the fraction τ(10n)

τ1(10n)
.

N3. Define P (n) = n2 + n+ 1. For any positive integers a and b, the set

{P (a), P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is said to be fragrant if none of its elements is relatively prime to the product of the other
elements. Determine the smallest size of a fragrant set.

N4. Let n,m, k and l be positive integers with n 6= 1 such that nk+mnl+1 divides nk+l−1.
Prove that

• m = 1 and l = 2k; or

• l|k and m = nk−l−1
nl−1 .

N5. Let a be a positive integer which is not a square number. Denote by A the set of all
positive integers k such that

k =
x2 − a
x2 − y2

(1)

for some integers x and y with x >
√
a. Denote by B the set of all positive integers k such

that (1) is satisfied for some integers x and y with 0 6 x <
√
a. Prove that A = B.

N6. Denote by N the set of all positive integers. Find all functions f : N → N such that
for all positive integers m and n, the integer f(m) + f(n) − mn is nonzero and divides
mf(m) + nf(n).
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N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area
S is chosen. All its vertices have integral coordinates, and all squares of its side lengths are
divisible by n. Prove that 2S is an integer divisible by n.

N8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the
following property: for each positive integer n, there exist n positive integers x1, x2, . . . , xn
such that 1

2
< P (xi)

P (xj)
< 2 and P (xi)

P (xj)
is the d-th power of a rational number for every pair of

indices i and j with 1 6 i, j 6 n.
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Solutions

Algebra

A1. Let a, b and c be positive real numbers such that min {ab, bc, ca} > 1. Prove that

3
»

(a2 + 1)(b2 + 1)(c2 + 1) 6
Ç
a+ b+ c

3

å2

+ 1. (1)

Solution 1. We first show the following.

• Claim. For any positive real numbers x, y with xy > 1, we have

(x2 + 1)(y2 + 1) 6
ÇÅx+ y

2

ã2
+ 1

å2

. (2)

Proof. Note that xy > 1 implies (x+y
2

)2 − 1 > xy − 1 > 0. We find that

(x2 + 1)(y2 + 1) = (xy − 1)2 + (x+ y)2 6
ÇÅx+ y

2

ã2
− 1

å2

+ (x+ y)2 =

ÇÅx+ y

2

ã2
+ 1

å2

.

Without loss of generality, assume a > b > c. This implies a > 1. Let d = a+b+c
3

. Note
that

ad =
a(a+ b+ c)

3
>

1 + 1 + 1

3
= 1.

Then we can apply (2) to the pair (a, d) and the pair (b, c). We get

(a2 + 1)(d2 + 1)(b2 + 1)(c2 + 1) 6

(Ç
a+ d

2

å2

+ 1

)2 (Ç
b+ c

2

å2

+ 1

)2

. (3)

Next, from
a+ d

2
· b+ c

2
>
√
ad ·
√
bc > 1,

we can apply (2) again to the pair (a+d
2
, b+c

2
). Together with (3), we have

(a2 + 1)(d2 + 1)(b2 + 1)(c2 + 1) 6

(Ç
a+ b+ c+ d

4

å2

+ 1

)4

= (d2 + 1)4.

Therefore, (a2 + 1)(b2 + 1)(c2 + 1) 6 (d2 + 1)3, and (1) follows by taking cube root of both
sides.
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Comment. After justifying the Claim, one may also obtain (1) by mixing variables. Indeed,
the function involved is clearly continuous, and hence it suffices to check that the condition
xy > 1 is preserved under each mixing step. This is true since whenever ab, bc, ca > 1, we
have

a+ b

2
· a+ b

2
> ab > 1 and

a+ b

2
· c > 1 + 1

2
= 1.

Solution 2. Let f(x) = ln (1 + x2). Then the inequality (1) to be shown is equivalent to

f(a) + f(b) + f(c)

3
6 f

Ç
a+ b+ c

3

å
,

while (2) becomes
f(x) + f(y)

2
6 f

Åx+ y

2

ã
for xy > 1.

Without loss of generality, assume a > b > c. From the Claim in Solution 1, we have

f(a) + f(b) + f(c)

3
6
f(a) + 2f( b+c

2
)

3
.

Note that a > 1 and b+c
2

>
√
bc > 1. Since

f ′′(x) =
2(1− x2)
(1 + x2)2

,

we know that f is concave on [1,∞). Then we can apply Jensen’s Theorem to get

f(a) + 2f( b+c
2

)

3
6 f

(
a+ 2 · b+c

2

3

)
= f

Ç
a+ b+ c

3

å
.

This completes the proof.
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A2. Find the smallest real constant C such that for any positive real numbers a1, a2, a3, a4
and a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such
that ∣∣∣∣∣aiaj − ak

al

∣∣∣∣∣ 6 C. (1)

Answer. The smallest C is 1
2
.

Solution. We first show that C 6 1
2
. For any positive real numbers a1 6 a2 6 a3 6 a4 6 a5,

consider the five fractions
a1
a2
,
a3
a4
,
a1
a5
,
a2
a3
,
a4
a5
. (2)

Each of them lies in the interval (0, 1]. Therefore, by the Pigeonhole Principle, at least three
of them must lie in (0, 1

2
] or lie in (1

2
, 1] simultaneously. In particular, there must be two

consecutive terms in (2) which belong to an interval of length 1
2

(here, we regard a1
a2

and a4
a5

as consecutive). In other words, the difference of these two fractions is less than 1
2
. As the

indices involved in these two fractions are distinct, we can choose them to be i, j, k, l and
conclude that C 6 1

2
.

Next, we show that C = 1
2

is best possible. Consider the numbers 1, 2, 2, 2, n where n is
a large real number. The fractions formed by two of these numbers in ascending order are
1
n
, 2
n
, 1
2
, 2
2
, 2
1
, n
2
, n
1
. Since the indices i, j, k, l are distinct, 1

n
and 2

n
cannot be chosen simultane-

ously. Therefore the minimum value of the left-hand side of (1) is 1
2
− 2

n
. When n tends to

infinity, this value approaches 1
2
, and so C cannot be less than 1

2
.

These conclude that C = 1
2

is the smallest possible choice.

Comment. The conclusion still holds if a1, a2, . . . , a5 are pairwise distinct, since in the con-
struction, we may replace the 2’s by real numbers sufficiently close to 2.

There are two possible simplifications for this problem:

(i) the answer C = 1
2

is given to the contestants; or

(ii) simply ask the contestants to prove the inequality (1) for C = 1
2
.
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A3. Find all integers n > 3 with the following property: for all real numbers a1, a2, . . . , an
and b1, b2, . . . , bn satisfying |ak| + |bk| = 1 for 1 6 k 6 n, there exist x1, x2, . . . , xn, each of
which is either −1 or 1, such that∣∣∣∣∣∣

n∑
k=1

xkak

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
k=1

xkbk

∣∣∣∣∣∣ 6 1. (1)

Answer. n can be any odd integer greater than or equal to 3.

Solution 1. For any even integer n > 4, we consider the case

a1 = a2 = · · · = an−1 = bn = 0 and b1 = b2 = · · · = bn−1 = an = 1.

The condition |ak| + |bk| = 1 is satisfied for each 1 6 k 6 n. No matter how we choose each
xk, both sums

∑n
k=1 xkak and

∑n
k=1 xkbk are odd integers. This implies |∑n

k=1 xkak| > 1 and
|∑n

k=1 xkbk| > 1, which shows (1) cannot hold.
For any odd integer n > 3, we may assume without loss of generality bk > 0 for 1 6 k 6 n

(this can be done by flipping the pair (ak, bk) to (−ak,−bk) and xk to −xk if necessary) and
a1 > a2 > · · · > am > 0 > am+1 > · · · > an. We claim that the choice xk = (−1)k+1 for
1 6 k 6 n will work. Define

s =
m∑
k=1

xkak and t = −
n∑

k=m+1

xkak.

Note that
s = (a1 − a2) + (a3 − a4) + · · · > 0

by the assumption a1 > a2 > · · · > am (when m is odd, there is a single term am at the end,
which is also positive). Next, we have

s = a1 − (a2 − a3)− (a4 − a5)− · · · 6 a1 6 1.

Similarly,
t = (−an + an−1) + (−an−2 + an−3) + · · · > 0

and
t = −an + (an−1 − an−2) + (an−3 − an−4) + · · · 6 −an 6 1.

From the condition, we have ak+bk = 1 for 1 6 k 6 m and −ak+bk = 1 for m+1 6 k 6 n.
It follows that

∑n
k=1 xkak = s− t and

∑n
k=1 xkbk = 1− s− t. Hence it remains to prove

|s− t|+ |1− s− t| 6 1

under the constraint 0 6 s, t 6 1. By symmetry, we may assume s > t. If 1− s− t > 0, then
we have

|s− t|+ |1− s− t| = s− t+ 1− s− t = 1− 2t 6 1.

If 1− s− t 6 0, then we have

|s− t|+ |1− s− t| = s− t− 1 + s+ t = 2s− 1 6 1.

Hence, the inequality is true in both cases.
These show n can be any odd integer greater than or equal to 3.
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Solution 2. The even case can be handled in the same way as Solution 1. For the odd case,
we prove by induction on n.

Firstly, for n = 3, we may assume without loss of generality a1 > a2 > a3 > 0 and
b1 = a1 − 1 (if b1 = 1− a1, we may replace each bk by −bk).

• Case 1. b2 = a2 − 1 and b3 = a3 − 1, in which case we take (x1, x2, x3) = (1,−1, 1).
Let c = a1 − a2 + a3 so that 0 6 c 6 1. Then |b1 − b2 + b3| = |a1 − a2 + a3 − 1| = 1 − c

and hence |c|+ |b1 − b2 + b3| = 1.

• Case 2. b2 = 1− a2 and b3 = 1− a3, in which case we take (x1, x2, x3) = (1,−1, 1).
Let c = a1 − a2 + a3 so that 0 6 c 6 1. Since a3 6 a2 and a1 6 1, we have

c− 1 6 b1 − b2 + b3 = a1 + a2 − a3 − 1 6 1− c.

This gives |b1 − b2 + b3| 6 1− c and hence |c|+ |b1 − b2 + b3| 6 1.

• Case 3. b2 = a2 − 1 and b3 = 1− a3, in which case we take (x1, x2, x3) = (−1, 1, 1).
Let c = −a1 + a2 + a3. If c > 0, then a3 6 1 and a2 6 a1 imply

c− 1 6 −b1 + b2 + b3 = −a1 + a2 − a3 + 1 6 1− c.

If c < 0, then a1 6 a2 + 1 and a3 > 0 imply

−c− 1 6 −b1 + b2 + b3 = −a1 + a2 − a3 + 1 6 1 + c.

In both cases, we get | − b1 + b2 + b3| 6 1− |c| and hence |c|+ | − b1 + b2 + b3| 6 1.

• Case 4. b2 = 1− a2 and b3 = a3 − 1, in which case we take (x1, x2, x3) = (−1, 1, 1).
Let c = −a1 + a2 + a3. If c > 0, then a2 6 1 and a3 6 a1 imply

c− 1 6 −b1 + b2 + b3 = −a1 − a2 + a3 + 1 6 1− c.

If c < 0, then a1 6 a3 + 1 and a2 > 0 imply

−c− 1 6 −b1 + b2 + b3 = −a1 − a2 + a3 + 1 6 1 + c.

In both cases, we get | − b1 + b2 + b3| 6 1− |c| and hence |c|+ | − b1 + b2 + b3| 6 1.

We have found x1, x2, x3 satisfying (1) in each case for n = 3.
Now, let n > 5 be odd and suppose the result holds for any smaller odd cases. Again

we may assume ak > 0 for each 1 6 k 6 n. By the Pigeonhole Principle, there are at least
three indices k for which bk = ak − 1 or bk = 1 − ak. Without loss of generality, suppose
bk = ak − 1 for k = 1, 2, 3. Again by the Pigeonhole Principle, as a1, a2, a3 lies between 0
and 1, the difference of two of them is at most 1

2
. By changing indices if necessary, we may

assume 0 6 d = a1 − a2 6 1
2
.

By the inductive hypothesis, we can choose x3, x4, . . . , xn such that a′ =
∑n
k=3 xkak and

b′ =
∑n
k=3 xkbk satisfy |a′|+ |b′| 6 1. We may further assume a′ > 0.
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• Case 1. b′ > 0, in which case we take (x1, x2) = (−1, 1).
We have | − a1 + a2 + a′| + | − (a1 − 1) + (a2 − 1) + b′| = | − d + a′| + | − d + b′| 6

max {a′ + b′ − 2d, a′ − b′, b′ − a′, 2d− a′ − b′} 6 1 since 0 6 a′, b′, a′ + b′ 6 1 and 0 6 d 6 1
2
.

• Case 2. 0 > b′ > −a′, in which case we take (x1, x2) = (−1, 1).
We have |−a1 +a2 +a′|+ |− (a1−1)+(a2−1)+b′| = |−d+a′|+ |−d+b′|. If −d+a′ > 0,

this equals a′ − b′ = |a′|+ |b′| 6 1. If −d+ a′ < 0, this equals 2d− a′ − b′ 6 2d 6 1.

• Case 3. b′ < −a′, in which case we take (x1, x2) = (1,−1).
We have |a1 − a2 + a′| + |(a1 − 1)− (a2 − 1) + b′| = |d + a′| + |d + b′|. If d + b′ > 0, this

equals 2d+ a′ + b′ < 2d 6 1. If d+ b′ < 0, this equals a′ − b′ = |a′|+ |b′| 6 1.

Therefore, we have found x1, x2, . . . , xn satisfying (1) in each case. By induction, the
property holds for all odd integers n > 3.
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A4. Denote by R+ the set of all positive real numbers. Find all functions f : R+ → R+ such
that

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
Ä
f(f(x2)) + f(f(y2))

ä
(1)

for all positive real numbers x and y.

Answer. f(x) = 1
x

for any x ∈ R+.

Solution 1. Taking x = y = 1 in (1), we get f(1)f(f(1)) + f(f(1)) = 2f(1)f(f(1)) and
hence f(1) = 1. Swapping x and y in (1) and comparing with (1) again, we find

xf(x2)f(f(y)) + f(yf(x)) = yf(y2)f(f(x)) + f(xf(y)). (2)

Taking y = 1 in (2), we have xf(x2) + f(f(x)) = f(f(x)) + f(x), that is,

f(x2) =
f(x)

x
. (3)

Take y = 1 in (1) and apply (3) to xf(x2). We get f(x) + f(f(x)) = f(x)(f(f(x2)) + 1),
which implies

f(f(x2)) =
f(f(x))

f(x)
. (4)

For any x ∈ R+, we find that

f(f(x)2)
(3)
=
f(f(x))

f(x)

(4)
= f(f(x2))

(3)
= f

Ç
f(x)

x

å
. (5)

It remains to show the following key step.

• Claim. The function f is injective.

Proof. Using (3) and (4), we rewrite (1) as

f(x)f(f(y)) + f(yf(x)) = f(xy)

Ç
f(f(x))

f(x)
+
f(f(y))

f(y)

å
. (6)

Take x = y in (6) and apply (3). This gives f(x)f(f(x)) + f(xf(x)) = 2f(f(x))
x

, which means

f(xf(x)) = f(f(x))

Ç
2

x
− f(x)

å
. (7)

Using (3), equation (2) can be rewritten as

f(x)f(f(y)) + f(yf(x)) = f(y)f(f(x)) + f(xf(y)). (8)

Suppose f(x) = f(y) for some x, y ∈ R+. Then (8) implies

f(yf(y)) = f(yf(x)) = f(xf(y)) = f(xf(x)).

Using (7), this gives

f(f(y))

Ç
2

y
− f(y)

å
= f(f(x))

Ç
2

x
− f(x)

å
.

Noting f(x) = f(y), we find x = y. This establishes the injectivity.
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By the Claim and (5), we get the only possible solution f(x) = 1
x
. It suffices to check that

this is a solution. Indeed, the left-hand side of (1) becomes

x · 1

x2
· y +

x

y
=
y

x
+
x

y
,

while the right-hand side becomes

1

xy
(x2 + y2) =

x

y
+
y

x
.

The two sides agree with each other.

Solution 2. Taking x = y = 1 in (1), we get f(1)f(f(1)) + f(f(1)) = 2f(1)f(f(1)) and
hence f(1) = 1. Putting x = 1 in (1), we have f(f(y)) + f(y) = f(y)(1 + f(f(y2))) so that

f(f(y)) = f(y)f(f(y2)). (9)

Putting y = 1 in (1), we get xf(x2) + f(f(x)) = f(x)(f(f(x2)) + 1). Using (9), this gives

xf(x2) = f(x). (10)

Replace y by 1
x

in (1). Then we have

xf(x2)f

Ç
f

Ç
1

x

åå
+ f

Ç
f(x)

x

å
= f(f(x2)) + f

Ç
f

Ç
1

x2

åå
.

The relation (10) shows f(f(x)
x

) = f(f(x2)). Also, using (9) with y = 1
x

and using (10) again,
the last equation reduces to

f(x)f

Ç
1

x

å
= 1. (11)

Replace x by 1
x

and y by 1
y

in (1) and apply (11). We get

1

xf(x2)f(f(y))
+

1

f(yf(x))
=

1

f(xy)

Ç
1

f(f(x2))
+

1

f(f(y2))

å
.

Clearing denominators, we can use (1) to simplify the numerators and obtain

f(xy)2f(f(x2))f(f(y2)) = xf(x2)f(f(y))f(yf(x)).

Using (9) and (10), this is the same as

f(xy)2f(f(x)) = f(x)2f(y)f(yf(x)). (12)

Substitute y = f(x) in (12) and apply (10) (with x replaced by f(x)). We have

f(xf(x))2 = f(x)f(f(x)). (13)

Taking y = x in (12), squaring both sides, and using (10) and (13), we find that

f(f(x)) = x4f(x)3. (14)

Finally, we combine (9), (10) and (14) to get

y4f(y)3
(14)
= f(f(y))

(9)
= f(y)f(f(y2))

(14)
= f(y)y8f(y2)3

(10)
= y5f(y)4,

which implies f(y) = 1
y
. This is a solution by the checking in Solution 1.
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A5.

(a) Prove that for every positive integer n, there exists a fraction a
b

where a and b are integers

satisfying 0 < b 6
√
n+ 1 and

√
n 6 a

b
6
√
n+ 1.

(b) Prove that there are infinitely many positive integers n such that there is no fraction a
b

where a and b are integers satisfying 0 < b 6
√
n and

√
n 6 a

b
6
√
n+ 1.

Solution.

(a) Let r be the unique positive integer for which r2 6 n < (r+ 1)2. Write n = r2 + s. Then
we have 0 6 s 6 2r. We discuss in two cases according to the parity of s.

• Case 1. s is even.

Consider the number (r + s
2r

)2 = r2 + s+ ( s
2r

)2. We find that

n = r2 + s 6 r2 + s+
Å s

2r

ã2
6 r2 + s+ 1 = n+ 1.

It follows that √
n 6 r +

s

2r
6
√
n+ 1.

Since s is even, we can choose the fraction r + s
2r

= r2+(s/2)
r

since r 6
√
n.

• Case 2. s is odd.

Consider the number (r+ 1− 2r+1−s
2(r+1)

)2 = (r+ 1)2− (2r+ 1− s) + (2r+1−s
2(r+1)

)2. We find that

n = r2 + s = (r + 1)2 − (2r + 1− s) 6 (r + 1)2 − (2r + 1− s) +

Ç
2r + 1− s
2(r + 1)

å2

6 (r + 1)2 − (2r + 1− s) + 1 = n+ 1.

It follows that √
n 6 r + 1− 2r + 1− s

2(r + 1)
6
√
n+ 1.

Since s is odd, we can choose the fraction (r + 1) − 2r+1−s
2(r+1)

= (r+1)2−r+((s−1)/2)
r+1

since

r + 1 6
√
n+ 1.

(b) We show that for every positive integer r, there is no fraction a
b

with b 6
√
r2 + 1 such

that
√
r2 + 1 6 a

b
6
√
r2 + 2. Suppose on the contrary that such a fraction exists. Since

b 6
√
r2 + 1 < r + 1 and b is an integer, we have b 6 r. Hence,

(br)2 < b2(r2 + 1) 6 a2 6 b2(r2 + 2) 6 b2r2 + 2br < (br + 1)2.

This shows the square number a2 is strictly bounded between the two consecutive squares
(br)2 and (br+ 1)2, which is impossible. Hence, we have found infinitely many n = r2 + 1
for which there is no fraction of the desired form.
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A6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board. One tries to erase some linear factors from both sides so that each
side still has at least one factor, and the resulting equation has no real roots. Find the least
number of linear factors one needs to erase to achieve this.

Answer. 2016.

Solution. Since there are 2016 common linear factors on both sides, we need to erase at least
2016 factors. We claim that the equation has no real roots if we erase all factors (x− k) on
the left-hand side with k ≡ 2, 3 (mod 4), and all factors (x−m) on the right-hand side with
m ≡ 0, 1 (mod 4). Therefore, it suffices to show that no real number x satisfies

503∏
j=0

(x− 4j − 1)(x− 4j − 4) =
503∏
j=0

(x− 4j − 2)(x− 4j − 3). (1)

• Case 1. x = 1, 2, . . . , 2016.
In this case, one side of (1) is zero while the other side is not. This shows x cannot satisfy

(1).

• Case 2. 4k + 1 < x < 4k + 2 or 4k + 3 < x < 4k + 4 for some k = 0, 1, . . . , 503.
For j = 0, 1, . . . , 503 with j 6= k, the product (x − 4j − 1)(x − 4j − 4) is positive. For

j = k, the product (x− 4k − 1)(x− 4k − 4) is negative. This shows the left-hand side of (1)
is negative. On the other hand, each product (x− 4j − 2)(x− 4j − 3) on the right-hand side
of (1) is positive. This yields a contradiction.

• Case 3. x < 1 or x > 2016 or 4k < x < 4k + 1 for some k = 1, 2, . . . , 503.
The equation (1) can be rewritten as

1 =
503∏
j=0

(x− 4j − 1)(x− 4j − 4)

(x− 4j − 2)(x− 4j − 3)
=

503∏
j=0

Ç
1− 2

(x− 4j − 2)(x− 4j − 3)

å
.

Note that (x − 4j − 2)(x − 4j − 3) > 2 for 0 6 j 6 503 in this case. So each term in the
product lies strictly between 0 and 1, and the whole product must be less than 1, which is
impossible.

• Case 4. 4k + 2 < x < 4k + 3 for some k = 0, 1, . . . , 503.
This time we rewrite (1) as

1 =
x− 1

x− 2
· x− 2016

x− 2015

503∏
j=1

(x− 4j)(x− 4j − 1)

(x− 4j + 1)(x− 4j − 2)

=
x− 1

x− 2
· x− 2016

x− 2015

503∏
j=1

Ç
1 +

2

(x− 4j + 1)(x− 4j − 2)

å
.

Clearly, x−1
x−2 and x−2016

x−2015 are both greater than 1. For the range of x in this case, each term
in the product is also greater than 1. Then the right-hand side must be greater than 1 and
hence a contradiction arises.
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From the four cases, we conclude that (1) has no real roots. Hence, the minimum number
of linear factors to be erased is 2016.

Comment. We discuss the general case when 2016 is replaced by a positive integer n. The
above solution works equally well when n is divisible by 4.

If n ≡ 2 (mod 4), one may leave l(x) = (x − 1)(x − 2) · · · (x − n
2
) on the left-hand side

and r(x) = (x − n
2
− 1)(x − n

2
− 2) · · · (x − n) on the right-hand side. One checks that for

x < n+1
2

, we have |l(x)| < |r(x)|, while for x > n+1
2

, we have |l(x)| > |r(x)|.
If n ≡ 3 (mod 4), one may leave l(x) = (x− 1)(x− 2) · · · (x− n+1

2
) on the left-hand side

and r(x) = (x− n+3
2

)(x− x+5
2

) · · · (x−n) on the right-hand side. For x < 1 or n+1
2
< x < n+3

2
,

we have l(x) > 0 > r(x). For 1 < x < n+1
2

, we have |l(x)| < |r(x)|. For x > n+3
2

, we have
|l(x)| > |r(x)|.

If n ≡ 1 (mod 4), as the proposer mentioned, the situation is a bit more out of control.
Since the construction for n− 1 ≡ 0 (mod 4) works, the answer can be either n or n− 1. For
n = 5, we can leave the products (x − 1)(x − 2)(x − 3)(x − 4) and (x − 5). For n = 9, the
only example that works is l(x) = (x− 1)(x− 2)(x− 9) and r(x) = (x− 3)(x− 4) · · · (x− 8),
while there seems to be no such partition for n = 13.
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A7. Denote by R the set of all real numbers. Find all functions f : R → R such that
f(0) 6= 0 and

f(x+ y)2 = 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)} (1)

for all real numbers x and y.

Answer.

• f(x) = −1 for any x ∈ R; or

• f(x) = x− 1 for any x ∈ R.

Solution 1. Taking x = y = 0 in (1), we get f(0)2 = 2f(0)2+max {2f(0), f(0)}. If f(0) > 0,
then f(0)2 + 2f(0) = 0 gives no positive solution. If f(0) < 0, then f(0)2 + f(0) = 0 gives
f(0) = −1. Putting y = 0 in (1), we have f(x)2 = −2f(x) + f(x2), which is the same as
(f(x) + 1)2 = f(x2) + 1. Let g(x) = f(x) + 1. Then for any x ∈ R, we have

g(x2) = g(x)2 > 0. (2)

From (1), we find that f(x+ y)2 > 2f(x)f(y) + f(x2) + f(y2). In terms of g, this becomes
(g(x+ y)− 1)2 > 2(g(x)− 1)(g(y)− 1) + g(x2) + g(y2)− 2. Using (2), this means

(g(x+ y)− 1)2 > (g(x) + g(y)− 1)2 − 1. (3)

Putting x = 1 in (2), we get g(1) = 0 or 1. The two cases are handled separately.

• Case 1. g(1) = 0, which is the same as f(1) = −1.
We put x = −1 and y = 0 in (1). This gives f(−1)2 = −2f(−1) − 1, which forces

f(−1) = −1. Next, we take x = −1 and y = 1 in (1) to get 1 = 2 + max {−2, f(2)}. This
clearly implies 1 = 2 + f(2) and hence f(2) = −1, that is, g(2) = 0. From (2), we can prove
inductively that g(22n) = g(2)2

n
= 0 for any n ∈ N. Substitute y = 22n − x in (3). We obtain

(g(x) + g(22n − x)− 1)2 6 (g(22n)− 1)2 + 1 = 2.

For any fixed x > 0, we consider n to be sufficiently large so that 22n − x > 0. From (2), this
implies g(22n − x) > 0 so that g(x) 6 1 +

√
2. Using (2) again, we get

g(x)2
n

= g(x2
n

) 6 1 +
√

2

for any n ∈ N. Therefore, |g(x)| 6 1 for any x > 0.
If there exists a ∈ R for which g(a) 6= 0, then for sufficiently large n we must have

g((a2)
1
2n ) = g(a2)

1
2n > 1

2
. By taking x = −y = −(a2)

1
2n in (1), we obtain

1 = 2f(x)f(−x) + max {2f(x2), f(2x2)}
= 2(g(x)− 1)(g(−x)− 1) + max {2(g(x2)− 1), g(2x2)− 1}

6 2

Ç
−1

2

åÇ
−1

2

å
+ 0 =

1

2

since |g(−x)| = |g(x)| ∈ (1
2
, 1] by (2) and the choice of x, and since g(z) 6 1 for z > 0. This

yields a contradiction and hence g(x) = 0 must hold for any x. This means f(x) = −1 for
any x ∈ R, which clearly satisfies (1).
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• Case 2. g(1) = 1, which is the same as f(1) = 0.
We put x = −1 and y = 1 in (1) to get 1 = max {0, f(2)}. This clearly implies f(2) = 1

and hence g(2) = 2. Setting x = 2n and y = 2 in (3), we have

(g(2n+ 2)− 1)2 > (g(2n) + 1)2 − 1.

By induction on n, it is easy to prove that g(2n) > n + 1 for all n ∈ N. For any real
number a > 1, we choose a large n ∈ N and take k to be the positive integer such that
2k 6 a2

n
< 2k + 2. From (2) and (3), we have

(g(a)2
n − 1)2 + 1 = (g(a2

n

)− 1)2 + 1 > (g(2k) + g(a2
n − 2k)− 1)2 > k2 >

1

4
(a2

n − 2)2

since g(a2
n − 2k) > 0. For large n, this clearly implies g(a)2

n
> 1. Thus,

(g(a)2
n

)2 > (g(a)2
n − 1)2 + 1 >

1

4
(a2

n − 2)2.

This yields

g(a)2
n

>
1

2
(a2

n − 2). (4)

Note that
a2

n

a2n − 2
= 1 +

2

a2n − 2
6
Ç

1 +
2

2n(a2n − 2)

å2n

by binomial expansion. This can be rewritten as

(a2
n − 2)

1
2n >

a

1 + 2
2n(a2n−2)

.

Together with (4), we conclude g(a) > a by taking n sufficiently large.
Consider x = na and y = a > 1 in (3). This gives (g((n+1)a)−1)2 > (g(na)+g(a)−1)2−1.

By induction on n, it is easy to show g(na) > (n− 1)(g(a)− 1) + a for any n ∈ N. We choose
a large n ∈ N and take k to be the positive integer such that ka 6 22n < (k + 1)a. Using (2)
and (3), we have

22n+1

> (22n−1)2+1 = (g(22n)−1)2+1 > (g(22n−ka)+g(ka)−1)2 > ((k−1)(g(a)−1)+a−1)2,

from which it follows that

22n > (k − 1)(g(a)− 1) + a− 1 >
22n

a
(g(a)− 1)− 2(g(a)− 1) + a− 1

holds for sufficiently large n. Hence, we must have g(a)−1
a

6 1, which implies g(a) 6 a+ 1 for
any a > 1. Then for large n ∈ N, from (3) and (2) we have

4a2
n+1

= (2a2
n

)2 > (g(2a2
n

)− 1)2 > (2g(a2
n

)− 1)2 − 1 = (2g(a)2
n − 1)2 − 1.
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This implies

2a2
n

>
1

2
(1 +

»
4a2n+1 + 1) > g(a)2

n

.

When n tends to infinity, this forces g(a) 6 a. Together with g(a) > a, we get g(a) = a for
all real numbers a > 1, that is, f(a) = a− 1 for all a > 1.

Finally, for any x ∈ R, we choose y sufficiently large in (1) so that y, x+ y > 1. This gives
(x+ y − 1)2 = 2f(x)(y − 1) + max {f(x2) + y2 − 1, x2 + y2 − 1}, which can be rewritten as

2(x− 1− f(x))y = −x2 + 2x− 2− 2f(x) + max {f(x2), x2}.

As the right-hand side is fixed, this can only hold for all large y when f(x) = x− 1. We now
check that this function satisfies (1). Indeed, we have

f(x+ y)2 = (x+ y − 1)2 = 2(x− 1)(y − 1) + (x2 + y2 − 1)

= 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)}.

Solution 2. Taking x = y = 0 in (1), we get f(0)2 = 2f(0)2+max {2f(0), f(0)}. If f(0) > 0,
then f(0)2 + 2f(0) = 0 gives no positive solution. If f(0) < 0, then f(0)2 + f(0) = 0 gives
f(0) = −1. Putting y = 0 in (1), we have

f(x)2 = −2f(x) + f(x2). (5)

Replace x by −x in (5) and compare with (5) again. We get f(x)2+2f(x) = f(−x)2+2f(−x),
which implies

f(x) = f(−x) or f(x) + f(−x) = −2. (6)

Taking x = y and x = −y respectively in (1) and comparing the two equations obtained,
we have

f(2x)2 − 2f(x)2 = 1− 2f(x)f(−x). (7)

Combining (6) and (7) to eliminate f(−x), we find that f(2x) can be±1 (when f(x) = f(−x))
or ±(2f(x) + 1) (when f(x) + f(−x) = −2).

We prove the following.

• Claim. f(x) + f(−x) = −2 for any x ∈ R.

Proof. Suppose there exists a ∈ R such that f(a) + f(−a) 6= −2. Then f(a) = f(−a) 6= −1
and we may assume a > 0. We first show that f(a) 6= 1. Suppose f(a) = 1. Consider y = a
in (7). We get f(2a)2 = 1. Taking x = y = a in (1), we have 1 = 2 + max {2f(a2), f(2a2)}.
From (5), f(a2) = 3 so that 1 > 2 + 6. This is impossible, and thus f(a) 6= 1.

As f(a) 6= ±1, we have f(a) = ±(2f(a
2
) + 1). Similarly, f(−a) = ±(2f(−a

2
) + 1). These

two expressions are equal since f(a) = f(−a). If f(a
2
) = f(−a

2
), then the above argument

works when we replace a by a
2
. In particular, we have f(a)2 = f(2 · a

2
)2 = 1, which is a

contradiction. Therefore, (6) forces f(a
2
) + f(−a

2
) = −2. Then we get

±
Å

2f
Åa

2

ã
+ 1
ã

= ±
Å
−2f

Åa
2

ã
− 3
ã
.
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For any choices of the two signs, we either get a contradiction or f(a
2
) = −1, in which case

f(a
2
) = f(−a

2
) and hence f(a) = ±1 again. Therefore, there is no such real number a and the

Claim follows.

Replace x and y by −x and −y in (1) respectively and compare with (1). We get

f(x+ y)2 − 2f(x)f(y) = f(−x− y)2 − 2f(−x)f(−y).

Using the Claim, this simplifies to f(x+y) = f(x)+f(y)+1. In addition, (5) can be rewritten
as (f(x) + 1)2 = f(x2) + 1. Therefore, the function g defined by g(x) = f(x) + 1 satisfies
g(x + y) = g(x) + g(y) and g(x)2 = g(x2). The latter relation shows g(y) is nonnegative for
y > 0. For such a function satisfying the Cauchy Equation g(x + y) = g(x) + g(y), it must
be monotonic increasing and hence g(x) = cx for some constant c.

From (cx)2 = g(x)2 = g(x2) = cx2, we get c = 0 or 1, which corresponds to the two
functions f(x) = −1 and f(x) = x − 1 respectively, both of which are solutions to (1) as
checked in Solution 1.

Solution 3. As in Solution 2, we find that f(0) = −1,

(f(x) + 1)2 = f(x2) + 1 (8)

and
f(x) = f(−x) or f(x) + f(−x) = −2 (9)

for any x ∈ R. We shall show that one of the statements in (9) holds for all x ∈ R. Suppose
f(a) = f(−a) but f(a) + f(−a) 6= −2, while f(b) 6= f(−b) but f(b) + f(−b) = −2. Clearly,
a, b 6= 0 and f(a), f(b) 6= −1.

Taking y = a and y = −a in (1) respectively and comparing the two equations obtained,
we have f(x+a)2 = f(x−a)2, that is, f(x+a) = ±f(x−a). This implies f(x+2a) = ±f(x)
for all x ∈ R. Putting x = b and x = −2a − b respectively, we find f(2a + b) = ±f(b)
and f(−2a − b) = ±f(−b) = ±(−2 − f(b)). Since f(b) 6= −1, the term ±(−2 − f(b)) is
distinct from ±f(b) in any case. So f(2a + b) 6= f(−2a − b). From (9), we must have
f(2a+ b) +f(−2a− b) = −2. Note that we also have f(b) +f(−b) = −2 where |f(b)|, |f(−b)|
are equal to |f(2a+ b)|, |f(−2a− b)| respectively. The only possible case is f(2a+ b) = f(b)
and f(−2a− b) = f(−b).

Applying the argument to −a instead of a and using induction, we have f(2ka+ b) = f(b)
and f(2ka − b) = f(−b) for any integer k. Note that f(b) + f(−b) = −2 and f(b) 6= −1
imply one of f(b), f(−b) is less than −1. Without loss of generality, assume f(b) < −1. We
consider x =

√
2ka+ b in (8) for sufficiently large k so that

(f(x) + 1)2 = f(2ka+ b) + 1 = f(b) + 1 < 0

yields a contradiction. Therefore, one of the statements in (9) must hold for all x ∈ R.
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• Case 1. f(x) = f(−x) for any x ∈ R.
For any a ∈ R, setting x = y = a

2
and x = −y = a

2
in (1) respectively and comparing

these, we obtain f(a)2 = f(0)2 = 1, which means f(a) = ±1 for all a ∈ R. If f(a) = 1 for
some a, we may assume a > 0 since f(a) = f(−a). Taking x = y =

√
a in (1), we get

f(2
√
a)2 = 2f(

√
a)2 + max {2, f(2a)} = 2f(

√
a)2 + 2.

Note that the left-hand side is ±1 while the right-hand side is an even integer. This is a
contradiction. Therefore, f(x) = −1 for all x ∈ R, which is clearly a solution.

• Case 2. f(x) + f(−x) = −2 for any x ∈ R.
This case can be handled in the same way as in Solution 2, which yields another solution

f(x) = x− 1.
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A8. Determine the largest real number a such that for all n > 1 and for all real numbers
x0, x1, . . . , xn satisfying 0 = x0 < x1 < x2 < · · · < xn, we have

1

x1 − x0
+

1

x2 − x1
+ · · ·+ 1

xn − xn−1
> a

Ç
2

x1
+

3

x2
+ · · ·+ n+ 1

xn

å
. (1)

Answer. The largest a is 4
9
.

Solution 1. We first show that a = 4
9

is admissible. For each 2 6 k 6 n, by the Cauchy-
Schwarz Inequality, we have

(xk−1 + (xk − xk−1))
Ç

(k − 1)2

xk−1
+

32

xk − xk−1

å
> (k − 1 + 3)2,

which can be rewritten as

9

xk − xk−1
>

(k + 2)2

xk
− (k − 1)2

xk−1
. (2)

Summing (2) over k = 2, 3, . . . , n and adding 9
x1

to both sides, we have

9
n∑
k=1

1

xk − xk−1
> 4

n∑
k=1

k + 1

xk
+
n2

xn
> 4

n∑
k=1

k + 1

xk
.

This shows (1) holds for a = 4
9
.

Next, we show that a = 4
9

is the optimal choice. Consider the sequence defined by x0 = 0
and xk = xk−1 + k(k + 1) for k > 1, that is, xk = 1

3
k(k + 1)(k + 2). Then the left-hand side

of (1) equals
n∑
k=1

1

k(k + 1)
=

n∑
k=1

Ç
1

k
− 1

k + 1

å
= 1− 1

n+ 1
,

while the right-hand side equals

a
n∑
k=1

k + 1

xk
= 3a

n∑
k=1

1

k(k + 2)
=

3

2
a

n∑
k=1

Ç
1

k
− 1

k + 2

å
=

3

2

Ç
1 +

1

2
− 1

n+ 1
− 1

n+ 2

å
a.

When n tends to infinity, the left-hand side tends to 1 while the right-hand side tends to
9
4
a. Therefore a has to be at most 4

9
.

Hence the largest value of a is 4
9
.

Solution 2. We shall give an alternative method to establish (1) with a = 4
9
. We define

yk = xk−xk−1 > 0 for 1 6 k 6 n. By the Cauchy-Schwarz Inequality, for 1 6 k 6 n, we have

(y1 + y2 + · · ·+ yk)

Ñ
k∑
j=1

1

yj

(
j + 1

2

)2
é

>

((
2

2

)
+

(
3

2

)
+ · · ·+

(
k + 1

2

))2

=

(
k + 2

3

)2

.
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This can be rewritten as

k + 1

y1 + y2 + · · ·+ yk
6

36

k2(k + 1)(k + 2)2

Ñ
k∑
j=1

1

yj

(
j + 1

2

)2
é
. (3)

Summing (3) over k = 1, 2, . . . , n, we get

2

y1
+

3

y1 + y2
+ · · ·+ n+ 1

y1 + y2 + · · ·+ yn
6
c1
y1

+
c2
y2

+ · · ·+ cn
yn

(4)

where for 1 6 m 6 n,

cm = 36

(
m+ 1

2

)2 n∑
k=m

1

k2(k + 1)(k + 2)2

=
9m2(m+ 1)2

4

n∑
k=m

Ç
1

k2(k + 1)2
− 1

(k + 1)2(k + 2)2

å
=

9m2(m+ 1)2

4

Ç
1

m2(m+ 1)2
− 1

(n+ 1)2(n+ 2)2

å
<

9

4
.

From (4), the inequality (1) holds for a = 4
9
. This is also the upper bound as can be

verified in the same way as Solution 1.
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Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with n > k, and announces
them to the deputy leader and a contestant. The leader then secretly tells the deputy leader
an n-digit binary string, and the deputy leader writes down all n-digit binary strings which
differ from the leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant
is allowed to look at the strings written by the deputy leader and guess the leader’s string.
What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct
answer?

Answer. The minimum number of guesses is 2 if n = 2k and 1 if n 6= 2k.

Solution 1. Let X be the binary string chosen by the leader and let X ′ be the binary string
of length n every digit of which is different from that of X. The strings written by the deputy
leader are the same as those in the case when the leader’s string is X ′ and k is changed to
n − k. In view of this, we may assume k > n

2
. Also, for the particular case k = n

2
, this

argument shows that the strings X and X ′ cannot be distinguished, and hence in that case
the contestant has to guess at least twice.

It remains to show that the number of guesses claimed suffices. Consider any string Y
which differs from X in m digits where 0 < m < 2k. Without loss of generality, assume
the first m digits of X and Y are distinct. Let Z be the binary string obtained from X by
changing its first k digits. Then Z is written by the deputy leader. Note that Z differs from Y
by |m− k| digits where |m− k| < k since 0 < m < 2k. From this observation, the contestant
must know that Y is not the desired string.

As we have assumed k > n
2
, when n < 2k, every string Y 6= X differs from X in fewer

than 2k digits. When n = 2k, every string except X and X ′ differs from X in fewer than 2k
digits. Hence, the answer is as claimed.

Solution 2. Firstly, assume n 6= 2k. Without loss of generality suppose the first digit of
the leader’s string is 1. Then among the

Ä
n
k

ä
strings written by the deputy leader,

Ä
n−1
k

ä
will

begin with 1 and
Ä
n−1
k−1

ä
will begin with 0. Since n 6= 2k, we have k + (k − 1) 6= n − 1 and

so
Ä
n−1
k

ä
6=
Ä
n−1
k−1

ä
. Thus, by counting the number of strings written by the deputy leader that

start with 0 and 1, the contestant can tell the first digit of the leader’s string. The same can
be done on the other digits, so 1 guess suffices when n 6= 2k.

Secondly, for the case n = 2 and k = 1, the answer is clearly 2. For the remaining cases
where n = 2k > 2, the deputy leader would write down the same strings if the leader’s string
X is replaced by X ′ obtained by changing each digit of X. This shows at least 2 guesses
are needed. We shall show that 2 guesses suffice in this case. Suppose the first two digits of
the leader’s string are the same. Then among the strings written by the deputy leader, the
prefices 01 and 10 will occur

Ä
2k−2
k−1

ä
times each, while the prefices 00 and 11 will occur

Ä
2k−2
k

ä
times each. The two numbers are interchanged if the first two digits of the leader’s string
are different. Since

Ä
2k−2
k−1

ä
6=
Ä
2k−2
k

ä
, the contestant can tell whether the first two digits of the

leader’s string are the same or not. He can work out the relation of the first digit and the
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other digits in the same way and reduce the leader’s string to only 2 possibilities. The proof
is complete.
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C2. Find all positive integers n for which all positive divisors of n can be put into the cells
of a rectangular table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal; and

• the sums of all columns are equal.

Answer. 1.

Solution 1. Suppose all positive divisors of n can be arranged into a rectangular table of
size k × l where the number of rows k does not exceed the number of columns l. Let the
sum of numbers in each column be s. Since n belongs to one of the columns, we have s > n,
where equality holds only when n = 1.

For j = 1, 2, . . . , l, let dj be the largest number in the j-th column. Without loss of
generality, assume d1 > d2 > · · · > dl. Since these are divisors of n, we have

dl 6
n

l
. (1)

As dl is the maximum entry of the l-th column, we must have

dl >
s

k
>
n

k
. (2)

The relations (1) and (2) combine to give n
l
> n

k
, that is, k > l. Together with k 6 l, we

conclude that k = l. Then all inequalities in (1) and (2) are equalities. In particular, s = n
and so n = 1, in which case the conditions are clearly satisfied.

Solution 2. Clearly n = 1 works. Then we assume n > 1 and let its prime factorization be
n = pr11 p

r2
2 · · · prtt . Suppose the table has k rows and l columns with 1 < k 6 l. Note that kl is

the number of positive divisors of n and the sum of all entries is the sum of positive divisors
of n, which we denote by σ(n). Consider the column containing n. Since the column sum is
σ(n)
l

, we must have σ(n)
l
> n. Therefore, we have

(r1 + 1)(r2 + 1) · · · (rt + 1) = kl 6 l2 <

Ç
σ(n)

n

å2

=

Ç
1 +

1

p1
+ · · ·+ 1

pr11

å2

· · ·
Ç

1 +
1

pt
+ · · ·+ 1

prtt

å2

.

This can be rewritten as
f(p1, r1)f(p2, r2) · · · f(pt, rt) < 1 (3)

where

f(p, r) =
r + 1(

1 + 1
p

+ · · ·+ 1
pr

)2 =
(r + 1)

(
1− 1

p

)2
(
1− 1

pr+1

)2 .
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Direct computation yields

f(2, 1) =
8

9
, f(2, 2) =

48

49
, f(3, 1) =

9

8
.

Also, we find that

f(2, r) >
Ç

1− 1

2r+1

å−2
> 1 for r > 3,

f(3, r) >
4

3

Ç
1− 1

3r+1

å−2
>

4

3
>

9

8
for r > 2, and

f(p, r) >
32

25

Ç
1− 1

pr+1

å−2
>

32

25
>

9

8
for p > 5.

From these values and bounds, it is clear that (3) holds only when n = 2 or 4. In both cases,
it is easy to see that the conditions are not satisfied. Hence, the only possible n is 1.
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C3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular
n-gon with three colours so that there is an odd number of vertices of each colour. Show that
there exists an isosceles triangle whose three vertices are of different colours.

Solution. For k = 1, 2, 3, let ak be the number of isosceles triangles whose vertices contain
exactly k colours. Suppose on the contrary that a3 = 0. Let b, c, d be the number of vertices
of the three different colours respectively. We now count the number of pairs (4, E) where
4 is an isosceles triangle and E is a side of 4 whose endpoints are of different colours.

On the one hand, since we have assumed a3 = 0, each triangle in the pair must contain
exactly two colours, and hence each triangle contributes twice. Thus the number of pairs is
2a2.

On the other hand, if we pick any two vertices A,B of distinct colours, then there are
three isosceles triangles having these as vertices, two when AB is not the base and one when
AB is the base since n is odd. Note that the three triangles are all distinct as (n, 3) = 1. In
this way, we count the number of pairs to be 3(bc+ cd+ db). However, note that 2a2 is even
while 3(bc+ cd+ db) is odd, as each of b, c, d is. This yields a contradiction and hence a3 > 1.

Comment. A slightly stronger version of this problem is to replace the condition (n, 6) = 1
by n being odd (where equilateral triangles are regarded as isosceles triangles). In that case,
the only difference in the proof is that by fixing any two vertices A,B, one can find exactly
one or three isosceles triangles having these as vertices. But since only parity is concerned in
the solution, the proof goes the same way.

The condition that there is an odd number of vertices of each colour is necessary, as can be
seen from the following example. Consider n = 25 and we label the vertices A0, A1, . . . , A24.
Suppose colour 1 is used for A0, colour 2 is used for A5, A10, A15, A20, while colour 3 is used
for the remaining vertices. Then any isosceles triangle having colours 1 and 2 must contain
A0 and one of A5, A10, A15, A20. Clearly, the third vertex must have index which is a multiple
of 5 so it is not of colour 3.
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C4. Find all positive integers n for which we can fill in the entries of an n × n table with
the following properties:

• each entry can be one of I, M and O;

• in each row and each column, the letters I, M and O occur the same number of times;
and

• in any diagonal whose number of entries is a multiple of three, the letters I, M and O
occur the same number of times.

Answer. n can be any multiple of 9.

Solution. We first show that such a table exists when n is a multiple of 9. Consider the
following 9× 9 table. 

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M


(1)

It is a direct checking that the table (1) satisfies the requirements. For n = 9k where k is
a positive integer, we form an n × n table using k × k copies of (1). For each row and each
column of the table of size n, since there are three I’s, three M ’s and three O’s for any nine
consecutive entries, the numbers of I, M and O are equal. In addition, every diagonal of the
large table whose number of entries is divisible by 3 intersects each copy of (1) at a diagonal
with number of entries divisible by 3 (possibly zero). Therefore, every such diagonal also
contains the same number of I, M and O.

Next, consider any n× n table for which the requirements can be met. As the number of
entries of each row should be a multiple of 3, we let n = 3k where k is a positive integer. We
divide the whole table into k × k copies of 3 × 3 blocks. We call the entry at the centre of
such a 3× 3 square a vital entry. We also call any row, column or diagonal that contains at
least one vital entry a vital line. We compute the number of pairs (l, c) where l is a vital line
and c is an entry belonging to l that contains the letter M . We let this number be N .

On the one hand, since each vital line contains the same number of I, M and O, it is
obvious that each vital row and each vital column contain k occurrences of M . For vital
diagonals in either direction, we count there are exactly

1 + 2 + · · ·+ (k − 1) + k + (k − 1) + · · ·+ 2 + 1 = k2

occurrences of M . Therefore, we have N = 4k2.
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On the other hand, there are 3k2 occurrences of M in the whole table. Note that each
entry belongs to exactly 1 or 4 vital lines. Therefore, N must be congruent to 3k2 mod 3.

From the double counting, we get 4k2 ≡ 3k2 (mod 3), which forces k to be a multiple of
3. Therefore, n has to be a multiple of 9 and the proof is complete.
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C5. Let n > 3 be a positive integer. Find the maximum number of diagonals of a regular
n-gon one can select, so that any two of them do not intersect in the interior or they are
perpendicular to each other.

Answer. n− 2 if n is even and n− 3 if n is odd.

Solution 1. We consider two cases according to the parity of n.

• Case 1. n is odd.

We first claim that no pair of diagonals is perpendicular. Suppose A,B,C,D are vertices
where AB and CD are perpendicular, and let E be the vertex lying on the perpendicular
bisector of AB. Let E ′ be the opposite point of E on the circumcircle of the regular polygon.
Since EC = E ′D and C,D,E are vertices of the regular polygon, E ′ should also belong to
the polygon. This contradicts the fact that a regular polygon with an odd number of vertices
does not contain opposite points on the circumcircle.

A B

C

D

E

E ′

Therefore in the odd case we can only select diagonals which do not intersect. In the
maximal case these diagonals should divide the regular n-gon into n− 2 triangles, so we can
select at most n − 3 diagonals. This can be done, for example, by selecting all diagonals
emanated from a particular vertex.

• Case 2. n is even.

If there is no intersection, then the proof in the odd case works. Suppose there are two
perpendicular diagonals selected. We consider the set S of all selected diagonals parallel to
one of them which intersect with some selected diagonals. Suppose S contains k diagonals
and the number of distinct endpoints of the k diagonals is l.

Firstly, consider the longest diagonal in one of the two directions in S. No other diagonal
in S can start from either endpoint of that diagonal, since otherwise it has to meet another
longer diagonal in S. The same holds true for the other direction. Ignoring these two longest
diagonals and their four endpoints, the remaining k−2 diagonals share l−4 endpoints where
each endpoint can belong to at most two diagonals. This gives 2(l − 4) > 2(k − 2), so that
k 6 l − 2.
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d1

d2
d

d1

d2
d

Consider a group of consecutive vertices of the regular n-gon so that each of the two
outermost vertices is an endpoint of a diagonal in S, while the interior points are not. There
are l such groups. We label these groups P1, P2, . . . , Pl in this order. We claim that each
selected diagonal outside S must connect vertices of the same group Pi. Consider any diagonal
d joining vertices from distinct groups Pi and Pj. Let d1 and d2 be two diagonals in S each
having one of the outermost points of Pi as endpoint. Then d must meet either d1, d2 or a
diagonal in S which is perpendicular to both d1 and d2. In any case d should belong to S by
definition, which is a contradiction.

Within the same group Pi, there are no perpendicular diagonals since the vertices belong
to the same side of a diameter of the circumcircle. Hence there can be at most |Pi|−2 selected
diagonals within Pi, including the one joining the two outermost points of Pi when |Pi| > 2.
Therefore, the maximum number of diagonals selected is

l∑
i=1

(|Pi| − 2) + k =
l∑

i=1

|Pi| − 2l + k = (n+ l)− 2l + k = n− l + k 6 n− 2.

This upper bound can be attained as follows. We take any vertex A and let A′ be the
vertex for which AA′ is a diameter of the circumcircle. If we select all diagonals emanated
from A together with the diagonal d′ joining the two neighbouring vertices of A′, then the
only pair of diagonals that meet each other is AA′ and d′, which are perpendicular to each
other. In total we can take n− 2 diagonals.

d′

A

A′

Solution 2. The constructions and the odd case are the same as Solution 1. Instead of
dealing separately with the case where n is even, we shall prove by induction more generally
that we can select at most n− 2 diagonals for any cyclic n-gon with circumcircle Γ.
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The base case n = 3 is trivial since there is no diagonal at all. Suppose the upper bound
holds for any cyclic polygon with fewer than n sides. For a cyclic n-gon, if there is a selected
diagonal which does not intersect any other selected diagonal, then this diagonal divides the
n-gon into an m-gon and an l-gon (with m+ l = n+2) so that each selected diagonal belongs
to one of them. Without loss of generality, we may assume the m-gon lies on the same side
of a diameter of Γ. Then no two selected diagonals of the m-gon can intersect, and hence we
can select at most m− 3 diagonals. Also, we can apply the inductive hypothesis to the l-gon.
This shows the maximum number of selected diagonals is (m− 3) + (l − 2) + 1 = n− 2.

It remains to consider the case when all selected diagonals meet at least one other selected
diagonal. Consider a pair of selected perpendicular diagonals d1, d2. They divide the circum-
ference of Γ into four arcs, each of which lies on the same side of a diameter of Γ. If there
are two selected diagonals intersecting each other and neither is parallel to d1 or d2, then
their endpoints must belong to the same arc determined by d1, d2, and hence they cannot be
perpendicular. This violates the condition, and hence all selected diagonals must have the
same direction as one of d1, d2.

d1

d2

Take the longest selected diagonal in one of the two directions. We argue as in Solution
1 that its endpoints do not belong to any other selected diagonal. The same holds true for
the longest diagonal in the other direction. Apart from these four endpoints, each of the
remaining n− 4 vertices can belong to at most two selected diagonals. Thus we can select at
most 1

2
(2(n− 4) + 4) = n− 2 diagonals. Then the proof follows by induction.
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C6. There are n > 3 islands in a city. Initially, the ferry company offers some routes between
some pairs of islands so that it is impossible to divide the islands into two groups such that
no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X
and Y . At the same time, in order to maintain its service, the company will open new routes
according to the following rule: for any island which is connected by a ferry route to exactly
one of X and Y , a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way,
then it is known that the ferry company will close a certain route connecting two islands from
the two groups after some years. Prove that after some years there will be an island which is
connected to all other islands by ferry routes.

Solution. Initially, we pick any pair of islands A and B which are connected by a ferry route
and put A in set A and B in set B. From the condition, without loss of generality there must
be another island which is connected to A. We put such an island C in set B. We say that
two sets of islands form a network if each island in one set is connected to each island in the
other set.

Next, we shall included all islands to A∪B one by one. Suppose we have two sets A and
B which form a network where 3 6 |A ∪ B| < n. This relation no longer holds only when a
ferry route between islands A ∈ A and B ∈ B is closed. In that case, we define A′ = {A,B},
and B′ = (A ∪ B) − {A,B}. Note that B′ is nonempty. Consider any island C ∈ A − {A}.
From the relation of A and B, we know that C is connected to B. If C was not connected to
A before the route between A and B closes, then there will be a route added between C and
A afterwards. Hence, C must now be connected to both A and B. The same holds true for
any island in B − {B}. Therefore, A′ and B′ form a network, and A′ ∪ B′ = A ∪ B. Hence
these islands can always be partitioned into sets A and B which form a network.

As |A ∪ B| < n, there are some islands which are not included in A ∪ B. From the
condition, after some years there must be a ferry route between an island A in A∪B and an
island D outside A ∪ B which closes. Without loss of generality assume A ∈ A. Then each
island in B must then be connected to D, no matter it was or not before. Hence, we can
put D in set A so that the new sets A and B still form a network and the size of A ∪ B is
increased by 1. The same process can be done to increase the size of A ∪ B. Eventually, all
islands are included in this way so we may now assume |A ∪ B| = n.

Suppose a ferry route between A ∈ A and B ∈ B is closed after some years. We put A
and B in set A′ and all remaining islands in set B′. Then A′ and B′ form a network. This
relation no longer holds only when a route between A, without loss of generality, and C ∈ B′
is closed. Since this must eventually occur, at that time island B will be connected to all
other islands and the result follows.
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C7. Let n > 2 be an integer. In the plane, there are n segments given in such a way that
any two segments have an intersection point in the interior, and no three segments intersect
at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps
his hands n−1 times. Each time when he claps his hands, all the snails move along their own
segments and stay at the next intersection points until the next clap. Since there are n − 1
intersection points on each segment, all snails will reach the furthest intersection points from
their starting points after n− 1 claps.

(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever
occupy the same intersection point.

(b) Prove that if n is even then there must be a moment when some two snails occupy the
same intersection point no matter how Jeff places the snails.

Solution. We consider a big disk which contains all the segments. We extend each segment
to a line li so that each of them cuts the disk at two distinct points Ai, Bi.

(a) For odd n, we travel along the circumference of the disk and mark each of the points Ai
or Bi ‘in’ and ‘out’ alternately. Since every pair of lines intersect in the disk, there are
exactly n− 1 points between Ai and Bi for any fixed 1 6 i 6 n. As n is odd, this means
one of Ai and Bi is marked ‘in’ and the other is marked ‘out’. Then Jeff can put a snail
on the endpoint of each segment which is closer to the ‘in’ side of the corresponding line.
We claim that the snails on li and lj do not meet for any pairs i, j, hence proving part
(a).

Ai

Aj

P

Ai Aj

P

Without loss of generality, we may assume the snails start at Ai and Aj respectively.
Let li intersect lj at P . Note that there is an odd number of points between arc AiAj.
Each of these points belongs to a line lk. Such a line lk must intersect exactly one of
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the segments AiP and AjP , making an odd number of intersections. For the other lines,
they may intersect both segments AiP and AjP , or meet none of them. Therefore, the
total number of intersection points on segments AiP and AjP (not counting P ) is odd.
However, if the snails arrive at P at the same time, then there should be the same number
of intersections on AiP and AjP , which gives an even number of intersections. This is a
contradiction so the snails do not meet each other.

(b) For even n, we consider any way that Jeff places the snails and mark each of the points
Ai or Bi ‘in’ and ‘out’ according to the directions travelled by the snails. In this case
there must be two neighbouring points Ai and Aj both of which are marked ‘in’. Let
P be the intersection of the segments AiBi and AjBj. Then any other segment meeting
one of the segments AiP and AjP must also meet the other one, and so the number of
intersections on AiP and AjP are the same. This shows the snails starting from Ai and
Aj will meet at P .

Comment. The conclusions do not hold for pseudosegments, as can be seen from the follow-
ing examples.
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C8. Let n be a positive integer. Determine the smallest positive integer k with the following
property: it is possible to mark k cells on a 2n × 2n board so that there exists a unique
partition of the board into 1 × 2 and 2 × 1 dominoes, none of which contains two marked
cells.

Answer. 2n.

Solution. We first construct an example of marking 2n cells satisfying the requirement.
Label the rows and columns 1, 2, . . . , 2n and label the cell in the i-th row and the j-th column
(i, j).

For i = 1, 2, . . . , n, we mark the cells (i, i) and (i, i + 1). We claim that the required
partition exists and is unique. The two diagonals of the board divide the board into four
regions. Note that the domino covering cell (1, 1) must be vertical. This in turn shows that
each domino covering (2, 2), (3, 3), . . . , (n, n) is vertical. By induction, the dominoes in the
left region are all vertical. By rotational symmetry, the dominoes in the bottom region are
horizontal, and so on. This shows that the partition exists and is unique.

It remains to show that this value of k is the smallest possible. Assume that only k < 2n
cells are marked, and there exists a partition P satisfying the requirement. It suffices to show
there exists another desirable partition distinct from P . Let d be the main diagonal of the
board.

Construct the following graph with edges of two colours. Its vertices are the cells of the
board. Connect two vertices with a red edge if they belong to the same domino of P . Connect
two vertices with a blue edge if their reflections in d are connected by a red edge. It is possible
that two vertices are connected by edges of both colours. Clearly, each vertex has both red
and blue degrees equal to 1. Thus the graph splits into cycles where the colours of edges in
each cycle alternate (a cycle may have length 2).

Consider any cell c lying on the diagonal d. Its two edges are symmetrical with respect
to d. Thus they connect c to different cells. This shows c belongs to a cycle C(c) of length at
least 4. Consider a part of this cycle c0, c1, . . . , cm where c0 = c and m is the least positive
integer such that cm lies on d. Clearly, cm is distinct from c. From the construction, the path
symmetrical to this with respect to d also lies in the graph, and so these paths together form
C(c). Hence, C(c) contains exactly two cells from d. Then all 2n cells in d belong to n cycles
C1, C2, . . . , Cn, each has length at least 4.

By the Pigeonhole Principle, there exists a cycle Ci containing at most one of the k marked
cells. We modify P as follows. We remove all dominoes containing the vertices of Ci, which
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correspond to the red edges of Ci. Then we put the dominoes corresponding to the blue edges
of Ci. Since Ci has at least 4 vertices, the resultant partition P ′ is different from P . Clearly,
no domino in P ′ contains two marked cells as Ci contains at most one marked cell. This
shows the partition is not unique and hence k cannot be less than 2n.
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Geometry

G1. In a convex pentagon ABCDE, let F be a point on AC such that ∠FBC = 90◦.
Suppose triangles ABF , ACD and ADE are similar isosceles triangles with

∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA. (1)

Let M be the midpoint of CF . Point X is chosen such that AMXE is a parallelogram. Show
that BD,EM and FX are concurrent.

Solution 1. Denote the common angle in (1) by θ. As 4ABF ∼ 4ACD, we have AB
AC

= AF
AD

so that 4ABC ∼ 4AFD. From EA = ED, we get

∠AFD = ∠ABC = 90◦ + θ = 180◦ − 1

2
∠AED.

Hence, F lies on the circle with centre E and radius EA. In particular, EF = EA = ED.
As ∠EFA = ∠EAF = 2θ = ∠BFC, points B,F,E are collinear.

As ∠EDA = ∠MAD, we have ED//AM and hence E,D,X are collinear. As M is the
midpoint of CF and ∠CBF = 90◦, we get MF = MB. In the isosceles triangles EFA and
MFB, we have ∠EFA = ∠MFB and AF = BF . Therefore, they are congruent to each
other. Then we have BM = AE = XM and BE = BF + FE = AF + FM = AM = EX.
This shows 4EMB ∼= 4EMX. As F and D lie on EB and EX respectively and EF = ED,
we know that lines BD and XF are symmetric with respect to EM . It follows that the three
lines are concurrent.

A B

D

F

ME

C

X
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Solution 2. From ∠CAD = ∠EDA, we have AC//ED. Together with AC//EX, we know
that E,D,X are collinear. Denote the common angle in (1) by θ. From 4ABF ∼ 4ACD,
we get AB

AC
= AF

AD
so that 4ABC ∼ 4AFD. This yields ∠AFD = ∠ABC = 90◦ + θ and

hence ∠FDC = 90◦, implying that BCDF is cyclic. Let Γ1 be its circumcircle.
Next, from 4ABF ∼ 4ADE, we have AB

AD
= AF

AE
so that 4ABD ∼ 4AFE. Therefore,

∠AFE = ∠ABD = θ + ∠FBD = θ + ∠FCD = 2θ = 180◦ − ∠BFA.

This implies B,F,E are collinear. Note that F is the incentre of triangle DAB. Point E
lies on the internal angle bisector of ∠DBA and lies on the perpendicular bisector of AD. It
follows that E lies on the circumcircle Γ2 of triangle ABD, and EA = EF = ED.

Also, since CF is a diameter of Γ1 and M is the midpoint of CF , M is the centre of Γ1 and
hence ∠AMD = 2θ = ∠ABD. This showsM lies on Γ2. Next, ∠MDX = ∠MAE = ∠DXM
since AMXE is a parallelogram. Hence MD = MX and X lies on Γ1.

A B

D

F

ME

C

X

We now have two ways to complete the solution.

• Method 1. From EF = EA = XM and EX//FM , EFMX is an isosceles trapezoid and
is cyclic. Denote its circumcircle by Γ3. Since BD,EM,FX are the three radical axes of
Γ1,Γ2,Γ3, they must be concurrent.

• Method 2. As ∠DMF = 2θ = ∠BFM , we have DM//EB. Also,

∠BFD + ∠XBF = ∠BFC + ∠CFD + 90◦ − ∠CBX = 2θ + (90◦ − θ) + 90◦ − θ = 180◦

implies DF//XB. These show the corresponding sides of triangles DMF and BEX are
parallel. By Desargues’ Theorem, the two triangles are perspective and hence DB,ME,FX
meet at a point.
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Comment. In Solution 2, both the Radical Axis Theorem and Desargues’ Theorem could
imply DB,ME,FX are parallel. However, this is impossible as can be seen from the config-
uration. For example, it is obvious that DB and ME meet each other.

Solution 3. Let the common angle in (1) be θ. From 4ABF ∼ 4ACD, we have AB
AC

= AF
AD

so that 4ABC ∼ 4AFD. Then ∠ADF = ∠ACB = 90◦ − 2θ = 90◦ − ∠BAD and hence
DF ⊥ AB. As FA = FB, this implies 4DAB is isosceles with DA = DB. Then F is the
incentre of 4DAB.

Next, from ∠AED = 180◦ − 2θ = 180◦ − ∠DBA, points A,B,D,E are concyclic. Since
we also have EA = ED, this shows E,F,B are collinear and EA = EF = ED.

A B

D

F

ME

C

X

P

Q

Note that C lies on the internal angle bisector of ∠BAD and lies on the external angle
bisector of ∠DBA. It follows that it is the A-excentre of triangle DAB. As M is the midpoint
of CF , M lies on the circumcircle of triangle DAB and it is the centre of the circle passing
through D,F,B,C. By symmetry, DEFM is a rhombus. Then the midpoints of AX,EM
and DF coincide, and it follows that DAFX is a parallelogram.

Let P be the intersection of BD and EM , and Q be the intersection of AD and BE. From
∠BAC = ∠DCA, we know that DC,AB,EM are parallel. Thus we have DP

PB
= CM

MA
. This is

further equal to AE
BE

since CM = DM = DE = AE and MA = BE. From4AEQ ∼ 4BEA,
we find that

DP

PB
=
AE

BE
=
AQ

BA
=
QF

FB

by the Angle Bisector Theorem. This implies QD//FP and hence F, P,X are collinear, as
desired.
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G2. Let ABC be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of
side BC. Denote by D the foot of perpendicular from I to side BC. The line through I per-
pendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle
of triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet
on Γ.

Solution 1. Let AM meet Γ again at Y and XY meet BC at D′. It suffices to show D′ = D.
We shall apply the following fact.

• Claim. For any cyclic quadrilateral PQRS whose diagonals meet at T , we have

QT

TS
=
PQ ·QR
PS · SR

.

Proof. We use [W1W2W3] to denote the area of W1W2W3. Then

QT

TS
=

[PQR]

[PSR]
=

1
2
PQ ·QR sin∠PQR
1
2
PS · SR sin∠PSR

=
PQ ·QR
PS · SR

.

Applying the Claim to ABY C and XBY C respectively, we have 1 = BM
MC

= AB·BY
AC·CY and

BD′

D′C
= XB·BY

XC·CY . These combine to give

BD′

CD′
=
XB

XC
· BY
CY

=
XB

XC
· AC
AB

. (1)

Next, we use directed angles to find that ]XBF = ]XBA = ]XCA = ]XCE and
]XFB = ]XFA = ]XEA = ]XEC. This shows triangles XBF and XCE are directly
similar. In particular, we have

XB

XC
=
BF

CE
. (2)

In the following, we give two ways to continue the proof.

• Method 1. Here is a geometrical method. As ∠FIB = ∠AIB − 90◦ = 1
2
∠ACB = ∠ICB

and ∠FBI = ∠IBC, the triangles FBI and IBC are similar. Analogously, triangles EIC
and IBC are also similar. Hence, we get

FB

IB
=
BI

BC
and

EC

IC
=

IC

BC
. (3)
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A

B C

I

D

E

F

X

M

Y

B2

C2

B1
C1

Next, construct a line parallel to BC and tangent to the incircle. Suppose it meets sides
AB and AC at B1 and C1 respectively. Let the incircle touch AB and AC at B2 and C2

respectively. By homothety, the line B1I is parallel to the external angle bisector of ∠ABC,
and hence ∠B1IB = 90◦. Since ∠BB2I = 90◦, we get BB2 · BB1 = BI2, and similarly
CC2 · CC1 = CI2. Hence,

BI2

CI2
=
BB2 ·BB1

CC2 · CC1

=
BB1

CC1

· BD
CD

=
AB

AC
· BD
CD

. (4)

Combining (1), (2), (3) and (4), we conclude

BD′

CD′
=
XB

XC
· AC
AB

=
BF

CE
· AC
AB

=
BI2

CI2
· AC
AB

=
BD

CD

so that D′ = D. The result then follows.

• Method 2. We continue the proof of Solution 1 using trigonometry. Let β = 1
2
∠ABC

and γ = 1
2
∠ACB. Observe that ∠FIB = ∠AIB − 90◦ = γ. Hence, BF

FI
= sin∠FIB

sin∠IBF = sin γ
sinβ

.

Similarly, CE
EI

= sinβ
sin γ

. As FI = EI, we get

BF

CE
=
BF

FI
· EI
CE

=

Ç
sin γ

sin β

å2

. (5)
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Together with (1) and (2), we find that

BD′

CD′
=
AC

AB
·
Ç

sin γ

sin β

å2

=
sin 2β

sin 2γ
·
Ç

sin γ

sin β

å2

=
tan γ

tan β
=
ID/CD

ID/BD
=
BD

CD
.

This shows D′ = D and the result follows.

Solution 2. Let ωA be the A-mixtilinear incircle of triangle ABC. From the properties of
mixtilinear incircles, ωA touches sides AB and AC at F and E respectively. Suppose ωA
is tangent to Γ at T . Let AM meet Γ again at Y , and let D1, T1 be the reflections of D
and T with respect to the perpendicular bisector of BC respectively. It is well-known that
∠BAT = ∠D1AC so that A,D1, T1 are collinear.

A

B C

I

D

E

F

X

M

Y

T

D1

T1

R

S

P

We then show that X,M, T1 are collinear. Let R be the radical centre of ωA,Γ and the
circumcircle of triangle AEF . Then R lies on AX,EF and the tangent at T to Γ. Let AT
meet ωA again at S and meet EF at P . Obviously, SFTE is a harmonic quadrilateral.
Projecting from T , the pencil (R,P ;F,E) is harmonic. We further project the pencil onto
Γ from A, so that XBTC is a harmonic quadrilateral. As TT1//BC, the projection from T1
onto BC maps T to a point at infinity, and hence maps X to the midpoint of BC, which is
M . This shows X,M, T1 are collinear.

We have two ways to finish the proof.

• Method 1. Note that both AY and XT1 are chords of Γ passing through the midpoint M
of the chord BC. By the Butterfly Theorem, XY and AT1 cut BC at a pair of symmetric
points with respect to M , and hence X,D, Y are collinear. The proof is thus complete.
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• Method 2. Here, we finish the proof without using the Butterfly Theorem. As DTT1D1

is an isosceles trapezoid, we have

]Y TD = ]Y TT1 + ]T1TD = ]Y AT1 + ]AD1D = ]YMD

so that D,T, Y,M are concyclic. As X,M, T1 are collinear, we have

]AYD = ]MTD = ]D1T1M = ]AT1X = ]AYX.

This shows X,D, Y are collinear.
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G3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty,
bounded subset S of the plane is said to be nice if

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely
in S; and

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the
indices {1, 2, 3} for which triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S ′ of the set {(x, y) : x > 0, y > 0}
such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (ii), then the product
BA ·BA′ is a constant independent of the triangle P1P2P3.

Solution. If in the similarity of 4ABC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the longest
side of 4P1P2P3, then we have BC > AB > AC. The condition BC > AB is equivalent to
(x + 1)2 + y2 6 4, while AB > AC is trivially satisfied for any point in the first quadrant.
Then we first define

S = {(x, y) : (x+ 1)2 + y2 6 4, x > 0, y > 0}.

Note that S is the intersection of a disk and the first quadrant, so it is bounded and convex,
and we can choose any T ∈ S to meet condition (i). For any point A in S, the relation
BC > AB > AC always holds. Therefore, the point A in (ii) is uniquely determined, while
its existence is guaranteed by the above construction.

S
S ′

x

y

OB C

T ′

Next, if in the similarity of 4A′BC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the second
longest side of4P1P2P3, then we have A′B > BC > A′C. The two inequalities are equivalent
to (x+ 1)2 + y2 > 4 and (x− 1)2 + y2 6 4 respectively. Then we define

S ′ = {(x, y) : (x+ 1)2 + y2 > 4, (x− 1)2 + y2 6 4, x > 0, y > 0}.
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The boundedness condition is satisfied while (ii) can be argued as in the previous case. For
(i), note that S ′ contains points inside the disk (x − 1)2 + y2 6 4 and outside the disk
(x + 1)2 + y2 > 4. This shows we can take T ′ = (1, 2) in (i), which is the topmost point of
the circle (x− 1)2 + y2 = 4.

It remains to check that the product BA · BA′ is a constant. Suppose we are given a
triangle P1P2P3 with P1P2 > P2P3 > P3P1. By the similarity, we have

BA = BC · P2P3

P1P2

and BA′ = BC · P1P2

P2P3

.

Thus BA ·BA′ = BC2 = 4, which is certainly independent of the triangle P1P2P3.

Comment. The original version of this problem includes the condition that the interiors of
S and S ′ are disjoint. We remove this condition since it is hard to define the interior of a
point set rigorously.
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G4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI
meets AC at D, and the line through D perpendicular to AC meets AI at E. Prove that the
reflection of I in AC lies on the circumcircle of triangle BDE.

Solution 1.

B

C

A I

D

E

I ′

F

J

Let Γ be the circle with centre E passing through B and C. Since ED ⊥ AC, the point
F symmetric to C with respect to D lies on Γ. From ∠DCI = ∠ICB = ∠CBI, the line
DC is a tangent to the circumcircle of triangle IBC. Let J be the symmetric point of I with
respect to D. Using directed lengths, from

DC ·DF = −DC2 = −DI ·DB = DJ ·DB,

the point J also lies on Γ. Let I ′ be the reflection of I in AC. Since IJ and CF bisect each
other, CJFI is a parallelogram. From ∠FI ′C = ∠CIF = ∠FJC, we find that I ′ lies on Γ.
This gives EI ′ = EB.

Note that AC is the internal angle bisector of ∠BDI ′. This shows DE is the external
angle bisector of ∠BDI ′ as DE ⊥ AC. Together with EI ′ = EB, it is well-known that E
lies on the circumcircle of triangle BDI ′.

Solution 2. Let I ′ be the reflection of I in AC and let S be the intersection of I ′C and AI.
Using directed angles, we let θ = ]ACI = ]ICB = ]CBI. We have

]I ′SE = ]I ′CA+ ]CAI = θ +
Åπ

2
+ 2θ

ã
= 3θ +

π

2

and
]I ′DE = ]I ′DC +

π

2
= ]CDI +

π

2
= ]DCB + ]CBD +

π

2
= 3θ +

π

2
.

This shows I ′, D,E, S are concyclic.
Next, we find ]I ′SB = 2]I ′SE = 6θ and ]I ′DB = 2]CDI = 6θ. Therefore, I ′, D,B, S

are concyclic so that I ′, D,E,B, S lie on the same circle. The result then follows.
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B

C

A
I

D

E

I ′

S

Comment. The point S constructed in Solution 2 may lie on the same side as A of BC.
Also, since S lies on the circumcircle of the non-degenerate triangle BDE, we implicitly know
that S is not an ideal point. Indeed, one can verify that I ′C and AI are parallel if and only
if triangle ABC is equilateral.

Solution 3. Let I ′ be the reflection of I in AC, and let D′ be the second intersection of AI
and the circumcircle of triangle ABD. Since AD′ bisects ∠BAD, point D′ is the midpoint of
the arc BD and DD′ = BD′ = CD′. Obviously, A,E,D′ lie on AI in this order.

B

C

A
I

D

E

I ′

D′

We find that ∠ED′D = ∠AD′D = ∠ABD = ∠IBC = ∠ICB. Next, since D′ is the
circumcentre of triangle BCD, we have ∠EDD′ = 90◦ − ∠D′DC = ∠CBD = ∠IBC. The
two relations show that triangles ED′D and ICB are similar. Therefore, we have

BC

CI ′
=
BC

CI
=
DD′

D′E
=
BD′

D′E
.

Also, we get

∠BCI ′ = ∠BCA+ ∠ACI ′ = ∠BCA+ ∠ICA = ∠BCA+ ∠DBC = ∠BDA = ∠BD′E.

These show triangles BCI ′ and BD′E are similar, and hence triangles BCD′ and BI ′E are
similar. As BCD′ is isosceles, we obtain BE = I ′E.

As DE is the external angle bisector of ∠BDI ′ and EI ′ = EB, we know that E lies on
the circumcircle of triangle BDI ′.
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Solution 4. Let AI and BI meet the circumcircle of triangle ABC again at A′ and B′

respectively, and let E ′ be the reflection of E in AC. From

∠B′AE ′ = ∠B′AD − ∠E ′AD =
∠ABC

2
− ∠BAC

2
= 90◦ − ∠BAC − ∠ABC

2
= 90◦ − ∠B′DA = ∠B′DE ′,

points B′, A,D,E ′ are concyclic. Then

∠DB′E ′ = ∠DAE ′ =
∠BAC

2
= ∠BAA′ = ∠DB′A′

and hence B′, E ′, A′ are collinear. It is well-known that A′B′ is the perpendicular bisector of
CI, so that CE ′ = IE ′. Let I ′ be the reflection of I in AC. This implies BE = CE = I ′E.
As DE is the external angle bisector of ∠BDI ′ and EI ′ = EB, we know that E lies on the
circumcircle of triangle BDI ′.

B

C

A
I

D

E

I ′

A′

B′

E ′

Solution 5. Let F be the intersection of CI and AB. Clearly, F and D are symmetric with
respect to AI. Let O be the circumcentre of triangle BIF , and let I ′ be the reflection of I in
AC.

B

C

A I

D

E

I ′

F
O
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From ∠BFO = 90◦ − ∠FIB = 1
2
∠BAC = ∠BAI, we get EI//FO. Also, from the

relation ∠OIB = 90◦ − ∠BFI = 90◦ − ∠CDI = ∠I ′ID, we know that O, I, I ′ are collinear.
Note that ED//OI since both are perpendicular to AC. Then ∠FEI = ∠DEI = ∠OIE.

Together with EI//FO, the quadrilateral EFOI is an isosceles trapezoid. Therefore, we find
that ∠DIE = ∠FIE = ∠OEI so OE//ID. Then DEOI is a parallelogram. Hence, we have
DI ′ = DI = EO, which shows DEOI ′ is an isosceles trapezoid. In addition, ED = OI = OB
and OE//BD imply EOBD is another isosceles trapezoid. In particular, both DEOI ′ and
EOBD are cyclic. This shows B,D,E, I ′ are concyclic.

Solution 6. Let I ′ be the reflection of I in AC. Denote by T and M the projections from I
to sides AB and BC respectively. Since BI is the perpendicular bisector of TM , we have

DT = DM. (1)

Since ∠ADE = ∠ATI = 90◦ and ∠DAE = ∠TAI, we have4ADE ∼ 4ATI. This shows
AD
AE

= AT
AI

= AT
AI′

. Together with ∠DAT = 2∠DAE = ∠EAI ′, this yields 4DAT ∼ 4EAI ′.
In particular, we have

DT

EI ′
=
AT

AI ′
=
AT

AI
. (2)

Obviously, the right-angled triangles AMB and ATI are similar. Then we get

AM

AB
=
AT

AI
. (3)

Next, from 4AMB ∼ 4ATI ∼ 4ADE, we have AM
AB

= AD
AE

so that 4ADM ∼ 4AEB.
It follows that

DM

EB
=
AM

AB
. (4)

Combining (1), (2), (3) and (4), we get EB = EI ′. As DE is the external angle bisector
of ∠BDI ′, we know that E lies on the circumcircle of triangle BDI ′.

B

C

A
I

D

E

I ′

M

T
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Comment. A stronger version of this problem is to ask the contestants to prove the reflection
of I in AC lies on the circumcircle of triangle BDE if and only if AB = AC. Some of the
above solutions can be modified to prove the converse statement to the original problem. For
example, we borrow some ideas from Solution 2 to establish the converse as follows.

B

C

A
I

D

E

I ′

S

Let I ′ be the reflection of I in AC and suppose B,E,D, I ′ lie on a circle Γ. Let AI meet
Γ again at S. As DE is the external angle bisector of ∠BDI ′, we have EB = EI ′. Using
directed angles, we get

]CI ′S = ]CI ′D + ]DI ′S = ]DIC + ]DES = ]DIC + ]DEA = ]DIC + ]DCB = 0.

This means I ′, C, S are collinear. From this we get ]BSE = ]ESI ′ = ]ESC and hence
AS bisects both ∠BAC and ∠BSC. Clearly, S and A are distinct points. It follows that
4BAS ∼= 4CAS and thus AB = AC.

As in some of the above solutions, an obvious way to prove the stronger version is to
establish the following equivalence: BE = EI ′ if and only if AB = AC. In addition to the
ideas used in those solutions, one can use trigonometry to express the lengths of BE and EI ′

in terms of the side lengths of triangle ABC and to establish the equivalence.
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G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the
circumcentre and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre
S passes through A and D, and it intersects sides AB and AC at X and Y respectively. Let
P be the foot of altitude from A to BC, and let M be the midpoint of BC. Prove that the
circumcentre of triangle XSY is equidistant from P and M .

Solution 1. Denote the orthocentre and circumcentre of triangle ABC by H and O respec-
tively. Let Q be the midpoint of AH and N be the nine-point centre of triangle ABC. It is
known that Q lies on the nine-point circle of triangle ABC, N is the midpoint of QM and
that QM is parallel to AO.

Let the perpendicular from S to XY meet line QM at S ′. Let E be the foot of altitude
from B to side AC. Since Q and S lie on the perpendicular bisector of AD, using directed
angles, we have

]SDQ = ]QAS = ]XAS − ]XAQ =
Åπ

2
− ]AYX

ã
− ]BAP = ]CBA− ]AYX

= (]CBA− ]ACB)− ]BCA− ]AYX = ]PEM − (]BCA+ ]AYX)

= ]PQM − ∠(BC,XY ) =
π

2
− ∠(S ′Q,BC)− ∠(BC,XY ) = ]SS ′Q.

This shows D,S ′, S,Q are concyclic.

A

B C

H OD

S

X

Y

P M

Q

N S ′

E

O1

Let the perpendicular from N to BC intersect line SS ′ at O1. (Note that the two lines
coincide when S is the midpoint of AO, in which case the result is true since the circumcentre
of triangle XSY must lie on this line.) It suffices to show that O1 is the circumcentre of
triangle XSY since N lies on the perpendicular bisector of PM . From

]DS ′O1 = ]DQS = ]SQA = ∠(SQ,QA) = ∠(OD,O1N) = ]DNO1
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since SQ//OD and QA//O1N , we know that D,O1, S
′, N are concyclic. Therefore, we get

]SDS ′ = ]SQS ′ = ∠(SQ,QS ′) = ∠(ND,NS ′) = ]DNS ′,

so that SD is a tangent to the circle through D,O1, S
′, N . Then we have

SS ′ · SO1 = SD2 = SX2. (1)

Next, we show that S and S ′ are symmetric with respect to XY . By the Sine Law, we
have

SS ′

sin∠SQS ′
=

SQ

sin∠SS ′Q
=

SQ

sin∠SDQ
=

SQ

sin∠SAQ
=

SA

sin∠SQA
.

It follows that

SS ′ = SA · sin∠SQS ′

sin∠SQA
= SA · sin∠HOA

sin∠OHA
= SA · AH

AO
= SA · 2 cosA,

which is twice the distance from S to XY . Note that S and C lie on the same side of the
perpendicular bisector of PM if and only if ∠SAC < ∠OAC if and only if ∠Y XA > ∠CBA.
This shows S and O1 lie on different sides of XY . As S ′ lies on ray SO1, it follows that S
and S ′ cannot lie on the same side of XY . Therefore, S and S ′ are symmetric with respect
to XY .

Let d be the diameter of the circumcircle of triangle XSY . As SS ′ is twice the distance
from S to XY and SX = SY , we have SS ′ = 2SX

2

d
. It follows from (1) that d = 2SO1. As

SO1 is the perpendicular bisector of XY , point O1 is the circumcentre of triangle XSY .

Solution 2. Denote the orthocentre and circumcentre of triangle ABC by H and O respec-
tively. Let O1 be the circumcentre of triangle XSY . Consider two other possible positions of
S. We name them S ′ and S ′′ and define the analogous points X ′, Y ′, O′1, X

′′, Y ′′O′′1 accordingly.
Note that S, S ′, S ′′ lie on the perpendicular bisector of AD.

As XX ′ and Y Y ′ meet at A and the circumcircles of triangles AXY and AX ′Y ′ meet at
D, there is a spiral similarity with centre D mapping XY to X ′Y ′. We find that

]SXY =
π

2
− ]Y AX =

π

2
− ]Y ′AX ′ = ]S ′X ′Y ′

and similarly ]SY X = ]S ′Y ′X ′. This shows triangles SXY and S ′X ′Y ′ are directly similar.
Then the spiral similarity with centre D takes points S,X, Y,O1 to S ′, X ′, Y ′, O′1. Similarly,
there is a spiral similarity with centre D mapping S,X, Y,O1 to S ′′, X ′′, Y ′′, O′′1 . From these,
we see that there is a spiral similarity taking the corresponding points S, S ′, S ′′ to points
O1, O

′
1, O

′′
1 . In particular, O1, O

′
1, O

′′
1 are collinear.
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A

B C

H
OD

SX

Y

P M

S ′S ′′

X ′

Y ′

X ′′

Y ′′

O1

O′1

O′′1

It now suffices to show that O1 lies on the perpendicular bisector of PM for two special
cases.

Firstly, we take S to be the midpoint of AH. Then X and Y are the feet of altitudes from
C and B respectively. It is well-known that the circumcircle of triangle XSY is the nine-point
circle of triangle ABC. Then O1 is the nine-point centre and O1P = O1M . Indeed, P and
M also lies on the nine-point circle.

Secondly, we take S ′ to be the midpoint of AO. Then X ′ and Y ′ are the midpoints of
AB and AC respectively. Then X ′Y ′//BC. Clearly, S ′ lies on the perpendicular bisector
of PM . This shows the perpendicular bisectors of X ′Y ′ and PM coincide. Hence, we must
have O′1P = O′1M .

A

B C

H O

P M

S

X

Y

O1

A

B C

H

O

P M

S ′

X ′ Y ′
O′1



Shortlisted problems 61

G6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal
angle bisectors of ∠ABC and ∠ADC meet AC at E and F respectively, and meet each
other at point P . Let M be the midpoint of AC and let ω be the circumcircle of triangle
BPD. Segments BM and DM intersect ω again at X and Y respectively. Denote by Q the
intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

Solution 1.

A

B
C

D

E

F

P

MX

Y

Q

Z

B′

S

Let ω1 be the circumcircle of triangle ABC. We first prove that Y lies on ω1. Let Y ′ be
the point on ray MD such that MY ′ ·MD = MA2. Then triangles MAY ′ and MDA are
oppositely similar. Since MC2 = MA2 = MY ′ ·MD, triangles MCY ′ and MDC are also
oppositely similar. Therefore, using directed angles, we have

]AY ′C = ]AY ′M + ]MY ′C = ]MAD + ]DCM = ]CDA = ]ABC

so that Y ′ lies on ω1.
Let Z be the intersection point of lines BC and AD. Since ]PDZ = ]PBC = ]PBZ,

point Z lies on ω. In addition, from ]Y ′BZ = ]Y ′BC = ]Y ′AC = ]Y ′AM = ]Y ′DZ, we
also know that Y ′ lies on ω. Note that ∠ADC is acute implies MA 6= MD so MY ′ 6= MD.
Therefore, Y ′ is the second intersection of DM and ω. Then Y ′ = Y and hence Y lies on ω1.

Next, by the Angle Bisector Theorem and the similar triangles, we have

FA

FC
=
AD

CD
=
AD

AM
· CM
CD

=
Y A

YM
· YM
Y C

=
Y A

Y C
.

Hence, FY is the internal angle bisector of ∠AY C.
Let B′ be the second intersection of the internal angle bisector of ∠CBA and ω1. Then

B′ is the midpoint of arc AC not containing B. Therefore, Y B′ is the external angle bisector
of ∠AY C, so that B′Y ⊥ FY .
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Denote by l the line through P parallel to AC. Suppose l meets line B′Y at S. From

]PSY = ∠(AC,B′Y ) = ]ACY + ]CY B′ = ]ACY + ]CAB′ = ]ACY + ]B′CA

= ]B′CY = ]B′BY = ]PBY,

the point S lies on ω. Similarly, the line through X perpendicular to XE also passes through
the second intersection of l and ω, which is the point S. From QY ⊥ Y S and QX ⊥ XS,
point Q lies on ω and QS is a diameter of ω. Therefore, PQ ⊥ PS so that PQ ⊥ AC.

Solution 2. Denote by ω1 and ω2 the circumcircles of triangles ABC and ADC respectively.
Since ∠ABC = ∠ADC, we know that ω1 and ω2 are symmetric with respect to the midpoint
M of AC.

Firstly, we show that X lies on ω2. Let X1 be the second intersection of ray MB and
ω2 and X ′ be its symmetric point with respect to M . Then X ′ lies on ω1 and X ′AX1C is a
parallelogram. Hence, we have

]DX1B = ]DX1A+ ]AX1B = ]DCA+ ]AX1X
′ = ]DCA+ ]CX ′X1

= ]DCA+ ]CAB = ∠(CD,AB).

A

B

C

D
E

F

P

M

X

Y
Q

X ′

M1M2
B′ D′

Also, we have

]DPB = ]PDC + ∠(CD,AB) + ]ABP = ∠(CD,AB).

These yield ]DX1B = ]DPB and hence X1 lies on ω. It follows that X1 = X and X lies
on ω2. Similarly, Y lies on ω1.
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Next, we prove that Q lies on ω. Suppose the perpendicular bisector of AC meet ω1 at B′

and M1 and meet ω2 at D′ and M2, so that B,M1 and D′ lie on the same side of AC. Note
that B′ lies on the angle bisector of ∠ABC and similarly D′ lies on DP .

If we denote the area of W1W2W3 by [W1W2W3], then

BA ·X ′A
BC ·X ′C

=
1
2
BA ·X ′A sin∠BAX ′

1
2
BC ·X ′C sin∠BCX ′

=
[BAX ′]

[BCX ′]
=
MA

MC
= 1.

As BE is the angle bisector of ∠ABC, we have

EA

EC
=
BA

BC
=
X ′C

X ′A
=
XA

XC
.

Therefore, XE is the angle bisector of ∠AXC, so that M2 lies on the line joining X,E,Q.
Analogously, M1, F,Q, Y are collinear. Thus,

]XQY = ]M2QM1 = ]QM2M1 + ]M2M1Q = ]XM2D
′ + ]B′M1Y

= ]XDD′ + ]B′BY = ]XDP + ]PBY = ]XBP + ]PBY = ]XBY,

which implies Q lies on ω.
Finally, as M1 and M2 are symmetric with respect to M , the quadrilateral X ′M2XM1 is

a parallelogram. Consequently,

]XQP = ]XBP = ]X ′BB′ = ]X ′M1B
′ = ]XM2M1.

This shows QP//M2M1. As M2M1 ⊥ AC, we get QP ⊥ AC.

Solution 3. We first state two results which will be needed in our proof.

• Claim 1. In 4X ′Y ′Z ′ with X ′Y ′ 6= X ′Z ′, let N ′ be the midpoint of Y ′Z ′ and W ′ be the
foot of internal angle bisector from X ′. Then tan2]W ′X ′Z ′ = tan]N ′X ′W ′ tan]Z ′W ′X ′.

Proof.

X ′

Y ′ Z ′N ′ W ′

Without loss of generality, assume X ′Y ′ > X ′Z ′. Then W ′ lies between N ′ and Z ′.
The signs of both sides agree so it suffices to establish the relation for ordinary angles. Let
∠W ′X ′Z ′ = α, ∠N ′X ′W ′ = β and ∠Z ′W ′X ′ = γ. We have

sin (γ − α)

sin (α− β)
=
N ′X ′

N ′Y ′
=
N ′X ′

N ′Z ′
=

sin (γ + α)

sin (α + β)
.
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This implies

tan γ − tanα

tan γ + tanα
=

sin γ cosα− cos γ sinα

sin γ cosα + cos γ sinα
=

sinα cos β − cosα sin β

sinα cos β + cosα sin β
=

tanα− tan β

tanα + tan β
.

Expanding and simplifying, we get the desired result tan2 α = tan β tan γ.

• Claim 2. Let A′B′C ′D′ be a quadrilateral inscribed in circle Γ. Let diagonals A′C ′ and
B′D′ meet at E ′, and F ′ be the intersection of lines A′B′ and C ′D′. Let M ′ be the midpoint
of E ′F ′. Then the power of M ′ with respect to Γ is equal to (M ′E ′)2.

Proof.

F ′

B′

A′

C ′

D′

E ′

M ′

O′ F1

Let O′ be the centre of Γ and let Γ′ be the circle with centre M ′ passing through E ′. Let
F1 be the inversion image of F ′ with respect to Γ. It is well-known that E ′ lies on the polar
of F ′ with respect to Γ. This shows E ′F1 ⊥ O′F ′ and hence F1 lies on Γ′. It follows that the
inversion image of Γ′ with respect to Γ is Γ′ itself. This shows Γ′ is orthogonal to Γ, and thus
the power of M ′ with respect to Γ is the square of radius of Γ′, which is (M ′E ′)2.

We return to the main problem. Let Z be the intersection of lines AD and BC, and W
be the intersection of lines AB and CD. Since ]PDZ = ]PBC = ]PBZ, point Z lies on
ω. Similarly, W lies on ω. Applying Claim 2 to the cyclic quadrilateral ZBDW , we know
that the power of M with respect to ω is MA2. Hence, MX ·MB = MA2.

Suppose the line through B perpendicular to BE meets line AC at T . Then BE and
BT are the angle bisectors of ∠CBA. This shows (T,E;A,C) is harmonic. Thus, we have
ME ·MT = MA2 = MX ·MB. It follows that E, T,B,X are concyclic.
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A

B C

D

E
F

P

M

X

Y

Q

Z

W

T

P ′, Q′

The result is trivial for the special case AD = CD since P,Q lie on the perpendicular
bisector of AC in that case. Similarly, the case AB = CB is trivial. It remains to consider
the general cases where we can apply Claim 1 in the latter part of the proof.

Let the projections from P and Q to AC be P ′ and Q′ respectively. Then PQ ⊥ AC if
and only if P ′ = Q′ if and only if EP ′

FP ′
= EQ′

FQ′
in terms of directed lengths. Note that

EP ′

FP ′
=

tan]EFP
tan]FEP

=
tan]AFD
tan]AEB

.

Next, we have EQ′

FQ′
= tan]EFQ

tan]FEQ where ]FEQ = ]TEX = ]TBX = π
2

+ ]EBM and by
symmetry ]EFQ = π

2
+ ]FDM . Combining all these, it suffices to show

tan]AFD
tan]AEB

=
tan]MBE

tan]MDF
.

We now apply Claim 1 twice to get

tan]AFD tan]MDF = tan2]FDC = tan2]EBA = tan]MBE tan]AEB.

The result then follows.
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G7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be
the reflection of IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB, I

′
B

and line lB analogously. Let P be the intersection point of lA and lB.

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at
points X and Y . Show that ∠XIY = 120◦.

Solution 1.

(a) Let A′ be the reflection of A in BC and let M be the second intersection of line AI
and the circumcircle Γ of triangle ABC. As triangles ABA′ and AOC are isosceles with
∠ABA′ = 2∠ABC = ∠AOC, they are similar to each other. Also, triangles ABIA and
AIC are similar. Therefore we have

AA′

AIA
=
AA′

AB
· AB
AIA

=
AC

AO
· AI
AC

=
AI

AO
.

Together with ∠A′AIA = ∠IAO, we find that triangles AA′IA and AIO are similar.

A

B C

IA

I

I ′A

P

O

X

Y

M

A′

Z

T

D

Denote by P ′ the intersection of line AP and line OI. Using directed angles, we have

]MAP ′ = ]I ′AAIA = ]I ′AAA
′ − ]IAAA

′ = ]AA′IA − ∠(AM,OM)

= ]AIO − ]AMO = ]MOP ′.

This shows M,O,A, P ′ are concyclic.
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Denote by R and r the circumradius and inradius of triangle ABC. Then

IP ′ =
IA · IM
IO

=
IO2 −R2

IO

is independent of A. Hence, BP also meets line OI at the same point P ′ so that P ′ = P ,
and P lies on OI.

(b) By Poncelet’s Porism, the other tangents to the incircle of triangle ABC from X and Y
meet at a point Z on Γ. Let T be the touching point of the incircle to XY , and let D be
the midpoint of XY . We have

OD = IT · OP
IP

= r

Ç
1 +

OI

IP

å
= r

Ç
1 +

OI2

OI · IP

å
= r

Ç
1 +

R2 − 2Rr

R2 − IO2

å
= r

Ç
1 +

R2 − 2Rr

2Rr

å
=
R

2
=
OX

2
.

This shows ∠XZY = 60◦ and hence ∠XIY = 120◦.

Solution 2.

(a) Note that triangles AIBC and IABC are similar since their corresponding interior angles
are equal. Therefore, the four triangles AI ′BC, AIBC, IABC and I ′ABC are all similar.
From4AI ′BC ∼ 4I ′ABC, we get4AI ′AC ∼ 4I ′BBC. From ]ABP = ]I ′BBC = ]AI ′AC
and ]BAP = ]I ′AAC, the triangles ABP and AI ′AC are directly similar.

A

B C

IA

I

I ′A IB

I ′B

P

O

X
Y

A′

DT

Consider the inversion with centre A and radius
√
AB · AC followed by the reflection

in AI. Then B and C are mapped to each other, and I and IA are mapped to each other.
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From the similar triangles obtained, we have AP · AI ′A = AB · AC so that P is mapped
to I ′A under the transformation. In addition, line AO is mapped to the altitude from A,
and hence O is mapped to the reflection of A in BC, which we call point A′. Note that
AA′IAI

′
A is an isosceles trapezoid, which shows it is inscribed in a circle. The preimage

of this circle is a straight line, meaning that O, I, P are collinear.

(b) Denote by R and r the circumradius and inradius of triangle ABC. Note that by the
above transformation, we have 4APO ∼ 4AA′I ′A and 4AA′IA ∼ 4AIO. Therefore, we
find that

PO = A′I ′A ·
AO

AI ′A
= AIA ·

AO

A′IA
=
AIA
A′IA

· AO =
AO

IO
· AO.

This shows PO · IO = R2, and it follows that P and I are mapped to each other under
the inversion with respect to the circumcircle Γ of triangle ABC. Then PX · PY , which
is the power of P with respect to Γ, equals PI ·PO. This yields X, I,O, Y are concyclic.

Let T be the touching point of the incircle to XY , and let D be the midpoint of XY .
Then

OD = IT · PO
PI

= r · PO

PO − IO
= r · R2

R2 − IO2
= r · R

2

2Rr
=
R

2
.

This shows ∠DOX = 60◦ and hence ∠XIY = ∠XOY = 120◦.

Comment. A simplification of this problem is to ask part (a) only. Note that the question in
part (b) implicitly requires P to lie on OI, or otherwise the angle is not uniquely determined
as we can find another tangent from P to the incircle.
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G8. Let A1, B1 and C1 be points on sides BC,CA and AB of an acute triangle ABC
respectively, such that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC.
Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A1B1C1. Show
that

AH +BH + CH > AI +BI + CI.

Solution. Without loss of generality, assume α = ∠BAC 6 β = ∠CBA 6 γ = ∠ACB.
Denote by a, b, c the lengths of BC,CA,AB respectively. We first show that triangle A1B1C1

is acute.
Choose points D and E on side BC such that B1D//AB and B1E is the internal angle

bisector of ∠BB1C. As ∠B1DB = 180◦ − β is obtuse, we have BB1 > B1D. Thus,

BE

EC
=
BB1

B1C
>
DB1

B1C
=
BA

AC
=
BA1

A1C
.

Therefore, BE > BA1 and 1
2
∠BB1C = ∠BB1E > ∠BB1A1. Similarly, 1

2
∠BB1A > ∠BB1C1.

It follows that

∠A1B1C1 = ∠BB1A1 + ∠BB1C1 <
1

2
(∠BB1C + ∠BB1A) = 90◦

is acute. By symmetry, triangle A1B1C1 is acute.
Let BB1 meet A1C1 at F . From α 6 γ, we get a 6 c, which implies

BA1 =
ca

b+ c
6

ac

a+ b
= BC1

and hence ∠BC1A1 6 ∠BA1C1. As BF is the internal angle bisector of ∠A1BC1, this shows
∠B1FC1 = ∠BFA1 6 90◦. Hence, H lies on the same side of BB1 as C1. This shows H lies
inside triangle BB1C1. Similarly, from α 6 β and β 6 γ, we know that H lies inside triangles
CC1B1 and AA1C1.

A

B CA1

B1C1
H

I

DE

F

B′

H ′

I ′

60◦
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As α 6 β 6 γ, we have α 6 60◦ 6 γ. Then ∠BIC 6 120◦ 6 ∠AIB. Firstly, suppose
∠AIC > 120◦.

Rotate points B, I,H through 60◦ about A to B′, I ′, H ′ so that B′ and C lie on different
sides of AB. Since triangle AI ′I is equilateral, we have

AI +BI + CI = I ′I +B′I ′ + IC = B′I ′ + I ′I + IC. (1)

Similarly,
AH +BH + CH = H ′H +B′H ′ +HC = B′H ′ +H ′H +HC. (2)

As ∠AII ′ = ∠AI ′I = 60◦, ∠AI ′B′ = ∠AIB > 120◦ and ∠AIC > 120◦, the quadrilateral
B′I ′IC is convex and lies on the same side of B′C as A.

Next, since H lies inside triangle ACC1, H lies outside B′I ′IC. Also, H lying inside
triangle ABI implies H ′ lies inside triangle AB′I ′. This shows H ′ lies outside B′I ′IC and
hence the convex quadrilateral B′I ′IC is contained inside the quadrilateral B′H ′HC. It
follows that the perimeter of B′I ′IC cannot exceed the perimeter of B′H ′HC. From (1) and
(2), we conclude that

AH +BH + CH > AI +BI + CI.

For the case ∠AIC < 120◦, we can rotate B, I,H through 60◦ about C to B′, I ′, H ′ so
that B′ and A lie on different sides of BC. The proof is analogous to the previous case and
we still get the desired inequality.
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Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by
S(k). Find all polynomials P (x) with integer coefficients such that for any positive integer
n > 2016, the integer P (n) is positive and

S(P (n)) = P (S(n)). (1)

Answer.

• P (x) = c where 1 6 c 6 9 is an integer; or

• P (x) = x.

Solution 1. We consider three cases according to the degree of P .

• Case 1. P (x) is a constant polynomial.
Let P (x) = c where c is an integer constant. Then (1) becomes S(c) = c. This holds if

and only if 1 6 c 6 9.

• Case 2. degP = 1.
We have the following observation. For any positive integers m,n, we have

S(m+ n) 6 S(m) + S(n), (2)

and equality holds if and only if there is no carry in the addition m+ n.
Let P (x) = ax+ b for some integers a, b where a 6= 0. As P (n) is positive for large n, we

must have a > 1. The condition (1) becomes S(an+ b) = aS(n) + b for all n > 2016. Setting
n = 2025 and n = 2020 respectively, we get

S(2025a+ b)− S(2020a+ b) = (aS(2025) + b)− (aS(2020) + b) = 5a.

On the other hand, (2) implies

S(2025a+ b) = S((2020a+ b) + 5a) 6 S(2020a+ b) + S(5a).

These give 5a 6 S(5a). As a > 1, this holds only when a = 1, in which case (1) reduces to
S(n+ b) = S(n) + b for all n > 2016. Then we find that

S(n+ 1 + b)− S(n+ b) = (S(n+ 1) + b)− (S(n) + b) = S(n+ 1)− S(n). (3)

If b > 0, we choose n such that n+ 1 + b = 10k for some sufficiently large k. Note that all
the digits of n + b are 9’s, so that the left-hand side of (3) equals 1 − 9k. As n is a positive
integer less than 10k − 1, we have S(n) < 9k. Therefore, the right-hand side of (3) is at least
1− (9k − 1) = 2− 9k, which is a contradiction.

The case b < 0 can be handled similarly by considering n + 1 to be a large power of 10.
Therefore, we conclude that P (x) = x, in which case (1) is trivially satisfied.
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• Case 3. degP > 2.
Suppose the leading term of P is adn

d where ad 6= 0. Clearly, we have ad > 0. Consider
n = 10k − 1 in (1). We get S(P (n)) = P (9k). Note that P (n) grows asymptotically as fast
as nd, so S(P (n)) grows asymptotically as no faster than a constant multiple of k. On the
other hand, P (9k) grows asymptotically as fast as kd. This shows the two sides of the last
equation cannot be equal for sufficiently large k since d > 2.

Therefore, we conclude that P (x) = c where 1 6 c 6 9 is an integer, or P (x) = x.

Solution 2. Let P (x) = adx
d + ad−1x

d−1 + · · ·+ a0. Clearly ad > 0. There exists an integer
m > 1 such that |ai| < 10m for all 0 6 i 6 d. Consider n = 9 × 10k for a sufficiently large
integer k in (1). If there exists an index 0 6 i 6 d−1 such that ai < 0, then all digits of P (n)
in positions from 10ik+m+1 to 10(i+1)k−1 are all 9’s. Hence, we have S(P (n)) > 9(k −m− 1).
On the other hand, P (S(n)) = P (9) is a fixed constant. Therefore, (1) cannot hold for large
k. This shows ai > 0 for all 0 6 i 6 d− 1.

Hence, P (n) is an integer formed by the nonnegative integers ad × 9d, ad−1 × 9d−1, . . . , a0
by inserting some zeros in between. This yields

S(P (n)) = S(ad × 9d) + S(ad−1 × 9d−1) + · · ·+ S(a0).

Combining with (1), we have

S(ad × 9d) + S(ad−1 × 9d−1) + · · ·+ S(a0) = P (9) = ad × 9d + ad−1 × 9d−1 + · · ·+ a0.

As S(m) 6 m for any positive integer m, with equality when 1 6 m 6 9, this forces each
ai × 9i to be a positive integer between 1 and 9. In particular, this shows ai = 0 for i > 2
and hence d 6 1. Also, we have a1 6 1 and a0 6 9. If a1 = 1 and 1 6 a0 6 9, we take
n = 10k + (10− a0) for sufficiently large k in (1). This yields a contradiction since

S(P (n)) = S(10k + 10) = 2 6= 11 = P (11− a0) = P (S(n)).

The zero polynomial is also rejected since P (n) is positive for large n. The remaining candi-
dates are P (x) = x or P (x) = a0 where 1 6 a0 6 9, all of which satisfy (1), and hence are
the only solutions.
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N2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive
divisors of n which have remainders 1 when divided by 3. Find all possible integral values of
the fraction τ(10n)

τ1(10n)
.

Answer. All composite numbers together with 2.

Solution. In this solution, we always use pi to denote primes congruent to 1 mod 3, and use
qj to denote primes congruent to 2 mod 3. When we express a positive integer m using its
prime factorization, we also include the special case m = 1 by allowing the exponents to be
zeros. We first compute τ1(m) for a positive integer m.

• Claim. Let m = 3xpa11 p
a2
2 · · · pass q

b1
1 q

b2
2 · · · qbtt be the prime factorization of m. Then

τ1(m) =
s∏
i=1

(ai + 1)

1

2

t∏
j=1

(bj + 1)

 . (1)

Proof. To choose a divisor of m congruent to 1 mod 3, it cannot have the prime divisor 3,
while there is no restriction on choosing prime factors congruent to 1 mod 3. Also, we have
to choose an even number of prime factors (counted with multiplicity) congruent to 2 mod 3.

If
∏t
j=1 (bj + 1) is even, then we may assume without loss of generality b1 + 1 is even. We

can choose the prime factors q2, q3, . . . , qt freely in
∏t
j=2 (bj + 1) ways. Then the parity of

the number of q1 is uniquely determined, and hence there are 1
2
(b1 + 1) ways to choose the

exponent of q1. Hence (1) is verified in this case.
If
∏t
j=1 (bj + 1) is odd, we use induction on t to count the number of choices. When

t = 1, there are d b1+1
2
e choices for which the exponent is even and b b1+1

2
c choices for which

the exponent is odd. For the inductive step, we find that there are1

2

t−1∏
j=1

(bj + 1)

 ·
¢
bt + 1

2

•
+

1

2

t−1∏
j=1

(bj + 1)

 · úbt + 1

2

ü
=

1

2

t∏
j=1

(bj + 1)


choices with an even number of prime factors and hence b1

2

∏t
j=1 (bj + 1)c choices with an odd

number of prime factors. Hence (1) is also true in this case.

Let n = 3x2y5zpa11 p
a2
2 · · · pass q

b1
1 q

b2
2 · · · qbtt . Using the well-known formula for computing the

divisor function, we get

τ(10n) = (x+ 1)(y + 2)(z + 2)
s∏
i=1

(ai + 1)
t∏

j=1

(bj + 1). (2)

By the Claim, we have

τ1(10n) =
s∏
i=1

(ai + 1)

1

2
(y + 2)(z + 2)

t∏
j=1

(bj + 1)

 . (3)
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If c = (y + 2)(z + 2)
∏t
j=1 (bj + 1) is even, then (2) and (3) imply

τ(10n)

τ1(10n)
= 2(x+ 1).

In this case τ(10n)
τ1(10n)

can be any even positive integer as x runs through all nonnegative integers.

If c is odd, which means y, z are odd and each bj is even, then (2) and (3) imply

τ(10n)

τ1(10n)
=

2(x+ 1)c

c+ 1
. (4)

For this to be an integer, we need c+ 1 divides 2(x+ 1) since c and c+ 1 are relatively prime.
Let 2(x+ 1) = k(c+ 1). Then (4) reduces to

τ(10n)

τ1(10n)
= kc = k(y + 2)(z + 2)

t∏
j=1

(bj + 1). (5)

Noting that y, z are odd, the integers y + 2 and z + 2 are at least 3. This shows the integer
in this case must be composite. On the other hand, for any odd composite number ab with
a, b > 3, we may simply take n = 3

ab−1
2 · 2a−2 · 5b−2 so that τ(10n)

τ1(10n)
= ab from (5).

We conclude that the fraction can be any even integer or any odd composite number.
Equivalently, it can be 2 or any composite number.
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N3. Define P (n) = n2 + n+ 1. For any positive integers a and b, the set

{P (a), P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is said to be fragrant if none of its elements is relatively prime to the product of the other
elements. Determine the smallest size of a fragrant set.

Answer. 6.

Solution. We have the following observations.

(i) (P (n), P (n+ 1)) = 1 for any n.

We have (P (n), P (n + 1)) = (n2 + n + 1, n2 + 3n + 3) = (n2 + n + 1, 2n + 2). Noting
that n2 + n+ 1 is odd and (n2 + n+ 1, n+ 1) = (1, n+ 1) = 1, the claim follows.

(ii) (P (n), P (n+ 2)) = 1 for n 6≡ 2 (mod 7) and (P (n), P (n+ 2)) = 7 for n ≡ 2 (mod 7).

From (2n+7)P (n)−(2n−1)P (n+2) = 14 and the fact that P (n) is odd, (P (n), P (n+2))
must be a divisor of 7. The claim follows by checking n ≡ 0, 1, . . . , 6 (mod 7) directly.

(iii) (P (n), P (n+ 3)) = 1 for n 6≡ 1 (mod 3) and 3|(P (n), P (n+ 3)) for n ≡ 1 (mod 3).

From (n+5)P (n)−(n−1)P (n+3) = 18 and the fact that P (n) is odd, (P (n), P (n+3))
must be a divisor of 9. The claim follows by checking n ≡ 0, 1, 2 (mod 3) directly.

Suppose there exists a fragrant set with at most 5 elements. We may assume it contains
exactly 5 elements P (a), P (a+ 1), . . . , P (a+ 4) since the following argument also works with
fewer elements. Consider P (a+ 2). From (i), it is relatively prime to P (a+ 1) and P (a+ 3).
Without loss of generality, assume (P (a), P (a + 2)) > 1. From (ii), we have a ≡ 2 (mod 7).
The same observation implies (P (a + 1), P (a + 3)) = 1. In order that the set is fragrant,
(P (a), P (a+ 3)) and (P (a+ 1), P (a+ 4)) must both be greater than 1. From (iii), this holds
only when both a and a+ 1 are congruent to 1 mod 3, which is a contradiction.

It now suffices to construct a fragrant set of size 6. By the Chinese Remainder Theorem,
we can take a positive integer a such that

a ≡ 7 (mod 19), a+ 1 ≡ 2 (mod 7), a+ 2 ≡ 1 (mod 3).

For example, we may take a = 197. From (ii), both P (a + 1) and P (a + 3) are divisible
by 7. From (iii), both P (a + 2) and P (a + 5) are divisible by 3. One also checks from
19|P (7) = 57 and 19|P (11) = 133 that P (a) and P (a+ 4) are divisible by 19. Therefore, the
set {P (a), P (a+ 1), . . . , P (a+ 5)} is fragrant.

Therefore, the smallest size of a fragrant set is 6.

Comment. “Fragrant Harbour” is the English translation of “Hong Kong”.
A stronger version of this problem is to show that there exists a fragrant set of size k for

any k > 6. We present a proof here.
For each even positive integer m which is not divisible by 3, since m2 + 3 ≡ 3 (mod 4),

we can find a prime pm ≡ 3 (mod 4) such that pm|m2 + 3. Clearly, pm > 3.
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If b = 2t > 6, we choose a such that 3|2(a+ t) + 1 and pm|2(a+ t) + 1 for each 1 6 m 6 b
with m ≡ 2, 4 (mod 6). For 0 6 r 6 t and 3|r, we have a + t ± r ≡ 1 (mod 3) so that
3|P (a+ t± r). For 0 6 r 6 t and (r, 3) = 1, we have

4P (a+ t± r) ≡ (−1± 2r)2 + 2(−1± 2r) + 4 = 4r2 + 3 ≡ 0 (mod p2r).

Hence, {P (a), P (a+ 1), . . . , P (a+ b)} is fragrant.
If b = 2t + 1 > 7 (the case b = 5 has been done in the original problem), we choose a

such that 3|2(a+ t) + 1 and pm|2(a+ t) + 1 for 1 6 m 6 b with m ≡ 2, 4 (mod 6), and that
a + b ≡ 9 (mod 13). Note that a exists by the Chinese Remainder Theorem since pm 6= 13
for all m. The even case shows that {P (a), P (a+ 1), . . . , P (a+ b− 1)} is fragrant. Also, one
checks from 13|P (9) = 91 and 13|P (3) = 13 that P (a + b) and P (a + b− 6) are divisible by
13. The proof is thus complete.
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N4. Let n,m, k and l be positive integers with n 6= 1 such that nk+mnl+1 divides nk+l−1.
Prove that

• m = 1 and l = 2k; or

• l|k and m = nk−l−1
nl−1 .

Solution 1. It is given that
nk +mnl + 1|nk+l − 1. (1)

This implies

nk +mnl + 1|(nk+l − 1) + (nk +mnl + 1) = nk+l + nk +mnl. (2)

We have two cases to discuss.

• Case 1. l > k.
Since (nk +mnl + 1, n) = 1, (2) yields

nk +mnl + 1|nl +mnl−k + 1.

In particular, we get nk + mnl + 1 6 nl + mnl−k + 1. As n > 2 and k > 1, (m − 1)nl is at
least 2(m − 1)nl−k. It follows that the inequality cannot hold when m > 2. For m = 1, the
above divisibility becomes

nk + nl + 1|nl + nl−k + 1.

Note that nl+nl−k+1 < nl+nl+1 < 2(nk+nl+1). Thus we must have nl+nl−k+1 = nk+nl+1
so that l = 2k, which gives the first result.

• Case 2. l < k.
This time (2) yields

nk +mnl + 1|nk + nk−l +m.

In particular, we get nk +mnl + 1 6 nk + nk−l +m, which implies

m 6
nk−l − 1

nl − 1
. (3)

On the other hand, from (1) we may let nk+l − 1 = (nk + mnl + 1)t for some positive
integer t. Obviously, t is less than nl, which means t 6 nl − 1 as it is an integer. Then we
have nk+l − 1 6 (nk +mnl + 1)(nl − 1), which is the same as

m >
nk−l − 1

nl − 1
. (4)

Equations (3) and (4) combine to give m = nk−l−1
nl−1 . As this is an integer, we have l|k − l.

This means l|k and it corresponds to the second result.
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Solution 2. As in Solution 1, we begin with equation (2).

• Case 1. l > k.
Then (2) yields

nk +mnl + 1|nl +mnl−k + 1.

Since 2(nk+mnl+1) > 2mnl+1 > nl+mnl−k+1, it follows that nk+mnl+1 = nl+mnl−k+1,
that is,

m(nl − nl−k) = nl − nk.

If m > 2, then m(nl − nl−k) > 2nl − 2nl−k > 2nl − nl > nl − nk gives a contradiction. Hence
m = 1 and l − k = k, which means m = 1 and l = 2k.

• Case 2. l < k.
Then (2) yields

nk +mnl + 1|nk + nk−l +m.

Since 2(nk+mnl+1) > 2nk+m > nk+nk−l+m, it follows that nk+mnl+1 = nk+nk−l+m.

This gives m = nk−l−1
nl−1 . Note that nl − 1|nk−l − 1 implies l|k − l and hence l|k. The proof is

thus complete.

Comment. Another version of this problem is as follows: let n,m, k and l be positive integers
with n 6= 1 such that k and l do not divide each other. Show that nk + mnl + 1 does not
divide nk+l − 1.
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N5. Let a be a positive integer which is not a square number. Denote by A the set of all
positive integers k such that

k =
x2 − a
x2 − y2

(1)

for some integers x and y with x >
√
a. Denote by B the set of all positive integers k such

that (1) is satisfied for some integers x and y with 0 6 x <
√
a. Prove that A = B.

Solution 1. We first prove the following preliminary result.

• Claim. For fixed k, let x, y be integers satisfying (1). Then the numbers x1, y1 defined by

x1 =
1

2

Ç
x− y +

(x− y)2 − 4a

x+ y

å
, y1 =

1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
are integers and satisfy (1) (with x, y replaced by x1, y1 respectively).

Proof. Since x1 + y1 = x− y and

x1 =
x2 − xy − 2a

x+ y
= −x+

2(x2 − a)

x+ y
= −x+ 2k(x− y),

both x1 and y1 are integers. Let u = x+ y and v = x− y. The relation (1) can be rewritten
as

u2 − (4k − 2)uv + (v2 − 4a) = 0.

By Vieta’s Theorem, the number z = v2−4a
u

satisfies

v2 − (4k − 2)vz + (z2 − 4a) = 0.

Since x1 and y1 are defined so that v = x1 + y1 and z = x1 − y1, we can reverse the process
and verify (1) for x1, y1.

We first show that B ⊂ A. Take any k ∈ B so that (1) is satisfied for some integers x, y
with 0 6 x <

√
a. Clearly, y 6= 0 and we may assume y is positive. Since a is not a square,

we have k > 1. Hence, we get 0 6 x < y <
√
a. Define

x1 =
1

2

∣∣∣∣∣x− y +
(x− y)2 − 4a

x+ y

∣∣∣∣∣ , y1 =
1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
.

By the Claim, x1, y1 are integers satisfying (1). Also, we have

x1 > −
1

2

Ç
x− y +

(x− y)2 − 4a

x+ y

å
=

2a+ x(y − x)

x+ y
>

2a

x+ y
>
√
a.

This implies k ∈ A and hence B ⊂ A.



80 IMO 2016 Hong Kong

Next, we shall show that A ⊂ B. Take any k ∈ A so that (1) is satisfied for some integers
x, y with x >

√
a. Again, we may assume y is positive. Among all such representations of k,

we choose the one with smallest x+ y. Define

x1 =
1

2

∣∣∣∣∣x− y +
(x− y)2 − 4a

x+ y

∣∣∣∣∣ , y1 =
1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
.

By the Claim, x1, y1 are integers satisfying (1). Since k > 1, we get x > y >
√
a. Therefore,

we have y1 >
4a
x+y

> 0 and 4a
x+y

< x+ y. It follows that

x1 + y1 6 max

®
x− y, 4a− (x− y)2

x+ y

´
< x+ y.

If x1 >
√
a, we get a contradiction due to the minimality of x + y. Therefore, we must have

0 6 x1 <
√
a, which means k ∈ B so that A ⊂ B.

The two subset relations combine to give A = B.

Solution 2. The relation (1) is equivalent to

ky2 − (k − 1)x2 = a. (2)

Motivated by Pell’s Equation, we prove the following, which is essentially the same as the
Claim in Solution 1.

• Claim. If (x0, y0) is a solution to (2), then ((2k − 1)x0 ± 2ky0, (2k − 1)y0 ± 2(k − 1)x0) is
also a solution to (2).

Proof. We check directly that

k((2k − 1)y0 ± 2(k − 1)x0)
2 − (k − 1)((2k − 1)x0 ± 2ky0)

2

= (k(2k − 1)2 − (k − 1)(2k)2)y20 + (k(2(k − 1))2 − (k − 1)(2k − 1)2)x20
= ky20 − (k − 1)x20 = a.

If (2) is satisfied for some 0 6 x <
√
a and nonnegative integer y, then clearly (1) implies

y > x. Also, we have k > 1 since a is not a square number. By the Claim, consider another
solution to (2) defined by

x1 = (2k − 1)x+ 2ky, y1 = (2k − 1)y + 2(k − 1)x.

It satisfies x1 > (2k − 1)x + 2k(x + 1) = (4k − 1)x + 2k > x. Then we can replace the old
solution by a new one which has a larger value in x. After a finite number of replacements,
we must get a solution with x >

√
a. This shows B ⊂ A.

If (2) is satisfied for some x >
√
a and nonnegative integer y, by the Claim we consider

another solution to (2) defined by

x1 = |(2k − 1)x− 2ky|, y1 = (2k − 1)y − 2(k − 1)x.
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From (2), we get
√
ky >

√
k − 1x. This implies ky >

»
k(k − 1)x > (k − 1)x and hence

(2k− 1)x− 2ky < x. On the other hand, the relation (1) implies x > y. Then it is clear that
(2k− 1)x− 2ky > −x. These combine to give x1 < x, which means we have found a solution
to (2) with x having a smaller absolute value. After a finite number of steps, we shall obtain
a solution with 0 6 x <

√
a. This shows A ⊂ B.

The desired result follows from B ⊂ A and A ⊂ B.

Solution 3. It suffices to show A ∪ B is a subset of A ∩ B. We take any k ∈ A ∪ B, which
means there exist integers x, y satisfying (1). Since a is not a square, it follows that k 6= 1.
As in Solution 2, the result follows readily once we have proved the existence of a solution
(x1, y1) to (1) with |x1| > |x|, and, in case of x >

√
a, another solution (x2, y2) with |x2| < |x|.

Without loss of generality, assume x, y > 0. Let u = x + y and v = x − y. Then u > v
and (1) becomes

k =
(u+ v)2 − 4a

4uv
. (3)

This is the same as
v2 + (2u− 4ku)v + u2 − 4a = 0.

Let v1 = 4ku−2u− v. Then u+ v1 = 4ku−u− v > 8u−u− v > u+ v. By Vieta’s Theorem,
v1 satisfies

v21 + (2u− 4ku)v1 + u2 − 4a = 0.

This gives k = (u+v1)2−4a
4uv1

. As k is an integer, u+ v1 must be even. Therefore, x1 = u+v1
2

and

y1 = v1−u
2

are integers. By reversing the process, we can see that (x1, y1) is a solution to (1),
with x1 = u+v1

2
> u+v

2
= x > 0. This completes the first half of the proof.

Suppose x >
√
a. Then u+ v > 2

√
a and (3) can be rewritten as

u2 + (2v − 4kv)u+ v2 − 4a = 0.

Let u2 = 4kv − 2v − u. By Vieta’s Theorem, we have uu2 = v2 − 4a and

u22 + (2v − 4kv)u2 + v2 − 4a = 0. (4)

By u > 0, u + v > 2
√
a and (3), we have v > 0. If u2 > 0, then vu2 6 uu2 = v2 − 4a < v2.

This shows u2 < v 6 u and 0 < u2 + v < u+ v. If u2 < 0, then (u2 + v) + (u+ v) = 4kv > 0
and u2 + v < u+ v imply |u2 + v| < u+ v. In any case, since u2 + v is even from (4), we can
define x2 = u2+v

2
and y2 = u2−v

2
so that (1) is satisfied with |x2| < x, as desired. The proof is

thus complete.
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N6. Denote by N the set of all positive integers. Find all functions f : N → N such that
for all positive integers m and n, the integer f(m) + f(n) − mn is nonzero and divides
mf(m) + nf(n).

Answer. f(n) = n2 for any n ∈ N.

Solution. It is given that

f(m) + f(n)−mn|mf(m) + nf(n). (1)

Taking m = n = 1 in (1), we have 2f(1)− 1|2f(1). Then 2f(1)− 1|2f(1)− (2f(1)− 1) = 1
and hence f(1) = 1.

Let p > 7 be a prime. Taking m = p and n = 1 in (1), we have f(p)− p+ 1|pf(p) + 1 and
hence

f(p)− p+ 1|pf(p) + 1− p(f(p)− p+ 1) = p2 − p+ 1.

If f(p)− p+ 1 = p2 − p+ 1, then f(p) = p2. If f(p)− p+ 1 6= p2 − p+ 1, as p2 − p+ 1 is an
odd positive integer, we have p2 − p+ 1 > 3(f(p)− p+ 1), that is,

f(p) 6
1

3
(p2 + 2p− 2). (2)

Taking m = n = p in (1), we have 2f(p)− p2|2pf(p). This implies

2f(p)− p2|2pf(p)− p(2f(p)− p2) = p3.

By (2) and f(p) > 1, we get

−p2 < 2f(p)− p2 6 2

3
(p2 + 2p− 2)− p2 < −p

since p > 7. This contradicts the fact that 2f(p)− p2 is a factor of p3. Thus we have proved
that f(p) = p2 for all primes p > 7.

Let n be a fixed positive integer. Choose a sufficiently large prime p. Consider m = p in
(1). We obtain

f(p) + f(n)− pn|pf(p) + nf(n)− n(f(p) + f(n)− pn) = pf(p)− nf(p) + pn2.

As f(p) = p2, this implies p2−pn+f(n)|p(p2−pn+n2). As p is sufficiently large and n is fixed,
p cannot divide f(n), and so (p, p2−pn+f(n)) = 1. It follows that p2−pn+f(n)|p2−pn+n2

and hence
p2 − pn+ f(n)|(p2 − pn+ n2)− (p2 − pn+ f(n)) = n2 − f(n).

Note that n2− f(n) is fixed while p2− pn+ f(n) is chosen to be sufficiently large. Therefore,
we must have n2 − f(n) = 0 so that f(n) = n2 for any positive integer n.

Finally, we check that when f(n) = n2 for any positive integer n, then

f(m) + f(n)−mn = m2 + n2 −mn

and
mf(m) + nf(n) = m3 + n3 = (m+ n)(m2 + n2 −mn).

The latter expression is divisible by the former for any positive integers m,n. This shows
f(n) = n2 is the only solution.
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N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area
S is chosen. All its vertices have integral coordinates, and the squares of its side lengths are
all divisible by n. Prove that 2S is an integer divisible by n.

Solution. Let P = A1A2 . . . Ak and let Ak+i = Ai for i > 1. By the Shoelace Formula, the
area of any convex polygon with integral coordinates is half an integer. Therefore, 2S is an
integer. We shall prove by induction on k > 3 that 2S is divisible by n. Clearly, it suffices to
consider n = pt where p is an odd prime and t > 1.

For the base case k = 3, let the side lengths of P be
√
na,
√
nb,
√
nc where a, b, c are

positive integers. By Heron’s Formula,

16S2 = n2(2ab+ 2bc+ 2ca− a2 − b2 − c2).

This shows 16S2 is divisible by n2. Since n is odd, 2S is divisible by n.
Assume k > 4. If the square of length of one of the diagonals is divisible by n, then

that diagonal divides P into two smaller polygons, to which the induction hypothesis applies.
Hence we may assume that none of the squares of diagonal lengths is divisible by n. As
usual, we denote by νp(r) the exponent of p in the prime decomposition of r. We claim the
following.

• Claim. νp(A1A
2
m) > νp(A1A

2
m+1) for 2 6 m 6 k − 1.

Proof. The case m = 2 is obvious since νp(A1A
2
2) > pt > νp(A1A

2
3) by the condition and the

above assumption.
Suppose νp(A1A

2
2) > νp(A1A

2
3) > · · · > νp(A1A

2
m) where 3 6 m 6 k−1. For the induction

step, we apply Ptolemy’s Theorem to the cyclic quadrilateral A1Am−1AmAm+1 to get

A1Am+1 × Am−1Am + A1Am−1 × AmAm+1 = A1Am × Am−1Am+1,

which can be rewritten as

A1A
2
m+1 × Am−1A2

m = A1A
2
m−1 × AmA2

m+1 + A1A
2
m × Am−1A2

m+1

− 2A1Am−1 × AmAm+1 × A1Am × Am−1Am+1. (1)

From this, 2A1Am−1×AmAm+1×A1Am×Am−1Am+1 is an integer. We consider the component
of p of each term in (1). By the inductive hypothesis, we have νp(A1A

2
m−1) > νp(A1A

2
m). Also,

we have νp(AmA
2
m+1) > pt > νp(Am−1A

2
m+1). These give

νp(A1A
2
m−1 × AmA2

m+1) > νp(A1A
2
m × Am−1A2

m+1). (2)

Next, we have νp(4A1A
2
m−1×AmA2

m+1×A1A
2
m×Am−1A2

m+1) = νp(A1A
2
m−1×AmA2

m+1) +
νp(A1A

2
m × Am−1A2

m+1) > 2νp(A1A
2
m × Am−1A2

m+1) from (2). This implies

νp(2A1Am−1 × AmAm+1 × A1Am × Am−1Am+1) > νp(A1A
2
m × Am−1A2

m+1). (3)

Combining (1), (2) and (3), we conclude that

νp(A1A
2
m+1 × Am−1A2

m) = νp(A1A
2
m × Am−1A2

m+1).

By νp(Am−1A
2
m) > pt > νp(Am−1A

2
m+1), we get νp(A1A

2
m+1) < νp(A1A

2
m). The Claim follows

by induction.
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From the Claim, we get a chain of inequalities

pt > νp(A1A
2
3) > νp(A1A

2
4) > · · · > νp(A1A

2
k) > pt,

which yields a contradiction. Therefore, we can show by induction that 2S is divisible by n.

Comment. The condition that P is cyclic is crucial. As a counterexample, consider the
rhombus with vertices (0, 3), (4, 0), (0,−3), (−4, 0). Each of its squares of side lengths is
divisible by 5, while 2S = 48 is not.

The proposer also gives a proof for the case n is even. One just needs an extra technical
step for the case p = 2.
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N8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the
following property: for each positive integer n, there exist n positive integers x1, x2, . . . , xn
such that 1

2
< P (xi)

P (xj)
< 2 and P (xi)

P (xj)
is the d-th power of a rational number for every pair of

indices i and j with 1 6 i, j 6 n.

Answer. P (x) = a(rx+ s)d where a, r, s are integers with a 6= 0, r > 1 and (r, s) = 1.

Solution. Let P (x) = adx
d +ad−1x

d−1 + · · ·+a0. Consider the substitution y = dadx+ad−1.
By defining Q(y) = P (x), we find that Q is a polynomial with rational coefficients without
the term yd−1. Let Q(y) = bdy

d + bd−2y
d−2 + bd−3y

d−3 + · · · + b0 and B = max06i6d {|bi|}
(where bd−1 = 0).

The condition shows that for each n > 1, there exist integers y1, y2, . . . , yn such that
1
2
< Q(yi)

Q(yj)
< 2 and Q(yi)

Q(yj)
is the d-th power of a rational number for 1 6 i, j 6 n. Since n

can be arbitrarily large, we may assume all xi’s and hence yi’s are integers larger than some
absolute constant in the following.

By Dirichlet’s Theorem, since d is odd, we can find a sufficiently large prime p such that
p ≡ 2 (mod d). In particular, we have (p − 1, d) = 1. For this fixed p, we choose n to be
sufficiently large. Then by the Pigeonhole Principle, there must be d+1 of y1, y2, . . . , yn which
are congruent mod p. Without loss of generality, assume yi ≡ yj (mod p) for 1 6 i, j 6 d+ 1.
We shall establish the following.

• Claim. Q(yi)
Q(y1)

=
ydi
yd1

for 2 6 i 6 d+ 1.

Proof. Let Q(yi)
Q(y1)

= ld

md where (l,m) = 1 and l,m > 0. This can be rewritten in the expanded
form

bd(m
dydi − ldyd1) = −

d−2∑
j=0

bj(m
dyji − ldy

j
1). (1)

Let c be the common denominator of Q, so that cQ(k) is an integer for any integer k.
Note that c depends only on P and so we may assume (p, c) = 1. Then y1 ≡ yi (mod p)
implies cQ(y1) ≡ cQ(yi) (mod p).

• Case 1. p|cQ(y1).

In this case, there is a cancellation of p in the numerator and denominator of cQ(yi)
cQ(y1)

, so

that md 6 p−1|cQ(y1)|. Noting |Q(y1)| < 2Byd1 as y1 is large, we get

m 6 p−
1
d (2cB)

1
dy1. (2)

For large y1 and yi, the relation 1
2
< Q(yi)

Q(y1)
< 2 implies

1

3
<
ydi
yd1

< 3. (3)

We also have
1

2
<

ld

md
< 2. (4)
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Now, the left-hand side of (1) is

bd(myi − ly1)(md−1yd−1i +md−2yd−2i ly1 + · · ·+ ld−1yd−11 ).

Suppose on the contrary that myi− ly1 6= 0. Then the absolute value of the above expression
is at least |bd|md−1yd−1i . On the other hand, the absolute value of the right-hand side of (1)
is at most

d−2∑
j=0

B(mdyji + ldyj1) 6 (d− 1)B(mdyd−2i + ldyd−21 )

6 (d− 1)B(7mdyd−2i )

6 7(d− 1)B(p−
1
d (2cB)

1
dy1)m

d−1yd−2i

6 21(d− 1)Bp−
1
d (2cB)

1
dmd−1yd−1i

by using successively (3), (4), (2) and again (3). This shows

|bd|md−1yd−1i 6 21(d− 1)Bp−
1
d (2cB)

1
dmd−1yd−1i ,

which is a contradiction for large p as bd, B, c, d depend only on the polynomial P . Therefore,
we have myi − ly1 = 0 in this case.

• Case 2. (p, cQ(y1)) = 1.
From cQ(y1) ≡ cQ(yi) (mod p), we have ld ≡ md (mod p). Since (p − 1, d) = 1, we

use Fermat Little Theorem to conclude l ≡ m (mod p). Then p|myi − ly1. Suppose on
the contrary that myi − ly1 6= 0. Then the left-hand side of (1) has absolute value at least
|bd|pmd−1yd−1i . Similar to Case 1, the right-hand side of (1) has absolute value at most

21(d− 1)B(2cB)
1
dmd−1yd−1i ,

which must be smaller than |bd|pmd−1yd−1i for large p. Again this yields a contradiction and
hence myi − ly1 = 0.

In both cases, we find that Q(yi)
Q(y1)

= ld

md =
ydi
yd1

.

From the Claim, the polynomial Q(y1)y
d − yd1Q(y) has roots y = y1, y2, . . . , yd+1. Since

its degree is at most d, this must be the zero polynomial. Hence, Q(y) = bdy
d. This implies

P (x) = ad(x+ ad−1

dad
)d. Let ad−1

dad
= s

r
with integers r, s where r > 1 and (r, s) = 1. Since P has

integer coefficients, we need rd|ad. Let ad = rda. Then P (x) = a(rx+ s)d. It is obvious that
such a polynomial satisfies the conditions.

Comment. In the proof, the use of prime and Dirichlet’s Theorem can be avoided. One can
easily show that each P (xi) can be expressed in the form uvdi where u, vi are integers and u
cannot be divisible by the d-th power of a prime (note that u depends only on P ). By fixing a
large integer q and by choosing a large n, we can apply the Pigeonhole Principle and assume
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x1 ≡ x2 ≡ · · · ≡ xd+1 (mod q) and v1 ≡ v2 ≡ · · · ≡ vd+1 (mod q). Then the remaining proof
is similar to Case 2 of the Solution.

Alternatively, we give another modification of the proof as follows.
We take a sufficiently large n and consider the corresponding positive integers y1, y2, . . . , yn.

For each 2 6 i 6 n, let Q(yi)
Q(y1)

=
ldi
md

i
.

As in Case 1, if there are d indices i such that the integers c|Q(y1)|
md

i
are bounded below by

a constant depending only on P , we can establish the Claim using those yi’s and complete
the proof. Similarly, as in Case 2, if there are d indices i such that the integers |miyi − liy1|
are bounded below, then the proof goes the same. So it suffices to consider the case where
c|Q(y1)|
md

i
6 M and |miyi − liy1| 6 N for all 2 6 i 6 n′ where M,N are fixed constants

and n′ is large. Since there are only finitely many choices for mi and miyi − liy1, by the
Pigeonhole Principle, we can assume without loss of generality mi = m and miyi − liy1 = t
for 2 6 i 6 d+ 2. Then

Q(yi)

Q(y1)
=

ldi
md

=
(myi − t)d

mdyd1

so that Q(y1)(my− t)d−mdyd1Q(y) has roots y = y2, y3, . . . , yd+2. Its degree is at most d and
hence it is the zero polynomial. Therefore, Q(y) = bd

md (my − t)d. Indeed, Q does not have
the term yd−1, which means t should be 0. This gives the corresponding P (x) of the desired
form.

The two modifications of the Solution work equally well when the degree d is even.
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Problems

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers suh that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

A2.

Let q be a real number. Gugu has a napkin with ten distint real numbers written

on it, and he writes the following three lines of real numbers on the blakboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two
(not neessarily distint) numbers on his napkin.

• In the seond line, Gugu writes down every number of the form qab, where a and b are
two (not neessarily distint) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where
a, b, c, d are four (not neessarily distint) numbers from the �rst line.

Determine all values of q suh that, regardless of the numbers on Gugu's napkin, every

number in the seond line is also a number in the third line.

(Austria)

A3.

Let S be a �nite set, and let A be the set of all funtions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g
for every g in A with g ‰ f . Show that fpT q “ T .

(India)

A4.

A sequene of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequene is bounded, i.e., there is a onstant M suh that |an| ď M for all

positive integers n.
(Russia)
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A5.

An integer n ě 3 is given. We all an n-tuple of real numbers px1, x2, . . . , xnq Shiny

if for eah permutation y1, y2, . . . , yn of these numbers we have

n´1
ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest onstant K “ Kpnq suh that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

A6.

Find all funtions f : R Ñ R suh that

fpfpxqfpyqq ` fpx ` yq “ fpxyq

for all x, y P R.
(Albania)

A7.

Let a0, a1, a2, . . . be a sequene of integers and b0, b1, b2, . . . be a sequene of positive

integers suh that a0 “ 0, a1 “ 1, and

an`1 “
#

anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.
(Australia)

A8.

Assume that a funtion f : R Ñ R satis�es the following ondition:

For every x, y P R suh that

`

fpxq `y
˘`

fpyq `x
˘

ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.
(Netherlands)
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Combinatoris

C1.

A retangleR with odd integer side lengths is divided into small retangles with integer

side lengths. Prove that there is at least one among the small retangles whose distanes from

the four sides of R are either all odd or all even.

(Singapore)

C2.

Let n be a positive integer. De�ne a hameleon to be any sequene of 3n letters, with

exatly n ourrenes of eah of the letters a, b, and c. De�ne a swap to be the transposition of

two adjaent letters in a hameleon. Prove that for any hameleonX , there exists a hameleon Y
suh that X annot be hanged to Y using fewer than 3n2{2 swaps.

(Australia)

C3.

Sir Alex plays the following game on a row of 9 ells. Initially, all ells are empty. In

eah move, Sir Alex is allowed to perform exatly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty ell.

(2) Choose two (not neessarily adjaent) ells with the same number in them; denote that

number by 2j. Replae the number in one of the ells with 2j`1
and erase the number in

the other ell.

At the end of the game, one ell ontains the number 2n, where n is a given positive integer,

while the other ells are empty. Determine the maximum number of moves that Sir Alex ould

have made, in terms of n.
(Thailand)

C4.

Let N ě 2 be an integer. NpN ` 1q soer players, no two of the same height, stand

in a row in some order. Coah Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

C5.

A hunter and an invisible rabbit play a game in the Eulidean plane. The hunter's

starting point H0 oinides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.
(1) First the invisible rabbit moves seretly and unobserved from its urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.
(2) The hunter has a traking devie (e.g. dog) that returns an approximate position R1

n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.
Is there a strategy for the hunter that guarantees that after 109 suh rounds the distane

between the hunter and the rabbit is below 100?
(Austria)
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n ube is omposed of n3
unit ubes. Eah

unit ube is painted with one olor. For eah n ˆ n ˆ 1 box onsisting of n2
unit ubes (of any

of the three possible orientations), we onsider the set of the olors present in that box (eah

olor is listed only one). This way, we get 3n sets of olors, split into three groups aording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of olors that are

present.

(Russia)

C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . q
looooooooooooooooooomooooooooooooooooooon

A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . q
looooooooooooooooooomooooooooooooooooooon

B appears a times

.

(U.S.A.)

C8.

Let n be a given positive integer. In the Cartesian plane, eah lattie point

with nonnegative oordinates initially ontains a butter�y, and there are no other butter-

�ies. The neighborhood of a lattie point c onsists of all lattie points within the axis-aligned

p2n` 1q ˆ p2n` 1q square entered at c, apart from c itself. We all a butter�y lonely, rowded,

or omfortable, depending on whether the number of butter�ies in its neighborhood N is re-

spetively less than, greater than, or equal to half of the number of lattie points in N .

Every minute, all lonely butter�ies �y away simultaneously. This proess goes on for as

long as there are any lonely butter�ies. Assuming that the proess eventually stops, determine

the number of omfortable butter�ies at the �nal state.

(Bulgaria)
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Geometry

G1.

Let ABCDE be a onvex pentagon suh that AB “ BC “ CD, =EAB “ =BCD,

and =EDC “ =CBA. Prove that the perpendiular line from E to BC and the line seg-

ments AC and BD are onurrent.

(Italy)

G2.

Let R and S be distint points on irle Ω, and let t denote the tangent line to Ω
at R. Point R1

is the re�etion of R with respet to S. A point I is hosen on the smaller ar

RS of Ω so that the irumirle Γ of triangle ISR1
intersets t at two di�erent points. Denote

by A the ommon point of Γ and t that is losest to R. Line AI meets Ω again at J . Show

that JR1
is tangent to Γ.

(Luxembourg)

G3.

Let O be the irumenter of an aute salene triangle ABC. Line OA intersets the

altitudes of ABC through B and C at P and Q, respetively. The altitudes meet at H . Prove

that the irumenter of triangle PQH lies on a median of triangle ABC.
(Ukraine)

G4.

In triangle ABC, let ω be the exirle opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respetively. The irle AEF intersets line BC
at P and Q. Let M be the midpoint of AD. Prove that the irle MPQ is tangent to ω.

(Denmark)

G5.

Let ABCC1B1A1 be a onvex hexagon suh that AB “ BC, and suppose that the

line segments AA1, BB1, and CC1 have the same perpendiular bisetor. Let the diagonals

AC1 and A1C meet at D, and denote by ω the irle ABC. Let ω interset the irle A1BC1

again at E ‰ B. Prove that the lines BB1 and DE interset on ω.
(Ukraine)

G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verties of A that lie inside B or on its boundary are onseutive.

(That is, prove that there exists a line separating those verties of A that lie inside B or on

its boundary from the other verties of A.)

(Czeh Republi)

G7.

A onvex quadrilateral ABCD has an insribed irle with enter I. Let Ia, Ib, Ic,
and Id be the inenters of the triangles DAB, ABC, BCD, and CDA, respetively. Suppose
that the ommon external tangents of the irles AIbId and CIbId meet at X , and the ommon

external tangents of the irles BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

G8.

There are 2017 mutually external irles drawn on a blakboard, suh that no two

are tangent and no three share a ommon tangent. A tangent segment is a line segment that

is a ommon tangent to two irles, starting at one tangent point and ending at the other one.

Luiano is drawing tangent segments on the blakboard, one at a time, so that no tangent

segment intersets any other irles or previously drawn tangent segments. Luiano keeps

drawing tangent segments until no more an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)
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Number Theory

N1.

The sequene a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whih there is at least one number a suh that an “ a for

in�nitely many values of n.
(South Afria)

N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in eah move, the urrent player hooses an index i in the set t0, 1, . . . , p´1u
that was not hosen before by either of the two players and then hooses an element ai of the
set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indies

i P t0, 1, . . . , p ´ 1u have been hosen. Then the following number is omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1
ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moroo)

N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n suh that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)
(Thailand)

N4.

Call a rational number short if it has �nitely many digits in its deimal expansion.

For a positive integer m, we say that a positive integer t is m-tasti if there exists a number

c P t1, 2, 3, . . . , 2017u suh that

10t ´ 1

c ¨ m is short, and suh that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

N5.

Find all pairs pp, qq of prime numbers with p ą q for whih the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)
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N6.

Find the smallest positive integer n, or show that no suh n exists, with the following

property: there are in�nitely many distint n-tuples of positive rational numbers pa1, a2, . . . , anq
suh that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

are integers.

(Singapore)

N7.

Say that an ordered pair px, yq of integers is an irreduible lattie point if x and

y are relatively prime. For any �nite set S of irreduible lattie points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer oe�ients, of degree at least 1,

suh that fpx, yq “ 1 for eah px, yq in the set S.
Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a funtion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1
ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)
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Solutions

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers suh that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

Solution 1. We �rst prove that, for x ą 0,

aipx ` 1q1{ai ď x ` ai, (1)

with equality if and only if ai “ 1. It is lear that equality ours if ai “ 1.
If ai ą 1, the AM�GM inequality applied to a single opy of x ` 1 and ai ´ 1 opies of 1

yields

px ` 1q `
ai´1 ones

hkkkkkkkikkkkkkkj

1 ` 1 ` ¨ ¨ ¨ ` 1

ai
ě ai

a

px ` 1q ¨ 1ai´1 ùñ aipx ` 1q1{ai ď x ` ai.

Sine x ` 1 ą 1, the inequality is strit for ai ą 1.
Multiplying the inequalities (1) for i “ 1, 2, . . . , n yields

n
ź

i“1

aipx ` 1q1{ai ď
n
ź

i“1

px ` aiq ðñ Mpx ` 1q
řn

i“1 1{ai ´
n
ź

i“1

px ` aiq ď 0 ðñ P pxq ď 0

with equality i� ai “ 1 for all i P t1, 2, . . . , nu. But this implies M “ 1, whih is not possible.

Hene P pxq ă 0 for all x P R`
, and P has no positive roots.

Comment 1. Inequality (1) an be obtained in several ways. For instane, we may also use the

binomial theorem: sine ai ě 1,

ˆ

1 ` x

ai

˙ai

“
ai
ÿ

j“0

ˆ

ai
j

˙ˆ

x

ai

˙j

ě
ˆ

ai
0

˙

`
ˆ

ai
1

˙

¨ x

ai
“ 1 ` x.

Both proofs of (1) mimi proofs to Bernoulli's inequality for a positive integer exponent ai; we an
use this inequality diretly:

ˆ

1 ` x

ai

˙ai

ě 1 ` ai ¨ x

ai
“ 1 ` x,

and so

x ` ai “ ai

ˆ

1 ` x

ai

˙

ě aip1 ` xq1{ai ,

or its (reversed) formulation, with exponent 1{ai ď 1:

p1 ` xq1{ai ď 1 ` 1

ai
¨ x “ x ` ai

ai
ùñ aip1 ` xq1{ai ď x ` ai.



Shortlisted problems � solutions 13

Solution 2. We will prove that, in fat, all oe�ients of the polynomial P pxq are non-positive,
and at least one of them is negative, whih implies that P pxq ă 0 for x ą 0.

Indeed, sine aj ě 1 for all j and aj ą 1 for some j (sine a1a2 . . . an “ M ą 1), we have

k “ 1
a1

` 1
a2

` ¨ ¨ ¨ ` 1
an

ă n, so the oe�ient of xn
in P pxq is ´1 ă 0. Moreover, the oe�ient

of xr
in P pxq is negative for k ă r ď n “ degpP q.

For 0 ď r ď k, the oe�ient of xr
in P pxq is

M ¨
ˆ

k

r

˙

´
ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
“ a1a2 ¨ ¨ ¨ an ¨

ˆ

k

r

˙

´
ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
,

whih is non-positive i�

ˆ

k

r

˙

ď
ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
. (2)

We will prove (2) by indution on r. For r “ 0 it is an equality beause the onstant term of

P pxq is P p0q “ 0, and if r “ 1, (2) beomes k “ řn
i“1

1
ai
. For r ą 1, if (2) is true for a given

r ă k, we have

ˆ

k

r ` 1

˙

“ k ´ r

r ` 1
¨
ˆ

k

r

˙

ď k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
,

and it su�es to prove that

k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
ď

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ ajrajr`1

,

whih is equivalent to

ˆ

1

a1
` 1

a2
`¨¨ ¨` 1

an
´r

˙

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ajr
ďpr`1q

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ajrajr`1

.

Sine there are r ` 1 ways to hoose a fration

1
aji

from

1
aj1aj2 ¨¨¨ajrajr`1

to fator out, every

term

1
aj1aj2 ¨¨¨ajrajr`1

in the right hand side appears exatly r ` 1 times in the produt

ˆ

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
.

Hene all terms in the right hand side anel out.

The remaining terms in the left hand side an be grouped in sums of the type

1

a2j1aj2 ¨ ¨ ¨ ajr
` 1

aj1a
2
j2

¨ ¨ ¨ ajr
` ¨ ¨ ¨ ` 1

aj1aj2 ¨ ¨ ¨ a2jr
´ r

aj1aj2 ¨ ¨ ¨ ajr

“ 1

aj1aj2 ¨ ¨ ¨ ajr

ˆ

1

aj1
` 1

aj2
` ¨ ¨ ¨ ` 1

ajr
´ r

˙

,

whih are all non-positive beause ai ě 1 ùñ 1
ai

ď 1, i “ 1, 2, . . . , n.

Comment 2. The result is valid for any real numbers ai, i “ 1, 2, . . . , n with ai ě 1 and produt M
greater than 1. A variation of Solution 1, namely using weighted AM�GM (or the Bernoulli inequality

for real exponents), atually proves that P pxq ă 0 for x ą ´1 and x ‰ 0.
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A2.

Let q be a real number. Gugu has a napkin with ten distint real numbers written on

it, and he writes the following three lines of real numbers on the blakboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two
(not neessarily distint) numbers on his napkin.

• In the seond line, Gugu writes down every number of the form qab, where a and b are
two (not neessarily distint) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where
a, b, c, d are four (not neessarily distint) numbers from the �rst line.

Determine all values of q suh that, regardless of the numbers on Gugu's napkin, every

number in the seond line is also a number in the third line.

(Austria)

Answer: ´2, 0, 2.

Solution 1. Call a number q good if every number in the seond line appears in the third line

unonditionally. We �rst show that the numbers 0 and ˘2 are good. The third line neessarily

ontains 0, so 0 is good. For any two numbers a, b in the �rst line, write a “ x´y and b “ u´v,
where x, y, u, v are (not neessarily distint) numbers on the napkin. We may now write

2ab “ 2px ´ yqpu ´ vq “ px ´ vq2 ` py ´ uq2 ´ px ´ uq2 ´ py ´ vq2,

whih shows that 2 is good. By negating both sides of the above equation, we also see that ´2
is good.

We now show that ´2, 0, and 2 are the only good numbers. Assume for sake of ontradition

that q is a good number, where q R t´2, 0, 2u. We now onsider some partiular hoies of

numbers on Gugu's napkin to arrive at a ontradition.

Assume that the napkin ontains the integers 1, 2, . . . , 10. Then, the �rst line ontains

the integers ´9,´8, . . . , 9. The seond line then ontains q and 81q, so the third line must

also ontain both of them. But the third line only ontains integers, so q must be an integer.

Furthermore, the third line ontains no number greater than 162 “ 92 ` 92 ´ 02 ´ 02 or less

than ´162, so we must have ´162 ď 81q ď 162. This shows that the only possibilities for q
are ˘1.

Now assume that q “ ˘1. Let the napkin ontain 0, 1, 4, 8, 12, 16, 20, 24, 28, 32. The �rst

line ontains ˘1 and ˘4, so the seond line ontains ˘4. However, for every number a in the

�rst line, a ı 2 pmod 4q, so we may onlude that a2 ” 0, 1 pmod 8q. Consequently, every

number in the third line must be ongruent to ´2,´1, 0, 1, 2 pmod 8q; in partiular, ˘4 annot
be in the third line, whih is a ontradition.

Solution 2. Let q be a good number, as de�ned in the �rst solution, and de�ne the polynomial

P px1, . . . , x10q as
ź

iăj

pxi ´ xjq
ź

aiPS

`

qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2
˘

,

where S “ tx1, . . . , x10u.
We laim that P px1, . . . , x10q “ 0 for every hoie of real numbers px1, . . . , x10q. If any two

of the xi are equal, then P px1, . . . , x10q “ 0 trivially. If no two are equal, assume that Gugu

has those ten numbers x1, . . . , x10 on his napkin. Then, the number qpx1 ´ x2qpx3 ´ x4q is in

the seond line, so we must have some a1, . . . , a8 so that

qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 “ 0,



Shortlisted problems � solutions 15

and hene P px1, . . . , x10q “ 0.
Sine every polynomial that evaluates to zero everywhere is the zero polynomial, and the

produt of two nonzero polynomials is neessarily nonzero, we may de�ne F suh that

F px1, . . . , x10q ” qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 ” 0 (1)

for some partiular hoie ai P S.
Eah of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to at most one of the four

sets tx1, x3u, tx2, x3u, tx1, x4u, and tx2, x4u. Thus, without loss of generality, we may assume

that at most one of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to tx1, x3u. Let

u1, u3, u5, u7 be the indiator funtions for this equality of sets: that is, ui “ 1 if and only if

tai, ai`1u “ tx1, x3u. By assumption, at least three of the ui are equal to 0.

We now ompute the oe�ient of x1x3 in F . It is equal to q ` 2pu1 ` u3 ´ u5 ´ u7q “ 0,
and sine at least three of the ui are zero, we must have that q P t´2, 0, 2u, as desired.
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A3.

Let S be a �nite set, and let A be the set of all funtions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g
for every g in A with g ‰ f . Show that fpT q “ T .

(India)

Solution. For n ě 1, denote the n-th omposition of f with itself by

fn def“ f ˝ f ˝ ¨ ¨ ¨ ˝ f
looooooomooooooon

n times

.

By hypothesis, if g P A satis�es f ˝ g ˝ f “ g ˝ f ˝ g, then g “ f . A natural idea is to try to

plug in g “ fn
for some n in the expression f ˝ g ˝ f “ g ˝ f ˝ g in order to get fn “ f , whih

solves the problem:

Claim. If there exists n ě 3 suh that fn`2 “ f 2n`1
, then the restrition f : T Ñ T of f to T

is a bijetion.

Proof. Indeed, by hypothesis, fn`2 “ f 2n`1 ðñ f ˝ fn ˝ f “ fn ˝ f ˝ fn ùñ fn “ f .
Sine n ´ 2 ě 1, the image of fn´2

is ontained in T “ fpSq, hene fn´2
restrits to a funtion

fn´2 : T Ñ T . This is the inverse of f : T Ñ T . In fat, given t P T , say t “ fpsq with s P S,
we have

t “ fpsq “ fnpsq “ fn´2pfptqq “ fpfn´2ptqq, i.e., fn´2 ˝ f “ f ˝ fn´2 “ id on T

(here id stands for the identity funtion). Hene, the restrition f : T Ñ T of f to T is bijetive

with inverse given by fn´2 : T Ñ T . l

It remains to show that n as in the laim exists. For that, de�ne

Sm
def“ fmpSq pSm is image of fmq

Clearly the image of fm`1
is ontained in the image of fm

, i.e., there is a desending hain of

subsets of S
S Ě S1 Ě S2 Ě S3 Ě S4 Ě ¨ ¨ ¨ ,

whih must eventually stabilise sine S is �nite, i.e., there is a k ě 1 suh that

Sk “ Sk`1 “ Sk`2 “ Sk`3 “ ¨ ¨ ¨ def“ S8.

Hene f restrits to a surjetive funtion f : S8 Ñ S8, whih is also bijetive sine S8 Ď S is

�nite. To sum up, f : S8 Ñ S8 is a permutation of the elements of the �nite set S8, hene

there exists an integer r ě 1 suh that f r “ id on S8 (for example, we may hoose r “ |S8|!).
In other words,

fm`r “ fm
on S for all m ě k. p˚q

Clearly, p˚q also implies that fm`tr “ fm
for all integers t ě 1 and m ě k. So, to �nd n as in

the laim and �nish the problem, it is enough to hoose m and t in order to ensure that there

exists n ě 3 satisfying

#

2n ` 1 “ m ` tr

n ` 2 “ m
ðñ

#

m “ 3 ` tr

n “ m ´ 2.

This an be learly done by hoosing m large enough with m ” 3 pmod rq. For instane, we

may take n “ 2kr ` 1, so that

fn`2 “ f 2kr`3 “ f 4kr`3 “ f 2n`1

where the middle equality follows by p˚q sine 2kr ` 3 ě k.
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A4.

A sequene of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequene is bounded, i.e., there is a onstant M suh that |an| ď M for all

positive integers n.
(Russia)

Solution 1. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequenes pmnq and pMnq are nondereasing. We need to prove that both are

bounded.

Consider an arbitrary n ą D; our �rst aim is to bound an in terms of mn and Mn.

(i) There exist indies p and q suh that an “ ´pap ` aqq and p ` q “ n. Sine ap, aq ď Mn, we

have an ě ´2Mn.

(ii) On the other hand, hoose an index k ă n suh that ak “ Mn. Then, we have

an “ ´max
ℓăn

pan´ℓ ` aℓq ď ´pan´k ` akq “ ´an´k ´ Mn ď mn ´ Mn.

Summarizing (i) and (ii), we get

´2Mn ď an ď mn ´ Mn,

whene

mn ď mn`1 ď maxtmn, 2Mnu and Mn ď Mn`1 ď maxtMn, mn ´ Mnu. (1)

Now, say that an index n ą D is luky if mn ď 2Mn. Two ases are possible.

Case 1. Assume that there exists a luky index n. In this ase, (1) yields mn`1 ď 2Mn and

Mn ď Mn`1 ď Mn. Therefore, Mn`1 “ Mn and mn`1 ď 2Mn “ 2Mn`1. So, the index n ` 1
is also luky, and Mn`1 “ Mn. Applying the same arguments repeatedly, we obtain that all

indies k ą n are luky (i.e., mk ď 2Mk for all these indies), and Mk “ Mn for all suh indies.

Thus, all of the mk and Mk are bounded by 2Mn.

Case 2. Assume now that there is no luky index, i.e., 2Mn ă mn for all n ą D. Then (1)

shows that for all n ą D we have mn ď mn`1 ď mn, so mn “ mD`1 for all n ą D. Sine

Mn ă mn{2 for all suh indies, all of the mn and Mn are bounded by mD`1.

Thus, in both ases the sequenes pmnq and pMnq are bounded, as desired.

Solution 2. As in the previous solution, let D “ 2017. If the sequene is bounded above, say,

by Q, then we have that an ě minta1, . . . , aD,´2Qu for all n, so the sequene is bounded. As-

sume for sake of ontradition that the sequene is not bounded above. Let ℓ “ minta1, . . . , aDu,
and L “ maxta1, . . . , aDu. Call an index n good if the following riteria hold:

an ą ai for eah i ă n, an ą ´2ℓ, and n ą D (2)

We �rst show that there must be some good index n. By assumption, we may take an

index N suh that aN ą maxtL,´2ℓu. Choose n minimally suh that an “ maxta1, a2, . . . , aNu.
Now, the �rst ondition in (2) is satis�ed beause of the minimality of n, and the seond and

third onditions are satis�ed beause an ě aN ą L,´2ℓ, and L ě ai for every i suh that

1 ď i ď D.
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Let n be a good index. We derive a ontradition. We have that

an ` au ` av ď 0, (3)

whenever u ` v “ n.
We de�ne the index u to maximize au over 1 ď u ď n´ 1, and let v “ n´u. Then, we note

that au ě av by the maximality of au.
Assume �rst that v ď D. Then, we have that

aN ` 2ℓ ď 0,

beause au ě av ě ℓ. But this ontradits our assumption that an ą ´2ℓ in the seond riteria

of (2).

Now assume that v ą D. Then, there exist some indies w1, w2 summing up to v suh that

av ` aw1 ` aw2 “ 0.

But ombining this with (3), we have

an ` au ď aw1 ` aw2.

Beause an ą au, we have that maxtaw1 , aw2u ą au. But sine eah of the wi is less than v, this
ontradits the maximality of au.

Comment 1. We present two harder versions of this problem below.

Version 1. Let a1, a2, . . . be a sequene of numbers that satis�es the relation

an “ ´ max
i`j`k“n

pai ` aj ` akq for all n ą 2017.

Then, this sequene is bounded.

Proof. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequenes pmnq and pMnq are nondereasing. We need to prove that both are bounded.

Consider an arbitrary n ą 2D; our �rst aim is to bound an in terms of mi and Mi. Set k “ tn{2u.

(i) Choose indies p, q, and r suh that an “ ´pap ` aq ` arq and p ` q ` r “ n. Without loss of

generality, p ě q ě r.
Assume that p ě k ` 1pą Dq; then p ą q ` r. Hene

´ap “ max
i1`i2`i3“p

pai1 ` ai2 ` ai3q ě aq ` ar ` ap´q´r,

and therefore an “ ´pap ` aq ` arq ě paq ` ar ` ap´q´rq ´ aq ´ ar “ ap´q´r ě ´mn.

Otherwise, we have k ě p ě q ě r. Sine n ă 3k, we have r ă k. Then ap, aq ď Mk`1 and

ar ď Mk, whene an ě ´2Mk`1 ´ Mk.

Thus, in any ase an ě ´maxtmn, 2Mk`1 ` Mku.
(ii) On the other hand, hoose p ď k and q ď k´1 suh that ap “ Mk`1 and aq “ Mk. Then p`q ă n,
so an ď ´pap ` aq ` an´p´qq “ ´an´p´q ´ Mk`1 ´ Mk ď mn ´ Mk`1 ´ Mk.

To summarize,

´maxtmn, 2Mk`1 ` Mku ď an ď mn ´ Mk`1 ´ Mk,

whene

mn ď mn`1 ď maxtmn, 2Mk`1 ` Mku and Mn ď Mn`1 ď maxtMn,mn ´ Mk`1 ´ Mku. (4)
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Now, say that an index n ą 2D is luky if mn ď 2Mtn{2u`1 ` Mtn{2u. Two ases are possible.

Case 1. Assume that there exists a luky index n; set k “ tn{2u. In this ase, (4) yields mn`1 ď
2Mk`1 ` Mk and Mn ď Mn`1 ď Mn (the last relation holds, sine mn ´ Mk`1 ´ Mk ď p2Mk`1 `
Mkq ´Mk`1 ´Mk “ Mk`1 ď Mn). Therefore, Mn`1 “ Mn and mn`1 ď 2Mk`1 `Mk; the last relation

shows that the index n ` 1 is also luky.

Thus, all indies N ą n are luky, and MN “ Mn ě mN{3, whene all the mN and MN are

bounded by 3Mn.

Case 2. Conversely, assume that there is no luky index, i.e., 2Mtn{2u`1 `Mtn{2u ă mn for all n ą 2D.

Then (4) shows that for all n ą 2D we have mn ď mn`1 ď mn, i.e., mN “ m2D`1 for all N ą 2D.

Sine MN ă m2N`1{3 for all suh indies, all the mN and MN are bounded by m2D`1.

Thus, in both ases the sequenes pmnq and pMnq are bounded, as desired. l

Version 2. Let a1, a2, . . . be a sequene of numbers that satis�es the relation

an “ ´ max
i1`¨¨¨`ik“n

pai1 ` ¨ ¨ ¨ ` aikq for all n ą 2017.

Then, this sequene is bounded.

Proof. As in the solutions above, let D “ 2017. If the sequene is bounded above, say, by Q, then we

have that an ě minta1, . . . , aD,´kQu for all n, so the sequene is bounded. Assume for sake of ontra-

dition that the sequene is not bounded above. Let ℓ “ minta1, . . . , aDu, and L “ maxta1, . . . , aDu.
Call an index n good if the following riteria hold:

an ą ai for eah i ă n, an ą ´kℓ, and n ą D (5)

We �rst show that there must be some good index n. By assumption, we may take an index N
suh that aN ą maxtL,´kℓu. Choose n minimally suh that an “ maxta1, a2, . . . , aNu. Now, the �rst
ondition is satis�ed beause of the minimality of n, and the seond and third onditions are satis�ed

beause an ě aN ą L,´kℓ, and L ě ai for every i suh that 1 ď i ď D.

Let n be a good index. We derive a ontradition. We have that

an ` av1 ` ¨ ¨ ¨ ` avk ď 0, (6)

whenever v1 ` ¨ ¨ ¨ ` vk “ n.
We de�ne the sequene of indies v1, . . . , vk´1 to greedily maximize av1 , then av2 , and so forth,

seleting only from indies suh that the equation v1 ` ¨ ¨ ¨ `vk “ n an be satis�ed by positive integers

v1, . . . , vk. More formally, we de�ne them indutively so that the following riteria are satis�ed by

the vi:

1. 1 ď vi ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
2. avi is maximal among all hoies of vi from the �rst riteria.

First of all, we note that for eah i, the �rst riteria is always satis�able by some vi, beause we
are guaranteed that

vi´1 ď n ´ pk ´ pi ´ 1qq ´ pv1 ` ¨ ¨ ¨ ` vi´2q,
whih implies

1 ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
Seondly, the sum v1 ` ¨ ¨ ¨ ` vk´1 is at most n ´ 1. De�ne vk “ n ´ pv1 ` ¨ ¨ ¨ ` vk´1q. Then, (6)

is satis�ed by the vi. We also note that avi ě avj for all i ă j; otherwise, in the de�nition of vi, we
ould have seleted vj instead.

Assume �rst that vk ď D. Then, from (6), we have that

an ` kℓ ď 0,

by using that av1 ě ¨ ¨ ¨ ě avk ě ℓ. But this ontradits our assumption that an ą ´kℓ in the seond

riteria of (5).
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Now assume that vk ą D, and then we must have some indies w1, . . . , wk summing up to vk suh

that

avk ` aw1 ` ¨ ¨ ¨ ` awk
“ 0.

But ombining this with (6), we have

an ` av1 ` ¨ ¨ ¨ ` avk´1
ď aw1 ` ¨ ¨ ¨ ` awk

.

Beause an ą av1 ě ¨ ¨ ¨ ě avk´1
, we have that maxtaw1 , . . . , awk

u ą avk´1
. But sine eah of the wi

is less than vk, in the de�nition of the vk´1 we ould have hosen one of the wi instead, whih is a

ontradition. l

Comment 2. It seems that eah sequene satisfying the ondition in Version 2 is eventually periodi,

at least when its terms are integers.

However, up to this moment, the Problem Seletion Committee is not aware of a proof for this fat

(even in the ase k “ 2).
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A5.

An integer n ě 3 is given. We all an n-tuple of real numbers px1, x2, . . . , xnq Shiny if

for eah permutation y1, y2, . . . , yn of these numbers we have

n´1
ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest onstant K “ Kpnq suh that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

Answer: K “ ´pn ´ 1q{2.
Solution 1. First of all, we show that we may not take a larger onstant K. Let t be a positive
number, and take x2 “ x3 “ ¨ ¨ ¨ “ t and x1 “ ´1{p2tq. Then, every produt xixj (i ‰ j) is
equal to either t2 or ´1{2. Hene, for every permutation yi of the xi, we have

y1y2 ` ¨ ¨ ¨ ` yn´1yn ě pn ´ 3qt2 ´ 1 ě ´1.

This justi�es that the n-tuple px1, . . . , xnq is Shiny. Now, we have
ÿ

iăj

xixj “ ´n ´ 1

2
` pn ´ 1qpn ´ 2q

2
t2.

Thus, as t approahes 0 from above,

ř

iăj xixj gets arbitrarily lose to ´pn ´ 1q{2. This shows
that we may not take K any larger than ´pn ´ 1q{2. It remains to show that

ř

iăj xixj ě
´pn ´ 1q{2 for any Shiny hoie of the xi.

From now onward, assume that px1, . . . , xnq is a Shiny n-tuple. Let the zi (1 ď i ď n) be
some permutation of the xi to be hosen later. The indies for zi will always be taken modulo n.
We will �rst split up the sum

ř

iăj xixj “ ř

iăj zizj into tpn ´ 1q{2u expressions, eah of the

form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi, and some leftover terms. More

spei�ally, write

ÿ

iăj

zizj “
n´1
ÿ

q“0

ÿ

i`j”q pmod nq
iıj pmod nq

zizj “
tn´1

2
u

ÿ

p“1

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj ` L, (1)

where L “ z1z´1 ` z2z´2 ` ¨ ¨ ¨ ` zpn´1q{2z´pn´1q{2 if n is odd, and L “ z1z´1 ` z1z´2 ` z2z´2 `
¨ ¨ ¨ ` zpn´2q{2z´n{2 if n is even. We note that for eah p “ 1, 2, . . . , tpn ´ 1q{2u, there is some

permutation yi of the zi suh that

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj “
n´1
ÿ

k“1

ykyk`1,

beause we may hoose y2i´1 “ zi`p´1 for 1 ď i ď pn ` 1q{2 and y2i “ zp´i for 1 ď i ď n{2.
We show (1) graphially for n “ 6, 7 in the diagrams below. The edges of the graphs eah

represent a produt zizj, and the dashed and dotted series of lines represents the sum of the

edges, whih is of the form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi preisely when

the series of lines is a Hamiltonian path. The �lled edges represent the summands of L.



22 IMO 2017, Rio de Janeiro

Now, beause the zi are Shiny, we have that (1) yields the following bound:

ÿ

iăj

zizj ě ´
Z

n ´ 1

2

^

` L.

It remains to show that, for eah n, there exists some permutation zi of the xi suh that L ě 0
when n is odd, and L ě ´1{2 when n is even. We now split into ases based on the parity of n
and provide onstrutions of the permutations zi.

Sine we have not made any assumptions yet about the xi, we may now assume without

loss of generality that

x1 ď x2 ď ¨ ¨ ¨ ď xk ď 0 ď xk`1 ď ¨ ¨ ¨ ď xn. (2)

Case 1: n is odd.

Without loss of generality, assume that k (from (2)) is even, beause we may negate all

the xi if k is odd. We then have x1x2, x3x4, . . . , xn´2xn´1 ě 0 beause the fators are of the

same sign. Let L “ x1x2 ` x3x4 ` ¨ ¨ ¨ ` xn´2xn´1 ě 0. We hoose our zi so that this de�nition

of L agrees with the sum of the leftover terms in (1). Relabel the xi as zi suh that

tz1, zn´1u, tz2, zn´2u, . . . , tzpn´1q{2, zpn`1q{2u

are some permutation of

tx1, x2u, tx3, x4u, . . . , txn´2, xn´1u,
and zn “ xn. Then, we have L “ z1zn´1 ` ¨ ¨ ¨ ` zpn´1q{2zpn`1q{2, as desired.

Case 2: n is even.

Let L “ x1x2 `x2x3 ` ¨ ¨ ¨ `xn´1xn. Assume without loss of generality k ‰ 1. Now, we have

2L “ px1x2 ` ¨ ¨ ¨ ` xn´1xnq ` px1x2 ` ¨ ¨ ¨ ` xn´1xnq ě px2x3 ` ¨ ¨ ¨ ` xn´1xnq ` xkxk`1

ě x2x3 ` ¨ ¨ ¨ ` xn´1xn ` xnx1 ě ´1,

where the �rst inequality holds beause the only negative term in L is xkxk`1, the seond

inequality holds beause x1 ď xk ď 0 ď xk`1 ď xn, and the third inequality holds beause

the xi are assumed to be Shiny. We thus have that L ě ´1{2. We now hoose a suitable zi
suh that the de�nition of L mathes the leftover terms in (1).



Shortlisted problems � solutions 23

Relabel the xi with zi in the following manner: x2i´1 “ z´i, x2i “ zi (again taking indies

modulo n). We have that

L “
ÿ

i`j”0,´1 pmod nq
iıj pmod nq

zizj ,

as desired.

Solution 2. We present another proof that

ř

iăj xixj ě ´pn ´ 1q{2 for any Shiny n-tuple
px1, . . . , xnq. Assume an ordering of the xi as in (2), and let ℓ “ n ´ k. Assume without loss

of generality that k ě ℓ. Also assume k ‰ n, (as otherwise, all of the xi are nonpositive, and

so the inequality is trivial). De�ne the sets of indies S “ t1, 2, . . . , ku and T “ tk ` 1, . . . , nu.
De�ne the following sums:

K “
ÿ

iăj
i,jPS

xixj , M “
ÿ

iPS
jPT

xixj , and L “
ÿ

iăj
i,jPT

xixj

By de�nition, K,L ě 0 and M ď 0. We aim to show that K ` L ` M ě ´pn ´ 1q{2.
We split into ases based on whether k “ ℓ or k ą ℓ.

Case 1: k ą ℓ.

Consider all permutations φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu suh that φ´1pT q “ t2, 4, . . . , 2ℓu.
Note that there are k!ℓ! suh permutations φ. De�ne

fpφq “
n´1
ÿ

i“1

xφpiqxφpi`1q.

We know that fpφq ě ´1 for every permutation φ with the above property. Averaging fpφq
over all φ gives

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ

kℓ
M ` 2pk ´ ℓ ´ 1q

kpk ´ 1q K,

where the equality holds beause there are kℓ produts inM , of whih 2ℓ are seleted for eah φ,
and there are kpk ´ 1q{2 produts in K, of whih k ´ ℓ ´ 1 are seleted for eah φ. We now

have

K ` L ` M ě K ` L `
ˆ

´k

2
´ k ´ ℓ ´ 1

k ´ 1
K

˙

“ ´k

2
` ℓ

k ´ 1
K ` L.

Sine k ď n ´ 1 and K,L ě 0, we get the desired inequality.

Case 2: k “ ℓ “ n{2.
We do a similar approah, onsidering all φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu suh that φ´1pT q “

t2, 4, . . . , 2ℓu, and de�ning f the same way. Analogously to Case 1, we have

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ ´ 1

kℓ
M,

beause there are kℓ produts in M , of whih 2ℓ´ 1 are seleted for eah φ. Now, we have that

K ` L ` M ě M ě ´ n2

4pn ´ 1q ě ´n ´ 1

2
,

where the last inequality holds beause n ě 4.
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A6.

Find all funtions f : R Ñ R suh that

fpfpxqfpyqq ` fpx ` yq “ fpxyq p˚q

for all x, y P R.
(Albania)

Answer: There are 3 solutions:

x ÞÑ 0 or x ÞÑ x ´ 1 or x ÞÑ 1 ´ x px P Rq.

Solution. An easy hek shows that all the 3 above mentioned funtions indeed satisfy the

original equation p˚q.
In order to show that these are the only solutions, �rst observe that if fpxq is a solution

then ´fpxq is also a solution. Hene, without loss of generality we may (and will) assume that

fp0q ď 0 from now on. We have to show that either f is identially zero or fpxq “ x ´ 1
(@x P R).

Observe that, for a �xed x ‰ 1, we may hoose y P R so that x ` y “ xy ðñ y “ x
x´1

,

and therefore from the original equation p˚q we have

f
´

fpxq ¨ f
´ x

x ´ 1

¯¯

“ 0 px ‰ 1q. (1)

In partiular, plugging in x “ 0 in (1), we onlude that f has at least one zero, namely pfp0qq2:

f
`

pfp0qq2
˘

“ 0. (2)

We analyze two ases (reall that fp0q ď 0):

Case 1: fp0q “ 0.

Setting y “ 0 in the original equation we get the identially zero solution:

fpfpxqfp0qq ` fpxq “ fp0q ùñ fpxq “ 0 for all x P R.

From now on, we work on the main

Case 2: fp0q ă 0.

We begin with the following

Claim 1.

fp1q “ 0, fpaq “ 0 ùñ a “ 1, and fp0q “ ´1. (3)

Proof. We need to show that 1 is the unique zero of f . First, observe that f has at least one

zero a by (2); if a ‰ 1 then setting x “ a in (1) we get fp0q “ 0, a ontradition. Hene

from (2) we get pfp0qq2 “ 1. Sine we are assuming fp0q ă 0, we onlude that fp0q “ ´1. l

Setting y “ 1 in the original equation p˚q we get

fpfpxqfp1qq`fpx`1q “ fpxq ðñ fp0q`fpx`1q “ fpxq ðñ fpx`1q “ fpxq`1 px P Rq.

An easy indution shows that

fpx ` nq “ fpxq ` n px P R, n P Zq. (4)
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Now we make the following

Claim 2. f is injetive.

Proof. Suppose that fpaq “ fpbq with a ‰ b. Then by (4), for all N P Z,

fpa ` N ` 1q “ fpb ` Nq ` 1.

Choose any integer N ă ´b; then there exist x0, y0 P R with x0 `y0 “ a`N `1, x0y0 “ b`N .

Sine a ‰ b, we have x0 ‰ 1 and y0 ‰ 1. Plugging in x0 and y0 in the original equation p˚q we
get

fpfpx0qfpy0qq ` fpa ` N ` 1q “ fpb ` Nq ðñ fpfpx0qfpy0qq ` 1 “ 0

ðñ fpfpx0qfpy0q ` 1q “ 0 by (4)

ðñ fpx0qfpy0q “ 0 by (3).

However, by Claim 1 we have fpx0q ‰ 0 and fpy0q ‰ 0 sine x0 ‰ 1 and y0 ‰ 1, a ontradition.
l

Now the end is near. For any t P R, plug in px, yq “ pt,´tq in the original equation p˚q to
get

fpfptqfp´tqq ` fp0q “ fp´t2q ðñ fpfptqfp´tqq “ fp´t2q ` 1 by (3)

ðñ fpfptqfp´tqq “ fp´t2 ` 1q by (4)

ðñ fptqfp´tq “ ´t2 ` 1 by injetivity of f.

Similarly, plugging in px, yq “ pt, 1 ´ tq in p˚q we get

fpfptqfp1 ´ tqq ` fp1q “ fptp1 ´ tqq ðñ fpfptqfp1 ´ tqq “ fptp1 ´ tqq by (3)

ðñ fptqfp1 ´ tq “ tp1 ´ tq by injetivity of f.

But sine fp1 ´ tq “ 1 ` fp´tq by (4), we get

fptqfp1 ´ tq “ tp1 ´ tq ðñ fptqp1 ` fp´tqq “ tp1 ´ tq ðñ fptq ` p´t2 ` 1q “ tp1 ´ tq
ðñ fptq “ t ´ 1,

as desired.

Comment. Other approahes are possible. For instane, after Claim 1, we may de�ne

gpxq def“ fpxq ` 1.

Replaing x ` 1 and y ` 1 in plae of x and y in the original equation p˚q, we get

fpfpx ` 1qfpy ` 1qq ` fpx ` y ` 2q “ fpxy ` x ` y ` 1q px, y P Rq,

and therefore, using (4) (so that in partiular gpxq “ fpx ` 1q), we may rewrite p˚q as

gpgpxqgpyqq ` gpx ` yq “ gpxy ` x ` yq px, y P Rq. p˚˚q

We are now to show that gpxq “ x for all x P R under the assumption (Claim 1) that 0 is the unique

zero of g.

Claim 3. Let n P Z and x P R. Then

(a) gpx ` nq “ x ` n, and the onditions gpxq “ n and x “ n are equivalent.

(b) gpnxq “ ngpxq.
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Proof. For part (a), just note that gpx`nq “ x`n is just a reformulation of (4). Then gpxq “ n ðñ
gpx ´ nq “ 0 ðñ x ´ n “ 0 sine 0 is the unique zero of g. For part (b), we may assume that x ‰ 0
sine the result is obvious when x “ 0. Plug in y “ n{x in p˚˚q and use part (a) to get

g
´

gpxqg
´n

x

¯¯

` g
´

x ` n

x

¯

“ g
´

n ` x ` n

x

¯

ðñ g
´

gpxqg
´n

x

¯¯

“ n ðñ gpxqg
´n

x

¯

“ n.

In other words, for x ‰ 0 we have

gpxq “ n

g
`

n{x
˘ .

In partiular, for n “ 1, we get gp1{xq “ 1{gpxq, and therefore replaing x Ð nx in the last equation

we �nally get

gpnxq “ n

g
`

1{x
˘ “ ngpxq,

as required.

Claim 4. The funtion g is additive, i.e., gpa ` bq “ gpaq ` gpbq for all a, b P R.

Proof. Set x Ð ´x and y Ð ´y in p˚˚q; sine g is an odd funtion (by Claim 3(b) with n “ ´1), we
get

gpgpxqgpyqq ´ gpx ` yq “ ´gp´xy ` x ` yq.
Subtrating the last relation from p˚˚q we have

2gpx ` yq “ gpxy ` x ` yq ` gp´xy ` x ` yq

and sine by Claim 3(b) we have 2gpx ` yq “ gp2px ` yqq, we may rewrite the last equation as

gpα ` βq “ gpαq ` gpβq where

#

α “ xy ` x ` y

β “ ´xy ` x ` y.

In other words, we have additivity for all α, β P R for whih there are real numbers x and y satisfying

x ` y “ α ` β

2
and xy “ α ´ β

2
,

i.e., for all α, β P R suh that pα`β
2 q2 ´4 ¨ α´β

2 ě 0. Therefore, given any a, b P R, we may hoose n P Z
large enough so that we have additivity for α “ na and β “ nb, i.e.,

gpnaq ` gpnbq “ gpna ` nbq ðñ ngpaq ` ngpbq “ ngpa ` bq

by Claim 3(b). Canelling n, we get the desired result. (Alternatively, setting either pα, βq “ pa, bq or
pα, βq “ p´a,´bq will ensure that pα`β

2 q2 ´ 4 ¨ α´β
2 ě 0). l

Now we may �nish the solution. Set y “ 1 in p˚˚q, and use Claim 3 to get

gpgpxqgp1qq ` gpx ` 1q “ gp2x ` 1q ðñ gpgpxqq ` gpxq ` 1 “ 2gpxq ` 1 ðñ gpgpxqq “ gpxq.

By additivity, this is equivalent to gpgpxq ´ xq “ 0. Sine 0 is the unique zero of g by assumption, we

�nally get gpxq ´ x “ 0 ðñ gpxq “ x for all x P R.
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A7.

Let a0, a1, a2, . . . be a sequene of integers and b0, b1, b2, . . . be a sequene of positive

integers suh that a0 “ 0, a1 “ 1, and

an`1 “
#

anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.
(Australia)

Solution 1. The value of b0 is irrelevant sine a0 “ 0, so we may assume that b0 “ 1.

Lemma. We have an ě 1 for all n ě 1.

Proof. Let us suppose otherwise in order to obtain a ontradition. Let

n ě 1 be the smallest integer with an ď 0. (1)

Note that n ě 2. It follows that an´1 ě 1 and an´2 ě 0. Thus we annot have an “
an´1bn´1 ` an´2, so we must have an “ an´1bn´1 ´ an´2. Sine an ď 0, we have an´1 ď an´2.

Thus we have an´2 ě an´1 ě an.
Let

r be the smallest index with ar ě ar`1 ě ar`2. (2)

Then r ď n´2 by the above, but also r ě 2: if b1 “ 1, then a2 “ a1 “ 1 and a3 “ a2b2`a1 ą a2;
if b1 ą 1, then a2 “ b1 ą 1 “ a1.

By the minimal hoie (2) of r, it follows that ar´1 ă ar. And sine 2 ď r ď n ´ 2, by the

minimal hoie (1) of n we have ar´1, ar, ar`1 ą 0. In order to have ar`1 ě ar`2, we must have

ar`2 “ ar`1br`1 ´ ar so that br ě 2. Putting everything together, we onlude that

ar`1 “ arbr ˘ ar´1 ě 2ar ´ ar´1 “ ar ` par ´ ar´1q ą ar,

whih ontradits (2). l

To omplete the problem, we prove that maxtan, an`1u ě n by indution. The ases n “ 0, 1
are given. Assume it is true for all non-negative integers stritly less than n, where n ě 2. There
are two ases:

Case 1: bn´1 “ 1.

Then an`1 “ anbn ` an´1. By the indutive assumption one of an´1, an is at least n´ 1 and

the other, by the lemma, is at least 1. Hene

an`1 “ anbn ` an´1 ě an ` an´1 ě pn ´ 1q ` 1 “ n.

Thus maxtan, an`1u ě n, as desired.

Case 2: bn´1 ą 1.

Sine we de�ned b0 “ 1 there is an index r with 1 ď r ď n ´ 1 suh that

bn´1, bn´2, . . . , br ě 2 and br´1 “ 1.

We have ar`1 “ arbr ` ar´1 ě 2ar ` ar´1. Thus ar`1 ´ ar ě ar ` ar´1.

Now we laim that ar ` ar´1 ě r. Indeed, this holds by inspetion for r “ 1; for r ě 2, one
of ar, ar´1 is at least r ´ 1 by the indutive assumption, while the other, by the lemma, is at

least 1. Hene ar ` ar´1 ě r, as laimed, and therefore ar`1 ´ ar ě r by the last inequality in

the previous paragraph.

Sine r ě 1 and, by the lemma, ar ě 1, from ar`1 ´ ar ě r we get the following two

inequalities:

ar`1 ě r ` 1 and ar`1 ą ar.
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Now observe that

am ą am´1 ùñ am`1 ą am for m “ r ` 1, r ` 2, . . . , n ´ 1,

sine am`1 “ ambm ´ am´1 ě 2am ´ am´1 “ am ` pam ´ am´1q ą am. Thus

an ą an´1 ą ¨ ¨ ¨ ą ar`1 ě r ` 1 ùñ an ě n.

So maxtan, an`1u ě n, as desired.

Solution 2. We say that an index n ą 1 is bad if bn´1 “ 1 and bn´2 ą 1; otherwise n is good.

The value of b0 is irrelevant to the de�nition of panq sine a0 “ 0; so we assume that b0 ą 1.

Lemma 1. (a) an ě 1 for all n ą 0.
(b) If n ą 1 is good, then an ą an´1.

Proof. Indution on n. In the base ases n “ 1, 2 we have a1 “ 1 ě 1, a2 “ b1a1 ě 1, and �nally

a2 ą a1 if 2 is good, sine in this ase b1 ą 1.
Now we assume that the lemma statement is proved for n “ 1, 2, . . . , k with k ě 2, and

prove it for n “ k ` 1. Reall that ak and ak´1 are positive by the indution hypothesis.

Case 1: k is bad.

We have bk´1 “ 1, so ak`1 “ bkak ` ak´1 ě ak ` ak´1 ą ak ě 1, as required.

Case 2: k is good.

We already have ak ą ak´1 ě 1 by the indution hypothesis. We onsider three easy

subases.

Subase 2.1: bk ą 1.

Then ak`1 ě bkak ´ ak´1 ě ak ` pak ´ ak´1q ą ak ě 1.

Subase 2.2: bk “ bk´1 “ 1.

Then ak`1 “ ak ` ak´1 ą ak ě 1.

Subase 2.3: bk “ 1 but bk´1 ą 1.

Then k ` 1 is bad, and we need to prove only (a), whih is trivial: ak`1 “ ak ´ ak´1 ě 1.

So, in all three subases we have veri�ed the required relations. l

Lemma 2. Assume that n ą 1 is bad. Then there exists a j P t1, 2, 3u suh that an`j ě
an´1 ` j ` 1, and an`i ě an´1 ` i for all 1 ď i ă j.

Proof. Reall that bn´1 “ 1. Set

m “ infti ą 0: bn`i´1 ą 1u

(possibly m “ `8). We laim that j “ mintm, 3u works. Again, we distinguish several ases,

aording to the value of m; in eah of them we use Lemma 1 without referene.

Case 1: m “ 1, so bn ą 1.

Then an`1 ě 2an ` an´1 ě an´1 ` 2, as required.

Case 2: m “ 2, so bn “ 1 and bn`1 ą 1.

Then we suessively get

an`1 “ an ` an´1 ě an´1 ` 1,

an`2 ě 2an`1 ` an ě 2pan´1 ` 1q ` an “ an´1 ` pan´1 ` an ` 2q ě an´1 ` 4,

whih is even better than we need.
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Case 3: m ą 2, so bn “ bn`1 “ 1.

Then we suessively get

an`1 “ an ` an´1 ě an´1 ` 1, an`2 “ an`1 ` an ě an´1 ` 1 ` an ě an´1 ` 2,

an`3 ě an`2 ` an`1 ě pan´1 ` 1q ` pan´1 ` 2q ě an´1 ` 4,

as required. l

Lemmas 1(b) and 2 provide enough information to prove that maxtan, an`1u ě n for all n
and, moreover, that an ě n often enough. Indeed, assume that we have found some n with

an´1 ě n´1. If n is good, then by Lemma 1(b) we have an ě n as well. If n is bad, then Lemma 2

yields maxtan`i, an`i`1u ě an´1 ` i`1 ě n` i for all 0 ď i ă j and an`j ě an´1 ` j`1 ě n` j;
so n ` j is the next index to start with.
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A8.

Assume that a funtion f : R Ñ R satis�es the following ondition:

For every x, y P R suh that

`

fpxq `y
˘`

fpyq `x
˘

ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.
(Netherlands)

Solution 1. De�ne gpxq “ x ´ fpxq. The ondition on f then rewrites as follows:

For every x, y P R suh that

`

px ` yq ´ gpxq
˘`

px ` yq ´ gpyq
˘

ą 0, we have gpxq “ gpyq.
This ondition may in turn be rewritten in the following form:

If gpxq ‰ gpyq, then the number x ` y lies (non-stritly) between gpxq and gpyq. p˚q
Notie here that the funtion g1pxq “ ´gp´xq also satis�es p˚q, sine

g1pxq ‰ g1pyq ùñ gp´xq ‰ gp´yq ùñ ´px ` yq lies between gp´xq and gp´yq
ùñ x ` y lies between g1pxq and g1pyq.

On the other hand, the relation we need to prove reads now as

gpxq ď gpyq whenever x ă y. (1)

Again, this ondition is equivalent to the same one with g replaed by g1.

If gpxq “ 2x for all x P R, then p˚q is obvious; so in what follows we onsider the other

ase. We split the solution into a sequene of lemmas, strengthening one another. We always

onsider some value of x with gpxq ‰ 2x and denote X “ gpxq.
Lemma 1. Assume that X ă 2x. Then on the interval pX ´ x; xs the funtion g attains at

most two values � namely, X and, possibly, some Y ą X . Similarly, if X ą 2x, then g attains
at most two values on rx;X ´ xq � namely, X and, possibly, some Y ă X .

Proof. We start with the �rst laim of the lemma. Notie that X ´ x ă x, so the onsidered

interval is nonempty.

Take any a P pX ´ x; xq with gpaq ‰ X (if it exists). If gpaq ă X , then p˚q yields gpaq ď
a ` x ď gpxq “ X , so a ď X ´ x whih is impossible. Thus, gpaq ą X and hene by p˚q we get
X ď a ` x ď gpaq.

Now, for any b P pX ´ x; xq with gpbq ‰ X we similarly get b ` x ď gpbq. Therefore, the

number a` b (whih is smaller than eah of a ` x and b` x) annot lie between gpaq and gpbq,
whih by p˚q implies that gpaq “ gpbq. Hene g may attain only two values on pX ´ x; xs,
namely X and gpaq ą X .

To prove the seond laim, notie that g1p´xq “ ´X ă 2 ¨ p´xq, so g1 attains at most two

values on p´X ` x,´xs, i.e., ´X and, possibly, some ´Y ą ´X. Passing bak to g, we get

what we need. l

Lemma 2. If X ă 2x, then g is onstant on pX ´x; xq. Similarly, if X ą 2x, then g is onstant
on px;X ´ xq.
Proof. Again, it su�es to prove the �rst laim only. Assume, for the sake of ontradition,

that there exist a, b P pX ´ x; xq with gpaq ‰ gpbq; by Lemma 1, we may assume that gpaq “ X
and Y “ gpbq ą X .

Notie that mintX ´ a,X ´ bu ą X ´ x, so there exists a u P pX ´ x; xq suh that

u ă mintX ´ a,X ´ bu. By Lemma 1, we have either gpuq “ X or gpuq “ Y . In the former

ase, by p˚q we have X ď u ` b ď Y whih ontradits u ă X ´ b. In the seond ase, by p˚q
we have X ď u ` a ď Y whih ontradits u ă X ´ a. Thus the lemma is proved. l
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Lemma 3. If X ă 2x, then gpaq “ X for all a P pX´x; xq. Similarly, if X ą 2x, then gpaq “ X
for all a P px;X ´ xq.
Proof. Again, we only prove the �rst laim.

By Lemmas 1 and 2, this laim may be violated only if g takes on a onstant value Y ą X
on pX ´ x, xq. Choose any a, b P pX ´ x; xq with a ă b. By p˚q, we have

Y ě b ` x ě X. (2)

In partiular, we have Y ě b` x ą 2a. Applying Lemma 2 to a in plae of x, we obtain that g
is onstant on pa, Y ´ aq. By (2) again, we have x ď Y ´ b ă Y ´ a; so x, b P pa; Y ´ aq. But
X “ gpxq ‰ gpbq “ Y , whih is a ontradition. l

Now we are able to �nish the solution. Assume that gpxq ą gpyq for some x ă y. Denote
X “ gpxq and Y “ gpyq; by p˚q, we have X ě x ` y ě Y , so Y ´ y ď x ă y ď X ´ x,
and hene pY ´ y; yq X px;X ´ xq “ px, yq ‰ ∅. On the other hand, sine Y ´ y ă y and

x ă X´x, Lemma 3 shows that g should attain a onstant value X on px;X´xq and a onstant
value Y ‰ X on pY ´ y; yq. Sine these intervals overlap, we get the �nal ontradition.

Solution 2. As in the previous solution, we pass to the funtion g satisfying p˚q and notie

that we need to prove the ondition (1). We will also make use of the funtion g1.

If g is onstant, then (1) is learly satis�ed. So, in the sequel we assume that g takes on at

least two di�erent values. Now we ollet some information about the funtion g.

Claim 1. For any c P R, all the solutions of gpxq “ c are bounded.

Proof. Fix any y P R with gpyq ‰ c. Assume �rst that gpyq ą c. Now, for any x with gpxq “ c,
by p˚q we have c ď x ` y ď gpyq, or c ´ y ď x ď gpyq ´ y. Sine c and y are onstant, we get

what we need.

If gpyq ă c, we may swith to the funtion g1 for whih we have g1p´yq ą ´c. By the above

arguments, we obtain that all the solutions of g1p´xq “ ´c are bounded, whih is equivalent

to what we need. l

As an immediate onsequene, the funtion g takes on in�nitely many values, whih shows

that the next laim is indeed widely appliable.

Claim 2. If gpxq ă gpyq ă gpzq, then x ă z.

Proof. By p˚q, we have gpxq ď x ` y ď gpyq ď z ` y ď gpzq, so x ` y ď z ` y, as required. l

Claim 3. Assume that gpxq ą gpyq for some x ă y. Then gpaq P tgpxq, gpyqu for all a P rx; ys.
Proof. If gpyq ă gpaq ă gpxq, then the triple py, a, xq violates Claim 2. If gpaq ă gpyq ă gpxq,
then the triple pa, y, xq violates Claim 2. If gpyq ă gpxq ă gpaq, then the triple py, x, aq violates
Claim 2. The only possible ases left are gpaq P tgpxq, gpyqu. l

In view of Claim 3, we say that an interval I (whih may be open, losed, or semi-open) is

a Dirihlet interval

∗
if the funtion g takes on just two values on I.

Assume now, for the sake of ontradition, that (1) is violated by some x ă y. By Claim 3,

rx; ys is a Dirihlet interval. Set

r “ infta : pa; ys is a Dirihlet intervalu and s “ suptb : rx; bq is a Dirihlet intervalu.

Clearly, r ď x ă y ď s. By Claim 1, r and s are �nite. Denote X “ gpxq, Y “ gpyq, and
∆ “ py ´ xq{2.

Suppose �rst that there exists a t P pr; r ` ∆q with fptq “ Y . By the de�nition of r, the
interval pr ´ ∆; ys is not Dirihlet, so there exists an r1 P pr ´ ∆; rs suh that gpr1q R tX, Y u.

∗
The name Dirihlet interval is hosen for the reason that g theoretially might at similarly to the Dirihlet

funtion on this interval.
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The funtion g attains at least three distint values on rr1; ys, namely gpr1q, gpxq, and gpyq.
Claim 3 now yields gpr1q ď gpyq; the equality is impossible by the hoie of r1

, so in fat

gpr1q ă Y . Applying p˚q to the pairs pr1, yq and pt, xq we obtain r1 ` y ď Y ď t ` x, whene
r ´ ∆ ` y ă r1 ` y ď t ` x ă r ` ∆ ` x, or y ´ x ă 2∆. This is a ontradition.

Thus, gptq “ X for all t P pr; r ` ∆q. Applying the same argument to g1, we get gptq “ Y
for all t P ps ´ ∆; sq.

Finally, hoose some s1, s2 P ps ´ ∆; sq with s1 ă s2 and denote δ “ ps2 ´ s1q{2. As before,
we hoose r1 P pr ´ δ; rq with gpr1q R tX, Y u and obtain gpr1q ă Y . Choose any t P pr; r` δq; by
the above arguments, we have gptq “ X and gps1q “ gps2q “ Y . As before, we apply p˚q to the

pairs pr1, s2q and pt, s1q obtaining r ´ δ ` s2 ă r1 ` s2 ď Y ď t` s1 ă r ` δ ` s1, or s2 ´ s1 ă 2δ.
This is a �nal ontradition.

Comment 1. The original submission disussed the same funtions f , but the question was di�er-

ent � namely, the following one:

Prove that the equation fpxq “ 2017x has at most one solution, and the equation fpxq “ ´2017x
has at least one solution.

The Problem Seletion Committee deided that the question we are proposing is more natural,

sine it provides more natural information about the funtion g (whih is indeed the main harater

in this story). On the other hand, the new problem statement is strong enough in order to imply the

original one easily.

Namely, we will dedue from the new problem statement (along with the fats used in the solutions)

that piq for every N ą 0 the equation gpxq “ ´Nx has at most one solution, and piiq for every N ą 1
the equation gpxq “ Nx has at least one solution.

Claim piq is now trivial. Indeed, g is proven to be non-dereasing, so gpxq`Nx is stritly inreasing

and thus has at most one zero.

We proeed on laim piiq. If gp0q “ 0, then the required root has been already found. Otherwise,

we may assume that gp0q ą 0 and denote c “ gp0q. We intend to prove that x “ c{N is the required

root. Indeed, by monotoniity we have gpc{Nq ě gp0q “ c; if we had gpc{Nq ą c, then p˚q would yield

c ď 0 ` c{N ď gpc{Nq whih is false. Thus, gpxq “ c “ Nx.

Comment 2. There are plenty of funtions g satisfying p˚q (and hene of funtions f satisfying

the problem onditions). One simple example is g0pxq “ 2x. Next, for any inreasing sequene

A “ p. . . , a´1, a0, a1, . . . q whih is unbounded in both diretions (i.e., for every N this sequene ontains

terms greater than N , as well as terms smaller than ´N), the funtion gA de�ned by

gApxq “ ai ` ai`1 whenever x P rai; ai`1q

satis�es p˚q. Indeed, pik any x ă y with gpxq ‰ gpyq; this means that x P rai; ai`1q and y P raj ; aj`1q
for some i ă j. Then we have gpxq “ ai ` ai`1 ď x ` y ă aj ` aj`1 “ gpyq, as required.

There also exist examples of the mixed behavior; e.g., for an arbitrary sequene A as above and an

arbitrary subset I Ď Z the funtion

gA,Ipxq “
#

g0pxq, x P rai; ai`1q with i P I;

gApxq, x P rai; ai`1q with i R I

also satis�es p˚q.
Finally, it is even possible to provide a omplete desription of all funtions g satisfying p˚q (and

hene of all funtions f satisfying the problem onditions); however, it seems to be far out of sope for

the IMO. This desription looks as follows.

Let A be any losed subset of R whih is unbounded in both diretions. De�ne the funtions iA,
sA, and gA as follows:

iApxq “ infta P A : a ě xu, sApxq “ supta P A : a ď xu, gApxq “ iApxq ` sApxq.
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It is easy to see that for di�erent sets A and B the funtions gA and gB are also di�erent (sine, e.g.,

for any a P A zB the funtion gB is onstant in a small neighborhood of a, but the funtion gA is not).

One may hek, similarly to the arguments above, that eah suh funtion satis�es p˚q.
Finally, one more modi�ation is possible. Namely, for any x P A one may rede�ne gApxq (whih

is 2x) to be any of the numbers

gA`pxq “ iA`pxq ` x or gA´pxq “ x ` sA´pxq,
where iA`pxq “ infta P A : a ą xu and sA´pxq “ supta P A : a ă xu.

This really hanges the value if x has some right (respetively, left) semi-neighborhood disjoint from A,
so there are at most ountably many possible hanges; all of them an be performed independently.

With some e�ort, one may show that the onstrution above provides all funtions g satisfying p˚q.



34 IMO 2017, Rio de Janeiro

Combinatoris

C1.

A retangleR with odd integer side lengths is divided into small retangles with integer

side lengths. Prove that there is at least one among the small retangles whose distanes from

the four sides of R are either all odd or all even.

(Singapore)

Solution. Let the width and height of R be odd numbers a and b. Divide R into ab unit

squares and olor them green and yellow in a hekered pattern. Sine the side lengths of a
and b are odd, the orner squares of R will all have the same olor, say green.

Call a retangle (either R or a small retangle) green if its orners are all green; all it

yellow if the orners are all yellow, and all it mixed if it has both green and yellow orners. In

partiular, R is a green retangle.

We will use the following trivial observations.

‚ Every mixed retangle ontains the same number of green and yellow squares;

‚ Every green retangle ontains one more green square than yellow square;

‚ Every yellow retangle ontains one more yellow square than green square.

The retangle R is green, so it ontains more green unit squares than yellow unit squares.

Therefore, among the small retangles, at least one is green. Let S be suh a small green

retangle, and let its distanes from the sides of R be x, y, u and v, as shown in the piture.

The top-left orner of R and the top-left orner of S have the same olor, whih happen if and

only if x and u have the same parity. Similarly, the other three green orners of S indiate that

x and v have the same parity, y and u have the same parity, i.e. x, y, u and v are all odd or all

even.

u v

R

S

y

x
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C2.

Let n be a positive integer. De�ne a hameleon to be any sequene of 3n letters, with

exatly n ourrenes of eah of the letters a, b, and c. De�ne a swap to be the transposition of

two adjaent letters in a hameleon. Prove that for any hameleonX , there exists a hameleon Y
suh that X annot be hanged to Y using fewer than 3n2{2 swaps.

(Australia)

Solution 1. To start, notie that the swap of two idential letters does not hange a hameleon,

so we may assume there are no suh swaps.

For any two hameleons X and Y , de�ne their distane dpX, Y q to be the minimal number

of swaps needed to transform X into Y (or vie versa). Clearly, dpX, Y q ` dpY, Zq ě dpX,Zq
for any three hameleons X , Y , and Z.

Lemma. Consider two hameleons

P “ aa . . . a
loomoon

n

bb . . . b
loomoon

n

cc . . . c
loomoon

n

and Q “ cc . . . c
loomoon

n

bb . . . b
loomoon

n

aa . . . a
loomoon

n

.

Then dpP,Qq ě 3n2
.

Proof. For any hameleon X and any pair of distint letters u, v P ta, b, cu, we de�ne fu,vpXq
to be the number of pairs of positions in X suh that the left one is oupied by u, and
the right one is oupied by v. De�ne fpXq “ fa,bpXq ` fa,cpXq ` fb,cpXq. Notie that

fa,bpP q “ fa,cpP q “ fb,cpP q “ n2
and fa,bpQq “ fa,cpQq “ fb,cpQq “ 0, so fpP q “ 3n2

and

fpQq “ 0.
Now onsider some swap hanging a hameleonX toX 1

; say, the letters a and b are swapped.
Then fa,bpXq and fa,bpX 1q di�er by exatly 1, while fa,cpXq “ fa,cpX 1q and fb,cpXq “ fb,cpX 1q.
This yields |fpXq ´fpX 1q| “ 1, i.e., on any swap the value of f hanges by 1. Hene dpX, Y q ě
|fpXq ´ fpY q| for any two hameleons X and Y . In partiular, dpP,Qq ě |fpP q ´ fpQq| “ 3n2

,

as desired. l

Bak to the problem, take any hameleon X and notie that dpX,P q`dpX,Qq ě dpP,Qq ě
3n2

by the lemma. Consequently, maxtdpX,P q, dpX,Qqu ě 3n2

2
, whih establishes the problem

statement.

Comment 1. The problem may be reformulated in a graph language. Construt a graph G with the

hameleons as verties, two verties being onneted with an edge if and only if these hameleons di�er

by a single swap. Then dpX,Y q is the usual distane between the verties X and Y in this graph.

Reall that the radius of a onneted graph G is de�ned as

rpGq “ min
vPV

max
uPV

dpu, vq.

So we need to prove that the radius of the onstruted graph is at least 3n2{2.
It is well-known that the radius of any onneted graph is at least the half of its diameter (whih

is simply maxu,vPV dpu, vq). Exatly this fat has been used above in order to �nish the solution.

Solution 2. We use the notion of distane from Solution 1, but provide a di�erent lower

bound for it.

In any hameleon X , we enumerate the positions in it from left to right by 1, 2, . . . , 3n.
De�ne scpXq as the sum of positions oupied by c. The value of sc hanges by at most 1 on

eah swap, but this fat alone does not su�e to solve the problem; so we need an improvement.

For every hameleon X , denote by Xc the sequene obtained from X by removing all n
letters c. Enumerate the positions in Xc from left to right by 1, 2, . . . , 2n, and de�ne sc,bpXq
as the sum of positions in Xc oupied by b. (In other words, here we onsider the positions of

the b's relatively to the a's only.) Finally, denote

d1pX, Y q :“ |scpXq ´ scpY q| ` |sc,bpXq ´ sc,bpY q|.
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Now onsider any swap hanging a hameleon X to X 1
. If no letter c is involved into this

swap, then scpXq “ scpX 1q; on the other hand, exatly one letter b hanges its position in Xc, so

|sc,bpXq ´sc,bpX 1q| “ 1. If a letter c is involved into a swap, then Xc “ X 1
c, so sc,bpXq “ sc,bpX 1q

and |scpXq ´ scpX 1q| “ 1. Thus, in all ases we have d1pX,X 1q “ 1.
As in the previous solution, this means that dpX, Y q ě d1pX, Y q for any two hameleons X

and Y . Now, for any hameleon X we will indiate a hameleon Y with d1pX, Y q ě 3n2{2, thus
�nishing the solution.

The funtion sc attains all integer values from 1 ` ¨ ¨ ¨ ` n “ npn`1q
2

to p2n ` 1q ` ¨ ¨ ¨ ` 3n “
2n2 ` npn`1q

2
. If scpXq ď n2 ` npn`1q

2
, then we put the letter c into the last n positions in Y ;

otherwise we put the letter c into the �rst n positions in Y . In either ase we already have

|scpXq ´ scpY q| ě n2
.

Similarly, sc,b ranges from
npn`1q

2
to n2 ` npn`1q

2
. So, if sc,bpXq ď n2

2
` npn`1q

2
, then we put

the letter b into the last n positions in Y whih are still free; otherwise, we put the letter b into
the �rst n suh positions. The remaining positions are oupied by a. In any ase, we have

|sc,bpXq ´ sc,bpY q| ě n2

2
, thus d1pX, Y q ě n2 ` n2

2
“ 3n2

2
, as desired.

Comment 2. The two solutions above used two lower bounds |fpXq ´ fpY q| and d1pX,Y q for the

number dpX,Y q. One may see that these bounds are losely related to eah other, as

fa,cpXq ` fb,cpXq “ scpXq ´ npn ` 1q
2

and fa,bpXq “ sc,bpXq ´ npn ` 1q
2

.

One an see that, e.g., the bound d1pX,Y q ould as well be used in the proof of the lemma in Solution 1.

Let us desribe here an even sharper bound whih also an be used in di�erent versions of the

solutions above.

In eah hameleon X, enumerate the ourrenes of a from the left to the right as a1, a2, . . . , an.
Sine we got rid of swaps of idential letters, the relative order of these letters remains the same during

the swaps. Perform the same operation with the other letters, obtaining new letters b1, . . . , bn and

c1, . . . , cn. Denote by A the set of the 3n obtained letters.

Sine all 3n letters beame di�erent, for any hameleon X and any s P A we may de�ne the

position NspXq of s in X (thus 1 ď NspXq ď 3n). Now, for any two hameleons X and Y we say that

a pair of letters ps, tq P AˆA is an pX,Y q-inversion if NspXq ă NtpXq but NspY q ą NtpY q, and de�ne

d˚pX,Y q to be the number of pX,Y q-inversions. Then for any two hameleons Y and Y 1
di�ering by a

single swap, we have |d˚pX,Y q ´ d˚pX,Y 1q| “ 1. Sine d˚pX,Xq “ 0, this yields dpX,Y q ě d˚pX,Y q
for any pair of hameleons X and Y . The bound d˚

may also be used in both Solution 1 and Solution 2.

Comment 3. In fat, one may prove that the distane d˚
de�ned in the previous omment oinides

with d. Indeed, if X ‰ Y , then there exist an pX,Y q-inversion ps, tq. One an show that suh s and t
may be hosen to oupy onseutive positions in Y . Clearly, s and t orrespond to di�erent letters

among ta, b, cu. So, swapping them in Y we get another hameleon Y 1
with d˚pX,Y 1q “ d˚pX,Y q ´ 1.

Proeeding in this manner, we may hange Y to X in d˚pX,Y q steps.
Using this fat, one an show that the estimate in the problem statement is sharp for all n ě 2.

(For n “ 1 it is not sharp, sine any permutation of three letters an be hanged to an opposite one in

no less than three swaps.) We outline the proof below.

For any k ě 0, de�ne

X2k “ abc abc . . . abc
looooooomooooooon

3k letters

cba cba . . . cba
looooooomooooooon

3k letters

and X2k`3 “ abc abc . . . abc
looooooomooooooon

3k letters

abc bca cab cba cba . . . cba
looooooomooooooon

3k letters

.

We laim that for every n ě 2 and every hameleon Y , we have d˚pXn, Y q ď
P

3n2{2
T

. This will mean

that for every n ě 2 the number 3n2{2 in the problem statement annot be hanged by any number

larger than

P

3n2{2
T

.

For any distint letters u, v P ta, b, cu and any two hameleons X and Y , we de�ne d˚
u,vpX,Y q as

the number of pX,Y q-inversions ps, tq suh that s and t are instanes of u and v (in any of the two

possible orders). Then d˚pX,Y q “ d˚
a,bpX,Y q ` d˚

b,cpX,Y q ` d˚
c,apX,Y q.
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We start with the ase when n “ 2k is even; denote X “ X2k. We show that d˚
a,bpX,Y q ď 2k2

for any hameleon Y ; this yields the required estimate. Proeed by the indution on k with the trivial

base ase k “ 0. To perform the indution step, notie that d˚
a,bpX,Y q is indeed the minimal number of

swaps needed to hange Yc into Xc. One may show that moving a1 and a2k in Y onto the �rst and the

last positions in Y , respetively, takes at most 2k swaps, and that subsequent moving b1 and b2k onto

the seond and the seond last positions takes at most 2k ´ 2 swaps. After performing that, one may

delete these letters from both Xc and Yc and apply the indution hypothesis; so Xc an be obtained

from Yc using at most 2pk ´ 1q2 ` 2k ` p2k ´ 2q “ 2k2 swaps, as required.

If n “ 2k ` 3 is odd, the proof is similar but more tehnially involved. Namely, we laim that

d˚
a,bpX2k`3, Y q ď 2k2 ` 6k ` 5 for any hameleon Y , and that the equality is ahieved only if Yc “

bb . . . b aa . . . a. The proof proeeds by a similar indution, with some are taken of the base ase, as

well as of extrating the equality ase. Similar estimates hold for d˚
b,c and d˚

c,a. Summing three suh

estimates, we obtain

d˚pX2k`3, Y q ď 3p2k2 ` 6k ` 5q “
R

3n2

2

V

` 1,

whih is by 1 more than we need. But the equality ould be ahieved only if Yc “ bb . . . b aa . . . a
and, similarly, Yb “ aa . . . a cc . . . c and Ya “ cc . . . c bb . . . b. Sine these three equalities annot hold

simultaneously, the proof is �nished.
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C3.

Sir Alex plays the following game on a row of 9 ells. Initially, all ells are empty. In

eah move, Sir Alex is allowed to perform exatly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty ell.

(2) Choose two (not neessarily adjaent) ells with the same number in them; denote that

number by 2j. Replae the number in one of the ells with 2j`1
and erase the number in

the other ell.

At the end of the game, one ell ontains the number 2n, where n is a given positive integer,

while the other ells are empty. Determine the maximum number of moves that Sir Alex ould

have made, in terms of n.
(Thailand)

Answer: 2
ř8

j“0

`

n
j

˘

´ 1.

Solution 1. We will solve a more general problem, replaing the row of 9 ells with a row of k
ells, where k is a positive integer. Denote by mpn, kq the maximum possible number of moves

Sir Alex an make starting with a row of k empty ells, and ending with one ell ontaining

the number 2n and all the other k ´ 1 ells empty. Call an operation of type (1) an insertion,

and an operation of type (2) a merge.

Only one move is possible when k “ 1, so we have mpn, 1q “ 1. From now on we onsider

k ě 2, and we may assume Sir Alex's last move was a merge. Then, just before the last move,

there were exatly two ells with the number 2n´1
, and the other k ´ 2 ells were empty.

Paint one of those numbers 2n´1
blue, and the other one red. Now trae bak Sir Alex's

moves, always painting the numbers blue or red following this rule: if a and b merge into c,
paint a and b with the same olor as c. Notie that in this bakward proess new numbers are

produed only by reversing merges, sine reversing an insertion simply means deleting one of

the numbers. Therefore, all numbers appearing in the whole proess will reeive one of the two

olors.

Sir Alex's �rst move is an insertion. Without loss of generality, assume this �rst number

inserted is blue. Then, from this point on, until the last move, there is always at least one ell

with a blue number.

Besides the last move, there is no move involving a blue and a red number, sine all merges

involves numbers with the same olor, and insertions involve only one number. Call an insertion

of a blue number or merge of two blue numbers a blue move, and de�ne a red move analogously.

The whole sequene of blue moves ould be repeated on another row of k ells to produe

one ell with the number 2n´1
and all the others empty, so there are at most mpn ´ 1, kq blue

moves.

Now we look at the red moves. Sine every time we perform a red move there is at least

one ell oupied with a blue number, the whole sequene of red moves ould be repeated on a

row of k ´ 1 ells to produe one ell with the number 2n´1
and all the others empty, so there

are at most mpn ´ 1, k ´ 1q red moves. This proves that

mpn, kq ď mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.

On the other hand, we an start with an empty row of k ells and perform mpn ´ 1, kq
moves to produe one ell with the number 2n´1

and all the others empty, and after that

perform mpn ´ 1, k ´ 1q moves on those k ´ 1 empty ells to produe the number 2n´1
in one

of them, leaving k ´ 2 empty. With one more merge we get one ell with 2n and the others

empty, proving that

mpn, kq ě mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.
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It follows that

mpn, kq “ mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1, (1)

for n ě 1 and k ě 2.
If k “ 1 or n “ 0, we must insert 2n on our �rst move and immediately get the �nal

on�guration, so mp0, kq “ 1 and mpn, 1q “ 1, for n ě 0 and k ě 1. These initial values,

together with the reurrene relation (1), determine mpn, kq uniquely.
Finally, we show that

mpn, kq “ 2
k´1
ÿ

j“0

ˆ

n

j

˙

´ 1, (2)

for all integers n ě 0 and k ě 1.
We use indution on n. Sine mp0, kq “ 1 for k ě 1, (2) is true for the base ase. We make

the indution hypothesis that (2) is true for some �xed positive integer n and all k ě 1. We

have mpn ` 1, 1q “ 1 “ 2
`

n`1
0

˘

´ 1, and for k ě 2 the reurrene relation (1) and the indution

hypothesis give us

mpn ` 1, kq “ mpn, kq ` mpn, k ´ 1q ` 1 “ 2
k´1
ÿ

j“0

ˆ

n

j

˙

´ 1 ` 2
k´2
ÿ

j“0

ˆ

n

j

˙

´ 1 ` 1

“ 2
k´1
ÿ

j“0

ˆ

n

j

˙

` 2
k´1
ÿ

j“0

ˆ

n

j ´ 1

˙

´ 1 “ 2
k´1
ÿ

j“0

ˆˆ

n

j

˙

`
ˆ

n

j ´ 1

˙˙

´ 1 “ 2
k´1
ÿ

j“0

ˆ

n ` 1

j

˙

´ 1,

whih ompletes the proof.

Comment 1. After deduing the reurrene relation (1), it may be onvenient to homogenize the

reurrene relation by de�ning hpn, kq “ mpn, kq ` 1. We get the new relation

hpn, kq “ hpn ´ 1, kq ` hpn ´ 1, kq, (3)

for n ě 1 and k ě 2, with initial values hp0, kq “ hpn, 1q “ 2, for n ě 0 and k ě 1.
This may help one to guess the answer, and also with other approahes like the one we develop

next.

Comment 2. We an use a generating funtion to �nd the answer without guessing. We work with

the homogenized reurrene relation (3). De�ne hpn, 0q “ 0 so that (3) is valid for k “ 1 as well. Now

we set up the generating funtion fpx, yq “
ř

n,kě0 hpn, kqxnyk. Multiplying the reurrene relation (3)

by xnyk and summing over n, k ě 1, we get

ÿ

n,kě1

hpn, kqxnyk “ x
ÿ

n,kě1

hpn ´ 1, kqxn´1yk ` xy
ÿ

n,kě1

hpn ´ 1, k ´ 1qxn´1yk´1.

Completing the missing terms leads to the following equation on fpx, yq:

fpx, yq ´
ÿ

ně0

hpn, 0qxn ´
ÿ

kě1

hp0, kqyk “ xfpx, yq ´ x
ÿ

ně0

hpn, 0qxn ` xyfpx, yq.

Substituting the initial values, we obtain

fpx, yq “ 2y

1 ´ y
¨ 1

1 ´ xp1 ` yq .

Developing as a power series, we get

fpx, yq “ 2
ÿ

jě1

yj ¨
ÿ

ně0

p1 ` yqnxn.
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The oe�ient of xn in this power series is

2
ÿ

jě1

yj ¨ p1 ` yqn “ 2
ÿ

jě1

yj ¨
ÿ

iě0

ˆ

n

i

˙

yi,

and extrating the oe�ient of yk in this last expression we �nally obtain the value for hpn, kq,

hpn, kq “ 2
k´1
ÿ

j“0

ˆ

n

j

˙

.

This proves that

mpn, kq “ 2
k´1
ÿ

j“0

ˆ

n

j

˙

´ 1.

The generating funtion approah also works if applied to the non-homogeneous reurrene rela-

tion (1), but the omputations are less straightforward.

Solution 2. De�ne merges and insertions as in Solution 1. After eah move made by Sir Alex

we ompute the number N of empty ells, and the sum S of all the numbers written in the

ells. Insertions always inrease S by some power of 2, and inrease N exatly by 1. Merges do

not hange S and derease N exatly by 1. Sine the initial value of N is 0 and its �nal value

is 1, the total number of insertions exeeds that of merges by exatly one. So, to maximize the

number of moves, we need to maximize the number of insertions.

We will need the following lemma.

Lemma. If the binary representation of a positive integer A has d nonzero digits, then A annot

be represented as a sum of fewer than d powers of 2. Moreover, any representation of A as a

sum of d powers of 2 must oinide with its binary representation.

Proof. Let s be the minimum number of summands in all possible representations of A as sum

of powers of 2. Suppose there is suh a representation with s summands, where two of the

summands are equal to eah other. Then, replaing those two summands with the result of

their sum, we obtain a representation with fewer than s summands, whih is a ontradition.

We dedue that in any representation with s summands, the summands are all distint, so any

suh representation must oinide with the unique binary representation of A, and s “ d. l

Now we split the solution into a sequene of laims.

Claim 1. After every move, the number S is the sum of at most k ´ 1 distint powers of 2.

Proof. If S is the sum of k (or more) distint powers of 2, the Lemma implies that the k ells

are �lled with these numbers. This is a ontradition sine no more merges or insertions an

be made. l

Let Apn, k ´ 1q denote the set of all positive integers not exeeding 2n with at most k ´ 1
nonzero digits in its base 2 representation. Sine every insertion inreases the value of S, by
Claim 1, the total number of insertions is at most |Apn, k ´ 1q|. We proeed to prove that it is

possible to ahieve this number of insertions.

Claim 2. Let Apn, k´1q “ ta1, a2, . . . , amu, with a1 ă a2 ă ¨ ¨ ¨ ă am. If after some of Sir Alex's

moves the value of S is aj , with j P t1, 2, . . . , m ´ 1u, then there is a sequene of moves after

whih the value of S is exatly aj`1.

Proof. Suppose S “ aj . Performing all possible merges, we eventually get di�erent powers of 2
in all nonempty ells. After that, by Claim 1 there will be at least one empty ell, in whih we

want to insert aj`1 ´ aj. It remains to show that aj`1 ´ aj is a power of 2.
For this purpose, we notie that if aj has less than k ´ 1 nonzero digits in base 2 then

aj`1 “ aj ` 1. Otherwise, we have aj “ 2bk´1 ` ¨ ¨ ¨ ` 2b2 ` 2b1 with b1 ă b2 ă ¨ ¨ ¨ ă bk´1. Then,

adding any number less than 2b1 to aj will result in a number with more than k ´ 1 nonzero
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binary digits. On the other hand, aj ` 2b1 is a sum of k powers of 2, not all distint, so by the

Lemma it will be a sum of less then k distint powers of 2. This means that aj`1 ´ aj “ 2b1 ,
ompleting the proof. l

Claims 1 and 2 prove that the maximum number of insertions is |Apn, k ´ 1q|. We now

ompute this number.

Claim 3. |Apn, k ´ 1q| “ řk´1
j“0

`

n
j

˘

.

Proof. The number 2n is the only element of Apn, k ´ 1q with n ` 1 binary digits. Any other

element has at most n binary digits, at least one and at most k ´ 1 of them are nonzero (so

they are ones). For eah j P t1, 2, . . . , k ´ 1u, there are
`

n
j

˘

suh elements with exatly j binary

digits equal to one. We onlude that |Apn, k ´ 1q| “ 1 ` řk´1
j“1

`

n
j

˘

“ řk´1
j“0

`

n
j

˘

. l

Realling that the number of insertions exeeds that of merges by exatly 1, we dedue that
the maximum number of moves is 2

řk´1
j“0

`

n
j

˘

´ 1.
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C4.

Let N ě 2 be an integer. NpN ` 1q soer players, no two of the same height, stand

in a row in some order. Coah Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

Solution 1. Split the row into N bloks with N ` 1 onseutive people eah. We will show

how to remove N ´ 1 people from eah blok in order to satisfy the oah's wish.

First, onstrut a pN ` 1q ˆ N matrix where xi,j is the height of the ith tallest person of

the jth blok�in other words, eah olumn lists the heights within a single blok, sorted in

dereasing order from top to bottom.

We will reorder this matrix by repeatedly swapping whole olumns. First, by olumn per-

mutation, make sure that x2,1 “ maxtx2,i : i “ 1, 2, . . . , Nu (the �rst olumn ontains the

largest height of the seond row). With the �rst olumn �xed, permute the other ones so that

x3,2 “ maxtx3,i : i “ 2, . . . , Nu (the seond olumn ontains the tallest person of the third row,

�rst olumn exluded). In short, at step k (k “ 1, 2, . . . , N ´ 1), we permute the olumns from

k to N so that xk`1,k “ maxtxi,k : i “ k, k ` 1, . . . , Nu, and end up with an array like this:

x1,1 x1,2 x1,3 ¨ ¨ ¨ x1,N´1 x1,Ną ą ą ą ą ą ą

x2,1 ąąą x2,2 x2,3 ¨ ¨ ¨ x2,N´1 x2,Ną ą ą ą ą ą ą

x3,1 x3,2 ąąą x3,3 ¨ ¨ ¨ x3,N´1 x3,Ną ą ą ą ą ą ą

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.ą ą ą ą ą ą ą

xN,1 xN,2 xN,3 ¨ ¨ ¨ xN,N´1 ąąą xN,Ną ą ą ą ą ą ą

xN`1,1 xN`1,2 xN`1,3¨ ¨ ¨xN`1,N´1 xN`1,N

Now we make the bold hoie: from the original row of people, remove everyone but those

with heights

x1,1 ą x2,1 ą x2,2 ą x3,2 ą ¨ ¨ ¨ ą xN,N´1 ą xN,N ą xN`1,N p˚q
Of ourse this height order p˚q is not neessarily their spatial order in the new row. We now

need to onvine ourselves that eah pair pxk,k; xk`1,kq remains spatially together in this new

row. But xk,k and xk`1,k belong to the same olumn/blok of onseutive N ` 1 people; the

only people that ould possibly stand between them were also in this blok, and they are all

gone.

Solution 2. Split the people into N groups by height : group G1 has the N ` 1 tallest ones,

group G2 has the next N `1 tallest, and so on, up to group GN with the N `1 shortest people.
Now san the original row from left to right, stopping as soon as you have sanned two

people (onseutively or not) from the same group, say, Gi. Sine we have N groups, this must

happen before or at the pN ` 1qth person of the row. Choose this pair of people, removing all

the other people from the same group Gi and also all people that have been sanned so far.

The only people that ould separate this pair's heights were in group Gi (and they are gone);

the only people that ould separate this pair's positions were already sanned (and they are

gone too).

We are now left with N ´ 1 groups (all exept Gi). Sine eah of them lost at most one

person, eah one has at least N unsanned people left in the row. Repeat the sanning proess

from left to right, hoosing the next two people from the same group, removing this group and
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everyone sanned up to that point. One again we end up with two people who are next to

eah other in the remaining row and whose heights annot be separated by anyone else who

remains (sine the rest of their group is gone). After piking these 2 pairs, we still have N ´ 2
groups with at least N ´ 1 people eah.

If we repeat the sanning proess a total of N times, it is easy to hek that we will end

up with 2 people from eah group, for a total of 2N people remaining. The height order is

guaranteed by the grouping, and the sanning onstrution from left to right guarantees that

eah pair from a group stand next to eah other in the �nal row. We are done.

Solution 3. This is essentially the same as solution 1, but presented indutively. The essene

of the argument is the following lemma.

Lemma. Assume that we have N disjoint groups of at least N ` 1 people in eah, all people

have distint heights. Then one an hoose two people from eah group so that among the

hosen people, the two tallest ones are in one group, the third and the fourth tallest ones are

in one group, . . . , and the two shortest ones are in one group.

Proof. Indution on N ě 1; for N “ 1, the statement is trivial.

Consider now N groups G1, . . . , GN with at least N`1 people in eah for N ě 2. Enumerate

the people by 1, 2, . . . , NpN ` 1q aording to their height, say, from tallest to shortest. Find

the least s suh that two people among 1, 2, . . . , s are in one group (without loss of generality,

say this group is GN). By the minimality of s, the two mentioned people in GN are s and some

i ă s.
Now we hoose people i and s in GN , forget about this group, and remove the people

1, 2, . . . , s from G1, . . . , GN´1. Due to minimality of s again, eah of the obtained groups

G1
1, . . . , G

1
N´1 ontains at least N people. By the indution hypothesis, one an hoose a pair

of people from eah of G1
1, . . . , G

1
N´1 so as to satisfy the required onditions. Sine all these

people have numbers greater than s, addition of the pair ps, iq from GN does not violate these

requirements. l

To solve the problem, it su�es now to split the row into N ontiguous groups with N ` 1
people in eah and apply the Lemma to those groups.

Comment 1. One an identify eah person with a pair of indies pp, hq (p, h P t1, 2, . . . , NpN ` 1qu)
so that the pth person in the row (say, from left to right) is the hth tallest person in the group. Say

that pa, bq separates px1, y1q and px2, y2q whenever a is stritly between x1 and y1, or b is stritly

between x2 and y2. So the oah wants to pik 2N people ppi, hiqpi “ 1, 2, . . . , 2Nq suh that no hosen

person separates pp1, h1q from pp2, h2q, no hosen person separates pp3, h3q and pp4, h4q, and so on.

This formulation reveals a duality between positions and heights. In that sense, solutions 1 and 2 are

dual of eah other.

Comment 2. The number NpN ` 1q is sharp for N “ 2 and N “ 3, due to arrangements 1, 5, 3, 4, 2
and 1, 10, 6, 4, 3, 9, 5, 8, 7, 2, 11.
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C5.

A hunter and an invisible rabbit play a game in the Eulidean plane. The hunter's

starting point H0 oinides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.
(1) First the invisible rabbit moves seretly and unobserved from its urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.
(2) The hunter has a traking devie (e.g. dog) that returns an approximate position R1

n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.
Is there a strategy for the hunter that guarantees that after 109 suh rounds the distane

between the hunter and the rabbit is below 100?
(Austria)

Answer: There is no suh strategy for the hunter. The rabbit �wins".

Solution. If the answer were �yes", the hunter would have a strategy that would �work", no

matter how the rabbit moved or where the radar pings R1
n appeared. We will show the opposite:

with bad luk from the radar pings, there is no strategy for the hunter that guarantees that

the distane stays below 100 in 109 rounds.

So, let dn be the distane between the hunter and the rabbit after n rounds. Of ourse, if

dn ě 100 for any n ă 109, the rabbit has won � it just needs to move straight away from the

hunter, and the distane will be kept at or above 100 thereon.

We will now show that, while dn ă 100, whatever given strategy the hunter follows, the

rabbit has a way of inreasing d2n by at least

1
2
every 200 rounds (as long as the radar pings are

luky enough for the rabbit). This way, d2n will reah 104 in less than 2 ¨104 ¨200 “ 4 ¨106 ă 109

rounds, and the rabbit wins.

Suppose the hunter is at Hn and the rabbit is at Rn. Suppose even that the rabbit reveals

its position at this moment to the hunter (this allows us to ignore all information from previous

radar pings). Let r be the line HnRn, and Y1 and Y2 be points whih are 1 unit away from r
and 200 units away from Rn, as in the �gure below.

r dn

Hn Rn

200

200

200− dn
Z

1

1

Y1

Y2

ε

y

y

R′
H ′

The rabbit's plan is simply to hoose one of the points Y1 or Y2 and hop 200 rounds straight
towards it. Sine all hops stay within 1 distane unit from r, it is possible that all radar pings
stay on r. In partiular, in this ase, the hunter has no way of knowing whether the rabbit

hose Y1 or Y2.

Looking at suh pings, what is the hunter going to do? If the hunter's strategy tells him to

go 200 rounds straight to the right, he ends up at point H 1
in the �gure. Note that the hunter

does not have a better alternative! Indeed, after these 200 rounds he will always end up at

a point to the left of H 1
. If his strategy took him to a point above r, he would end up even

further from Y2; and if his strategy took him below r, he would end up even further from Y1.

In other words, no matter what strategy the hunter follows, he an never be sure his distane

to the rabbit will be less than y
def“ H 1Y1 “ H 1Y2 after these 200 rounds.

To estimate y2, we take Z as the midpoint of segment Y1Y2, we take R
1
as a point 200 units

to the right of Rn and we de�ne ε “ ZR1
(note that H 1R1 “ dn). Then
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y2 “ 1 ` pH 1Zq2 “ 1 ` pdn ´ εq2

where

ε “ 200 ´ RnZ “ 200 ´
?
2002 ´ 1 “ 1

200 `
?
2002 ´ 1

ą 1

400
.

In partiular, ε2 ` 1 “ 400ε, so

y2 “ d2n ´ 2εdn ` ε2 ` 1 “ d2n ` εp400 ´ 2dnq.

Sine ε ą 1
400

and we assumed dn ă 100, this shows that y2 ą d2n` 1
2
. So, as we laimed, with this

list of radar pings, no matter what the hunter does, the rabbit might ahieve d2n`200 ą d2n ` 1
2
.

The wabbit wins.

Comment 1. Many di�erent versions of the solution above an be found by replaing 200 with some

other number N for the number of hops the rabbit takes between reveals. If this is done, we have:

ε “ N ´
a

N2 ´ 1 ą 1

N `
?
N2 ´ 1

ą 1

2N

and

ε2 ` 1 “ 2Nε,

so, as long as N ą dn, we would �nd

y2 “ d2n ` εp2N ´ 2dnq ą d2n ` N ´ dn
N

.

For example, taking N “ 101 is already enough�the squared distane inreases by at least

1
101 every

101 rounds, and 1012 ¨ 104 “ 1.0201 ¨ 108 ă 109 rounds are enough for the rabbit. If the statement is

made sharper, some suh versions might not work any longer.

Comment 2. The original statement asked whether the distane ould be kept under 1010 in 10100

rounds.
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n ube is omposed of n3
unit ubes. Eah

unit ube is painted with one olor. For eah n ˆ n ˆ 1 box onsisting of n2
unit ubes (of any

of the three possible orientations), we onsider the set of the olors present in that box (eah

olor is listed only one). This way, we get 3n sets of olors, split into three groups aording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of olors that are

present.

(Russia)

Answer: The maximal number is

npn`1qp2n`1q
6

.

Solution 1. Call a n ˆ n ˆ 1 box an x-box, a y-box, or a z-box, aording to the diretion of

its short side. Let C be the number of olors in a valid on�guration. We start with the upper

bound for C.
Let C1, C2, and C3 be the sets of olors whih appear in the big ube exatly one, exatly

twie, and at least thrie, respetively. Let Mi be the set of unit ubes whose olors are in Ci,
and denote ni “ |Mi|.

Consider any x-box X , and let Y and Z be a y- and a z-box ontaining the same set of

olors as X does.

Claim. 4|X X M1| ` |X X M2| ď 3n ` 1.

Proof. We distinguish two ases.

Case 1: X X M1 ‰ ∅.

A ube from X X M1 should appear in all three boxes X , Y , and Z, so it should lie in

X X Y X Z. Thus X X M1 “ X X Y X Z and |X X M1| “ 1.
Consider now the ubes in X X M2. There are at most 2pn ´ 1q of them lying in X X Y or

X X Z (beause the ube from X X Y X Z is in M1). Let a be some other ube from X X M2.

Reall that there is just one other ube a1
sharing a olor with a. But both Y and Z should

ontain suh ube, so a1 P Y X Z (but a1 R X X Y X Z). The map a ÞÑ a1
is learly injetive,

so the number of ubes a we are interested in does not exeed |pY X Zq z X| “ n ´ 1. Thus

|XXM2| ď 2pn´1q`pn´1q “ 3pn´1q, and hene 4|XXM1|`|XXM2| ď 4`3pn´1q “ 3n`1.

Case 2: X X M1 “ ∅.

In this ase, the same argument applies with several hanges. Indeed, X X M2 ontains

at most 2n ´ 1 ubes from X X Y or X X Z. Any other ube a in X X M2 orresponds to

some a1 P Y X Z (possibly with a1 P X), so there are at most n of them. All this results in

|X X M2| ď p2n ´ 1q ` n “ 3n ´ 1, whih is even better than we need (by the assumptions of

our ase). l

Summing up the inequalities from the Claim over all x-boxes X , we obtain

4n1 ` n2 ď np3n ` 1q.

Obviously, we also have n1 ` n2 ` n3 “ n3
.

Now we are prepared to estimate C. Due to the de�nition of the Mi, we have ni ě i|Ci|, so

C ď n1 ` n2

2
` n3

3
“ n1 ` n2 ` n3

3
` 4n1 ` n2

6
ď n3

3
` 3n2 ` n

6
“ npn ` 1qp2n ` 1q

6
.

It remains to present an example of an appropriate oloring in the above-mentioned number

of olors. For eah olor, we present the set of all ubes of this olor. These sets are:

1. n singletons of the form Si “ tpi, i, iqu (with 1 ď i ď n);

2. 3
`

n
2

˘

doubletons of the forms D1
i,j “ tpi, j, jq, pj, i, iqu, D2

i,j “ tpj, i, jq, pi, j, iqu, and D3
i,j “

tpj, j, iq, pi, i, jqu (with 1 ď i ă j ď n);
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3. 2
`

n
3

˘

triplets of the form Ti,j,k “ tpi, j, kq, pj, k, iq, pk, i, jqu (with 1 ď i ă j ă k ď n or

1 ď i ă k ă j ď n).

One may easily see that the ith boxes of eah orientation ontain the same set of olors, and

that

n ` 3npn ´ 1q
2

` npn ´ 1qpn ´ 2q
3

“ npn ` 1qp2n ` 1q
6

olors are used, as required.

Solution 2. We will approah a new version of the original problem. In this new version, eah

ube may have a olor, or be invisible (not both). Now we make sets of olors for eah nˆnˆ1
box as before (where �invisible" is not onsidered a olor) and group them by orientation, also

as before. Finally, we require that, for every non-empty set in any group, the same set must

appear in the other 2 groups. What is the maximum number of olors present with these new

requirements?

Let us all strange a big nˆnˆn ube whose painting sheme satis�es the new requirements,

and let D be the number of olors in a strange ube. Note that any ube that satis�es the

original requirements is also strange, so maxpDq is an upper bound for the original answer.

Claim. D ď npn`1qp2n`1q
6

.

Proof. The proof is by indution on n. If n “ 1, we must paint the ube with at most 1 olor.

Now, pik a nˆnˆn strange ube A, where n ě 2. If A is ompletely invisible, D “ 0 and
we are done. Otherwise, pik a non-empty set of olors S whih orresponds to, say, the boxes

X , Y and Z of di�erent orientations.

Now �nd all ubes in A whose olors are in S and make them invisible. Sine X , Y
and Z are now ompletely invisible, we an throw them away and fous on the remaining

pn ´ 1q ˆ pn ´ 1q ˆ pn ´ 1q ube B. The sets of olors in all the groups for B are the same

as the sets for A, removing exatly the olors in S, and no others! Therefore, every nonempty

set that appears in one group for B still shows up in all possible orientations (it is possible

that an empty set of olors in B only mathed X , Y or Z before these were thrown away, but

remember we do not require empty sets to math anyway). In summary, B is also strange.

By the indution hypothesis, we may assume that B has at most

pn´1qnp2n´1q
6

olors. Sine

there were at most n2
di�erent olors in S, we have that A has at most

pn´1qnp2n´1q
6

` n2 “
npn`1qp2n`1q

6
olors. l

Finally, the onstrution in the previous solution shows a painting sheme (with no invisible

ubes) that reahes this maximum, so we are done.
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C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . q
looooooooooooooooooomooooooooooooooooooon

A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . q
looooooooooooooooooomooooooooooooooooooon

B appears a times

.

(U.S.A.)

Solution 1. For any funtion g : Zą0 Ñ Zą0 and any subset X Ă Zą0, we de�ne gpXq “
tgpxq : x P Xu. We have that the image of fX is fXpZą0q “ Zą0 z X . We now show a general

lemma about the operation ˚, with the goal of showing that ˚ is assoiative.

Lemma 1. Let X and Y be �nite sets of positive integers. The funtions fX˚Y and fX ˝ fY are

equal.

Proof. We have

fX˚Y pZą0q “ Zą0zpX˚Y q “ pZą0zXqzfXpY q “ fXpZą0qzfXpY q “ fXpZą0zY q “ fXpfY pZą0qq.

Thus, the funtions fX˚Y and fX ˝ fY are stritly inreasing funtions with the same range.

Beause a stritly funtion is uniquely de�ned by its range, we have fX˚Y “ fX ˝ fY . l

Lemma 1 implies that ˚ is assoiative, in the sense that pA ˚ Bq ˚ C “ A ˚ pB ˚ Cq for any

�nite sets A,B, and C of positive integers. We prove the assoiativity by noting

Zą0 z ppA ˚ Bq ˚ Cq “ fpA˚Bq˚CpZą0q “ fA˚BpfCpZą0qq “ fApfBpfCpZą0qqq

“ fApfB˚CpZą0q “ fA˚pB˚CqpZą0q “ Zą0 z pA ˚ pB ˚ Cqq.
In light of the assoiativity of ˚, we may drop the parentheses when we write expressions

like A ˚ pB ˚ Cq. We also introdue the notation

X˚k “ X ˚ pX ˚ ¨ ¨ ¨ ˚ pX ˚ pX ˚ Xqq . . . q
loooooooooooooooooooomoooooooooooooooooooon

X appears k times

.

Our goal is then to show that A ˚B “ B ˚A implies A˚b “ B˚a
. We will do so via the following

general lemma.

Lemma 2. Suppose that X and Y are �nite sets of positive integers satisfying X ˚ Y “ Y ˚ X
and |X| “ |Y |. Then, we must have X “ Y .

Proof. Assume that X and Y are not equal. Let s be the largest number in exatly one of

X and Y . Without loss of generality, say that s P X z Y . The number fXpsq ounts the sth

number not in X , whih implies that

fXpsq “ s `
ˇ

ˇX X t1, 2, . . . , fXpsqu
ˇ

ˇ. (1)

Sine fXpsq ě s, we have that

 

fXpsq ` 1, fXpsq ` 2, . . .
(

X X “
 

fXpsq ` 1, fXpsq ` 2, . . .
(

X Y,

whih, together with the assumption that |X| “ |Y |, gives
ˇ

ˇX X t1, 2, . . . , fXpsqu
ˇ

ˇ “
ˇ

ˇY X t1, 2, . . . , fXpsqu
ˇ

ˇ. (2)
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Now onsider the equation

t ´
ˇ

ˇY X t1, 2, . . . , tu
ˇ

ˇ “ s.

This equation is satis�ed only when t P
“

fY psq, fY ps ` 1q
˘

, beause the left hand side ounts

the number of elements up to t that are not in Y . We have that the value t “ fXpsq satis�es
the above equation beause of (1) and (2). Furthermore, sine fXpsq R X and fXpsq ě s, we
have that fXpsq R Y due to the maximality of s. Thus, by the above disussion, we must have

fXpsq “ fY psq.
Finally, we arrive at a ontradition. The value fXpsq is neither in X nor in fXpY q, beause

s is not in Y by assumption. Thus, fXpsq R X ˚Y . However, sine s P X , we have fY psq P Y ˚X ,

a ontradition. l

We are now ready to �nish the proof. Note �rst of all that |A˚b| “ ab “ |B˚a|. Moreover,

sine A ˚ B “ B ˚ A, and ˚ is assoiative, it follows that A˚b ˚ B˚a “ B˚a ˚ A˚b
. Thus, by

Lemma 2, we have A˚b “ B˚a
, as desired.

Comment 1. Taking A “ X˚k
and B “ X˚l

generates many non-trivial examples where A˚B “ B˚A.
There are also other examples not of this form. For example, if A “ t1, 2, 4u and B “ t1, 3u, then
A ˚ B “ t1, 2, 3, 4, 6u “ B ˚ A.

Solution 2. We will use Lemma 1 from Solution 1. Additionally, let X˚k
be de�ned as in

Solution 1. If X and Y are �nite sets, then

fX “ fY ðñ fXpZą0q “ fY pZą0q ðñ pZą0 z Xq “ pZą0 z Y q ðñ X “ Y, (3)

where the �rst equivalene is beause fX and fY are stritly inreasing funtions, and the seond

equivalene is beause fXpZą0q “ Zą0 z X and fY pZą0q “ Zą0 z Y .
Denote g “ fA and h “ fB. The given relation A ˚ B “ B ˚ A is equivalent to fA˚B “ fB˚A

beause of (3), and by Lemma 1 of the �rst solution, this is equivalent to g˝h “ h˝g. Similarly,

the required relation A˚b “ B˚a
is equivalent to gb “ ha

. We will show that

gbpnq “ hapnq (4)

for all n P Zą0, whih su�es to solve the problem.

To start, we laim that (4) holds for all su�iently large n. Indeed, let p and q be the

maximal elements of A and B, respetively; we may assume that p ě q. Then, for every n ě p
we have gpnq “ n ` a and hpnq “ n ` b, whene gbpnq “ n ` ab “ hapnq, as was laimed.

In view of this laim, if (4) is not identially true, then there exists a maximal s with gbpsq ‰
hapsq. Without loss of generality, we may assume that gpsq ‰ s, for if we had gpsq “ hpsq “ s,
then s would satisfy (4). As g is inreasing, we then have gpsq ą s, so (4) holds for n “ gpsq.
But then we have

gpgbpsqq “ gb`1psq “ gbpnq “ hapnq “ hapgpsqq “ gphapsqq,
where the last equality holds in view of g ˝ h “ h ˝ g. By the injetivity of g, the above

equality yields gbpsq “ hapsq, whih ontradits the hoie of s. Thus, we have proved that (4)

is identially true on Zą0, as desired.

Comment 2. We present another proof of Lemma 2 of the �rst solution.

Let x “ |X| “ |Y |. Say that u is the smallest number in X and v is the smallest number in Y ;
assume without loss of generality that u ď v.

Let T be any �nite set of positive integers, and de�ne t “ |T |. Enumerate the elements of X as

x1 ă x2 ă ¨ ¨ ¨ ă xn. De�ne Sm “ fpT˚X˚pm´1qqpXq, and enumerate its elements sm,1 ă sm,2 ă ¨ ¨ ¨ ă
sm,n. Note that the Sm are pairwise disjoint; indeed, if we have m ă m1

, then

Sm Ă T ˚ X˚m Ă T ˚ X˚pm1´1q
and Sm1 “ pT ˚ X˚m1 q z pT ˚ X˚pm1´1qq

We laim the following statement, whih essentially says that the Sm are eventually linear translates

of eah other:
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Claim. For every i, there exists somemi and ci suh that for allm ą mi, we have that sm,i “ t`mn´ci.
Furthermore, the ci do not depend on the hoie of T .

First, we show that this laim implies Lemma 2. We may hoose T “ X and T “ Y . Then, there
is some m1

suh that for all m ě m1
, we have

fX˚mpXq “ fpY ˚X˚pm´1qqpXq. (5)

Beause u is the minimum element of X, v is the minimum element of Y , and u ď v, we have that

˜

8
ď

m“m1

fX˚mpXq
¸

Y X˚m1 “
˜

8
ď

m“m1

fpY ˚X˚pm´1qqpXq
¸

Y
`

Y ˚ X˚pm1´1q
˘

“ tu, u ` 1, . . . u,

and in both the �rst and seond expressions, the unions are of pairwise distint sets. By (5), we obtain

X˚m1 “ Y ˚X˚pm1´1q
. Now, beause X and Y ommute, we get X˚m1 “ X˚pm1´1q ˚Y , and so X “ Y .

We now prove the laim.

Proof of the laim. We indut downwards on i, �rst proving the statement for i “ n, and so on.

Assume that m is hosen so that all elements of Sm are greater than all elements of T (whih is

possible beause T is �nite). For i “ n, we have that sm,n ą sk,n for every k ă m. Thus, all pm ´ 1qn
numbers of the form sk,u for k ă m and 1 ď u ď n are less than sm,n. We then have that sm,n is the

ppm´1qn`xnqth number not in T , whih is equal to t` pm´1qn`xn. So we may hoose cn “ xn ´n,
whih does not depend on T , whih proves the base ase for the indution.

For i ă n, we have again that all elements sm,j for j ă i and sp,i for p ă m are less than sm,i,

so sm,i is the ppm ´ 1qi ` xiqth element not in T or of the form sp,j for j ą i and p ă m. But by

the indutive hypothesis, eah of the sequenes sp,j is eventually periodi with period n, and thus the

sequene sm,i suh must be as well. Sine eah of the sequenes sp,j ´ t with j ą i eventually do not

depend on T , the sequene sm,i ´ t eventually does not depend on T either, so the indutive step is

omplete. This proves the laim and thus Lemma 2. l



Shortlisted problems � solutions 51

C8.

Let n be a given positive integer. In the Cartesian plane, eah lattie point with

nonnegative oordinates initially ontains a butter�y, and there are no other butter�ies. The

neighborhood of a lattie point c onsists of all lattie points within the axis-aligned p2n` 1q ˆ
p2n ` 1q square entered at c, apart from c itself. We all a butter�y lonely, rowded, or om-

fortable, depending on whether the number of butter�ies in its neighborhood N is respetively

less than, greater than, or equal to half of the number of lattie points in N .

Every minute, all lonely butter�ies �y away simultaneously. This proess goes on for as

long as there are any lonely butter�ies. Assuming that the proess eventually stops, determine

the number of omfortable butter�ies at the �nal state.

(Bulgaria)

Answer: n2 ` 1.

Solution.We always identify a butter�y with the lattie point it is situated at. For two points p
and q, we write p ě q if eah oordinate of p is at least the orresponding oordinate of q. Let
O be the origin, and let Q be the set of initially oupied points, i.e., of all lattie points with

nonnegative oordinates. Let RH “ tpx, 0q : x ě 0u and RV “ tp0, yq : y ě 0u be the sets of

the lattie points lying on the horizontal and vertial boundary rays of Q. Denote by Npaq the
neighborhood of a lattie point a.

1. Initial observations. We all a set of lattie points up-right losed if its points stay in the

set after being shifted by any lattie vetor pi, jq with i, j ě 0. Whenever the butter�ies form a

up-right losed set S, we have |Nppq X S| ě |Npqq X S| for any two points p, q P S with p ě q.
So, sine Q is up-right losed, the set of butter�ies at any moment also preserves this property.

We assume all forthoming sets of lattie points to be up-right losed.

When speaking of some set S of lattie points, we all its points lonely, omfortable, or

rowded with respet to this set (i.e., as if the butter�ies were exatly at all points of S). We

all a set S Ă Q stable if it ontains no lonely points. In what follows, we are interested only

in those stable sets whose omplements in Q are �nite, beause one an easily see that only a

�nite number of butter�ies an �y away on eah minute.

If the initial set Q of butter�ies ontains some stable set S, then, learly no butter�y of

this set will �y away. On the other hand, the set F of all butter�ies in the end of the proess

is stable. This means that F is the largest (with respet to inlusion) stable set within Q, and

we are about to desribe this set.

2. A desription of a �nal set. The following notion will be useful. Let U “ t~u1, ~u2, . . . , ~udu
be a set of d pairwise non-parallel lattie vetors, eah having a positive x- and a negative

y-oordinate. Assume that they are numbered in inreasing order aording to slope. We now

de�ne a U-urve to be the broken line p0p1 . . . pd suh that p0 P RV, pd P RH, and
ÝÝÝÑpi´1pi “ ~ui

for all i “ 1, 2, . . . , m (see the Figure below to the left).

~u1

~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2 ~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3

~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4

~u1

~u2

~u3

~u4 O

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4

−→

−→

r1 r2 r3 r4 (k4 = 3)

~v1
~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3 ~v4

O

Kn

d0

d1
d2

d3

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Constrution of U-urve Constrution of D
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Now, let Kn “ tpi, jq : 1 ď i ď n, ´n ď j ď ´1u. Consider all the rays emerging at O and

passing through a point from Kn; number them as r1, . . . , rm in inreasing order aording to

slope. Let Ai be the farthest from O lattie point in ri X Kn, set ki “ |ri X Kn|, let ~vi “ ÝÝÑ
OAi,

and �nally denote V “ t~vi : 1 ď i ď mu; see the Figure above to the right. We will onentrate

on the V-urve d0d1 . . . dm; let D be the set of all lattie points p suh that p ě p1
for some (not

neessarily lattie) point p1
on the V-urve. In fat, we will show that D “ F .

Clearly, the V-urve is symmetri in the line y “ x. Denote by D the onvex hull of D.

3. We prove that the set D ontains all stable sets. Let S Ă Q be a stable set (reall that

it is assumed to be up-right losed and to have a �nite omplement in Q). Denote by S its

onvex hull; learly, the verties of S are lattie points. The boundary of S onsists of two rays

(horizontal and vertial ones) along with some V˚-urve for some set of lattie vetors V˚.

Claim 1. For every ~vi P V, there is a ~v ˚
i P V˚ o-direted with ~v with |~v ˚

i | ě |~v|.
Proof. Let ℓ be the supporting line of S parallel to ~vi (i.e., ℓ ontains some point of S, and
the set S lies on one side of ℓ). Take any point b P ℓ X S and onsider Npbq. The line ℓ splits
the set Npbq z ℓ into two ongruent parts, one having an empty intersetion with S. Hene, in
order for b not to be lonely, at least half of the set ℓ X Npbq (whih ontains 2ki points) should
lie in S. Thus, the boundary of S ontains a segment ℓ X S with at least ki ` 1 lattie points

(inluding b) on it; this segment orresponds to the required vetor ~v ˚
i P V˚. l
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p′

∂D

∂S

Proof of Claim 1 Proof of Claim 2

Claim 2. Eah stable set S Ď Q lies in D.

Proof. To show this, it su�es to prove that the V˚-urve lies in D, i.e., that all its verties

do so. Let p1
be an arbitrary vertex of the V˚-urve; p

1
partitions this urve into two parts, X

(being down-right of p) and Y (being up-left of p). The set V is split now into two parts: VX

onsisting of those ~vi P V for whih ~v ˚
i orresponds to a segment in X , and a similar part VY .

Notie that the V-urve onsists of several segments orresponding to VX , followed by those

orresponding to VY . Hene there is a vertex p of the V-urve separating VX from VY . Claim 1

now yields that p1 ě p, so p1 P D, as required. l

Claim 2 implies that the �nal set F is ontained in D.

4. D is stable, and its omfortable points are known. Reall the de�nitions of ri; let r
1
i be the

ray omplementary to ri. By our de�nitions, the set NpOq ontains no points between the rays

ri and ri`1, as well as between r1
i and r1

i`1.

Claim 3. In the set D, all lattie points of the V-urve are omfortable.

Proof. Let p be any lattie point of the V-urve, belonging to some segment didi`1. Draw the

line ℓ ontaining this segment. Then ℓXD ontains exatly ki `1 lattie points, all of whih lie

in Nppq exept for p. Thus, exatly half of the points in Nppq X ℓ lie in D. It remains to show

that all points of Nppq above ℓ lie in D (reall that all the points below ℓ lak this property).



Shortlisted problems � solutions 53

Notie that eah vetor in V has one oordinate greater than n{2; thus the neighborhood

of p ontains parts of at most two segments of the V-urve sueeding didi`1, as well as at most

two of those preeding it.

The angles formed by these onseutive segments are obtained from those formed by rj and
r1
j´1 (with i ´ 1 ď j ď i ` 2) by shifts; see the Figure below. All the points in Nppq above ℓ
whih ould lie outside D lie in shifted angles between rj, rj`1 or r1

j, r
1
j´1. But those angles,

restrited to Nppq, have no lattie points due to the above remark. The laim is proved. l

Kn

ri−1

ri

ri+1

ri+2

r′
i+2

r′
i−1

p

di

di+1

di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2

Proof of Claim 3

Claim 4. All the points of D whih are not on the boundary of D are rowded.

Proof. Let p P D be suh a point. If it is to the up-right of some point p1
on the urve, then the

laim is easy: the shift of Npp1q X D by

ÝÑ
p1p is still in D, and Nppq ontains at least one more

point of D � either below or to the left of p. So, we may assume that p lies in a right triangle

onstruted on some hypothenuse didi`1. Notie here that di, di`1 P Nppq.
Draw a line ℓ ‖ didi`1 through p, and draw a vertial line h through di; see Figure below.

Let DL and DR be the parts of D lying to the left and to the right of h, respetively (points

of D X h lie in both parts).

dididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididi

di+1

p

h

ℓ
p

di
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−→

Proof of Claim 4

Notie that the vetors

ÝÑ
dip,

ÝÝÝÝÝÑ
di`1di`2,

ÝÝÝÑ
didi`1,

ÝÝÝÑ
di´1di, and

ÝÝÝÑ
pdi`1 are arranged in non-inreasing

order by slope. This means that DL shifted by

ÝÑ
dip still lies in D, as well as DR shifted by

ÝÝÝÑ
di`1p.

As we have seen in the proof of Claim 3, these two shifts over all points of Nppq above ℓ, along
with those on ℓ to the left of p. Sine Nppq ontains also di and di`1, the point p is rowded.

l

Thus, we have proved that D “ F , and have shown that the lattie points on the V-urve
are exatly the omfortable points of D. It remains to �nd their number.

Reall the de�nition of Kn (see Figure on the �rst page of the solution). Eah segment didi`1

ontains ki lattie points di�erent from di. Taken over all i, these points exhaust all the lattie
points in the V-urve, exept for d1, and thus the number of lattie points on the V-urve is

1 ` řm
i“1 ki. On the other hand,

řm
i“1 ki is just the number of points in Kn, so it equals n2

.

Hene the answer to the problem is n2 ` 1.
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Comment 1. The assumption that the proess eventually stops is unneessary for the problem, as

one an see that, in fat, the proess stops for every n ě 1. Indeed, the proof of Claims 3 and 4 do not

rely essentially on this assumption, and they together yield that the set D is stable. So, only butter�ies

that are not in D may �y away, and this takes only a �nite time.

This assumption has been inserted into the problem statement in order to avoid several tehnial

details regarding �niteness issues. It may also simplify several other arguments.

Comment 2. The desription of the �nal set Fp“ Dq seems to be ruial for the solution; the

Problem Seletion Committee is not aware of any solution that ompletely avoids suh a desription.

On the other hand, after the set D has been de�ned, the further steps may be performed in several

ways. For example, in order to prove that all butter�ies outside D will �y away, one may argue as

follows. (Here we will also make use of the assumption that the proess eventually stops.)

First of all, notie that the proess an be modi�ed in the following manner: Eah minute, exatly

one of the lonely butter�ies �ies away, until there are no more lonely butter�ies. The modi�ed proess

neessarily stops at the same state as the initial one. Indeed, one may observe, as in solution above,

that the (unique) largest stable set is still the �nal set for the modi�ed proess.

Thus, in order to prove our laim, it su�es to indiate an order in whih the butter�ies should �y

away in the new proess; if we are able to exhaust the whole set Q z D, we are done.
Let C0 “ d0d1 . . . dm be the V-urve. Take its opy C and shift it downwards so that d0 omes to

some point below the origin O. Now we start moving C upwards ontinuously, until it omes bak to its

initial position C0. At eah moment when C meets some lattie points, we onvine all the butter�ies at

those points to �y away in a ertain order. We will now show that we always have enough arguments

for butter�ies to do so, whih will �nish our argument for the laim..

Let C1 “ d1
0d

1
1 . . . d

1
m be a position of C when it meets some butter�ies. We assume that all butter�ies

under this urrent position of C were already onvined enough and �ied away. Consider the lowest

butter�y b on C1
. Let d1

id
1
i`1 be the segment it lies on; we hoose i so that b ‰ d1

i`1 (this is possible

beause C as not yet reahed C0).
Draw a line ℓ ontaining the segment d1

id
1
i`1. Then all the butter�ies in Npbq are situated on or

above ℓ; moreover, those on ℓ all lie on the segment didi`1. But this segment now ontains at most ki
butter�ies (inluding b), sine otherwise some butter�y had to oupy d1

i`1 whih is impossible by the

hoie of b. Thus, b is lonely and hene may be onvined to �y away.

After b has �ied away, we swith to the lowest of the remaining butter�ies on C1
, and so on.

Claims 3 and 4 also allow some di�erent proofs whih are not presented here.
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Geometry

G1.

Let ABCDE be a onvex pentagon suh that AB “ BC “ CD, =EAB “ =BCD, and

=EDC “ =CBA. Prove that the perpendiular line from E to BC and the line segments AC
and BD are onurrent.

(Italy)

Solution 1. Throughout the solution, we refer to =A, =B, =C, =D, and =E as internal

angles of the pentagon ABCDE. Let the perpendiular bisetors of AC and BD, whih pass

respetively through B and C, meet at point I. Then BD K CI and, similarly, AC K BI.
Hene AC and BD meet at the orthoenter H of the triangle BIC, and IH K BC. It remains

to prove that E lies on the line IH or, equivalently, EI K BC.

Lines IB and IC biset =B and =C, respetively. Sine IA “ IC, IB “ ID, and AB “
BC “ CD, the triangles IAB, ICB and ICD are ongruent. Hene =IAB “ =ICB “
=C{2 “ =A{2, so the line IA bisets =A. Similarly, the line ID bisets =D. Finally, the

line IE bisets =E beause I lies on all the other four internal bisetors of the angles of the

pentagon.

The sum of the internal angles in a pentagon is 5400
, so

=E “ 5400 ´ 2=A ` 2=B.

In quadrilateral ABIE,

=BIE “ 3600 ´ =EAB ´ =ABI ´ =AEI “ 3600 ´ =A ´ 1

2
=B ´ 1

2
=E

“ 3600 ´ =A ´ 1

2
=B ´ p2700 ´ =A ´ =Bq

“ 900 ` 1

2
=B “ 900 ` =IBC,

whih means that EI K BC, ompleting the proof.

A

E

D

B T C

I

H

Solution 2. We present another proof of the fat that E lies on line IH . Sine all �ve internal

bisetors of ABCDE meet at I, this pentagon has an insribed irle with enter I. Let this
irle touh side BC at T .

Applying Brianhon's theorem to the (degenerate) hexagon ABTCDE we onlude that

AC, BD and ET are onurrent, so point E also lies on line IHT , ompleting the proof.
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Solution 3. We present yet another proof that EI K BC. In pentagon ABCDE, =E ă
1800 ðñ =A ` =B ` =C ` =D ą 3600

. Then =A ` =B “ =C ` =D ą 1800
, so rays EA

and CB meet at a point P , and rays BC and ED meet at a point Q. Now,

=PBA “ 1800 ´ =B “ 1800 ´ =D “ =QDC

and, similarly, =PAB “ =QCD. Sine AB “ CD, the triangles PAB and QCD are ongruent

with the same orientation. Moreover, PQE is isoseles with EP “ EQ.

A

E

B C

I

H

P Q

D

In Solution 1 we have proved that triangles IAB and ICD are also ongruent with the

same orientation. Then we onlude that quadrilaterals PBIA and QDIC are ongruent,

whih implies IP “ IQ. Then EI is the perpendiular bisetor of PQ and, therefore, EI K
PQ ðñ EI K BC.

Comment. Even though all three solutions used the point I, there are solutions that do not need it.

We present an outline of suh a solution: if J is the inenter of △QCD (with P and Q as de�ned in

Solution 3), then a simple angle hasing shows that triangles CJD and BHC are ongruent. Then if

S is the projetion of J onto side CD and T is the orthogonal projetion of H onto side BC, one an
verify that

QT “ QC ` CT “ QC ` DS “ QC ` CD ` DQ ´ QC

2
“ PB ` BC ` QC

2
“ PQ

2
,

so T is the midpoint of PQ, and E, H and T all lie on the perpendiular bisetor of PQ.
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G2.

Let R and S be distint points on irle Ω, and let t denote the tangent line to Ω at R.
Point R1

is the re�etion of R with respet to S. A point I is hosen on the smaller ar RS of

Ω so that the irumirle Γ of triangle ISR1
intersets t at two di�erent points. Denote by A

the ommon point of Γ and t that is losest to R. Line AI meets Ω again at J . Show that JR1

is tangent to Γ.
(Luxembourg)

Solution 1. In the irles Ω and Γ we have =JRS “ =JIS “ =AR1S. On the other hand,

sine RA is tangent to Ω, we get =SJR “ =SRA. So the triangles ARR1
and SJR are similar,

and

R1R

RJ
“ AR1

SR
“ AR1

SR1
.

The last relation, together with =AR1S “ =JRR1
, yields △ASR1 „ △R1JR, hene

=SAR1 “ =RR1J . It follows that JR1
is tangent to Γ at R1

.

R

S

R′

A

I

J

Ω

ω
R

S

R′

A

I

J

A′

Ω

ω

Solution 1 Solution 2

Solution 2. As in Solution 1, we notie that =JRS “ =JIS “ =AR1S, so we have RJ ‖ AR1
.

Let A1
be the re�etion of A about S; then ARA1R1

is a parallelogram with enter S, and
hene the point J lies on the line RA1

.

From =SR1A1 “ =SRA “ =SJR we get that the points S, J, A1, R1
are onyli. This

proves that =SR1J “ =SA1J “ =SA1R “ =SAR1
, so JR1

is tangent to Γ at R1
.
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G3.

Let O be the irumenter of an aute salene triangle ABC. Line OA intersets the

altitudes of ABC through B and C at P and Q, respetively. The altitudes meet at H . Prove

that the irumenter of triangle PQH lies on a median of triangle ABC.
(Ukraine)

Solution. Suppose, without loss of generality, that AB ă AC. We have =PQH “ 900 ´
=QAB “ 900 ´ =OAB “ 1

2
=AOB “ =ACB, and similarly =QPH “ =ABC. Thus triangles

ABC and HPQ are similar. Let Ω and ω be the irumirles of ABC and HPQ, respetively.
Sine =AHP “ 900 ´ =HAC “ =ACB “ =HQP , line AH is tangent to ω.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
C

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH T

MS

O

Ω

ω

Let T be the enter of ω and let lines AT and BC meet at M . We will take advantage

of the similarity between ABC and HPQ and the fat that AH is tangent to ω at H , with

A on line PQ. Consider the orresponding tangent AS to Ω, with S P BC. Then S and A
orrespond to eah other in △ABC „ △HPQ, and therefore =OSM “ =OAT “ =OAM .

Hene quadrilateral SAOM is yli, and sine the tangent line AS is perpendiular to AO,
=OMS “ 1800 ´ =OAS “ 900

. This means that M is the orthogonal projetion of O onto

BC, whih is its midpoint. So T lies on median AM of triangle ABC.
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G4.

In triangle ABC, let ω be the exirle opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respetively. The irle AEF intersets line BC
at P and Q. Let M be the midpoint of AD. Prove that the irle MPQ is tangent to ω.

(Denmark)

Solution 1. Denote by Ω the irle AEFPQ, and denote by γ the irle PQM . Let the line

AD meet ω again at T ‰ D. We will show that γ is tangent to ω at T .
We �rst prove that points P,Q,M, T are onyli. Let A1

be the enter of ω. Sine

A1E K AE and A1F K AF , AA1
is a diameter in Ω. Let N be the midpoint of DT ; from

A1D “ A1T we an see that =A1NA “ 900
and therefore N also lies on the irle Ω. Now, from

the power of D with respet to the irles γ and Ω we get

DP ¨ DQ “ DA ¨ DN “ 2DM ¨ DT

2
“ DM ¨ DT,

so P,Q,M, T are onyli.

If EF ‖ BC, then ABC is isoseles and the problem is now immediate by symmetry.

Otherwise, let the tangent line to ω at T meet line BC at point R. The tangent line segments

RD and RT have the same length, so A1R is the perpendiular bisetor ofDT ; sine ND “ NT ,
N lies on this perpendiular bisetor.

In right triangle A1RD, RD2 “ RN ¨RA1 “ RP ¨RQ, in whih the last equality was obtained

from the power of R with respet to Ω. Hene RT 2 “ RP ¨ RQ, whih implies that RT is also

tangent to γ. Beause RT is a ommon tangent to ω and γ, these two irles are tangent at T .

Ω

A

P B D

M

Q

A′
N

T

F

C

ω

E

γ

R

Solution 2. After proving that P,Q,M, T are onyli, we �nish the problem in a di�erent

fashion. We only onsider the ase in whih EF and BC are not parallel. Let lines PQ and

EF meet at point R. Sine PQ and EF are radial axes of Ω, γ and ω, γ, respetively, R is the

radial enter of these three irles.

With respet to the irle ω, the line DR is the polar of D, and the line EF is the polar

of A. So the pole of line ADT is DR X EF “ R, and therefore RT is tangent to ω.
Finally, sine T belongs to γ and ω and R is the radial enter of γ, ω and Ω, line RT is

the radial axis of γ and ω, and sine it is tangent to ω, it is also tangent to γ. Beause RT is

a ommon tangent to ω and γ, these two irles are tangent at T .

Comment. In Solution 2 we de�ned the point R from Solution 1 in a di�erent way.
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Solution 3. We give an alternative proof that the irles are tangent at the ommon point T .
Again, we start from the fat that P,Q,M, T are onyli. Let point O be the midpoint of

diameter AA1
. Then MO is the midline of triangle ADA1

, so MO ‖ A1D. Sine A1D K PQ,
MO is perpendiular to PQ as well.

Looking at irle Ω, whih has enter O, MO K PQ implies that MO is the perpendiular

bisetor of the hord PQ. Thus M is the midpoint of ar

ŊPQ from γ, and the tangent line m
to γ at M is parallel to PQ.

Ω

A

P B D

M

Q

A′
N

T

F

E

C

ω

m

γ

O

Consider the homothety with enter T and ratio

TD
TM

. It takes D to M , and the line PQ
to the line m. Sine the irle that is tangent to a line at a given point and that goes through

another given point is unique, this homothety also takes ω (tangent to PQ and going through T )
to γ (tangent to m and going through T ). We onlude that ω and γ are tangent at T .
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G5.

Let ABCC1B1A1 be a onvex hexagon suh that AB “ BC, and suppose that the line

segments AA1, BB1, and CC1 have the same perpendiular bisetor. Let the diagonals AC1

and A1C meet at D, and denote by ω the irle ABC. Let ω interset the irle A1BC1 again

at E ‰ B. Prove that the lines BB1 and DE interset on ω.
(Ukraine)

Solution 1. If AA1 “ CC1, then the hexagon is symmetri about the line BB1; in par-

tiular the irles ABC and A1BC1 are tangent to eah other. So AA1 and CC1 must be

di�erent. Sine the points A and A1 an be interhanged with C and C1, respetively, we may

assume AA1 ă CC1.

Let R be the radial enter of the irles AEBC and A1EBC1, and the irumirle of the

symmetri trapezoid ACC1A1; that is the ommon point of the pairwise radial axes AC, A1C1,

and BE. By the symmetry of AC and A1C1, the point R lies on the ommon perpendiular

bisetor of AA1 and CC1, whih is the external bisetor of =ADC.
Let F be the seond intersetion of the line DR and the irle ACD. From the power of

R with respet to the irles ω and ACFD we have RB ¨ RE “ RA ¨ RC “ RD ¨ DF , so the

points B,E,D and F are onyli.

The line RDF is the external bisetor of =ADC, so the point F bisets the ar

ŔCDA.
By AB “ BC, on irle ω, the point B is the midpoint of ar

ŐAEC; let M be the point

diametrially opposite to B, that is the midpoint of the opposite ar

ŊCA of ω. Notie that the
points B, F and M lie on the perpendiular bisetor of AC, so they are ollinear.

R

B1

C1C

B

E

A

ω

A1

F

D

M

X

Finally, letX be the seond intersetion point of ω and the lineDE. Sine BM is a diameter

in ω, we have =BXM “ 900
. Moreover,

=EXM “ 1800 ´ =MBE “ 1800 ´ =FBE “ =EDF,

so MX and FD are parallel. Sine BX is perpendiular to MX and BB1 is perpendiular

to FD, this shows that X lies on line BB1.
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Solution 2. De�ne point M as the point opposite to B on irle ω, and point R as the

intersetion of lines AC, A1C1 and BE, and show that R lies on the external bisetor of

=ADC , like in the �rst solution.

Sine B is the midpoint of the ar

ŐAEC, the line BER is the external bisetor of =CEA.
Now we show that the internal angle bisetors of =ADC and =CEA meet on the segment AC.
Let the angle bisetor of =ADC meet AC at S, and let the angle bisetor of =CEA, whih is

line EM , meet AC at S 1
. By applying the angle bisetor theorem to both internal and external

bisetors of =ADC and =CEA,

AS : CS “ AD : CD “ AR : CR “ AE : CE “ AS 1 : CS 1,

so indeed S “ S 1
.

By =RDS “ =SER “ 900
the points R, S, D and E are onyli.

B1

C1

D

M

C

R

A1
A

E

B

X

ω

S = S ′

Now let the linesBB1 andDE meet at pointX . Notie that =EXB “ =EDS beause both

BB1 and DS are perpendiular to the line DR, we have that =EDS “ =ERS in irle SRDE,
and =ERS “ =EMB beause SR K BM and ER K ME. Therefore, =EXB “ =EMB, so

indeed, the point X lies on ω.
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G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verties of A that lie inside B or on its boundary are onseutive.

(That is, prove that there exists a line separating those verties of A that lie inside B or on

its boundary from the other verties of A.)

(Czeh Republi)

Solution 1. In both solutions, by a polygon we always mean its interior together with its

boundary.

We start with �nding a regular n-gon C whih piq is insribed into B (that is, all verties

of C lie on the perimeter of B); and piiq is either a translation of A, or a homotheti image of A
with a positive fator.

Suh a polygon may be onstruted as follows. Let OA and OB be the enters of A and B,
respetively, and let A be an arbitrary vertex of A. Let

ÝÝÝÑ
OBC be the vetor o-diretional

to

ÝÝÝÑ
OAA, with C lying on the perimeter of B. The rotations of C around OB by multiples

of 2π{n form the required polygon. Indeed, it is regular, insribed into B (due to the rotational

symmetry of B), and �nally the translation/homothety mapping

ÝÝÝÑ
OAA to

ÝÝÝÑ
OBC maps A to C.

Now we separate two ases.

A

C

OA

OB

B
A

C

C1

C2

C3

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

BT

BB

BL

BR
A

C

Constrution of C Case 1: Translation

Case 1: C is a translation of A by a vetor ~v.

Denote by t the translation transform by vetor ~v. We need to prove that the verties of C
whih stay in B under t are onseutive. To visualize the argument, we refer the plane to Carte-

sian oordinates so that the x-axis is o-diretional with ~v. This way, the notions of right/left
and top/bottom are also introdued, aording to the x- and y-oordinates, respetively.

Let BT and BB be the top and the bottom verties of B (if several verties are extremal, we

take the rightmost of them). They split the perimeter of B into the right part BR and the left

part BL (the verties BT and BB are assumed to lie in both parts); eah part forms a onneted

subset of the perimeter of B. So the verties of C are also split into two parts CL Ă BL and

CR Ă BR, eah of whih onsists of onseutive verties.

Now, all the points in BR (and hene in CR) move out from B under t, sine they are

the rightmost points of B on the orresponding horizontal lines. It remains to prove that the

verties of CL whih stay in B under t are onseutive.

For this purpose, let C1, C2, and C3 be three verties in CL suh that C2 is between C1

and C3, and tpC1q and tpC3q lie in B; we need to prove that tpC2q P B as well. Let Ai “ tpCiq.
The line through C2 parallel to ~v rosses the segment C1C3 to the right of C2; this means that

this line rosses A1A3 to the right of A2, so A2 lies inside the triangle A1C2A3 whih is ontained

in B. This yields the desired result.

Case 2: C is a homotheti image of A entered at X with fator k ą 0.
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Denote by h the homothety mapping C to A. We need now to prove that the verties of C
whih stay in B after applying h are onseutive. If X P B, the laim is easy. Indeed, if k ă 1,
then the verties of A lie on the segments of the form XC (C being a vertex of C) whih lie

in B. If k ą 1, then the verties of A lie on the extensions of suh segments XC beyond C,
and almost all these extensions lie outside B. The exeptions may our only in ase when X
lies on the boundary of B, and they may ause one or two verties of A stay on the boundary

of B. But even in this ase those verties are still onseutive.

So, from now on we assume that X R B.
Now, there are two verties BT and BB of B suh that B is ontained in the angle =BTXBB;

if there are several options, say, for BT, then we hoose the farthest one fromX if k ą 1, and the
nearest one if k ă 1. For the visualization purposes, we refer the plane to Cartesian oordinates

so that the y-axis is o-diretional with
ÝÝÝÝÑ
BBBT, and X lies to the left of the line BTBB. Again,

the perimeter of B is split by BT and BB into the right part BR and the left part BL, and the

set of verties of C is split into two subsets CR Ă BR and CL Ă BL.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

B
C
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A3

X

BT

BB

BR

A

C

Case 2, X inside B Subase 2.1: k ą 1

Subase 2.1: k ą 1.

In this subase, all points from BR (and hene from CR) move out from B under h, beause
they are the farthest points of B on the orresponding rays emanated from X . It remains to

prove that the verties of CL whih stay in B under h are onseutive.

Again, let C1, C2, C3 be three verties in CL suh that C2 is between C1 and C3, and hpC1q
and hpC3q lie in B. Let Ai “ hpCiq. Then the ray XC2 rosses the segment C1C3 beyond C2,

so this ray rosses A1A3 beyond A2; this implies that A2 lies in the triangle A1C2A3, whih is

ontained in B.
C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3
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X

BT

BB

BRA

C

Subase 2.2: k ă 1

Subase 2.2: k ă 1.

This ase is ompletely similar to the previous one. All points from BL (and hene from CL
move out from B under h, beause they are the nearest points of B on the orresponding
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rays emanated from X . Assume that C1, C2, and C3 are three verties in CR suh that C2

lies between C1 and C3, and hpC1q and hpC3q lie in B; let Ai “ hpCiq. Then A2 lies on

the segment XC2, and the segments XA2 and A1A3 ross eah other. Thus A2 lies in the

triangle A1C2A3, whih is ontained in B.

Comment 1. In fat, Case 1 an be redued to Case 2 via the following argument.

Assume that A and C are ongruent. Apply to A a homothety entered at OB with a fator slightly

smaller than 1 to obtain a polygon A1
. With appropriately hosen fator, the verties of A whih were

outside/inside B stay outside/inside it, so it su�es to prove our laim for A1
instead of A. And now,

the polygon A1
is a homotheti image of C, so the arguments from Case 2 apply.

Comment 2. After the polygon C has been found, the rest of the solution uses only the onvexity of

the polygons, instead of regularity. Thus, it proves a more general statement:

Assume that A, B, and C are three onvex polygons in the plane suh that C is insribed into B,
and A an be obtained from it via either translation or positive homothety. Then the verties of A that

lie inside B or on its boundary are onseutive.

Solution 2. Let OA and OB be the enters ofA and B, respetively. Denote rns “ t1, 2, . . . , nu.
We start with introduing appropriate enumerations and notations. Enumerate the sidelines

of B lokwise as ℓ1, ℓ2, . . . , ℓn. Denote by Hi the half-plane of ℓi that ontains B (Hi is assumed

to ontain ℓi); by Bi the midpoint of the side belonging to ℓi; and �nally denote

ÝÑ
bi “ ÝÝÝÑ

BiOB.

(As usual, the numbering is yli modulo n, so ℓn`i “ ℓi et.)
Now, hoose a vertex A1 of A suh that the vetor

ÝÝÝÑ
OAA1 points �mostly outside H1�;

stritly speaking, this means that the salar produt xÝÝÝÑ
OAA1,

ÝÑ
b1y is minimal. Starting from A1,

enumerate the verties of A lokwise as A1, A2, . . . , An; by the rotational symmetry, the hoie

of A1 yields that the vetor
ÝÝÝÑ
OAAi points �mostly outside Hi�, i.e.,

xÝÝÝÑ
OAAi,

ÝÑ
bi y “ min

jPrns
xÝÝÝÑ
OAAj,

ÝÑ
bi y. (1)

An

A1 A2

A3Bn

B1 B2

B3

ℓ1

ℓ2
ℓ3

−→
bn

−→
b1

−→
b2

−→
b3H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1

OA

OBB A

Enumerations and notations

We intend to reformulate the problem in more ombinatorial terms, for whih purpose we

introdue the following notion. Say that a subset I Ď rns is onneted if the elements of this

set are onseutive in the yli order (in other words, if we join eah i with i`1 mod n by an

edge, this subset is onneted in the usual graph sense). Clearly, the union of two onneted

subsets sharing at least one element is onneted too. Next, for any half-plane H the indies

of verties of, say, A that lie in H form a onneted set.

To aess the problem, we denote

M “ tj P rns : Aj R Bu, Mi “ tj P rns : Aj R Hiu for i P rns.
We need to prove that rns z M is onneted, whih is equivalent to M being onneted. On

the other hand, sine B “ Ş

iPrns Hi, we have M “ Ť

iPrns Mi, where the sets Mi are easier to

investigate. We will utilize the following properties of these sets; the �rst one holds by the

de�nition of Mi, along with the above remark.
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The sets Mi

Property 1: Eah set Mi is onneted. l

Property 2: If Mi is nonempty, then i P Mi.

Proof. Indeed, we have

j P Mi ðñ Aj R Hi ðñ xÝÝÝÑ
BiAj ,

ÝÑ
bi y ă 0 ðñ xÝÝÝÑ

OAAj ,
ÝÑ
bi y ă xÝÝÝÑ

OABi,
ÝÑ
bi y. (2)

The right-hand part of the last inequality does not depend on j. Therefore, if some j lies in Mi,

then by (1) so does i. l

In view of Property 2, it is useful to de�ne the set

M 1 “ ti P rns : i P Miu “ ti P rns : Mi ‰ ∅u.

Property 3: The set M 1
is onneted.

Proof. To prove this property, we proeed on with the investigation started in (2) to write

i P M 1 ðñ Ai P Mi ðñ xÝÝÝÑ
BiAi,

ÝÑ
bi y ă 0 ðñ xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă xÝÝÝÑ

OBBi,
ÝÑ
bi y ` xÝÝÝÑ

AiOA,
ÝÑ
bi y.

The right-hand part of the obtained inequality does not depend on i, due to the rotational

symmetry; denote its onstant value by µ. Thus, i P M 1
if and only if xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă µ. This

ondition is in turn equivalent to the fat that Bi lies in a ertain (open) half-plane whose

boundary line is orthogonal to OBOA; thus, it de�nes a onneted set. l

Now we an �nish the solution. Sine M 1 Ď M , we have

M “
ď

iPrns

Mi “ M 1 Y
ď

iPrns

Mi,

so M an be obtained from M 1
by adding all the sets Mi one by one. All these sets are

onneted, and eah nonempty Mi ontains an element of M 1
(namely, i). Thus their union is

also onneted.

Comment 3. Here we present a way in whih one an ome up with a solution like the one above.

Assume, for sake of simpliity, that OA lies inside B. Let us �rst put onto the plane a very small

regular n-gon A1
entered at OA and aligned with A; all its verties lie inside B. Now we start blowing

it up, looking at the order in whih the verties leave B. To go out of B, a vertex should ross a ertain

side of B (whih is hard to desribe), or, equivalently, to ross at least one sideline of B � and this

event is easier to desribe. Indeed, the �rst vertex of A1
to ross ℓi is the vertex A1

i (orresponding to Ai

in A); more generally, the verties A1
j ross ℓi in suh an order that the salar produt xÝÝÝÑ

OAAj ,
ÝÑ
bi y does

not inrease. For di�erent indies i, these orders are just yli shifts of eah other; and this provides

some intuition for the notions and laims from Solution 2.



68 IMO 2017, Rio de Janeiro

G7.

A onvex quadrilateral ABCD has an insribed irle with enter I. Let Ia, Ib, Ic,
and Id be the inenters of the triangles DAB, ABC, BCD, and CDA, respetively. Suppose
that the ommon external tangents of the irles AIbId and CIbId meet at X , and the ommon

external tangents of the irles BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

Solution. Denote by ωa, ωb, ωc and ωd the irles AIbId, BIaIc, CIbId, and DIaIc, let their
enters be Oa, Ob, Oc and Od, and let their radii be ra, rb, rc and rd, respetively.

Claim 1. IbId K AC and IaIc K BD.

Proof. Let the inirles of triangles ABC and ACD be tangent to the line AC at T and T 1
,

respetively. (See the �gure to the left.) We have AT “ AB`AC´BC
2

in triangle ABC, AT 1 “
AD`AC´CD

2
in triangle ACD, and AB ´ BC “ AD ´ CD in quadrilateral ABCD, so

AT “ AC ` AB ´ BC

2
“ AC ` AD ´ CD

2
“ AT 1.

This shows T “ T 1
. As an immediate onsequene, IbId K AC.

The seond statement an be shown analogously. l

TA C

B

Ib

T ′

Id

D D

I

Id

A C

Ib

B

ωa

T
Oa

Claim 2. The points Oa, Ob, Oc and Od lie on the lines AI, BI, CI and DI, respetively.

Proof. By symmetry it su�es to prove the laim for Oa. (See the �gure to the right above.)

Notie �rst that the inirles of triangles ABC and ACD an be obtained from the inirle of

the quadrilateral ABCD with homothety enters B and D, respetively, and homothety fators

less than 1, therefore the points Ib and Id lie on the line segments BI and DI, respetively.
As is well-known, in every triangle the altitude and the diameter of the irumirle starting

from the same vertex are symmetri about the angle bisetor. By Claim 1, in triangle AIdIb,
the segment AT is the altitude starting from A. Sine the foot T lies inside the segment

IbId, the irumenter Oa of triangle AIdIb lies in the angle domain IbAId in suh a way that

=IbAT “ =OaAId. The points Ib and Id are the inenters of triangles ABC and ACD, so the

lines AIb and AId biset the angles =BAC and =CAD, respetively. Then

=OaAD “ =OaAId ` =IdAD “ =IbAT ` =IdAD “ 1
2
=BAC ` 1

2
=CAD “ 1

2
=BAD,

so Oa lies on the angle bisetor of =BAD, that is, on line AI. l

The point X is the external similitude enter of ωa and ωc; let U be their internal similitude

enter. The points Oa and Oc lie on the perpendiular bisetor of the ommon hord IbId of ωa

and ωc, and the two similitude enters X and U lie on the same line; by Claim 2, that line is

parallel to AC.
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U Oc
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I

ωc
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From the similarity of the irles ωa and ωc, from OaIb “ OaId “ OaA “ ra and OcIb “
OcId “ OcC “ rc, and from AC ‖ OaOc we an see that

OaX

OcX
“ OaU

OcU
“ ra

rc
“ OaIb

OcIb
“ OaId

OcId
“ OaA

OcC
“ OaI

OcI
.

So the points X,U, Ib, Id, I lie on the Apollonius irle of the points Oa, Oc with ratio ra : rc. In
this Apollonius irle XU is a diameter, and the lines IU and IX are respetively the internal

and external bisetors of =OaIOc “ =AIC, aording to the angle bisetor theorem. Moreover,

in the Apollonius irle the diameter UX is the perpendiular bisetor of IbId, so the lines IX
and IU are the internal and external bisetors of =IbIId “ =BID, respetively.

Repeating the same argument for the points B,D instead of A,C, we get that the line IY is

the internal bisetor of =AIC and the external bisetor of =BID. Therefore, the lines IX and

IY respetively are the internal and external bisetors of =BID, so they are perpendiular.

Comment. In fat the points Oa, Ob, Oc and Od lie on the line segments AI, BI, CI and DI,
respetively. For the point Oa this an be shown for example by =IdOaA ` =AOaIb “ p1800 ´
2=OaAIdq`p1800 ´2=IbAOaq “ 360˝ ´=BAD “ =ADI`=DIA`=AIB`=IBA ą =IdIA`=AIIb.

The solution also shows that the line IY passes through the point U , and analogously, IX passes

through the internal similitude enter of ωb and ωd.

http://mathworld.wolfram.com/ApolloniusCircle.html
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G8.

There are 2017 mutually external irles drawn on a blakboard, suh that no two are

tangent and no three share a ommon tangent. A tangent segment is a line segment that is

a ommon tangent to two irles, starting at one tangent point and ending at the other one.

Luiano is drawing tangent segments on the blakboard, one at a time, so that no tangent

segment intersets any other irles or previously drawn tangent segments. Luiano keeps

drawing tangent segments until no more an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)

Answer: If there were n irles, there would always be exatly 3pn ´ 1q segments; so the only

possible answer is 3 ¨ 2017 ´ 3 “ 6048.

Solution 1. First, onsider a partiular arrangement of irles C1, C2, . . . , Cn where all the

enters are aligned and eah Ci is elipsed from the other irles by its neighbors � for example,

taking Ci with enter pi2, 0q and radius i{2 works. Then the only tangent segments that an

be drawn are between adjaent irles Ci and Ci`1, and exatly three segments an be drawn

for eah pair. So Luiano will draw exatly 3pn ´ 1q segments in this ase.

C3

C4 C5
C2C1

For the general ase, start from a �nal on�guration (that is, an arrangement of irles

and segments in whih no further segments an be drawn). The idea of the solution is to

ontinuously resize and move the irles around the plane, one by one (in partiular, making

sure we never have 4 irles with a ommon tangent line), and show that the number of segments

drawn remains onstant as the piture hanges. This way, we an redue any irle/segment

on�guration to the partiular one mentioned above, and the �nal number of segments must

remain at 3n ´ 3.
Some preliminary onsiderations: look at all possible tangent segments joining any two

irles. A segment that is tangent to a irle A an do so in two possible orientations � it

may ome out of A in lokwise or ounterlokwise orientation. Two segments touhing the

same irle with the same orientation will never interset eah other. Eah pair pA,Bq of irles
has 4 hoies of tangent segments, whih an be identi�ed by their orientations � for example,

pA`, B´q would be the segment whih omes out of A in lokwise orientation and omes out of

B in ounterlokwise orientation. In total, we have 2npn ´ 1q possible segments, disregarding

intersetions.

Now we pik a irle C and start to ontinuously move and resize it, maintaining all existing

tangent segments aording to their identi�ations, inluding those involving C. We an keep

our hoie of tangent segments until the on�guration reahes a transition. We lose nothing if

we assume that C is kept at least ε units away from any other irle, where ε is a positive, �xed
onstant; therefore at a transition either: (1) a urrently drawn tangent segment t suddenly
beomes obstruted; or (2) a urrently absent tangent segment t suddenly beomes unobstruted

and available.

Claim. A transition an only our when three irles C1, C2, C3 are tangent to a ommon line ℓ
ontaining t, in a way suh that the three tangent segments lying on ℓ (joining the three irles
pairwise) are not obstruted by any other irles or tangent segments (other than C1, C2, C3).

Proof. Sine (2) is e�etively the reverse of (1), it su�es to prove the laim for (1). Suppose t
has suddenly beome obstruted, and let us onsider two ases.
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Case 1: t beomes obstruted by a irle

t

Ø

t

Ø

t

Then the new irle beomes the third irle tangent to ℓ, and no other irles or tangent

segments are obstruting t.

Case 2: t beomes obstruted by another tangent segment t1

When two segments t and t1
�rst interset eah other, they must do so at a vertex of one of

them. But if a vertex of t1
�rst rossed an interior point of t, the irle assoiated to this vertex

was already bloking t (absurd), or is about to (we already took are of this in ase 1). So we

only have to analyze the possibility of t and t1
suddenly having a ommon vertex. However,

if that happens, this vertex must belong to a single irle (remember we are keeping di�erent

irles at least ε units apart from eah other throughout the moving/resizing proess), and

therefore they must have di�erent orientations with respet to that irle.

t

t′

Ø
t

t′

Ø

t

t′

Thus, at the transition moment, both t and t1
are tangent to the same irle at a ommon

point, that is, they must be on the same line ℓ and hene we again have three irles simultane-

ously tangent to ℓ. Also no other irles or tangent segments are obstruting t or t1
(otherwise,

they would have disappeared before this transition). l

Next, we fous on the maximality of a on�guration immediately before and after a tran-

sition, where three irles share a ommon tangent line ℓ. Let the three irles be C1, C2, C3,

ordered by their tangent points. The only possibly a�eted segments are the ones lying on

ℓ, namely t12, t23 and t13. Sine C2 is in the middle, t12 and t23 must have di�erent orienta-

tions with respet to C2. For C1, t12 and t13 must have the same orientation, while for C3, t13
and t23 must have the same orientation. The �gure below summarizes the situation, showing

alternative positions for C1 (namely, C1 and C 1
1) and for C3 (C3 and C 1

3).

C3

C ′
3

t12 t23

C1

C ′
1

C2
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Now perturb the diagram slightly so the three irles no longer have a ommon tangent,

while preserving the de�nition of t12, t23 and t13 aording to their identi�ations. First note

that no other irles or tangent segments an obstrut any of these segments. Also reall that

tangent segments joining the same irle at the same orientation will never obstrut eah other.

The availability of the tangent segments an now be heked using simple diagrams.

Case 1: t13 passes through C2

C2

C3

C ′
3

t13

t23t12

C1

C ′
1

In this ase, t13 is not available, but both t12 and t23 are.

Case 2: t13 does not pass through C2

C ′
1

t12
t23

t13

C1

C ′
3

C2

C3

Now t13 is available, but t12 and t23 obstrut eah other, so only one an be drawn.

In any ase, exatly 2 out of these 3 segments an be drawn. Thus the maximal number of

segments remains onstant as we move or resize the irles, and we are done.

Solution 2. First note that all tangent segments lying on the boundary of the onvex hull of

the irles are always drawn sine they do not interset anything else. Now in the �nal piture,

aside from the n irles, the blakboard is divided into regions. We an onsider the piture

as a plane (multi-)graph G in whih the irles are the verties and the tangent segments are

the edges. The idea of this solution is to �nd a relation between the number of edges and the

number of regions in G; then, one we prove that G is onneted, we an use Euler's formula

to �nish the problem.

The boundary of eah region onsists of 1 or more (for now) simple losed urves, eah

made of ars and tangent segments. The segment and the ar might meet smoothly (as in Si,

i “ 1, 2, . . . , 6 in the �gure below) or not (as in P1, P2, P3, P4; all suh points sharp orners of

the boundary). In other words, if a person walks along the border, her diretion would suddenly

turn an angle of π at a sharp orner.
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S4

S6

P1

P4

S5

P3

S1

P2

S3

S2

Claim 1. The outer boundary B1 of any internal region has at least 3 sharp orners.

Proof. Let a person walk one lap along B1 in the ounterlokwise orientation. As she does

so, she will turn lokwise as she moves along the irle ars, and not turn at all when moving

along the lines. On the other hand, her total rotation after one lap is 2π in the ounterlokwise

diretion! Where ould she be turning ounterlokwise? She an only do so at sharp orners,

and, even then, she turns only an angle of π there. But two sharp orners are not enough, sine

at least one ar must be present�so she must have gone through at least 3 sharp orners. l

Claim 2. Eah internal region is simply onneted, that is, has only one boundary urve.

Proof. Suppose, by ontradition, that some region has an outer boundary B1 and inner boun-

daries B2, B3, . . . , Bm (m ě 2). Let P1 be one of the sharp orners of B1.

Now onsider a ar starting at P1 and traveling ounterlokwise along B1. It starts in

reverse, i.e., it is initially faing the orner P1. Due to the tangent onditions, the ar may travel

in a way so that its orientation only hanges when it is moving along an ar. In partiular, this

means the ar will sometimes travel forward. For example, if the ar approahes a sharp orner

when driving in reverse, it would ontinue travel forward after the orner, instead of making an

immediate half-turn. This way, the orientation of the ar only hanges in a lokwise diretion

sine the ar always travels lokwise around eah ar.

Now imagine there is a laser pointer at the front of the ar, pointing diretly ahead. Initially,

the laser endpoint hits P1, but, as soon as the ar hits an ar, the endpoint moves lokwise

around B1. In fat, the laser endpoint must move ontinuously along B1! Indeed, if the

endpoint ever jumped (within B1, or from B1 to one of the inner boundaries), at the moment

of the jump the interrupted laser would be a drawable tangent segment that Luiano missed

(see �gure below for an example).

P1

P3

P2

Car

Laser
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Now, let P2 and P3 be the next two sharp orners the ar goes through, after P1 (the

previous lemma assures their existene). At P2 the ar starts moving forward, and at P3 it will

start to move in reverse again. So, at P3, the laser endpoint is at P3 itself. So while the ar

moved ounterlokwise between P1 and P3, the laser endpoint moved lokwise between P1

and P3. That means the laser beam itself sanned the whole region within B1, and it should

have rossed some of the inner boundaries. l

Claim 3. Eah region has exatly 3 sharp orners.

Proof. Consider again the ar of the previous laim, with its laser still �rmly attahed to its

front, traveling the same way as before and going through the same onseutive sharp orners

P1, P2 and P3. As we have seen, as the ar goes ounterlokwise from P1 to P3, the laser

endpoint goes lokwise from P1 to P3, so together they over the whole boundary. If there

were a fourth sharp orner P4, at some moment the laser endpoint would pass through it. But,

sine P4 is a sharp orner, this means the ar must be on the extension of a tangent segment

going through P4. Sine the ar is not on that segment itself (the ar never goes through P4),

we would have 3 irles with a ommon tangent line, whih is not allowed.

P4

P1

P2

P3

Laser Car

l

We are now ready to �nish the solution. Let r be the number of internal regions, and s be the
number of tangent segments. Sine eah tangent segment ontributes exatly 2 sharp orners

to the diagram, and eah region has exatly 3 sharp orners, we must have 2s “ 3r. Sine the
graph orresponding to the diagram is onneted, we an use Euler's formula n´ s` r “ 1 and
�nd s “ 3n ´ 3 and r “ 2n ´ 2.
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Number Theory

N1.

The sequene a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whih there is at least one number a suh that an “ a for

in�nitely many values of n.
(South Afria)

Answer: All positive multiples of 3.

Solution. Sine the value of an`1 only depends on the value of an, if an “ am for two di�erent

indies n and m, then the sequene is eventually periodi. So we look for the values of a0 for

whih the sequene is eventually periodi.

Claim 1. If an ” ´1 pmod 3q, then, for all m ą n, am is not a perfet square. It follows that

the sequene is eventually stritly inreasing, so it is not eventually periodi.

Proof. A square annot be ongruent to ´1 modulo 3, so an ” ´1 pmod 3q implies that an is

not a square, therefore an`1 “ an ` 3 ą an. As a onsequene, an`1 ” an ” ´1 pmod 3q, so
an`1 is not a square either. By repeating the argument, we prove that, from an on, all terms of

the sequene are not perfet squares and are greater than their predeessors, whih ompletes

the proof. l

Claim 2. If an ı ´1 pmod 3q and an ą 9 then there is an index m ą n suh that am ă an.

Proof. Let t2 be the largest perfet square whih is less than an. Sine an ą 9, t is at least
3. The �rst square in the sequene an, an ` 3, an ` 6, . . . will be pt ` 1q2, pt ` 2q2 or pt ` 3q2,
therefore there is an index m ą n suh that am ď t ` 3 ă t2 ă an, as laimed. l

Claim 3. If an ” 0 pmod 3q, then there is an index m ą n suh that am “ 3.

Proof. First we notie that, by the de�nition of the sequene, a multiple of 3 is always followed

by another multiple of 3. If an P t3, 6, 9u the sequene will eventually follow the periodi pattern

3, 6, 9, 3, 6, 9, . . . . If an ą 9, let j be an index suh that aj is equal to the minimum value of

the set tan`1, an`2, . . . u. We must have aj ď 9, otherwise we ould apply Claim 2 to aj and

get a ontradition on the minimality hypothesis. It follows that aj P t3, 6, 9u, and the proof is

omplete. l

Claim 4. If an ” 1 pmod 3q, then there is an index m ą n suh that am ” ´1 pmod 3q.
Proof. In the sequene, 4 is always followed by 2 ” ´1 pmod 3q, so the laim is true for an “ 4.
If an “ 7, the next terms will be 10, 13, 16, 4, 2, . . . and the laim is also true. For an ě 10, we
again take an index j ą n suh that aj is equal to the minimum value of the set tan`1, an`2, . . . u,
whih by the de�nition of the sequene onsists of non-multiples of 3. Suppose aj ” 1 pmod 3q.
Then we must have aj ď 9 by Claim 2 and the minimality of aj . It follows that aj P t4, 7u,
so am “ 2 ă aj for some m ą j, ontraditing the minimality of aj . Therefore, we must have
aj ” ´1 pmod 3q. l

It follows from the previous laims that if a0 is a multiple of 3 the sequene will eventually

reah the periodi pattern 3, 6, 9, 3, 6, 9, . . . ; if a0 ” ´1 pmod 3q the sequene will be stritly

inreasing; and if a0 ” 1 pmod 3q the sequene will be eventually stritly inreasing.

So the sequene will be eventually periodi if, and only if, a0 is a multiple of 3.
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N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in eah move, the urrent player hooses an index i in the set t0, 1, . . . , p´1u
that was not hosen before by either of the two players and then hooses an element ai of the
set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indies

i P t0, 1, . . . , p ´ 1u have been hosen. Then the following number is omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1
ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moroo)

Solution. We say that a player makes the move pi, aiq if he hooses the index i and then the

element ai of the set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u in this move.

If p “ 2 or p “ 5 then Eduardo hooses i “ 0 and a0 “ 0 in the �rst move, and wins, sine,

independently of the next moves, M will be a multiple of 10.
Now assume that the prime number p does not belong to t2, 5u. Eduardo hooses i “ p´ 1

and ap´1 “ 0 in the �rst move. By Fermat's Little Theorem, p10pp´1q{2q2 “ 10p´1 ” 1 pmod pq,
so p | p10pp´1q{2q2 ´ 1 “ p10pp´1q{2 ` 1qp10pp´1q{2 ´ 1q. Sine p is prime, either p | 10pp´1q{2 ` 1 or

p | 10pp´1q{2 ´ 1. Thus we have two ases:

Case a: 10pp´1q{2 ” ´1 pmod pq
In this ase, for eah move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi` p´1
2
, aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi´ p´1

2
, aiq, if p´1

2
ď i ď p´2. We will have 10j ” ´10i

pmod pq, and so aj ¨ 10j “ ai ¨ 10j ” ´ai ¨ 10i pmod pq. Notie that this move by Eduardo

is always possible. Indeed, immediately before a move by Fernando, for any set of the type

tr, r ` pp ´ 1q{2u with 0 ď r ď pp ´ 3q{2, either no element of this set was hosen as an index

by the players in the previous moves or else both elements of this set were hosen as indies by

the players in the previous moves. Therefore, after eah of his moves, Eduardo always makes

the sum of the numbers ak ¨ 10k orresponding to the already hosen pairs pk, akq divisible by

p, and thus wins the game.

Case b: 10pp´1q{2 ” 1 pmod pq
In this ase, for eah move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi ` p´1
2
, 9 ´ aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi ´ p´1

2
, 9 ´ aiq, if p´1

2
ď i ď p ´ 2. The same

argument as above shows that Eduardo an always make suh move. We will have 10j ” 10i

pmod pq, and so aj ¨ 10j ` ai ¨ 10i ” pai ` ajq ¨ 10i “ 9 ¨ 10i pmod pq. Therefore, at the end of

the game, the sum of all terms ak ¨ 10k will be ongruent to
p´3
2
ÿ

i“0

9 ¨ 10i “ 10pp´1q{2 ´ 1 ” 0 pmod pq,

and Eduardo wins the game.



Shortlisted problems � solutions 77

N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n suh that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)
(Thailand)

Answer: These integers are exatly the prime numbers.

Solution. Let us �rst show that, if n “ ab, with a, b ě 2 integers, then the property in the

statement of the problem does not hold. Indeed, in this ase, let ak “ a for 1 ď k ď n ´ 1 and

an “ 0. The sum a1 ` a2 ` ¨ ¨ ¨ ` an “ a ¨ pn ´ 1q is not divisible by n. Let i with 1 ď i ď n be

an arbitrary index. Taking j “ b if 1 ď i ď n ´ b, and j “ b ` 1 if n ´ b ă i ď n, we have

ai ` ai`1 ` ¨ ¨ ¨ ` ai`j´1 “ a ¨ b “ n ” 0 pmod nq.

It follows that the given example is indeed a ounterexample to the property of the statement.

Now let n be a prime number. Suppose by ontradition that the property in the statement

of the problem does not hold. Then there are integers a1, a2, . . . , an whose sum is not divisible

by n suh that for eah i, 1 ď i ď n, there is j, 1 ď j ď n, for whih the number ai ` ai`1 `
¨ ¨ ¨ ` ai`j´1 is divisible by n. Notie that, in any suh ase, we should have 1 ď j ď n ´ 1,
sine a1 ` a2 ` ¨ ¨ ¨ ` an is not divisible by n. So we may onstrut reursively a �nite sequene

of integers 0 “ i0 ă i1 ă i2 ă ¨ ¨ ¨ ă in with is`1 ´ is ď n ´ 1 for 0 ď s ď n ´ 1 suh that, for

0 ď s ď n ´ 1,
ais`1 ` ais`2 ` ¨ ¨ ¨ ` ais`1 ” 0 pmod nq

(where we take indies modulo n). Indeed, for 0 ď s ă n, we apply the previous observation

to i “ is ` 1 in order to de�ne is`1 “ is ` j.
In the sequene of n ` 1 indies i0, i1, i2, . . . , in, by the pigeonhole priniple, we have two

distint elements whih are ongruent modulo n. So there are indies r, s with 0 ď r ă s ď n
suh that is ” ir pmod nq and

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “
s´1
ÿ

j“r

paij`1 ` aij`2 ` ¨ ¨ ¨ ` aij`1
q ” 0 pmod nq.

Sine is ” ir pmod nq, we have is ´ ir “ k ¨ n for some positive integer k, and, sine ij`1 ´ ij ď
n ´ 1 for 0 ď j ď n ´ 1, we have is ´ ir ď pn ´ 1q ¨ n, so k ď n ´ 1. But in this ase

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “ k ¨ pa1 ` a2 ` ¨ ¨ ¨ ` anq

annot be a multiple of n, sine n is prime and neither k nor a1 ` a2 ` ¨ ¨ ¨ ` an is a multiple

of n. A ontradition.
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N4.

Call a rational number short if it has �nitely many digits in its deimal expansion.

For a positive integer m, we say that a positive integer t is m-tasti if there exists a number

c P t1, 2, 3, . . . , 2017u suh that

10t ´ 1

c ¨ m is short, and suh that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

Answer: 807.

Solution. First notie that x P Q is short if and only if there are exponents a, b ě 0 suh that

2a ¨ 5b ¨ x P Z. In fat, if x is short, then x “ n
10k

for some k and we an take a “ b “ k; on the

other hand, if 2a ¨ 5b ¨ x “ q P Z then x “ 2b¨5aq
10a`b , so x is short.

If m “ 2a ¨ 5b ¨ s, with gcdps, 10q “ 1, then 10t´1
m

is short if and only if s divides 10t ´ 1. So
we may (and will) suppose without loss of generality that gcdpm, 10q “ 1. De�ne

C “ t1 ď c ď 2017: gcdpc, 10q “ 1u.

The m-tasti numbers are then preisely the smallest exponents t ą 0 suh that 10t ” 1
pmod cmq for some integer c P C, that is, the set of orders of 10 modulo cm. In other words,

Spmq “ tordcmp10q : c P Cu.

Sine there are 4 ¨ 201 ` 3 “ 807 numbers c with 1 ď c ď 2017 and gcdpc, 10q “ 1, namely

those suh that c ” 1, 3, 7, 9 pmod 10q,

|Spmq| ď |C| “ 807.

Now we �nd m suh that |Spmq| “ 807. Let

P “ t1 ă p ď 2017: p is prime, p ‰ 2, 5u

and hoose a positive integer α suh that every p P P divides 10α ´ 1 (e.g. α “ ϕpT q, T being

the produt of all primes in P ), and let m “ 10α ´ 1.

Claim. For every c P C, we have
ordcmp10q “ cα.

As an immediate onsequene, this implies |Spmq| “ |C| “ 807, �nishing the problem.

Proof. Obviously ordmp10q “ α. Let t “ ordcmp10q. Then

cm � 10t ´ 1 ùñ m � 10t ´ 1 ùñ α � t.

Hene t “ kα for some k P Zą0. We will show that k “ c.
Denote by νppnq the number of prime fators p in n, that is, the maximum exponent β for

whih pβ � n. For every ℓ ě 1 and p P P , the Lifting the Exponent Lemma provides

νpp10ℓα ´ 1q “ νppp10αqℓ ´ 1q “ νpp10α ´ 1q ` νppℓq “ νppmq ` νppℓq,

so

cm � 10kα ´ 1 ðñ @p P P ; νppcmq ď νpp10kα ´ 1q
ðñ @p P P ; νppmq ` νppcq ď νppmq ` νppkq
ðñ @p P P ; νppcq ď νppkq
ðñ c � k.

The �rst suh k is k “ c, so ordcmp10q “ cα. l
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Comment. The Lifting the Exponent Lemma states that, for any odd prime p, any integers a, b
oprime with p suh that p � a ´ b, and any positive integer exponent n,

νppan ´ bnq “ νppa ´ bq ` νppnq,

and, for p “ 2,
ν2pan ´ bnq “ ν2pa2 ´ b2q ` νppnq ´ 1.

Both laims an be proved by indution on n.
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N5.

Find all pairs pp, qq of prime numbers with p ą q for whih the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)

Answer: The only suh pair is p3, 2q.
Solution. Let M “ pp ` qqp´qpp ´ qqp`q ´ 1, whih is relatively prime with both p ` q and

p ´ q. Denote by pp ´ qq´1
the multipliative inverse of pp ´ qq modulo M .

By eliminating the term ´1 in the numerator,

pp ` qqp`qpp ´ qqp´q ´ 1 ” pp ` qqp´qpp ´ qqp`q ´ 1 pmod Mq
pp ` qq2q ” pp ´ qq2q pmod Mq (1)

´

pp ` qq ¨ pp ´ qq´1
¯2q

” 1 pmod Mq. (2)

Case 1: q ě 5.

Consider an arbitrary prime divisor r of M . Notie that M is odd, so r ě 3. By p2q, the
multipliative order of

´

pp ` qq ¨ pp ´ qq´1
¯

modulo r is a divisor of the exponent 2q in (2), so

it an be 1, 2, q or 2q.
By Fermat's theorem, the order divides r´1. So, if the order is q or 2q then r ” 1 pmod qq.

If the order is 1 or 2 then r | pp` qq2 ´ pp ´ qq2 “ 4pq, so r “ p or r “ q. The ase r “ p is not

possible, beause, by applying Fermat's theorem,

M “ pp` qqp´qpp´ qqp`q ´ 1 ” qp´qp´qqp`q ´ 1 “
`

q2
˘p ´ 1 ” q2 ´ 1 “ pq ` 1qpq ´ 1q pmod pq

and the last fators q ´ 1 and q ` 1 are less than p and thus p ∤ M . Hene, all prime divisors

of M are either q or of the form kq ` 1; it follows that all positive divisors of M are ongruent

to 0 or 1 modulo q.
Now notie that

M “
´

pp ` qq p´q
2 pp ´ qq p`q

2 ´ 1
¯´

pp ` qq p´q
2 pp ´ qq p`q

2 ` 1
¯

is the produt of two onseutive positive odd numbers; both should be ongruent to 0 or 1
modulo q. But this is impossible by the assumption q ě 5. So, there is no solution in Case 1.

Case 2: q “ 2.

By p1q, we have M | pp ` qq2q ´ pp ´ qq2q “ pp ` 2q4 ´ pp ´ 2q4, so

pp ` 2qp´2pp ´ 2qp`2 ´ 1 “ M ď pp ` 2q4 ´ pp ´ 2q4 ď pp ` 2q4 ´ 1,

pp ` 2qp´6pp ´ 2qp`2 ď 1.

If p ě 7 then the left-hand side is obviously greater than 1. For p “ 5 we have

pp ` 2qp´6pp ´ 2qp`2 “ 7´1 ¨ 37 whih is also too large.

There remains only one andidate, p “ 3, whih provides a solution:

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1
“ 55 ¨ 11 ´ 1

51 ¨ 15 ´ 1
“ 3124

4
“ 781.

So in Case 2 the only solution is pp, qq “ p3, 2q.
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Case 3: q “ 3.

Similarly to Case 2, we have

M | pp ` qq2q ´ pp ´ qq2q “ 64 ¨
˜

ˆ

p ` 3

2

˙6

´
ˆ

p ´ 3

2

˙6
¸

.

Sine M is odd, we onlude that

M |
ˆ

p ` 3

2

˙6

´
ˆ

p ´ 3

2

˙6

and

pp ` 3qp´3pp ´ 3qp`3 ´ 1 “ M ď
ˆ

p ` 3

2

˙6

´
ˆ

p ´ 3

2

˙6

ď
ˆ

p ` 3

2

˙6

´ 1,

64pp ` 3qp´9pp ´ 3qp`3 ď 1.

If p ě 11 then the left-hand side is obviously greater than 1. If p “ 7 then the left-hand side is

64 ¨ 10´2 ¨ 410 ą 1. If p “ 5 then the left-hand side is 64 ¨ 8´4 ¨ 28 “ 22 ą 1. Therefore, there is
no solution in Case 3.
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N6.

Find the smallest positive integer n, or show that no suh n exists, with the following

property: there are in�nitely many distint n-tuples of positive rational numbers pa1, a2, . . . , anq
suh that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
are integers.

(Singapore)

Answer: n “ 3.

Solution 1. For n “ 1, a1 P Zą0 and
1
a1

P Zą0 if and only if a1 “ 1. Next we show that

(i) There are �nitely many px, yq P Q2
ą0 satisfying x ` y P Z and

1
x

` 1
y

P Z

Write x “ a
b
and y “ c

d
with a, b, c, d P Zą0 and gcdpa, bq “ gcdpc, dq “ 1. Then x ` y P Z

and

1
x

` 1
y

P Z is equivalent to the two divisibility onditions

bd | ad ` bc p1q and ac | ad ` bc p2q

Condition (1) implies that d | ad ` bc ðñ d | bc ðñ d | b sine gcdpc, dq “ 1. Still

from (1) we get b | ad ` bc ðñ b | ad ðñ b | d sine gcdpa, bq “ 1. From b | d and

d | b we have b “ d.

An analogous reasoning with ondition (2) shows that a “ c. Hene x “ a
b

“ c
d

“ y, i.e.,
the problem amounts to �nding all x P Qą0 suh that 2x P Zą0 and

2
x

P Zą0. Letting

n “ 2x P Zą0, we have that

2
x

P Zą0 ðñ 4
n

P Zą0 ðñ n “ 1, 2 or 4, and there are

�nitely many solutions, namely px, yq “ p1
2
, 1
2
q, p1, 1q or p2, 2q.

(ii) There are in�nitely many triples px, y, zq P Q2
ą0 suh that x`y` z P Z and

1
x

` 1
y

` 1
z

P Z.
We will look for triples suh that x ` y ` z “ 1, so we may write them in the form

px, y, zq “
ˆ

a

a ` b ` c
,

b

a ` b ` c
,

c

a ` b ` c

˙

with a, b, c P Zą0

We want these to satisfy

1

x
` 1

y
` 1

z
“ a ` b ` c

a
` a ` b ` c

b
` a ` b ` c

c
P Z ðñ b ` c

a
` a ` c

b
` a ` b

c
P Z

Fixing a “ 1, it su�es to �nd in�nitely many pairs pb, cq P Z2
ą0 suh that

1

b
` 1

c
` c

b
` b

c
“ 3 ðñ b2 ` c2 ´ 3bc ` b ` c “ 0 p˚q

To show that equation p˚q has in�nitely many solutions, we use Vieta jumping (also known

as root �ipping): starting with b “ 2, c “ 3, the following algorithm generates in�nitely

many solutions. Let c ě b, and view p˚q as a quadrati equation in b for c �xed:

b2 ´ p3c ´ 1q ¨ b ` pc2 ` cq “ 0 p˚˚q

Then there exists another root b0 P Z of p˚˚q whih satis�es b`b0 “ 3c´1 and b¨b0 “ c2`c.
Sine c ě b by assumption,

b0 “ c2 ` c

b
ě c2 ` c

c
ą c

Hene from the solution pb, cq we obtain another one pc, b0q with b0 ą c, and we an then

�jump� again, this time with c as the �variable� in the quadrati p˚q. This algorithm will

generate an in�nite sequene of distint solutions, whose �rst terms are

p2, 3q, p3, 6q, p6, 14q, p14, 35q, p35, 90q, p90, 234q, p234, 611q, p611, 1598q, p1598, 4182q, . . .
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Comment. Although not needed for solving this problem, we may also expliitly solve the reursion

given by the Vieta jumping. De�ne the sequene pxnq as follows:

x0 “ 2, x1 “ 3 and xn`2 “ 3xn`1 ´ xn ´ 1 for n ě 0

Then the triple

px, y, zq “
ˆ

1

1 ` xn ` xn`1
,

xn
1 ` xn ` xn`1

,
xn`1

1 ` xn ` xn`1

˙

satis�es the problem onditions for all n P N. It is easy to show that xn “ F2n`1 `1, where Fn denotes

the n-th term of the Fibonai sequene (F0 “ 0, F1 “ 1, and Fn`2 “ Fn`1 ` Fn for n ě 0).

Solution 2. Call the n-tuples pa1, a2, . . . , anq P Qn
ą0 satisfying the onditions of the problem

statement good, and those for whih

fpa1, . . . , anq def“ pa1 ` a2 ` ¨ ¨ ¨ ` anq
ˆ

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙

is an integer pretty. Then good n-tuples are pretty, and if pb1, . . . , bnq is pretty then

ˆ

b1
b1 ` b2 ` ¨ ¨ ¨ ` bn

,
b2

b1 ` b2 ` ¨ ¨ ¨ ` bn
, . . . ,

bn
b1 ` b2 ` ¨ ¨ ¨ ` bn

˙

is good sine the sum of its omponents is 1, and the sum of the reiproals of its omponents

equals fpb1, . . . , bnq. We delare pretty n-tuples proportional to eah other equivalent sine they

are preisely those whih give rise to the same good n-tuple. Clearly, eah suh equivalene lass

ontains exatly one n-tuple of positive integers having no ommon prime divisors. Call suh

n-tuple a primitive pretty tuple. Our task is to �nd in�nitely many primitive pretty n-tuples.

For n “ 1, there is learly a single primitive 1-tuple. For n “ 2, we have fpa, bq “ pa`bq2

ab
,

whih an be integral (for oprime a, b P Zą0) only if a “ b “ 1 (see for instane (i) in the �rst

solution).

Now we onstrut in�nitely many primitive pretty triples for n “ 3. Fix b, c, k P Zą0; we

will try to �nd su�ient onditions for the existene of an a P Qą0 suh that fpa, b, cq “ k.
Write σ “ b ` c, τ “ bc. From fpa, b, cq “ k, we have that a should satisfy the quadrati

equation

a2 ¨ σ ` a ¨ pσ2 ´ pk ´ 1qτq ` στ “ 0 (1)

whose disriminant is

∆ “ pσ2 ´ pk ´ 1qτq2 ´ 4σ2τ “ ppk ` 1qτ ´ σ2q2 ´ 4kτ 2.

We need it to be a square of an integer, say, ∆ “ M2
for some M P Z, i.e., we want

ppk ` 1qτ ´ σ2q2 ´ M2 “ 2k ¨ 2τ 2

so that it su�es to set

pk ` 1qτ ´ σ2 “ τ 2 ` k, M “ τ 2 ´ k.

The �rst relation reads σ2 “ pτ ´ 1qpk ´ τq, so if b and c satisfy

τ ´ 1 | σ2
i.e. bc ´ 1 | pb ` cq2 (2)

then k “ σ2

τ´1
` τ will be integral, and we �nd rational solutions to (1), namely

a “ σ

τ ´ 1
“ b ` c

bc ´ 1
or a “ τ 2 ´ τ

σ
“ bc ¨ pbc ´ 1q

b ` c
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We an now �nd in�nitely many pairs pb, cq satisfying (2) by Vieta jumping. For example,

if we impose

pb ` cq2 “ 5 ¨ pbc ´ 1q
then all pairs pb, cq “ pvi, vi`1q satisfy the above ondition, where

v1 “ 2, v2 “ 3, vi`2 “ 3vi`1 ´ vi for i ě 0

For pb, cq “ pvi, vi`1q, one of the solutions to (1) will be a “ pb ` cq{pbc ´ 1q “ 5{pb ` cq “
5{pvi ` vi`1q. Then the pretty triple pa, b, cq will be equivalent to the integral pretty triple

p5, vipvi ` vi`1q, vi`1pvi ` vi`1qq

After possibly dividing by 5, we obtain in�nitely many primitive pretty triples, as required.

Comment. There are many other in�nite series of pb, cq “ pvi, vi`1q with bc ´ 1 | pb ` cq2. Some of

them are:

v1 “ 1, v2 “ 3, vi`1 “ 6vi ´ vi´1, pvi ` vi`1q2 “ 8 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 2, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 5, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q

(the last two are in fat one sequene prolonged in two possible diretions).
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N7.

Say that an ordered pair px, yq of integers is an irreduible lattie point if x and y
are relatively prime. For any �nite set S of irreduible lattie points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer oe�ients, of degree at least 1,

suh that fpx, yq “ 1 for eah px, yq in the set S.
Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

Solution 1. First of all, we note that �nding a homogenous polynomial fpx, yq suh that

fpx, yq “ ˘1 is enough, beause we then have f 2px, yq “ 1. Label the irreduible lattie points
px1, y1q through pxn, ynq. If any two of these lattie points pxi, yiq and pxj , yjq lie on the same

line through the origin, then pxj , yjq “ p´xi,´yiq beause both of the points are irreduible.

We then have fpxj , yjq “ ˘fpxi, yiq whenever f is homogenous, so we an assume that no two

of the lattie points are ollinear with the origin by ignoring the extra lattie points.

Consider the homogenous polynomials ℓipx, yq “ yix ´ xiy and de�ne

gipx, yq “
ź

j‰i

ℓjpx, yq.

Then ℓipxj , yjq “ 0 if and only if j “ i, beause there is only one lattie point on eah line

through the origin. Thus, gipxj , yjq “ 0 for all j ‰ i. De�ne ai “ gipxi, yiq, and note that

ai ‰ 0.
Note that gipx, yq is a degree n ´ 1 polynomial with the following two properties:

1. gipxj , yjq “ 0 if j ‰ i.

2. gipxi, yiq “ ai.

For any N ě n ´ 1, there also exists a polynomial of degree N with the same two proper-

ties. Spei�ally, let Iipx, yq be a degree 1 homogenous polynomial suh that Iipxi, yiq “ 1,
whih exists sine pxi, yiq is irreduible. Then Iipx, yqN´pn´1qgipx, yq satis�es both of the above

properties and has degree N .

We may now redue the problem to the following laim:

Claim: For eah positive integer a, there is a homogenous polynomial fapx, yq, with integer

oe�ients, of degree at least 1, suh that fapx, yq ” 1 pmod aq for all relatively prime px, yq.
To see that this laim solves the problem, take a to be the least ommon multiple of the

numbers ai (1 ď i ď n). Take fa given by the laim, hoose some power fapx, yqk that has

degree at least n ´ 1, and subtrat appropriate multiples of the gi onstruted above to obtain

the desired polynomial.

We prove the laim by fatoring a. First, if a is a power of a prime pa “ pkq, then we may

hoose either:

• fapx, yq “ pxp´1 ` yp´1qφpaq
if p is odd;

• fapx, yq “ px2 ` xy ` y2qφpaq
if p “ 2.

Now suppose a is any positive integer, and let a “ q1q2 ¨ ¨ ¨ qk, where the qi are prime powers,

pairwise relatively prime. Let fqi be the polynomials just onstruted, and let Fqi be powers of

these that all have the same degree. Note that

a

qi
Fqipx, yq ” a

qi
pmod aq

for any relatively prime x, y. By Bézout's lemma, there is an integer linear ombination of

the

a
qi

that equals 1. Thus, there is a linear ombination of the Fqi suh that Fqipx, yq ” 1

pmod aq for any relatively prime px, yq; and this polynomial is homogenous beause all the Fqi

have the same degree.
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Solution 2. As in the previous solution, label the irreduible lattie points px1, y1q, . . . , pxn, ynq
and assume without loss of generality that no two of the points are ollinear with the origin.

We indut on n to onstrut a homogenous polynomial fpx, yq suh that fpxi, yiq “ 1 for all

1 ď i ď n.
If n “ 1: Sine x1 and y1 are relatively prime, there exist some integers c, d suh that

cx1 ` dy1 “ 1. Then fpx, yq “ cx ` dy is suitable.

If n ě 2: By the indution hypothesis we already have a homogeneous polynomial gpx, yq
with gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1. Let j “ deg g,

gnpx, yq “
n´1
ź

k“1

pykx ´ xkyq,

and an “ gnpxn, ynq. By assumption, an ‰ 0. Take some integers c, d suh that cxn ` dyn “ 1.
We will onstrut fpx, yq in the form

fpx, yq “ gpx, yqK ´ C ¨ gnpx, yq ¨ pcx ` dyqL,

where K and L are some positive integers and C is some integer. We assume that L “ Kj´n`1
so that f is homogenous.

Due to gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1 and gnpx1, y1q “ . . . “ gnpxn´1, yn´1q “ 0, the
property fpx1, y1q “ . . . “ fpxn´1, yn´1q “ 1 is automatially satis�ed with any hoie of K,L,
and C.

Furthermore,

fpxn, ynq “ gpxn, ynqK ´ C ¨ gnpxn, ynq ¨ pcxn ` dynqL “ gpxn, ynqK ´ Can.

If we have an exponent K suh that gpxn, ynqK ” 1 pmod anq, then we may hoose C suh that

fpxn, ynq “ 1. We now hoose suh a K.

Consider an arbitrary prime divisor p of an. By

p | an “ gnpxn, ynq “
n´1
ź

k“1

pykxn ´ xkynq,

there is some 1 ď k ă n suh that xkyn ” xnyk pmod pq. We �rst show that xkxn or ykyn is

relatively prime with p. This is trivial in the ase xkyn ” xnyk ı 0 pmod pq. In the other ase,

we have xkyn ” xnyk ” 0 pmod pq, If, say p | xk, then p ∤ yk beause pxk, ykq is irreduible, so

p | xn; then p ∤ yn beause pxk, ykq is irreduible. In summary, p | xk implies p ∤ ykyn. Similarly,

p | yn implies p ∤ xkxn.

By the homogeneity of g we have the ongruenes

xd
k ¨ gpxn, ynq “ gpxkxn, xkynq ” gpxkxn, ykxnq “ xd

n ¨ gpxk, ykq “ xd
n pmod pq p1.1q

and

ydk ¨ gpxn, ynq “ gpykxn, ykynq ” gpxkyn, ykynq “ ydn ¨ gpxk, ykq “ ydn pmod pq. p1.2q

If p ∤ xkxn, then take the pp´1qst power of p1.1q; otherwise take the pp´1qst power of p1.2q;
by Fermat's theorem, in both ases we get

gpxn, ynqp´1 ” 1 pmod pq.

If pα | m, then we have

gpxn, ynqpα´1pp´1q ” 1 pmod pαq,

whih implies that the exponent K “ n ¨ ϕpanq, whih is a multiple of all pα´1pp ´ 1q, is a
suitable hoie. (The fator n is added only so that K ě n and so L ą 0.)
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Comment. It is possible to show that there is no onstant C for whih, given any two irreduible

lattie points, there is some homogenous polynomial f of degree at most C with integer oe�ients

that takes the value 1 on the two points. Indeed, if one of the points is p1, 0q and the other is pa, bq,
the polynomial fpx, yq “ a0x

n ` a1x
n´1y ` ¨ ¨ ¨ ` any

n
should satisfy a0 “ 1, and so an ” 1 pmod bq.

If a “ 3 and b “ 2k with k ě 3, then n ě 2k´2
. If we hoose 2k´2 ą C, this gives a ontradition.
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N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a funtion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1
ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)

Solution 1. Denote by A the set of all pairs of oprime positive integers. Notie that for

every pa, bq P A there exists a pair pu, vq P Z2
with ua ` vb “ 1. Moreover, if pu0, v0q is one

suh pair, then all suh pairs are of the form pu, vq “ pu0 ` kb, v0 ´ kaq, where k P Z. So there

exists a unique suh pair pu, vq with ´b{2 ă u ď b{2; we denote this pair by pu, vq “ gpa, bq.
Lemma. Let pa, bq P A and pu, vq “ gpa, bq. Then fpa, bq “ 1 ðñ u ą 0.

Proof. We indut on a ` b. The base ase is a ` b “ 2. In this ase, we have that a “ b “ 1,
gpa, bq “ gp1, 1q “ p0, 1q and fp1, 1q “ 0, so the laim holds.

Assume now that a` b ą 2, and so a ‰ b, sine a and b are oprime. Two ases are possible.

Case 1: a ą b.

Notie that gpa ´ b, bq “ pu, v ` uq, sine upa ´ bq ` pv ` uqb “ 1 and u P p´b{2, b{2s. Thus
fpa, bq “ 1 ðñ fpa ´ b, bq “ 1 ðñ u ą 0 by the indution hypothesis.

Case 2: a ă b. (Then, learly, b ě 2.)

Now we estimate v. Sine vb “ 1 ´ ua, we have

1 ` ab

2
ą vb ě 1 ´ ab

2
, so

1 ` a

2
ě 1

b
` a

2
ą v ě 1

b
´ a

2
ą ´a

2
.

Thus 1 ` a ą 2v ą ´a, so a ě 2v ą ´a, hene a{2 ě v ą ´a{2, and thus gpb, aq “ pv, uq.
Observe that fpa, bq “ 1 ðñ fpb, aq “ 0 ðñ fpb ´ a, aq “ 0. We know from Case 1

that gpb ´ a, aq “ pv, u ` vq. We have fpb ´ a, aq “ 0 ðñ v ď 0 by the indutive hypothesis.

Then, sine b ą a ě 1 and ua ` vb “ 1, we have v ď 0 ðñ u ą 0, and we are done. l

The Lemma proves that, for all pa, bq P A, fpa, bq “ 1 if and only if the inverse of a
modulo b, taken in t1, 2, . . . , b ´ 1u, is at most b{2. Then, for any odd prime p and integer

n suh that n ı 0 pmod pq, fpn2, pq “ 1 i� the inverse of n2 mod p is less than p{2. Sine

tn2 mod p : 1 ď n ď p ´ 1u “ tn´2 mod p : 1 ď n ď p ´ 1u, inluding multipliities (two for

eah quadrati residue in eah set), we onlude that the desired sum is twie the number of

quadrati residues that are less than p{2, i.e.,
p´1
ÿ

n“1

fpn2, pq “ 2

ˇ

ˇ

ˇ

ˇ

"

k : 1 ď k ď p ´ 1

2
and k2 mod p ă p

2

*ˇ

ˇ

ˇ

ˇ

. (1)

Sine the number of perfet squares in the interval r1, p{2q is t
a

p{2u ą
a

p{2 ´ 1, we
onlude that

p´1
ÿ

n“1

fpn2, pq ą 2

ˆ
c

p

2
´ 1

˙

“
a

2p ´ 2.
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Solution 2. We provide a di�erent proof for the Lemma. For this purpose, we use ontinued

frations to �nd gpa, bq “ pu, vq expliitly.
The funtion f is ompletely determined on A by the following

Claim. Represent a{b as a ontinued fration; that is, let a0 be an integer and a1, . . . , ak be

positive integers suh that ak ě 2 and

a

b
“ a0 ` 1

a1 ` 1

a2 ` 1

¨ ¨ ¨ ` 1

ak

“ ra0; a1, a2, . . . , aks.

Then fpa, bq “ 0 ðñ k is even.

Proof. We indut on b. If b “ 1, then a{b “ ras and k “ 0. Then, for a ě 1, an easy indution

shows that fpa, 1q “ fp1, 1q “ 0.
Now onsider the ase b ą 1. Perform the Eulidean division a “ qb ` r, with 0 ď r ă b.

We have r ‰ 0 beause gcdpa, bq “ 1. Hene

fpa, bq “ fpr, bq “ 1 ´ fpb, rq, a

b
“ rq; a1, . . . , aks, and

b

r
“ ra1; a2, . . . , aks.

Then the number of terms in the ontinued fration representations of a{b and b{r di�er by
one. Sine r ă b, the indutive hypothesis yields

fpb, rq “ 0 ðñ k ´ 1 is even,

and thus

fpa, bq “ 0 ðñ fpb, rq “ 1 ðñ k ´ 1 is odd ðñ k is even. l

Now we use the following well-known properties of ontinued frations to prove the Lemma:

Let pi and qi be oprime positive integers with ra0; a1, a2, . . . , ais “ pi{qi, with the notation

borrowed from the Claim. In partiular, a{b “ ra0; a1, a2, . . . , aks “ pk{qk. Assume that k ą 0
and de�ne q´1 “ 0 if neessary. Then

• qk “ akqk´1 ` qk´2, and

• aqk´1 ´ bpk´1 “ pkqk´1 ´ qkpk´1 “ p´1qk´1
.

Assume that k ą 0. Then ak ě 2, and

b “ qk “ akqk´1 ` qk´2 ě akqk´1 ě 2qk´1 ùñ qk´1 ď b

2
,

with strit inequality for k ą 1, and

p´1qk´1qk´1a ` p´1qkpk´1b “ 1.

Now we �nish the proof of the Lemma. It is immediate for k “ 0. If k “ 1, then p´1qk´1 “ 1,
so

´b{2 ă 0 ď p´1qk´1qk´1 ď b{2.
If k ą 1, we have qk´1 ă b{2, so

´b{2 ă p´1qk´1qk´1 ă b{2.

Thus, for any k ą 0, we �nd that gpa, bq “ pp´1qk´1qk´1, p´1qkpk´1q, and so

fpa, bq “ 1 ðñ k is odd ðñ u “ p´1qk´1qk´1 ą 0.
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Comment 1. The Lemma an also be established by observing that f is uniquely de�ned on A,
de�ning f1pa, bq “ 1 if u ą 0 in gpa, bq “ pu, vq and f1pa, bq “ 0 otherwise, and verifying that f1
satis�es all the onditions from the statement.

It seems that the main di�ulty of the problem is in onjeturing the Lemma.

Comment 2. The ase p ” 1 pmod 4q is, in fat, easier than the original problem. We have, in

general, for 1 ď a ď p ´ 1,

fpa, pq “ 1´fpp, aq “ 1´fpp´a, aq “ fpa, p´aq “ fpa`pp´aq, p´aq “ fpp, p´aq “ 1´fpp´a, pq.

If p ” 1 pmod 4q, then a is a quadrati residue modulo p if and only if p ´ a is a quadrati residue

modulo p. Therefore, denoting by rk (with 1 ď rk ď p ´ 1) the remainder of the division of k2 by p,
we get

p´1
ÿ

n“1

fpn2, pq “
p´1
ÿ

n“1

fprn, pq “ 1

2

p´1
ÿ

n“1

pfprn, pq ` fpp ´ rn, pqq “ p ´ 1

2
.

Comment 3. The estimate for the sum

řp
n“1 fpn2, pq an be improved by re�ning the �nal argument

in Solution 1. In fat, one an prove that

p´1
ÿ

n“1

fpn2, pq ě p ´ 1

16
.

By ounting the number of perfet squares in the intervals rkp, pk ` 1{2qpq, we �nd that

p´1
ÿ

n“1

fpn2, pq “
p´1
ÿ

k“0

˜[
d

ˆ

k ` 1

2

˙

p

_

´
Y

a

kp
]

¸

. (2)

Eah summand of (2) is non-negative. We now estimate the number of positive summands. Suppose

that a summand is zero, i.e.,

[
d

ˆ

k ` 1

2

˙

p

_

“
Y

a

kp
]

“: q.

Then both of the numbers kp and kp ` p{2 lie within the interval rq2, pq ` 1q2q. Hene
p

2
ă pq ` 1q2 ´ q2,

whih implies

q ě p ´ 1

4
.

Sine q ď
?
kp, if the kth summand of (2) is zero, then

k ě q2

p
ě pp ´ 1q2

16p
ą p ´ 2

16
ùñ k ě p ´ 1

16
.

So at least the �rst rp´1
16 s summands (from k “ 0 to k “ rp´1

16 s ´ 1) are positive, and the result

follows.

Comment 4. The bound an be further improved by using di�erent methods. In fat, we prove that

p´1
ÿ

n“1

fpn2, pq ě p ´ 3

4
.

To that end, we use the Legendre symbol

ˆ

a

p

˙

“

$

’

&

’

%

0 if p � a

1 if a is a nonzero quadrati residue mod p

´1 otherwise.

We start with the following Claim, whih tells us that there are not too many onseutive quadrati

residues or onseutive quadrati non-residues.
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Claim.

řp´1
n“1

`

n
p

˘`

n`1
p

˘

“ ´1.

Proof. We have

`

n
p

˘`

n`1
p

˘

“
`npn`1q

p

˘

. For 1 ď n ď p´1, we get that npn`1q ” n2p1`n´1q pmod pq,
hene

`npn`1q
p

˘

“
`

1`n´1

p

˘

. Sine t1 ` n´1 mod p : 1 ď n ď p ´ 1u “ t0, 2, 3, . . . , p ´ 1 mod pu, we �nd

p´1
ÿ

n“1

ˆ

n

p

˙ˆ

n ` 1

p

˙

“
p´1
ÿ

n“1

ˆ

1 ` n´1

p

˙

“
p´1
ÿ

n“1

ˆ

n

p

˙

´ 1 “ ´1,

beause

řp
n“1

`

n
p

˘

“ 0. l

Observe that (1) beomes

p´1
ÿ

n“1

fpn2, pq “ 2 |S| , S “
"

r : 1 ď r ď p ´ 1

2
and

ˆ

r

p

˙

“ 1

*

.

We onnet S with the sum from the laim by pairing quadrati residues and quadrati non-residues.

To that end, de�ne

S1 “
"

r : 1 ď r ď p ´ 1

2
and

ˆ

r

p

˙

“ ´1

*

T “
"

r :
p ` 1

2
ď r ď p ´ 1 and

ˆ

r

p

˙

“ 1

*

T 1 “
"

r :
p ` 1

2
ď r ď p ´ 1 and

ˆ

r

p

˙

“ ´1

*

Sine there are exatly pp ´ 1q{2 nonzero quadrati residues modulo p, |S| ` |T | “ pp ´ 1q{2. Also
we obviously have |T | ` |T 1| “ pp ´ 1q{2. Then |S| “ |T 1|.

For the sake of brevity, de�ne t “ |S| “ |T 1|. If
`

n
p

˘`

n`1
p

˘

“ ´1, then exatly of one the numbers

`

n
p

˘

and

`

n`1
p

˘

is equal to 1, so

ˇ

ˇ

ˇ

ˇ

"

n : 1 ď n ď p ´ 3

2
and

ˆ

n

p

˙ˆ

n ` 1

p

˙

“ ´1

*ˇ

ˇ

ˇ

ˇ

ď |S| ` |S ´ 1| “ 2t.

On the other hand, if

`

n
p

˘`

n`1
p

˘

“ ´1, then exatly one of

`

n
p

˘

and

`

n`1
p

˘

is equal to ´1, and

ˇ

ˇ

ˇ

ˇ

"

n :
p ` 1

2
ď n ď p ´ 2 and

ˆ

n

p

˙ˆ

n ` 1

p

˙

“ ´1

*ˇ

ˇ

ˇ

ˇ

ď |T 1| ` |T 1 ´ 1| “ 2t.

Thus, taking into aount that the middle term

` pp´1q{2
p

˘` pp`1q{2
p

˘

may happen to be ´1,

ˇ

ˇ

ˇ

ˇ

"

n : 1 ď n ď p ´ 2 and

ˆ

n

p

˙ˆ

n ` 1

p

˙

“ ´1

*ˇ

ˇ

ˇ

ˇ

ď 4t ` 1.

This implies that

ˇ

ˇ

ˇ

ˇ

"

n : 1 ď n ď p ´ 2 and

ˆ

n

p

˙ˆ

n ` 1

p

˙

“ 1

*ˇ

ˇ

ˇ

ˇ

ě pp ´ 2q ´ p4t ` 1q “ p ´ 4t ´ 3,

and so

´1 “
p´1
ÿ

n“1

ˆ

n

p

˙ˆ

n ` 1

p

˙

ě p ´ 4t ´ 3 ´ p4t ` 1q “ p ´ 8t ´ 4,

whih implies 8t ě p ´ 3, and thus

p´1
ÿ

n“1

fpn2, pq “ 2t ě p ´ 3

4
.
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Comment 5. It is possible to prove that

p´1
ÿ

n“1

fpn2, pq ě p ´ 1

2
.

The ase p ” 1 pmod 4q was already mentioned, and it is the equality ase. If p ” 3 pmod 4q,
then, by a theorem of Dirihlet, we have

ˇ

ˇ

ˇ

ˇ

"

r : 1 ď r ď p ´ 1

2
and

ˆ

r

p

˙

“ 1

*ˇ

ˇ

ˇ

ˇ

ą p ´ 1

4
,

whih implies the result.

See https://en.wikipedia.org/wiki/Quadrati_residue#Dirihlet.27s_formulas for the full

statement of the theorem. It seems that no elementary proof of it is known; a proof using omplex

analysis is available, for instane, in Chapter 7 of the book Quadrati Residues and Non-Residues:

Seleted Topis, by Steve Wright, available in https://arxiv.org/abs/1408.0235.

https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas
https://arxiv.org/abs/1408.0235
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Problems

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all funtions

f : Qą0 Ñ Qą0 satisfying

f
`

x2fpyq2
˘

“ fpxq2fpyq
for all x, y P Qą0.

(Switzerland)

A2.

Find all positive integers n ě 3 for whih there exist real numbers a1, a2, . . . , an,
an`1 “ a1, an`2 “ a2 suh that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.
(Slovakia)

A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distint �nite subsets F and G of S suh that

ř

xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 suh that

ř

xPF 1{x ‰ r for all �nite subsets
F of S.

(Luxembourg)

A4.

Let a0, a1, a2, . . . be a sequene of real numbers suh that a0 “ 0, a1 “ 1, and for

every n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.
(Belgium)

A5.

Determine all funtions f : p0,8q Ñ R satisfying

ˆ

x ` 1

x

˙

fpyq “ fpxyq ` f
´y

x

¯

for all x, y ą 0.
(South Korea)

A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real oe�ients

suh that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]

for every x1, . . . , xn P
 

0, 1, . . . , m ´ 1
(

.

Prove that the total degree of f is at least n.
(Brazil)

A7.

Find the maximal value of

S “ 3

c

a

b ` 7
` 3

c

b

c ` 7
` 3

c

c

d ` 7
` 3

c

d

a ` 7
,

where a, b, c, d are nonnegative real numbers whih satisfy a ` b ` c ` d “ 100.
(Taiwan)
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Combinatoris

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S an be partitioned into

two subsets with equal sums of elements, with one of subsets of ardinality m.

(Ieland)

C2.

Queenie and Horst play a game on a 20 ˆ 20 hessboard. In the beginning the board

is empty. In every turn, Horst plaes a blak knight on an empty square in suh a way that his

new knight does not attak any previous knights. Then Queenie plaes a white queen on an

empty square. The game gets �nished when somebody annot move.

Find the maximal positive K suh that, regardless of the strategy of Queenie, Horst an

put at least K knights on the board.

(Armenia)

C3.

Let n be a given positive integer. Sisyphus performs a sequene of turns on a board

onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.
Prove that Sisyphus annot reah the aim in less than

Qn

1

U

`
Qn

2

U

`
Qn

3

U

` ¨ ¨ ¨ `
Qn

n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)
(Netherlands)

C4.

An anti-Pasal pyramid is a �nite set of numbers, plaed in a triangle-shaped array

so that the �rst row of the array ontains one number, the seond row ontains two numbers,

the third row ontains three numbers and so on; and, exept for the numbers in the bottom

row, eah number equals the absolute value of the di�erene of the two numbers below it. For

instane, the triangle below is an anti-Pasal pyramid with four rows, in whih every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 ours exatly one:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pasal pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exatly one?

(Iran)

C5.

Let k be a positive integer. The organising ommittee of a tennis tournament is to

shedule the mathes for 2k players so that every two players play one, eah day exatly one

math is played, and eah player arrives to the tournament site the day of his �rst math, and

departs the day of his last math. For every day a player is present on the tournament, the

ommittee has to pay 1 oin to the hotel. The organisers want to design the shedule so as to

minimise the total ost of all players' stays. Determine this minimum ost.

(Russia)
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C6.

Let a and b be distint positive integers. The following in�nite proess takes plae on
an initially empty board.

piq If there is at least a pair of equal numbers on the board, we hoose suh a pair and

inrease one of its omponents by a and the other by b.

piiq If no suh pair exists, we write down two times the number 0.

Prove that, no matter how we make the hoies in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

C7.

Consider 2018 pairwise rossing irles no three of whih are onurrent. These irles

subdivide the plane into regions bounded by irular edges that meet at verties. Notie that

there are an even number of verties on eah irle. Given the irle, alternately olour the

verties on that irle red and blue. In doing so for eah irle, every vertex is oloured twie �

one for eah of the two irles that ross at that point. If the two olourings agree at a vertex,

then it is assigned that olour; otherwise, it beomes yellow. Show that, if some irle ontains

at least 2061 yellow points, then the verties of some region are all yellow.

(India)
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Geometry

G1.

Let ABC be an aute-angled triangle with irumirle Γ. Let D and E be points on

the segments AB and AC, respetively, suh that AD “ AE. The perpendiular bisetors of

the segments BD and CE interset the small ars

ŊAB and

ŊAC at points F and G respetively.

Prove that DE ‖ FG.
(Greee)

G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point suh that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respetively, so that B lies on the segment PX , C lies on the segment PY , and
=PXM “ =PYM . Prove that the quadrilateral APXY is yli.

(Australia)

G3.

A irle ω of radius 1 is given. A olletion T of triangles is alled good, if the following

onditions hold:

piq eah triangle from T is insribed in ω;

piiq no two triangles from T have a ommon interior point.

Determine all positive real numbers t suh that, for eah positive integer n, there exists a
good olletion of n triangles, eah of perimeter greater than t.

(South Afria)

G4.

A point T is hosen inside a triangle ABC. Let A1, B1, and C1 be the re�etions

of T in BC, CA, and AB, respetively. Let Ω be the irumirle of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respetively. Prove that the

lines AA2, BB2, and CC2 are onurrent on Ω.
(Mongolia)

G5.

Let ABC be a triangle with irumirle ω and inentre I. A line ℓ intersets the
lines AI, BI, and CI at points D, E, and F , respetively, distint from the points A, B, C,
and I. The perpendiular bisetors x, y, and z of the segments AD, BE, and CF , respetively
determine a triangle Θ. Show that the irumirle of the triangle Θ is tangent to ω.

(Denmark)

G6.

A onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

G7.

Let O be the irumentre, and Ω be the irumirle of an aute-angled triangle ABC.
Let P be an arbitrary point on Ω, distint from A, B, C, and their antipodes in Ω. Denote

the irumentres of the triangles AOP , BOP , and COP by OA, OB, and OC , respetively.

The lines ℓA, ℓB, and ℓC perpendiular to BC, CA, and AB pass through OA, OB, and OC ,

respetively. Prove that the irumirle of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .
(Russia)
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Number Theory

N1.

Determine all pairs pn, kq of distint positive integers suh that there exists a positive

integer s for whih the numbers of divisors of sn and of sk are equal.

(Ukraine)

N2.

Let n ą 1 be a positive integer. Eah ell of an n ˆ n table ontains an integer.

Suppose that the following onditions are satis�ed:

piq Eah number in the table is ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any olumn, is ongruent

to n modulo n2
.

Let Ri be the produt of the numbers in the ith row, and Cj be the produt of the numbers in

the jth olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are ongruent modulo n4
.

(Indonesia)

N3.

De�ne the sequene a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequene whih an be expressed as a sum of (two or more) distint terms

of the sequene, as well as in�nitely many of those whih annot be expressed in suh a way.

(Serbia)

N4.

Let a1, a2, . . ., an, . . . be a sequene of positive integers suh that

a1
a2

` a2
a3

` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m suh that an “ an`1 for all n ě m.

(Mongolia)

N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t.

Is it possible that both xy and zt are perfet squares?
(Russia)

N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a funtion suh that fpm ` nq | fpmq ` fpnq for

all pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whih divides

all values of f .
(Mexio)

N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distint

positive integers not exeeding 5n. Suppose that the sequene

a1
b1
,
a2
b2
, . . . ,

an
bn

forms an arithmeti progression. Prove that the terms of the sequene are equal.

(Thailand)
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Solutions

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all funtions

f : Qą0 Ñ Qą0 satisfying

f
`

x2fpyq2
˘

“ fpxq2fpyq p˚q
for all x, y P Qą0.

(Switzerland)

Answer: fpxq “ 1 for all x P Qą0.

Solution. Take any a, b P Qą0. By substituting x “ fpaq, y “ b and x “ fpbq, y “ a into p˚q
we get

f
`

fpaq
˘2
fpbq “ f

`

fpaq2fpbq2
˘

“ f
`

fpbq
˘2
fpaq,

whih yields

f
`

fpaq
˘2

fpaq “ f
`

fpbq
˘2

fpbq for all a, b P Qą0.

In other words, this shows that there exists a onstant C P Qą0 suh that f
`

fpaq
˘2 “ Cfpaq,

or

˜

f
`

fpaq
˘

C

¸2

“ fpaq
C

for all a P Qą0. (1)

Denote by fnpxq “ fpfp. . . pf
loooomoooon

n

pxqq . . . qq the nth

iteration of f . Equality (1) yields

fpaq
C

“
ˆ

f 2paq
C

˙2

“
ˆ

f 3paq
C

˙4

“ ¨ ¨ ¨ “
ˆ

fn`1paq
C

˙2n

for all positive integer n. So, fpaq{C is the 2n-th power of a rational number for all positive

integer n. This is impossible unless fpaq{C “ 1, sine otherwise the exponent of some prime in

the prime deomposition of fpaq{C is not divisible by su�iently large powers of 2. Therefore,
fpaq “ C for all a P Qą0.

Finally, after substituting f ” C into p˚q we get C “ C3
, whene C “ 1. So fpxq ” 1 is the

unique funtion satisfying p˚q.

Comment 1. There are several variations of the solution above. For instane, one may start with

�nding fp1q “ 1. To do this, let d “ fp1q. By substituting x “ y “ 1 and x “ d2, y “ 1 into p˚q
we get fpd2q “ d3 and fpd6q “ fpd2q2 ¨ d “ d7. By substituting now x “ 1, y “ d2 we obtain

fpd6q “ d2 ¨ d3 “ d5. Therefore, d7 “ fpd6q “ d5, whene d “ 1.

After that, the rest of the solution simpli�es a bit, sine we already know that C “ fpfp1qq2

fp1q “ 1.

Hene equation p1q beomes merely fpfpaqq2 “ fpaq, whih yields fpaq “ 1 in a similar manner.

Comment 2. There exist nononstant funtions f : R` Ñ R`
satisfying p˚q for all real x, y ą 0 �

e.g., fpxq “ ?
x.
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A2.

Find all positive integers n ě 3 for whih there exist real numbers a1, a2, . . . , an,
an`1 “ a1, an`2 “ a2 suh that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.
(Slovakia)

Answer: n an be any multiple of 3.

Solution 1. For the sake of onveniene, extend the sequene a1, . . . , an`2 to an in�nite

periodi sequene with period n. (n is not neessarily the shortest period.)

If n is divisible by 3, then pa1, a2, . . .q “ p´1,´1, 2,´1,´1, 2, . . .q is an obvious solution.

We will show that in every periodi sequene satisfying the reurrene, eah positive term is

followed by two negative values, and after them the next number is positive again. From this,

it follows that n is divisible by 3.

If the sequene ontains two onseutive positive numbers ai, ai`1, then ai`2 “ aiai`1`1 ą 1,
so the next value is positive as well; by indution, all numbers are positive and greater than 1.
But then ai`2 “ aiai`1 ` 1 ě 1 ¨ ai`1 ` 1 ą ai`1 for every index i, whih is impossible: our

sequene is periodi, so it annot inrease everywhere.

If the number 0 ours in the sequene, ai “ 0 for some index i, then it follows that

ai`1 “ ai´1ai ` 1 and ai`2 “ aiai`1 ` 1 are two onseutive positive elements in the sequenes

and we get the same ontradition again.

Notie that after any two onseutive negative numbers the next one must be positive: if

ai ă 0 and ai`1 ă 0, then ai`2 “ a1ai`1 ` 1 ą 1 ą 0. Hene, the positive and negative numbers

follow eah other in suh a way that eah positive term is followed by one or two negative values

and then omes the next positive term.

Consider the ase when the positive and negative values alternate. So, if ai is a negative

value then ai`1 is positive, ai`2 is negative and ai`3 is positive again.

Notie that aiai`1 ` 1 “ ai`2 ă 0 ă ai`3 “ ai`1ai`2 ` 1; by ai`1 ą 0 we onlude ai ă ai`2.

Hene, the negative values form an in�nite inreasing subsequene, ai ă ai`2 ă ai`4 ă . . .,
whih is not possible, beause the sequene is periodi.

The only ase left is when there are onseutive negative numbers in the sequene. Suppose

that ai and ai`1 are negative; then ai`2 “ aiai`1 ` 1 ą 1. The number ai`3 must be negative.

We show that ai`4 also must be negative.

Notie that ai`3 is negative and ai`4 “ ai`2ai`3 ` 1 ă 1 ă aiai`1 ` 1 “ ai`2, so

ai`5 ´ ai`4 “ pai`3ai`4 ` 1q ´ pai`2ai`3 ` 1q “ ai`3pai`4 ´ ai`2q ą 0,

therefore ai`5 ą ai`4. Sine at most one of ai`4 and ai`5 an be positive, that means that ai`4

must be negative.

Now ai`3 and ai`4 are negative and ai`5 is positive; so after two negative and a positive

terms, the next three terms repeat the same pattern. That ompletes the solution.

Solution 2. We prove that the shortest period of the sequene must be 3. Then it follows

that n must be divisible by 3.
Notie that the equation x2 ` 1 “ x has no real root, so the numbers a1, . . . , an annot be

all equal, hene the shortest period of the sequene annot be 1.

By applying the reurrene relation for i and i ` 1,

pai`2 ´ 1qai`2 “ aiai`1ai`2 “ aipai`3 ´ 1q, so

a2i`2 ´ aiai`3 “ ai`2 ´ ai.
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By summing over i “ 1, 2, . . . , n, we get

n
ÿ

i“1

pai ´ ai`3q2 “ 0.

That proves that ai “ ai`3 for every index i, so the sequene a1, a2, . . . is indeed periodi with

period 3. The shortest period annot be 1, so it must be 3; therefore, n is divisible by 3.

Comment. By solving the system of equations ab ` 1 “ c, bc ` 1 “ a, ca ` 1 “ b, it an be seen

that the pattern p´1,´1, 2q is repeated in all sequenes satisfying the problem onditions.
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A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distint �nite subsets F and G of S suh that

ř

xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 suh that

ř

xPF 1{x ‰ r for all �nite subsets
F of S.

(Luxembourg)

Solution 1. Argue indiretly. Agree, as usual, that the empty sum is 0 to onsider rationals

in r0, 1q; adjoining 0 auses no harm, sine

ř

xPF 1{x “ 0 for no nonempty �nite subset F of S.
For every rational r in r0, 1q, let Fr be the unique �nite subset of S suh that

ř

xPFr
1{x “ r.

The argument hinges on the lemma below.

Lemma. If x is a member of S and q and r are rationals in r0, 1q suh that q ´ r “ 1{x, then x
is a member of Fq if and only if it is not one of Fr.

Proof. If x is a member of Fq, then

ÿ

yPFqrtxu

1

y
“

ÿ

yPFq

1

y
´ 1

x
“ q ´ 1

x
“ r “

ÿ

yPFr

1

y
,

so Fr “ Fq r txu, and x is not a member of Fr. Conversely, if x is not a member of Fr, then

ÿ

yPFrYtxu

1

y
“

ÿ

yPFr

1

y
` 1

x
“ r ` 1

x
“ q “

ÿ

yPFq

1

y
,

so Fq “ Fr Y txu, and x is a member of Fq. l

Consider now an element x of S and a positive rational r ă 1. Let n “ trxu and onsider

the sets Fr´k{x, k “ 0, . . . , n. Sine 0 ď r ´ n{x ă 1{x, the set Fr´n{x does not ontain x, and
a repeated appliation of the lemma shows that the Fr´pn´2kq{x do not ontain x, whereas the
Fr´pn´2k´1q{x do. Consequently, x is a member of Fr if and only if n is odd.

Finally, onsider F2{3. By the preeding, t2x{3u is odd for eah x in F2{3, so 2x{3 is not

integral. Sine F2{3 is �nite, there exists a positive rational ε suh that tp2{3 ´ εqxu “ t2x{3u
for all x in F2{3. This implies that F2{3 is a subset of F2{3´ε whih is impossible.

Comment. The solution above an be adapted to show that the problem statement still holds, if the

ondition r ă 1 in (2) is replaed with r ă δ, for an arbitrary positive δ. This yields that, if S does not

satisfy (1), then there exist in�nitely many positive rational numbers r ă 1 suh that

ř

xPF 1{x ‰ r
for all �nite subsets F of S.

Solution 2. A �nite S learly satis�es (2), so let S be in�nite. If S fails both onditions,

so does S r t1u. We may and will therefore assume that S onsists of integers greater than 1.
Label the elements of S inreasingly x1 ă x2 ă ¨ ¨ ¨ , where x1 ě 2.

We �rst show that S satis�es (2) if xn`1 ě 2xn for all n. In this ase, xn ě 2n´1x1 for

all n, so

s “
ÿ

ně1

1

xn
ď

ÿ

ně1

1

2n´1x1

“ 2

x1

.

If x1 ě 3, or x1 “ 2 and xn`1 ą 2xn for some n, then
ř

xPF 1{x ă s ă 1 for every �nite subset

F of S, so S satis�es (2); and if x1 “ 2 and xn`1 “ 2xn for all n, that is, xn “ 2n for all n, then
every �nite subset F of S onsists of powers of 2, so

ř

xPF 1{x ‰ 1{3 and again S satis�es (2).

Finally, we deal with the ase where xn`1 ă 2xn for some n. Consider the positive rational
r “ 1{xn ´ 1{xn`1 ă 1{xn`1. If r “ ř

xPF 1{x for no �nite subset F of S, then S satis�es (2).
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We now assume that r “ ř

xPF0
1{x for some �nite subset F0 of S, and show that S satis�es (1).

Sine

ř

xPF0
1{x “ r ă 1{xn`1, it follows that xn`1 is not a member of F0, so

ÿ

xPF0Ytxn`1u

1

x
“

ÿ

xPF0

1

x
` 1

xn`1

“ r ` 1

xn`1

“ 1

xn
.

Consequently, F “ F0 Y txn`1u and G “ txnu are distint �nite subsets of S suh that

ř

xPF 1{x “ ř

xPG 1{x, and S satis�es (1).
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A4.

Let a0, a1, a2, . . . be a sequene of real numbers suh that a0 “ 0, a1 “ 1, and for every

n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.
(Belgium)

Answer: The maximal value is

2016
20172

.

Solution 1. The laimed maximal value is ahieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2016 “ 1, a2017 “ a2016 ` ¨ ¨ ¨ ` a0
2017

“ 1 ´ 1

2017
,

a2018 “ a2017 ` ¨ ¨ ¨ ` a1
2017

“ 1 ´ 1

20172
.

Now we need to show that this value is optimal. For brevity, we use the notation

Spn, kq “ an´1 ` an´2 ` ¨ ¨ ¨ ` an´k for nonnegative integers k ď n.

In partiular, Spn, 0q “ 0 and Spn, 1q “ an´1. In these terms, for every integer n ě 2 there

exists a positive integer k ď n suh that an “ Spn, kq{k.
For every integer n ě 1 we de�ne

Mn “ max
1ďkďn

Spn, kq
k

, mn “ min
1ďkďn

Spn, kq
k

, and ∆n “ Mn ´ mn ě 0.

By de�nition, an P rmn,Mns for all n ě 2; on the other hand, an´1 “ Spn, 1q{1 P rmn,Mns.
Therefore,

a2018 ´ a2017 ď M2018 ´ m2018 “ ∆2018,

and we are interested in an upper bound for ∆2018.

Also by de�nition, for any 0 ă k ď n we have kmn ď Spn, kq ď kMn; notie that these

inequalities are also valid for k “ 0.

Claim 1. For every n ą 2, we have ∆n ď n´1
n
∆n´1.

Proof. Choose positive integers k, ℓ ď n suh that Mn “ Spn, kq{k and mn “ Spn, ℓq{ℓ. We

have Spn, kq “ an´1 ` Spn ´ 1, k ´ 1q, so

kpMn ´ an´1q “ Spn, kq ´ kan´1 “ Spn ´ 1, k ´ 1q ´ pk ´ 1qan´1 ď pk ´ 1qpMn´1 ´ an´1q,

sine Spn ´ 1, k ´ 1q ď pk ´ 1qMn´1. Similarly, we get

ℓpan´1 ´ mnq “ pℓ ´ 1qan´1 ´ Spn ´ 1, ℓ ´ 1q ď pℓ ´ 1qpan´1 ´ mn´1q.

Sine mn´1 ď an´1 ď Mn´1 and k, ℓ ď n, the obtained inequalities yield

Mn ´ an´1 ď k ´ 1

k
pMn´1 ´ an´1q ď n ´ 1

n
pMn´1 ´ an´1q and

an´1 ´ mn ď ℓ ´ 1

ℓ
pan´1 ´ mn´1q ď n ´ 1

n
pan´1 ´ mn´1q.

Therefore,

∆n “ pMn ´ an´1q ` pan´1 ´ mnq ď n ´ 1

n

`

pMn´1 ´ an´1q ` pan´1 ´ mn´1q
˘

“ n ´ 1

n
∆n´1. l
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Bak to the problem, if an “ 1 for all n ď 2017, then a2018 ď 1 and hene a2018 ´ a2017 ď 0.
Otherwise, let 2 ď q ď 2017 be the minimal index with aq ă 1. We have Spq, iq “ i for all
i “ 1, 2, . . . , q ´ 1, while Spq, qq “ q ´ 1. Therefore, aq ă 1 yields aq “ Spq, qq{q “ 1 ´ 1

q
.

Now we have Spq ` 1, iq “ i´ 1
q
for i “ 1, 2, . . . , q, and Spq ` 1, q ` 1q “ q ´ 1

q
. This gives us

mq`1 “ Spq ` 1, 1q
1

“ Spq ` 1, q ` 1q
q ` 1

“ q ´ 1

q
and Mq`1 “ Spq ` 1, qq

q
“ q2 ´ 1

q2
,

so ∆q`1 “ Mq`1 ´ mq`1 “ pq ´ 1q{q2. Denoting N “ 2017 ě q and using Claim 1 for

n “ q ` 2, q ` 3, . . . , N ` 1 we �nally obtain

∆N`1 ď q ´ 1

q2
¨ q ` 1

q ` 2
¨ q ` 2

q ` 3
¨ ¨ ¨ N

N ` 1
“ 1

N ` 1

ˆ

1 ´ 1

q2

˙

ď 1

N ` 1

ˆ

1 ´ 1

N2

˙

“ N ´ 1

N2
,

as required.

Comment 1. One may hek that the maximal value of a2018 ´ a2017 is attained at the unique

sequene, whih is presented in the solution above.

Comment 2. An easier question would be to determine the maximal value of |a2018 ´ a2017|. In this

version, the answer

1
2018

is ahieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2017 “ 1, a2018 “ a2017 ` ¨ ¨ ¨ ` a0
2018

“ 1 ´ 1

2018
.

To prove that this value is optimal, it su�es to notie that ∆2 “ 1
2
and to apply Claim 1 obtaining

|a2018 ´ a2017| ď ∆2018 ď 1

2
¨ 2
3

¨ ¨ ¨ 2017
2018

“ 1

2018
.

Solution 2. We present a di�erent proof of the estimate a2018 ´ a2017 ď 2016
20172

. We keep the

same notations of Spn, kq, mn and Mn from the previous solution.

Notie that Spn, nq “ Spn, n ´ 1q, as a0 “ 0. Also notie that for 0 ď k ď ℓ ď n we have

Spn, ℓq “ Spn, kq ` Spn ´ k, ℓ ´ kq.
Claim 2. For every positive integer n, we have mn ď mn`1 and Mn`1 ď Mn, so the segment

rmn`1,Mn`1s is ontained in rmn,Mns.
Proof. Choose a positive integer k ď n ` 1 suh that mn`1 “ Spn ` 1, kq{k. Then we have

kmn`1 “ Spn ` 1, kq “ an ` Spn, k ´ 1q ě mn ` pk ´ 1qmn “ kmn,

whih establishes the �rst inequality in the Claim. The proof of the seond inequality is

similar. l

Claim 3. For every positive integers k ě n, we have mn ď ak ď Mn.

Proof. By Claim 2, we have rmk,Mks Ď rmk´1,Mk´1s Ď ¨ ¨ ¨ Ď rmn,Mns. Sine ak P rmk,Mks,
the laim follows. l
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Claim 4. For every integer n ě 2, we have Mn “ Spn, n ´ 1q{pn ´ 1q and mn “ Spn, nq{n.
Proof. We use indution on n. The base ase n “ 2 is routine. To perform the indution step,

we need to prove the inequalities

Spn, nq
n

ď Spn, kq
k

and

Spn, kq
k

ď Spn, n ´ 1q
n ´ 1

(1)

for every positive integer k ď n. Clearly, these inequalities hold for k “ n and k “ n ´ 1, as
Spn, nq “ Spn, n ´ 1q ą 0. In the sequel, we assume that k ă n ´ 1.

Now the �rst inequality in (1) rewrites as nSpn, kq ě kSpn, nq “ k
`

Spn, kq`Spn´k, n´kq
˘

,

or, anelling the terms ourring on both parts, as

pn ´ kqSpn, kq ě kSpn ´ k, n ´ kq ðñ Spn, kq ě k ¨ Spn ´ k, n ´ kq
n ´ k

.

By the indution hypothesis, we have Spn ´ k, n ´ kq{pn ´ kq “ mn´k. By Claim 3, we get

an´i ě mn´k for all i “ 1, 2, . . . , k. Summing these k inequalities we obtain

Spn, kq ě kmn´k “ k ¨ Spn ´ k, n ´ kq
n ´ k

,

as required.

The seond inequality in (1) is proved similarly. Indeed, this inequality is equivalent to

pn ´ 1qSpn, kq ď kSpn, n ´ 1q ðñ pn ´ k ´ 1qSpn, kq ď kSpn ´ k, n ´ k ´ 1q

ðñ Spn, kq ď k ¨ Spn ´ k, n ´ k ´ 1q
n ´ k ´ 1

“ kMn´k;

the last inequality follows again from Claim 3, as eah term in Spn, kq is at most Mn´k. l

Now we an prove the required estimate for a2018 ´ a2017. Set N “ 2017. By Claim 4,

aN`1 ´ aN ď MN`1 ´ aN “ SpN ` 1, Nq
N

´ aN “ aN ` SpN,N ´ 1q
N

´ aN

“ SpN,N ´ 1q
N

´ N ´ 1

N
¨ aN .

On the other hand, the same Claim yields

aN ě mN “ SpN,Nq
N

“ SpN,N ´ 1q
N

.

Notiing that eah term in SpN,N ´ 1q is at most 1, so SpN,N ´ 1q ď N ´ 1, we �nally obtain

aN`1 ´ aN ď SpN,N ´ 1q
N

´ N ´ 1

N
¨ SpN,N ´ 1q

N
“ SpN,N ´ 1q

N2
ď N ´ 1

N2
.

Comment 1. Claim 1 in Solution 1 an be dedued from Claims 2 and 4 in Solution 2.

By Claim 4 we have Mn “ Spn,n´1q
n´1

and mn “ Spn,nq
n “ Spn,n´1q

n . It follows that ∆n “ Mn ´ mn “
Spn,n´1q

pn´1qn and so Mn “ n∆n and mn “ pn ´ 1q∆n

Similarly, Mn´1 “ pn ´ 1q∆n´1 and mn´1 “ pn ´ 2q∆n´1. Then the inequalities mn´1 ď mn and

Mn ď Mn´1 from Claim 2 write as pn´ 2q∆n´1 ď pn´ 1q∆n and n∆n ď pn´ 1q∆n´1. Hene we have

the double inequality

n ´ 2

n ´ 1
∆n´1 ď ∆n ď n ´ 1

n
∆n´1.
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Comment 2. Both solutions above disuss the properties of an arbitrary sequene satisfying the

problem onditions. Instead, one may investigate only an optimal sequene whih maximises the value

of a2018 ´ a2017. Here we present an observation whih allows to simplify suh investigation � for

instane, the proofs of Claim 1 in Solution 1 and Claim 4 in Solution 2.

The sequene panq is uniquely determined by hoosing, for every n ě 2, a positive integer kpnq ď n
suh that an “ Spn, kpnqq{kpnq. Take an arbitrary 2 ď n0 ď 2018, and assume that all suh inte-

gers kpnq, for n ‰ n0, are �xed. Then, for every n, the value of an is a linear funtion in an0 (whose

possible values onstitute some disrete subset of rmn0 ,Mn0 s ontaining both endpoints). Hene,

a2018 ´ a2017 is also a linear funtion in an0 , so it attains its maximal value at one of the endpoints of

the segment rmn0 ,Mn0 s.
This shows that, while dealing with an optimal sequene, we may assume an P tmn,Mnu for all

2 ď n ď 2018. Now one an easily see that, if an “ mn, thenmn`1 “ mn andMn`1 ď mn`nMn

n`1
; similar

estimates hold in the ase an “ Mn. This already establishes Claim 1, and simpli�es the indutive

proof of Claim 4, both applied to an optimal sequene.
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A5.

Determine all funtions f : p0,8q Ñ R satisfying

ˆ

x ` 1

x

˙

fpyq “ fpxyq ` f
´y

x

¯

p1q

for all x, y ą 0.
(South Korea)

Answer: fpxq “ C1x ` C2

x
with arbitrary onstants C1 and C2.

Solution 1. Fix a real number a ą 1, and take a new variable t. For the values fptq, fpt2q,
fpatq and fpa2t2q, the relation (1) provides a system of linear equations:

x “ y “ t :

ˆ

t ` 1

t

˙

fptq “ fpt2q ` fp1q (2a)

x “ t

a
, y “ at :

ˆ

t

a
` a

t

˙

fpatq “ fpt2q ` fpa2q (2b)

x “ a2t, y “ t :

ˆ

a2t ` 1

a2t

˙

fptq “ fpa2t2q ` f

ˆ

1

a2

˙

(2)

x “ y “ at :

ˆ

at ` 1

at

˙

fpatq “ fpa2t2q ` fp1q (2d)

In order to eliminate fpt2q, take the di�erene of (2a) and (2b); from (2) and (2d) eliminate

fpa2t2q; then by taking a linear ombination, eliminate fpatq as well:
ˆ

t ` 1

t

˙

fptq ´
ˆ

t

a
` a

t

˙

fpatq “ fp1q ´ fpa2q and

ˆ

a2t ` 1

a2t

˙

fptq ´
ˆ

at ` 1

at

˙

fpatq “ fp1{a2q ´ fp1q, so

˜

ˆ

at ` 1

at

˙ˆ

t ` 1

t

˙

´
ˆ

t

a
` a

t

˙ˆ

a2t ` 1

a2t

˙

¸

fptq

“
ˆ

at ` 1

at

˙

`

fp1q ´ fpa2q
˘

´
ˆ

t

a
` a

t

˙

`

fp1{a2q ´ fp1q
˘

.

Notie that on the left-hand side, the oe�ient of fptq is nonzero and does not depend on t:

ˆ

at ` 1

at

˙ˆ

t ` 1

t

˙

´
ˆ

t

a
` a

t

˙ˆ

a2t ` 1

a2t

˙

“ a ` 1

a
´
ˆ

a3 ` 1

a3

˙

ă 0.

After dividing by this �xed number, we get

fptq “ C1t ` C2

t
p3q

where the numbers C1 and C2 are expressed in terms of a, fp1q, fpa2q and fp1{a2q, and they

do not depend on t.

The funtions of the form (3) satisfy the equation:

ˆ

x ` 1

x

˙

fpyq “
ˆ

x ` 1

x

˙ˆ

C1y ` C2

y

˙

“
ˆ

C1xy ` C2

xy

˙

`
ˆ

C1

y

x
` C2

x

y

˙

“ fpxyq ` f
´y

x

¯

.



Shortlisted problems � solutions 19

Solution 2. We start with an observation. If we substitute x “ a ‰ 1 and y “ an in (1), we

obtain

fpan`1q ´
ˆ

a ` 1

a

˙

fpanq ` fpan´1q “ 0.

For the sequene zn “ an, this is a homogeneous linear reurrene of the seond order, and its

harateristi polynomial is t2 ´
`

a ` 1
a

˘

t ` 1 “ pt ´ aqpt ´ 1
a
q with two distint nonzero roots,

namely a and 1{a. As is well-known, the general solution is zn “ C1a
n ` C2p1{aqn where the

index n an be as well positive as negative. Of ourse, the numbers C1 and C2 may depend of

the hoie of a, so in fat we have two funtions, C1 and C2, suh that

fpanq “ C1paq ¨ an ` C2paq
an

for every a ‰ 1 and every integer n. p4q

The relation (4) an be easily extended to rational values of n, so we may onjeture that C1

and C2 are onstants, and whene fptq “ C1t ` C2

t
. As it was seen in the previous solution,

suh funtions indeed satisfy (1).

The equation (1) is linear in f ; so if some funtions f1 and f2 satisfy (1) and c1, c2 are real
numbers, then c1f1pxq`c2f2pxq is also a solution of (1). In order to make our formulas simpler,

de�ne

f0pxq “ fpxq ´ fp1q ¨ x.
This funtion is another one satisfying (1) and the extra onstraint f0p1q “ 0. Repeating the

same argument on linear reurrenes, we an write f0paq “ Kpaqan ` Lpaq
an

with some funtions

K and L. By substituting n “ 0, we an see that Kpaq ` Lpaq “ f0p1q “ 0 for every a. Hene,

f0panq “ Kpaq
ˆ

an ´ 1

an

˙

.

Now take two numbers a ą b ą 1 arbitrarily and substitute x “ pa{bqn and y “ pabqn in (1):

ˆ

an

bn
` bn

an

˙

f0
`

pabqn
˘

“ f0
`

a2n
˘

` f0
`

b2n
˘

, so

ˆ

an

bn
` bn

an

˙

Kpabq
ˆ

pabqn ´ 1

pabqn
˙

“ Kpaq
ˆ

a2n ´ 1

a2n

˙

` Kpbq
ˆ

b2n ´ 1

b2n

˙

, or equivalently

Kpabq
ˆ

a2n ´ 1

a2n
` b2n ´ 1

b2n

˙

“ Kpaq
ˆ

a2n ´ 1

a2n

˙

` Kpbq
ˆ

b2n ´ 1

b2n

˙

. (5)

By dividing (5) by a2n and then taking limit with n Ñ `8 we get Kpabq “ Kpaq. Then (5)

redues to Kpaq “ Kpbq. Hene, Kpaq “ Kpbq for all a ą b ą 1.

Fix a ą 1. For every x ą 0 there is some b and an integer n suh that 1 ă b ă a and x “ bn.
Then

f0pxq “ f0pbnq “ Kpbq
ˆ

bn ´ 1

bn

˙

“ Kpaq
ˆ

x ´ 1

x

˙

.

Hene, we have fpxq “ f0pxq ` fp1qx “ C1x ` C2

x
with C1 “ Kpaq ` fp1q and C2 “ ´Kpaq.

Comment. After establishing (5), there are several variants of �nishing the solution. For example,

instead of taking a limit, we an obtain a system of linear equations for Kpaq, Kpbq and Kpabq by

substituting two positive integers n in (5), say n “ 1 and n “ 2. This approah leads to a similar

ending as in the �rst solution.

Optionally, we de�ne another funtion f1pxq “ f0pxq ´ C
`

x ´ 1
x

˘

and presribe Kpcq “ 0 for

another �xed c. Then we an hoose ab “ c and derease the number of terms in (5).
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A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real oe�ients suh

that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]

for every x1, . . . , xn P
 

0, 1, . . . , m ´ 1
(

.

Prove that the total degree of f is at least n.
(Brazil)

Solution. We transform the problem to a single variable question by the following

Lemma. Let a1, . . . , an be nonnegative integers and let Gpxq be a nonzero polynomial with

degG ď a1 ` . . . ` an. Suppose that some polynomial F px1, . . . , xnq satis�es

F px1, . . . , xnq “ Gpx1 ` . . . ` xnq for px1, . . . , xnq P t0, 1, . . . , a1u ˆ . . . ˆ t0, 1, . . . , anu.

Then F annot be the zero polynomial, and degF ě degG.

For proving the lemma, we will use forward di�erenes of polynomials. If ppxq is a polyno-

mial with a single variable, then de�ne p∆pqpxq “ ppx ` 1q ´ ppxq. It is well-known that if p is

a nononstant polynomial then deg∆p “ deg p ´ 1.
If ppx1, . . . , xnq is a polynomial with n variables and 1 ď k ď n then let

p∆kpqpx1, . . . , xnq “ ppx1, . . . , xk´1, xk ` 1, xk`1, . . . , xnq ´ ppx1, . . . , xnq.

It is also well-known that either ∆kp is the zero polynomial or degp∆kpq ď deg p ´ 1.

Proof of the lemma. We apply indution on the degree of G. If G is a onstant polynomial

then we have F p0, . . . , 0q “ Gp0q ‰ 0, so F annot be the zero polynomial.

Suppose that degG ě 1 and the lemma holds true for lower degrees. Sine a1 ` . . . ` an ě
degG ą 0, at least one of a1, . . . , an is positive; without loss of generality suppose a1 ě 1.

Consider the polynomials F1 “ ∆1F andG1 “ ∆G. On the grid t0, . . . , a1´1uˆt0, . . . , a2uˆ
. . . ˆ t0, . . . , anu we have

F1px1, . . . , xnq “ F px1 ` 1, x2, . . . , xnq ´ F px1, x2, . . . , xnq “
“ Gpx1 ` . . . ` xn ` 1q ´ Gpx1 ` . . . ` xnq “ G1px1 ` . . . ` xnq.

Sine G is nononstant, we have degG1 “ degG´1 ď pa1 ´1q`a2 ` . . .`an. Therefore we an
apply the indution hypothesis to F1 and G1 and onlude that F1 is not the zero polynomial

and degF1 ě degG1. Hene, deg F ě degF1 ` 1 ě degG1 ` 1 “ degG. That �nishes the

proof. l

To prove the problem statement, take the unique polynomial gpxq so that gpxq “
X

x
m

\

for

x P
 

0, 1, . . . , npm ´ 1q
(

and deg g ď npm ´ 1q. Notie that preisely npm ´ 1q ` 1 values

of g are presribed, so gpxq indeed exists and is unique. Notie further that the onstraints

gp0q “ gp1q “ 0 and gpmq “ 1 together enfore deg g ě 2.
By applying the lemma to a1 “ . . . “ an “ m ´ 1 and the polynomials f and g, we ahieve

deg f ě deg g. Hene we just need a suitable lower bound on deg g.

Consider the polynomial hpxq “ gpx ` mq ´ gpxq ´ 1. The degree of gpx ` mq ´ gpxq is

deg g ´ 1 ě 1, so deg h “ deg g ´ 1 ě 1, and therefore h annot be the zero polynomial. On the

other hand, h vanishes at the points 0, 1, . . . , npm ´ 1q ´ m, so h has at least pn ´ 1qpm ´ 1q
roots. Hene,

deg f ě deg g “ deg h ` 1 ě pn ´ 1qpm ´ 1q ` 1 ě n.
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Comment 1. In the lemma we have equality for the hoie F px1, . . . , xnq “ Gpx1 ` . . . ` xnq, so it

indeed transforms the problem to an equivalent single-variable question.

Comment 2. If m ě 3, the polynomial hpxq an be replaed by ∆g. Notie that

p∆gqpxq “
#

1 if x ” ´1 pmod mq
0 otherwise

for x “ 0, 1, . . . , npm ´ 1q ´ 1.

Hene, ∆g vanishes at all integers x with 0 ď x ă npm ´ 1q and x ı ´1 pmod mq. This leads to

deg g ě pm´1q2n
m ` 1.

If m is even then this lower bound an be improved to npm ´ 1q. For 0 ď N ă npm ´ 1q, the
pN ` 1qst forward di�erene at x “ 0 is

`

∆N`1
˘

gp0q “
N
ÿ

k“0

p´1qN´k

ˆ

N

k

˙

p∆gqpkq “
ÿ

0ďkďN
k”´1 pmod mq

p´1qN´k

ˆ

N

k

˙

. p˚q

Sine m is even, all signs in the last sum are equal; with N “ npm´1q´1 this proves ∆npm´1qgp0q ‰ 0,
indiating that deg g ě npm ´ 1q.

However, there are in�nitely many ases when all terms in p˚q anel out, for example if m is an

odd divisor of n ` 1. In suh ases, deg f an be less than npm ´ 1q.

Comment 3. The lemma is losely related to the so-alled

Alon�Füredi bound. Let S1, . . . , Sn be nonempty �nite sets in a �eld and suppose that

the polynomial P px1, . . . , xnq vanishes at the points of the grid S1 ˆ . . . ˆ Sn, exept for a

single point. Then degP ě
n
ř

i“1

`

|Si| ´ 1
˘

.

(A well-known appliation of the Alon�Füredi bound was the former IMO problem 2007/6.

Sine then, this result beame popular among the students and is part of the IMO training

for many IMO teams.)

The proof of the lemma an be replaed by an appliation of the Alon�Füredi bound as follows. Let

d “ degG, and let G0 be the unique polynomial suh that G0pxq “ Gpxq for x P
 

0, 1, . . . , d ´ 1
(

but

degG0 ă d. The polynomials G0 and G are di�erent beause they have di�erent degrees, and they

attain the same values at 0, 1, . . . , d ´ 1; that enfores G0pdq ‰ Gpdq.
Choose some nonnegative integers b1, . . . , bn so that b1 ď a1, . . . , bn ď an, and b1 ` . . . ` bn “ d,

and onsider the polynomial

Hpx1, . . . , xnq “ F px1, . . . , xnq ´ G0px1 ` . . . ` xnq

on the grid

 

0, 1, . . . , b1
(

ˆ . . . ˆ
 

0, 1, . . . , bn
(

.

At the point pb1, . . . , bnq we have Hpb1, . . . , bnq “ Gpdq ´ G0pdq ‰ 0. At all other points of the grid
we have F “ G and thereforeH “ G´G0 “ 0. So, by the Alon�Füredi bound, degH ě b1`. . .`bn “ d.
Sine degG0 ă d, this implies degF “ degpH ` G0q “ degH ě d “ degG. l
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A7.

Find the maximal value of

S “ 3

c

a

b ` 7
` 3

c

b

c ` 7
` 3

c

c

d ` 7
` 3

c

d

a ` 7
,

where a, b, c, d are nonnegative real numbers whih satisfy a ` b ` c ` d “ 100.
(Taiwan)

Answer:

8
3
?
7
, reahed when pa, b, c, dq is a yli permutation of p1, 49, 1, 49q.

Solution 1. Sine the value 8{ 3
?
7 is reahed, it su�es to prove that S ď 8{ 3

?
7.

Assume that x, y, z, t is a permutation of the variables, with x ď y ď z ď t. Then, by the

rearrangement inequality,

S ď
˜

3

c

x

t ` 7
` 3

c

t

x ` 7

¸

`
ˆ

3

c

y

z ` 7
` 3

c

z

y ` 7

˙

.

Claim. The �rst braket above does not exeed

3

c

x ` t ` 14

7
.

Proof. Sine

X3 ` Y 3 ` 3XY Z ´ Z3 “ 1

2
pX ` Y ´ Zq

`

pX ´ Y q2 ` pX ` Zq2 ` pY ` Zq2
˘

,

the inequality X ` Y ď Z is equivalent (when X, Y, Z ě 0) to X3 ` Y 3 ` 3XY Z ď Z3
.

Therefore, the laim is equivalent to

x

t ` 7
` t

x ` 7
` 3

3

d

xtpx ` t ` 14q
7px ` 7qpt ` 7q ď x ` t ` 14

7
.

Notie that

3
3

d

xtpx ` t ` 14q
7px ` 7qpt ` 7q “ 3

3

d

tpx ` 7q
7pt ` 7q ¨ xpt ` 7q

7px ` 7q ¨ 7px ` t ` 14q
pt ` 7qpx ` 7q

ď tpx ` 7q
7pt ` 7q ` xpt ` 7q

7px ` 7q ` 7px ` t ` 14q
pt ` 7qpx ` 7q

by the AM�GM inequality, so it su�es to prove

x

t ` 7
` t

x ` 7
` tpx ` 7q

7pt ` 7q ` xpt ` 7q
7px ` 7q ` 7px ` t ` 14q

pt ` 7qpx ` 7q ď x ` t ` 14

7
.

A straightforward hek veri�es that the last inequality is in fat an equality. l

The laim leads now to

S ď 3

c

x ` t ` 14

7
` 3

c

y ` z ` 14

7
ď 2

3

c

x ` y ` z ` t ` 28

14
“ 8

3
?
7
,

the last inequality being due to the AM�CM inequality (or to the fat that

3
?

is onave on

r0,8q).
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Solution 2. We present a di�erent proof for the estimate S ď 8{ 3
?
7.

Start by using Hölder's inequality:

S3 “
˜

ÿ

cyc

6
?
a ¨ 6

?
a

3
?
b ` 7

¸3

ď
ÿ

cyc

`

6
?
a
˘3 ¨

ÿ

cyc

`

6
?
a
˘3 ¨

ÿ

cyc

ˆ

1
3
?
b ` 7

˙3

“
˜

ÿ

cyc

?
a

¸2
ÿ

cyc

1

b ` 7
.

Notie that

px ´ 1q2px ´ 7q2
x2 ` 7

ě 0 ðñ x2 ´ 16x ` 71 ě 448

x2 ` 7

yields

ÿ 1

b ` 7
ď 1

448

ÿ

`

b ´ 16
?
b ` 71

˘

“ 1

448

´

384 ´ 16
ÿ?

b
¯

“ 48 ´ 2
ř

?
b

56
.

Finally,

S3 ď 1

56

´

ÿ?
a
¯2 ´

48 ´ 2
ÿ?

a
¯

ď 1

56

˜

ř?
a ` ř?

a `
`

48 ´ 2
ř?

a
˘

3

¸3

“ 512

7

by the AM�GM inequality. The onlusion follows.

Comment. All the above works if we replae 7 and 100 with k ą 0 and 2pk2 ` 1q, respetively; in this

ase, the answer beomes

2
3

c

pk ` 1q2
k

.

Even further, a linear substitution allows to extend the solutions to a version with 7 and 100 being

replaed with arbitrary positive real numbers p and q satisfying q ě 4p.
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Combinatoris

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S an be partitioned into

two subsets with equal sums of elements, with one of subsets of ardinality m.

(Ieland)

Solution. We show that one of possible examples is the set

S “ t1 ¨ 3k, 2 ¨ 3k : k “ 1, 2, . . . , n ´ 1u Y
"

1,
3n ` 9

2
´ 1

*

.

It is readily veri�ed that all the numbers listed above are distint (notie that the last two are

not divisible by 3).
The sum of elements in S is

Σ “ 1 `
ˆ

3n ` 9

2
´ 1

˙

`
n´1
ÿ

k“1

p1 ¨ 3k ` 2 ¨ 3kq “ 3n ` 9

2
`

n´1
ÿ

k“1

3k`1 “ 3n ` 9

2
` 3n`1 ´ 9

2
“ 2 ¨ 3n.

Hene, in order to show that this set satis�es the problem requirements, it su�es to present,

for every m “ 2, 3, . . . , n, an m-element subset Am Ă S whose sum of elements equals 3n.
Suh a subset is

Am “ t2 ¨ 3k : k “ n ´ m ` 1, n ´ m ` 2, . . . , n ´ 1u Y t1 ¨ 3n´m`1u.

Clearly, |Am| “ m. The sum of elements in Am is

3n´m`1 `
n´1
ÿ

k“n´m`1

2 ¨ 3k “ 3n´m`1 ` 2 ¨ 3n ´ 2 ¨ 3n´m`1

2
“ 3n,

as required.

Comment. Let us present a more general onstrution. Let s1, s2, . . . , s2n´1 be a sequene of pairwise

distint positive integers satisfying s2i`1 “ s2i ` s2i´1 for all i “ 2, 3, . . . , n ´ 1. Set s2n “ s1 ` s2 `
¨ ¨ ¨ ` s2n´4.

Assume that s2n is distint from the other terms of the sequene. Then the set S “ ts1, s2, . . . , s2nu
satis�es the problem requirements. Indeed, the sum of its elements is

Σ “
2n´4
ÿ

i“1

si ` ps2n´3 ` s2n´2q ` s2n´1 ` s2n “ s2n ` s2n´1 ` s2n´1 ` s2n “ 2s2n ` 2s2n´1.

Therefore, we have

Σ

2
“ s2n ` s2n´1 “ s2n ` s2n´2 ` s2n´3 “ s2n ` s2n´2 ` s2n´4 ` s2n´5 “ . . . ,

whih shows that the required sets Am an be hosen as

Am “ ts2n, s2n´2, . . . , s2n´2m`4, s2n´2m`3u.

So, the only ondition to be satis�ed is s2n R ts1, s2, . . . , s2n´1u, whih an be ahieved in many

di�erent ways (e.g., by hoosing properly the number s1 after speifying s2, s3, . . . , s2n´1).

The solution above is an instane of this general onstrution. Another instane, for n ą 3, is the
set

tF1, F2, . . . , F2n´1, F1 ` ¨ ¨ ¨ ` F2n´4u,
where F1 “ 1, F2 “ 2, Fn`1 “ Fn ` Fn´1 is the usual Fibonai sequene.
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C2.

Queenie and Horst play a game on a 20 ˆ 20 hessboard. In the beginning the board

is empty. In every turn, Horst plaes a blak knight on an empty square in suh a way that his

new knight does not attak any previous knights. Then Queenie plaes a white queen on an

empty square. The game gets �nished when somebody annot move.

Find the maximal positive K suh that, regardless of the strategy of Queenie, Horst an

put at least K knights on the board.

(Armenia)

Answer: K “ 202{4 “ 100. In ase of a 4N ˆ 4M board, the answer is K “ 4NM .

Solution. We show two strategies, one for Horst to plae at least 100 knights, and another

strategy for Queenie that prevents Horst from putting more than 100 knights on the board.

A strategy for Horst: Put knights only on blak squares, until all blak squares get

oupied.

Colour the squares of the board blak and white in the usual way, suh that the white

and blak squares alternate, and let Horst put his knights on blak squares as long as it is

possible. Two knights on squares of the same olour never attak eah other. The number of

blak squares is 202{2 “ 200. The two players oupy the squares in turn, so Horst will surely

�nd empty blak squares in his �rst 100 steps.

A strategy for Queenie: Group the squares into yles of length 4, and after eah step

of Horst, oupy the opposite square in the same yle.

Consider the squares of the board as verties of a graph; let two squares be onneted if

two knights on those squares would attak eah other. Notie that in a 4ˆ 4 board the squares

an be grouped into 4 yles of length 4, as shown in Figure 1. Divide the board into parts of

size 4 ˆ 4, and perform the same grouping in every part; this way we arrange the 400 squares

of the board into 100 yles (Figure 2).

D

B

A C

Figure 1 Figure 2 Figure 3

The strategy of Queenie an be as follows: Whenever Horst puts a new knight to a ertain

square A, whih is part of some yle A ´ B ´ C ´ D ´ A, let Queenie put her queen on the

opposite square C in that yle (Figure 3). From this point, Horst annot put any knight on

A or C beause those squares are already oupied, neither on B or D beause those squares

are attaked by the knight standing on A. Hene, Horst an put at most one knight on eah

yle, that is at most 100 knights in total.

Comment 1. Queenie's strategy an be presribed by a simple rule: divide the board into 4 ˆ 4
parts; whenever Horst puts a knight in a part P , Queenie re�ets that square about the entre of P
and puts her queen on the re�eted square.

Comment 2. The result remains the same if Queenie moves �rst. In the �rst turn, she may put

her �rst queen arbitrarily. Later, if she has to put her next queen on a square that already ontains a

queen, she may move arbitrarily again.
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C3.

Let n be a given positive integer. Sisyphus performs a sequene of turns on a board

onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.
Prove that Sisyphus annot reah the aim in less than

Qn

1

U

`
Qn

2

U

`
Qn

3

U

` ¨ ¨ ¨ `
Qn

n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)
(Netherlands)

Solution. The stones are indistinguishable, and all have the same origin and the same �nal

position. So, at any turn we an presribe whih stone from the hosen square to move. We

do it in the following manner. Number the stones from 1 to n. At any turn, after hoosing a

square, Sisyphus moves the stone with the largest number from this square.

This way, when stone k is moved from some square, that square ontains not more than k
stones (sine all their numbers are at most k). Therefore, stone k is moved by at most k squares

at eah turn. Sine the total shift of the stone is exatly n, at least rn{ks moves of stone k
should have been made, for every k “ 1, 2, . . . , n.

By summing up over all k “ 1, 2, . . . , n, we get the required estimate.

Comment. The original submission ontained the seond part, asking for whih values of n the equality

an be ahieved. The answer is n “ 1, 2, 3, 4, 5, 7. The Problem Seletion Committee onsidered this

part to be less suitable for the ompetition, due to tehnialities.
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C4.

An anti-Pasal pyramid is a �nite set of numbers, plaed in a triangle-shaped array

so that the �rst row of the array ontains one number, the seond row ontains two numbers,

the third row ontains three numbers and so on; and, exept for the numbers in the bottom

row, eah number equals the absolute value of the di�erene of the two numbers below it. For

instane, the triangle below is an anti-Pasal pyramid with four rows, in whih every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 ours exatly one:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pasal pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exatly one?

(Iran)

Answer: No, it is not possible.

Solution. Let T be an anti-Pasal pyramid with n rows, ontaining every integer from 1 to

1`2`¨ ¨ ¨`n, and let a1 be the topmost number in T (Figure 1). The two numbers below a1 are
some a2 and b2 “ a1 ` a2, the two numbers below b2 are some a3 and b3 “ a1 ` a2 ` a3, and so

on and so forth all the way down to the bottom row, where some an and bn “ a1 `a2 ` ¨ ¨ ¨ `an
are the two neighbours below bn´1 “ a1 ` a2 ` ¨ ¨ ¨ ` an´1. Sine the ak are n pairwise distint

positive integers whose sum does not exeed the largest number in T , whih is 1 ` 2 ` ¨ ¨ ¨ ` n,
it follows that they form a permutation of 1, 2, . . . , n.

a
1

a
2

b
2

an-1

bn

a
3

b
3

bn-1

an

..................
T

T’ T’’

Figure 1 Figure 2

Consider now (Figure 2) the two `equilateral' subtriangles of T whose bottom rows ontain

the numbers to the left, respetively right, of the pair an, bn. (One of these subtriangles may

very well be empty.) At least one of these subtriangles, say T 1
, has side length ℓ ě rpn ´ 2q{2s.

Sine T 1
obeys the anti-Pasal rule, it ontains ℓ pairwise distint positive integers a1

1, a
1
2, . . . , a

1
ℓ,

where a1
1 is at the apex, and a1

k and b1
k “ a1

1 `a1
2 `¨ ¨ ¨`a1

k are the two neighbours below b1
k´1 for

eah k “ 2, 3 . . . , ℓ. Sine the ak all lie outside T 1
, and they form a permutation of 1, 2, . . . , n,

the a1
k are all greater than n. Consequently,

b1
ℓ ě pn ` 1q ` pn ` 2q ` ¨ ¨ ¨ ` pn ` ℓq “ ℓp2n ` ℓ ` 1q

2

ě 1

2
¨ n ´ 2

2

ˆ

2n ` n ´ 2

2
` 1

˙

“ 5npn ´ 2q
8

,

whih is greater than 1 ` 2 ` ¨ ¨ ¨ ` n “ npn ` 1q{2 for n “ 2018. A ontradition.

Comment. The above estimate may be slightly improved by notiing that b1
ℓ ‰ bn. This implies

npn ` 1q{2 “ bn ą b1
ℓ ě rpn ´ 2q{2s p2n ` rpn ´ 2q{2s ` 1q {2, so n ď 7 if n is odd, and n ď 12 if n is

even. It seems that the largest anti-Pasal pyramid whose entries are a permutation of the integers

from 1 to 1 ` 2 ` ¨ ¨ ¨ ` n has 5 rows.
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C5.

Let k be a positive integer. The organising ommittee of a tennis tournament is to

shedule the mathes for 2k players so that every two players play one, eah day exatly one

math is played, and eah player arrives to the tournament site the day of his �rst math, and

departs the day of his last math. For every day a player is present on the tournament, the

ommittee has to pay 1 oin to the hotel. The organisers want to design the shedule so as to

minimise the total ost of all players' stays. Determine this minimum ost.

(Russia)

Answer: The required minimum is kp4k2 ` k ´ 1q{2.
Solution 1. Enumerate the days of the tournament 1, 2, . . . ,

`

2k
2

˘

. Let b1 ď b2 ď ¨ ¨ ¨ ď b2k be

the days the players arrive to the tournament, arranged in nondereasing order; similarly, let

e1 ě ¨ ¨ ¨ ě e2k be the days they depart arranged in noninreasing order (it may happen that a

player arrives on day bi and departs on day ej , where i ‰ j). If a player arrives on day b and
departs on day e, then his stay ost is e ´ b ` 1. Therefore, the total stay ost is

Σ “
2k
ÿ

i“1

ei ´
2k
ÿ

i“1

bi ` n “
2k
ÿ

i“1

pei ´ bi ` 1q.

Bounding the total ost from below. To this end, estimate ei`1 ´ bi`1 ` 1. Before day bi`1,

only i players were present, so at most

`

i
2

˘

mathes ould be played. Therefore, bi`1 ď
`

i
2

˘

` 1.

Similarly, at most

`

i
2

˘

mathes ould be played after day ei`1, so ei ě
`

2k
2

˘

´
`

i
2

˘

. Thus,

ei`1 ´ bi`1 ` 1 ě
ˆ

2k

2

˙

´ 2

ˆ

i

2

˙

“ kp2k ´ 1q ´ ipi ´ 1q.

This lower bound an be improved for i ą k : List the i players who arrived �rst, and

the i players who departed last; at least 2i ´ 2k players appear in both lists. The mathes

between these players were ounted twie, though the players in eah pair have played only

one. Therefore, if i ą k, then

ei`1 ´ bi`1 ` 1 ě
ˆ

2k

2

˙

´ 2

ˆ

i

2

˙

`
ˆ

2i ´ 2k

2

˙

“ p2k ´ iq2.

An optimal tournament, We now desribe a shedule in whih the lower bounds above are all

ahieved simultaneously. Split players into two groups X and Y , eah of ardinality k. Next,
partition the shedule into three parts. During the �rst part, the players from X arrive one by

one, and eah newly arrived player immediately plays with everyone already present. During

the third part (after all players from X have already departed) the players from Y depart one

by one, eah playing with everyone still present just before departing.

In the middle part, everyone from X should play with everyone from Y . Let S1, S2, . . . , Sk

be the players in X , and let T1, T2, . . . , Tk be the players in Y . Let T1, T2, . . . , Tk arrive in

this order; after Tj arrives, he immediately plays with all the Si, i ą j. Afterwards, players Sk,

Sk´1, . . . , S1 depart in this order; eah Si plays with all the Tj , i ď j, just before his departure,
and Sk departs the day Tk arrives. For 0 ď s ď k ´ 1, the number of mathes played between

Tk´s's arrival and Sk´s's departure is

k´1
ÿ

j“k´s

pk ´ jq ` 1 `
k´1
ÿ

j“k´s

pk ´ j ` 1q “ 1

2
sps ` 1q ` 1 ` 1

2
sps ` 3q “ ps ` 1q2.

Thus, if i ą k, then the number of mathes that have been played between Ti´k`1's arrival,

whih is bi`1, and Si´k`1's departure, whih is ei`1, is p2k´iq2; that is, ei`1´bi`1`1 “ p2k´iq2,
showing the seond lower bound ahieved for all i ą k.
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If i ď k, then the mathes between the i players present before bi`1 all fall in the �rst part

of the shedule, so there are

`

i
2

˘

suh, and bi`1 “
`

i
2

˘

` 1. Similarly, after ei`1, there are i

players left, all

`

i
2

˘

mathes now fall in the third part of the shedule, and ei`1 “
`

2k
2

˘

´
`

i
2

˘

.

The �rst lower bound is therefore also ahieved for all i ď k.
Consequently, all lower bounds are ahieved simultaneously, and the shedule is indeed

optimal.

Evaluation. Finally, evaluate the total ost for the optimal shedule:

Σ “
k
ÿ

i“0

`

kp2k ´ 1q ´ ipi ´ 1q
˘

`
2k´1
ÿ

i“k`1

p2k ´ iq2 “ pk ` 1qkp2k ´ 1q ´
k
ÿ

i“0

ipi ´ 1q `
k´1
ÿ

j“1

j2

“ kpk ` 1qp2k ´ 1q ´ k2 ` 1

2
kpk ` 1q “ 1

2
kp4k2 ` k ´ 1q.

Solution 2. Consider any tournament shedule. Label players P1, P2, . . . , P2k in order of

their arrival, and label them again Q2k, Q2k´1, . . ., Q1 in order of their departure, to de�ne a

permutation a1, a2, . . . , a2k of 1, 2, . . . , 2k by Pi “ Qai .

We �rst desribe an optimal tournament for any given permutation a1, a2, . . . , a2k of the

indies 1, 2, . . . , 2k. Next, we �nd an optimal permutation and an optimal tournament.

Optimisation for a �xed a1, . . . , a2k. We say that the ost of the math between Pi and Pj

is the number of players present at the tournament when this math is played. Clearly, the

Committee pays for eah day the ost of the math of that day. Hene, we are to minimise the

total ost of all mathes.

Notie that Q2k's departure does not preede P2k's arrival. Hene, the number of play-

ers at the tournament monotonially inreases (non-stritly) until it reahes 2k, and then

monotonially dereases (non-stritly). So, the best time to shedule the math between Pi

and Pj is either when Pmaxpi,jq arrives, or when Qmaxpai,ajq departs, in whih ase the ost is

min
`

maxpi, jq,maxpai, ajq
˘

.

Conversely, assuming that i ą j, if this math is sheduled between the arrivals of Pi and

Pi`1, then its ost will be exatly i “ maxpi, jq. Similarly, one an make it ost maxpai, ajq.
Obviously, these onditions an all be simultaneously satis�ed, so the minimal ost for a �xed

sequene a1, a2, . . . , a2k is

Σpa1, . . . , a2kq “
ÿ

1ďiăjď2k

min
`

maxpi, jq,maxpai, ajq
˘

. (1)

Optimising the sequene paiq. Optimisation hinges on the lemma below.

Lemma. If a ď b and c ď d, then

min
`

maxpa, xq,maxpc, yq
˘

` min
`

maxpb, xq,maxpd, yq
˘

ě min
`

maxpa, xq,maxpd, yq
˘

` min
`

maxpb, xq,maxpc, yq
˘

.

Proof. Write a1 “ maxpa, xq ď maxpb, xq “ b1
and c1 “ maxpc, yq ď maxpd, yq “ d1

and hek

that minpa1, c1q ` minpb1, d1q ě minpa1, d1q ` minpb1, c1q. l

Consider a permutation a1, a2, . . . , a2k suh that ai ă aj for some i ă j. Swapping ai
and aj does not hange the pi, jqth summand in (1), and for ℓ R ti, ju the sum of the pi, ℓqth
and the pj, ℓqth summands does not inrease by the Lemma. Hene the optimal value does not

inrease, but the number of disorders in the permutation inreases. This proess stops when

ai “ 2k ` 1 ´ i for all i, so the required minimum is

Sp2k, 2k ´ 1, . . . , 1q “
ÿ

1ďiăjď2k

min
`

maxpi, jq,maxp2k ` 1 ´ i, 2k ` 1 ´ jq
˘

“
ÿ

1ďiăjď2k

minpj, 2k ` 1 ´ iq.
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The latter sum is fairly tratable and yields the stated result; we omit the details.

Comment. If the number of players is odd, say, 2k ´ 1, the required minimum is kpk ´ 1qp4k ´ 1q{2.
In this ase, |X| “ k, |Y | “ k ´ 1, the argument goes along the same lines, but some additional

tehnialities are to be taken are of.
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C6.

Let a and b be distint positive integers. The following in�nite proess takes plae on
an initially empty board.

piq If there is at least a pair of equal numbers on the board, we hoose suh a pair and

inrease one of its omponents by a and the other by b.

piiq If no suh pair exists, we write down two times the number 0.

Prove that, no matter how we make the hoies in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

Solution 1. We may assume gcdpa, bq “ 1; otherwise we work in the same way with multiples

of d “ gcdpa, bq.
Suppose that after N moves of type piiq and some moves of type piq we have to add two

new zeros. For eah integer k, denote by fpkq the number of times that the number k appeared

on the board up to this moment. Then fp0q “ 2N and fpkq “ 0 for k ă 0. Sine the board

ontains at most one k ´ a, every seond ourrene of k ´ a on the board produed, at some

moment, an ourrene of k; the same stands for k ´ b. Therefore,

fpkq “
Z

fpk ´ aq
2

^

`
Z

fpk ´ bq
2

^

, p1q

yielding

fpkq ě fpk ´ aq ` fpk ´ bq
2

´ 1. p2q

Sine gcdpa, bq “ 1, every integer x ą ab ´ a ´ b is expressible in the form x “ sa ` tb, with
integer s, t ě 0.

We will prove by indution on s ` t that if x “ sa ` bt, with s, t nonnegative integers, then

fpxq ą fp0q
2s`t

´ 2. p3q

The base ase s`t “ 0 is trivial. Assume now that p3q is true for s`t “ v. Then, if s`t “ v`1
and x “ sa ` tb, at least one of the numbers s and t � say s � is positive, hene by p2q,

fpxq “ fpsa ` tbq ě f
`

ps ´ 1qa ` tb
˘

2
´ 1 ą 1

2

ˆ

fp0q
2s`t´1

´ 2

˙

´ 1 “ fp0q
2s`t

´ 2.

Assume now that we must perform moves of type piiq ad in�nitum. Take n “ ab´a´ b and
suppose b ą a. Sine eah of the numbers n ` 1, n ` 2, . . . , n ` b an be expressed in the form

sa ` tb, with 0 ď s ď b and 0 ď t ď a, after moves of type piiq have been performed 2a`b`1

times and we have to add a new pair of zeros, eah fpn ` kq, k “ 1, 2, . . . , b, is at least 2. In
this ase p1q yields indutively fpn ` kq ě 2 for all k ě 1. But this is absurd: after a �nite

number of moves, f annot attain nonzero values at in�nitely many points.

Solution 2. We start by showing that the result of the proess in the problem does not

depend on the way the operations are performed. For that purpose, it is onvenient to modify

the proess a bit.

Claim 1. Suppose that the board initially ontains a �nite number of nonnegative integers,

and one starts performing type piq moves only. Assume that one had applied k moves whih led

to a �nal arrangement where no more type piq moves are possible. Then, if one starts from the

same initial arrangement, performing type piq moves in an arbitrary fashion, then the proess

will neessarily stop at the same �nal arrangement
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Proof. Throughout this proof, all moves are supposed to be of type piq.
Indut on k; the base ase k “ 0 is trivial, sine no moves are possible. Assume now that

k ě 1. Fix some anonial proess, onsisting of k moves M1,M2, . . . ,Mk, and reahing the

�nal arrangement A. Consider any sample proess m1, m2, . . . starting with the same initial

arrangement and proeeding as long as possible; learly, it ontains at least one move. We need

to show that this proess stops at A.
Let move m1 onsist in replaing two opies of x with x ` a and x ` b. If move M1 does

the same, we may apply the indution hypothesis to the arrangement appearing after m1.

Otherwise, the anonial proess should still ontain at least one move onsisting in replaing

px, xq ÞÑ px ` a, x ` bq, beause the initial arrangement ontains at least two opies of x, while
the �nal one ontains at most one suh.

Let Mi be the �rst suh move. Sine the opies of x are indistinguishable and no other opy

of x disappeared before Mi in the anonial proess, the moves in this proess an be permuted

as Mi,M1, . . . ,Mi´1,Mi`1, . . . ,Mk, without a�eting the �nal arrangement. Now it su�es to

perform the move m1 “ Mi and apply the indution hypothesis as above. l

Claim 2. Consider any proess starting from the empty board, whih involved exatly n moves

of type piiq and led to a �nal arrangement where all the numbers are distint. Assume that

one starts with the board ontaining 2n zeroes (as if n moves of type piiq were made in the

beginning), applying type piq moves in an arbitrary way. Then this proess will reah the same

�nal arrangement.

Proof. Starting with the board with 2n zeros, one may indeed model the �rst proess mentioned

in the statement of the laim, omitting the type piiq moves. This way, one reahes the same

�nal arrangement. Now, Claim 1 yields that this �nal arrangement will be obtained when

type piq moves are applied arbitrarily. l

Claim 2 allows now to reformulate the problem statement as follows: There exists an integer

n suh that, starting from 2n zeroes, one may apply type piq moves inde�nitely.

In order to prove this, we start with an obvious indution on s ` t “ k ě 1 to show that if

we start with 2s`t
zeros, then we an get simultaneously on the board, at some point, eah of

the numbers sa ` tb, with s ` t “ k.
Suppose now that a ă b. Then, an appropriate use of separate groups of zeros allows us to

get two opies of eah of the numbers sa ` tb, with 1 ď s, t ď b.
De�ne N “ ab´a´b, and notie that after representing eah of numbers N`k, 1 ď k ď b, in

the form sa`tb, 1 ď s, t ď b we an get, using enough zeros, the numbers N`1, N`2, . . . , N`a
and the numbers N ` 1, N ` 2, . . . , N ` b.

From now on we an perform only moves of type piq. Indeed, if n ě N , the ourrene of the

numbers n` 1, n` 2, . . . , n` a and n` 1, n` 2, . . . , n` b and the replaement pn` 1, n` 1q ÞÑ
pn ` b ` 1, n ` a ` 1q leads to the ourrene of the numbers n ` 2, n ` 3, . . . , n ` a ` 1 and

n ` 2, n ` 3, . . . , n ` b ` 1.

Comment. The proofs of Claims 1 and 2 may be extended in order to show that in fat the number

of moves in the anonial proess is the same as in an arbitrary sample one.
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C7.

Consider 2018 pairwise rossing irles no three of whih are onurrent. These irles

subdivide the plane into regions bounded by irular edges that meet at verties. Notie that

there are an even number of verties on eah irle. Given the irle, alternately olour the

verties on that irle red and blue. In doing so for eah irle, every vertex is oloured twie �

one for eah of the two irles that ross at that point. If the two olourings agree at a vertex,

then it is assigned that olour; otherwise, it beomes yellow. Show that, if some irle ontains

at least 2061 yellow points, then the verties of some region are all yellow.

(India)

Solution 1. Letting n “ 2018, we will show that, if every region has at least one non-yellow

vertex, then every irle ontains at most n ` t
?
n ´ 2u ´ 2 yellow points. In the ase at hand,

the latter equals 2018 ` 44 ´ 2 “ 2060, ontraditing the hypothesis.

Consider the natural geometri graph G assoiated with the on�guration of n irles. Fix

any irle C in the on�guration, let k be the number of yellow points on C, and �nd a suitable

lower bound for the total number of yellow verties of G in terms of k and n. It turns out that
k is even, and G has at least

k ` 2

ˆ

k{2
2

˙

` 2

ˆ

n ´ k{2 ´ 1

2

˙

“ k2

2
´ pn ´ 2qk ` pn ´ 2qpn ´ 1q p˚q

yellow verties. The proof hinges on the two lemmata below.

Lemma 1. Let two irles in the on�guration ross at x and y. Then x and y are either both

yellow or both non-yellow.

Proof. This is beause the numbers of interior verties on the four ars x and y determine on

the two irles have like parities. l

In partiular, eah irle in the on�guration ontains an even number of yellow verties.

Lemma 2. If Ňxy, Ňyz, and Ňzx are irular ars of three pairwise distint irles in the on�gu-

ration, then the number of yellow verties in the set tx, y, zu is odd.

Proof. Let C1, C2, C3 be the three irles under onsideration. Assume, without loss of gen-

erality, that C2 and C3 ross at x, C3 and C1 ross at y, and C1 and C2 ross at z. Let k1,
k2, k3 be the numbers of interior verties on the three irular ars under onsideration. Sine

eah irle in the on�guration, di�erent from the Ci, rosses the yle Ňxy YŇyz Y Ňzx at an even

number of points (reall that no three irles are onurrent), and self-rossings are ounted

twie, the sum k1 ` k2 ` k3 is even.
Let Z1 be the olour z gets from C1 and de�ne the other olours similarly. By the preeding,

the number of bihromati pairs in the list pZ1, Y1q, pX2, Z2q, pY3, X3q is odd. Sine the total

number of olour hanges in a yle Z1�Y1�Y3�X3�X2�Z2�Z1 is even, the number of bihromati

pairs in the list pX2, X3q, pY1, Y3q, pZ1, Z2q is odd, and the lemma follows. l

We are now in a position to prove that p˚q bounds the total number of yellow verties from

below. Refer to Lemma 1 to infer that the k yellow verties on C pair o� to form the pairs of

points where C is rossed by k{2 irles in the on�guration. By Lemma 2, these irles ross
pairwise to aount for another 2

`

k{2
2

˘

yellow verties. Finally, the remaining n´k{2´ 1 irles
in the on�guration ross C at non-yellow verties, by Lemma 1, and Lemma 2 applies again

to show that these irles ross pairwise to aount for yet another 2
`

n´k{2´1

2

˘

yellow verties.

Consequently, there are at least p˚q yellow verties.

Next, notie that G is a plane graph on npn´ 1q degree 4 verties, having exatly 2npn´ 1q
edges and exatly npn ´ 1q ` 2 faes (regions), the outer fae inlusive (by Euler's formula for

planar graphs).

Lemma 3. Eah fae of G has equally many red and blue verties. In partiular, eah fae has

an even number of non-yellow verties.
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Proof. Trae the boundary of a fae one in irular order, and onsider the olours eah vertex

is assigned in the olouring of the two irles that ross at that vertex, to infer that olours of

non-yellow verties alternate. l

Consequently, if eah region has at least one non-yellow vertex, then it has at least two suh.

Sine eah vertex of G has degree 4, onsideration of vertex-fae inidenes shows that G has

at least npn´1q{2`1 non-yellow verties, and hene at most npn´1q{2´1 yellow verties. (In

fat, Lemma 3 shows that there are at least npn ´ 1q{4 ` 1{2 red, respetively blue, verties.)

Finally, reall the lower bound p˚q for the total number of yellow verties in G, to write

npn ´ 1q{2 ´ 1 ě k2{2 ´ pn ´ 2qk ` pn ´ 2qpn ´ 1q, and onlude that k ď n ` t
?
n ´ 2u ´ 2, as

laimed in the �rst paragraph.

Solution 2. The �rst two lemmata in Solution 1 show that the irles in the on�guration

split into two lasses: Consider any irle C along with all irles that ross C at yellow points

to form one lass; the remaining irles then form the other lass. Lemma 2 shows that any pair
of irles in the same lass ross at yellow points; otherwise, they ross at non-yellow points.

Call the irles from the two lasses white and blak, respetively. Call a region yellow if

its verties are all yellow. Let w and b be the numbers of white and blak irles, respetively;

learly, w ` b “ n. Assume that w ě b, and that there is no yellow region. Clearly, b ě 1,
otherwise eah region is yellow. The white irles subdivide the plane into wpw ´ 1q ` 2 larger

regions � all them white. The white regions (or rather their boundaries) subdivide eah blak

irle into blak ars. Sine there are no yellow regions, eah white region ontains at least one

blak ar.

Consider any white region; let it ontain t ě 1 blak ars. We laim that the number of

points at whih these t ars ross does not exeed t ´ 1. To prove this, onsider a multigraph

whose verties are these blak ars, two verties being joined by an edge for eah point at whih

the orresponding ars ross. If this graph had more than t´ 1 edges, it would ontain a yle,

sine it has t verties; this yle would orrespond to a losed ontour formed by blak sub-ars,

lying inside the region under onsideration. This ontour would, in turn, de�ne at least one

yellow region, whih is impossible.

Let ti be the number of blak ars inside the ithwhite region. The total number of blak

ars is

ř

i ti “ 2wb, and they ross at 2
`

b
2

˘

“ bpb ´ 1q points. By the preeding,

bpb ´ 1q ď
w2´w`2
ÿ

i“1

pti ´ 1q “
w2´w`2
ÿ

i“1

ti ´ pw2 ´ w ` 2q “ 2wb ´ pw2 ´ w ` 2q,

or, equivalently, pw´ bq2 ď w ` b´ 2 “ n´ 2, whih is the ase if and only if w´ b ď t
?
n ´ 2u.

Consequently, b ď w ď
`

n ` t
?
n ´ 2u

˘

{2, so there are at most 2pw ´ 1q ď n ` t
?
n ´ 2u ´ 2

yellow verties on eah irle � a ontradition.
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Geometry

G1.

Let ABC be an aute-angled triangle with irumirle Γ. Let D and E be points on

the segments AB and AC, respetively, suh that AD “ AE. The perpendiular bisetors of

the segments BD and CE interset the small ars

ŊAB and

ŊAC at points F and G respetively.

Prove that DE ‖ FG.
(Greee)

Solution 1. In the sequel, all the onsidered ars are small ars.

Let P be the midpoint of the ar

ŊBC. Then AP is the bisetor of =BAC, hene, in the

isoseles triangleADE, AP K DE. So, the statement of the problem is equivalent to AP K FG.
In order to prove this, let K be the seond intersetion of Γ with FD. Then the triangle

FBD is isoseles, therefore

=AKF “ =ABF “ =FDB “ =ADK,

yielding AK “ AD. In the same way, denoting by L the seond intersetion of Γ with GE, we
get AL “ AE. This shows that AK “ AL.

A

B C
P

D
E

F

G

K

L

Now =FBD “ =FDB gives

ŊAF “ ŊBF ` ŊAK “ ŊBF ` ŇAL, hene ŊBF “ ŇLF . In a similar

way, we get

ŊCG “ ŊGK. This yields

=pAP, FGq “
ŊAF ` ŊPG

2
“

ŇAL ` ŇLF ` ŊPC ` ŊCG

2
“

ŊKL ` ŊLB ` ŊBC ` ŊCK

4
“ 90˝.

Solution 2. Let Z “ AB X FG, T “ AC X FG. It su�es to prove that =ATZ “ =AZT .
Let X be the point for whih FXAD is a parallelogram. Then

=FXA “ =FDA “ 180˝ ´ =FDB “ 180˝ ´ =FBD,

where in the last equality we used that FD “ FB. It follows that the quadrilateral BFXA is

yli, so X lies on Γ.

A

X
F

B

C

G

Y

TE

D
Z
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Analogously, if Y is the point for whih GY AE is a parallelogram, then Y lies on Γ. So

the quadrilateral XFGY is yli and FX “ AD “ AE “ GY , hene XFGY is an isoseles

trapezoid.

Now, by XF ‖ AZ and Y G ‖ AT , it follows that =ATZ “ =Y GF “ =XFG “ =AZT .

Solution 3. As in the �rst solution, we prove that FG K AP , where P is the midpoint of the

small ar

ŊBC.
Let O be the irumentre of the triangle ABC, and let M and N be the midpoints of the

small ars

ŊAB and

ŊAC, respetively. Then OM and ON are the perpendiular bisetors of AB
and AC, respetively.

A

B

P

M

F

N

O

D

E
G

d

d

C

The distane d between OM and the perpendiular bisetor of BD is

1
2
AB ´ 1

2
BD “ 1

2
AD,

hene it is equal to the distane between ON and the perpendiular bisetor of CE.
This shows that the isoseles trapezoid determined by the diameter δ of Γ through M and

the hord parallel to δ through F is ongruent to the isoseles trapezoid determined by the

diameter δ1
of Γ through N and the hord parallel to δ1

through G. Therefore MF “ NG,
yielding MN ‖ FG.

Now

=pMN,AP q “ 1

2

`

ŊAM ` ŊPC ` ŊCN
˘

“ 1

4

`

ŊAB ` ŊBC ` ŊCA
˘

“ 90˝,

hene MN K AP , and the onlusion follows.
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G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point suh that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respetively, so that B lies on the segment PX , C lies on the segment PY , and
=PXM “ =PYM . Prove that the quadrilateral APXY is yli.

(Australia)

Solution. Sine AB “ AC, AM is the perpendiular bisetor of BC, hene =PAM “
=AMC “ 90˝

.

P A

B

X

M C

Y

Z

Now let Z be the ommon point of AM and the perpendiular through Y to PC (notie

that Z lies on to the ray AM beyond M). We have =PAZ “ =PY Z “ 90˝
. Thus the points

P , A, Y , and Z are onyli.

Sine =CMZ “ =CY Z “ 90˝
, the quadrilateral CY ZM is yli, hene =CZM “

=CYM . By the ondition in the statement, =CYM “ =BXM , and, by symmetry in ZM ,

=CZM “ =BZM . Therefore, =BXM “ =BZM . It follows that the points B, X , Z, and M
are onyli, hene =BXZ “ 180˝ ´ =BMZ “ 90˝

.

Finally, we have =PXZ “ =PY Z “ =PAZ “ 90˝
, hene the �ve points P,A,X, Y, Z are

onyli. In partiular, the quadrilateral APXY is yli, as required.

Comment 1. Clearly, the key point Z from the solution above an be introdued in several di�erent

ways, e.g., as the seond meeting point of the irle CMY and the line AM , or as the seond meeting

point of the irles CMY and BMX, et.

For some of de�nitions of Z its loation is not obvious. For instane, if Z is de�ned as a ommon

point of AM and the perpendiular through X to PX, it is not lear that Z lies on the ray AM
beyond M . To avoid suh slippery details some more restritions on the onstrution may be required.

Comment 2. Let us disuss a onnetion to the Miquel point of a yli quadrilateral. Set X 1 “
MX X PC, Y 1 “ MY X PB, and Q “ XY X X 1Y 1

(see the �gure below).

We laim that BC ‖ PQ. (One way of proving this is the following. Notie that the quadruple

of lines PX,PM,PY, PQ is harmoni, hene the quadruple B, M , C, PQ X BC of their intersetion

points with BC is harmoni. Sine M is the midpoint of BC, PQ X BC is an ideal point, i.e.,

PQ ‖ BC.)

It follows from the given equality =PXM “ =PYM that the quadrilateral XYX 1Y 1
is yli.

Note that A is the projetion of M onto PQ. By a known desription, A is the Miquel point for the

sidelines XY,XY 1,X 1Y,X 1Y 1
. In partiular, the irle PXY passes through A.
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P

A

Q

Y’

X’

Y

C

B

X
M

Comment 3. An alternative approah is the following. One an note that the (oriented) lengths of

the segments CY and BX are both linear funtions of a parameter t “ cot=PXM . As t varies, the
intersetion point S of the perpendiular bisetors of PX and PY traes a �xed line, thus the family

of irles PXY has a �xed ommon point (other than P ). By heking partiular ases, one an show

that this �xed point is A.

Comment 4. The problem states that =PXM “ =PYM implies that APXY is yli. The original

submission laims that these two onditions are in fat equivalent. The Problem Seletion Committee

omitted the onverse part, sine it follows easily from the diret one, by reversing arguments.
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G3.

A irle ω of radius 1 is given. A olletion T of triangles is alled good, if the following

onditions hold:

piq eah triangle from T is insribed in ω;

piiq no two triangles from T have a ommon interior point.

Determine all positive real numbers t suh that, for eah positive integer n, there exists a
good olletion of n triangles, eah of perimeter greater than t.

(South Afria)

Answer: t P p0, 4s.
Solution. First, we show how to onstrut a good olletion of n triangles, eah of perimeter

greater than 4. This will show that all t ď 4 satisfy the required onditions.

Construt indutively an pn ` 2q-gon BA1A2 . . . AnC insribed in ω suh that BC is a

diameter, and BA1A2, BA2A3, . . . , BAn´1An, BAnC is a good olletion of n triangles. For

n “ 1, take any triangleBA1C insribed in ω suh thatBC is a diameter; its perimeter is greater

than 2BC “ 4. To perform the indutive step, assume that the pn ` 2q-gon BA1A2 . . . AnC is

already onstruted. Sine AnB ` AnC ` BC ą 4, one an hoose a point An`1 on the small

ar

ŐCAn, lose enough to C, so that AnB `AnAn`1 `BAn`1 is still greater than 4. Thus eah

of these new triangles BAnAn`1 and BAn`1C has perimeter greater than 4, whih ompletes

the indution step.

C B

A1
A2

A3

We proeed by showing that no t ą 4 satis�es the onditions of the problem. To this end,

we assume that there exists a good olletion T of n triangles, eah of perimeter greater than t,
and then bound n from above.

Take ε ą 0 suh that t “ 4 ` 2ε.

Claim. There exists a positive onstant σ “ σpεq suh that any triangle ∆ with perimeter

2s ě 4 ` 2ε, insribed in ω, has area Sp∆q at least σ.
Proof. Let a, b, c be the side lengths of ∆. Sine ∆ is insribed in ω, eah side has length at

most 2. Therefore, s ´ a ě p2 ` εq ´ 2 “ ε. Similarly, s ´ b ě ε and s ´ c ě ε. By Heron's

formula, Sp∆q “
a

sps ´ aqps ´ bqps ´ cq ě
a

p2 ` εqε3. Thus we an set σpεq “
a

p2 ` εqε3.
l

Now we see that the total area S of all triangles from T is at least nσpεq. On the other

hand, S does not exeed the area of the disk bounded by ω. Thus nσpεq ď π, whih means

that n is bounded from above.

Comment 1. One may prove the Claim using the formula S “ abc

4R
instead of Heron's formula.

Comment 2. In the statement of the problem ondition piq ould be replaed by a weaker one: eah

triangle from T lies within ω. This does not a�et the solution above, but redues the number of ways

to prove the Claim.



Shortlisted problems � solutions 41

This page is intentionally left blank



42 Cluj-Napoa � Romania, 3�14 July 2018

G4.

A point T is hosen inside a triangle ABC. Let A1, B1, and C1 be the re�etions

of T in BC, CA, and AB, respetively. Let Ω be the irumirle of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respetively. Prove that the

lines AA2, BB2, and CC2 are onurrent on Ω.
(Mongolia)

Solution. By ?pℓ, nq we always mean the direted angle of the lines ℓ and n, taken modulo 180˝
.

Let CC2 meet Ω again at K (as usual, if CC2 is tangent to Ω, we set T “ C2). We show

that the line BB2 ontains K; similarly, AA2 will also pass through K. For this purpose, it

su�es to prove that

?pC2C,C2A1q “ ?pB2B,B2A1q. (1)

By the problem ondition, CB and CA are the perpendiular bisetors of TA1 and TB1,

respetively. Hene, C is the irumentre of the triangle A1TB1. Therefore,

?pCA1, CBq “ ?pCB,CT q “ ?pB1A1, B1T q “ ?pB1A1, B1B2q.

In irle Ω we have ?pB1A1, B1B2q “ ?pC2A1, C2B2q. Thus,

?pCA1, CBq “ ?pB1A1, B1B2q “ ?pC2A1, C2B2q. (2)

Similarly, we get

?pBA1, BCq “ ?pC1A1, C1C2q “ ?pB2A1, B2C2q. (3)

The two obtained relations yield that the triangles A1BC and A1B2C2 are similar and

equioriented, hene

A1B2

A1B
“ A1C2

A1C
and ?pA1B,A1Cq “ ?pA1B2, A1C2q.

The seond equality may be rewritten as ?pA1B,A1B2q “ ?pA1C,A1C2q, so the triangles

A1BB2 and A1CC2 are also similar and equioriented. This establishes (1).

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

B
C

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

KΩ

Comment 1. In fat, the triangle A1BC is an image of A1B2C2 under a spiral similarity entred

at A1; in this ase, the triangles ABB2 and ACC2 are also spirally similar with the same entre.
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Comment 2. After obtaining (2) and (3), one an �nish the solution in di�erent ways.

For instane, introduing the point X “ BCXB2C2, one gets from these relations that the 4-tuples

pA1, B,B2,Xq and pA1, C,C2,Xq are both yli. Therefore, K is the Miquel point of the lines BB2,

CC2, BC, and B2C2; this yields that the meeting point of BB2 and CC2 lies on Ω.

Yet another way is to show that the points A1, B, C, and K are onyli, as

?pKC,KA1q “ ?pB2C2, B2A1q “ ?pBC,BA1q.

By symmetry, the seond point K 1
of intersetion of BB2 with Ω is also onyli to A1, B, and C,

hene K 1 “ K.

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB C

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A′

B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′

C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KΩ

Comment 3. The requirement that the ommon point of the lines AA2, BB2, and CC2 should lie

on Ω may seem to make the problem easier, sine it suggests some approahes. On the other hand,

there are also di�erent ways of showing that the lines AA2, BB2, and CC2 are just onurrent.

In partiular, the problem onditions yield that the lines A2T , B2T , and C2T are perpendiular to

the orresponding sides of the triangle ABC. One may show that the lines AT , BT , and CT are also

perpendiular to the orresponding sides of the triangle A2B2C2, i.e., the triangles ABC and A2B2C2

are orthologi, and their orthology entres oinide. It is known that suh triangles are also perspetive,

i.e. the lines AA2, BB2, and CC2 are onurrent (in projetive sense).

To show this mutual orthology, one may again apply angle hasing, but there are also other methods.

Let A1
, B1

, and C 1
be the projetions of T onto the sides of the triangle ABC. Then A2T ¨ TA1 “

B2T ¨ TB1 “ C2T ¨ TC 1
, sine all three produts equal (minus) half the power of T with respet to Ω.

This means that A2, B2, and C2 are the poles of the sidelines of the triangle ABC with respet to

some irle entred at T and having pure imaginary radius (in other words, the re�etions of A2, B2,

and C2 in T are the poles of those sidelines with respet to some regular irle entred at T ). Hene,
dually, the verties of the triangle ABC are also the poles of the sidelines of the triangle A2B2C2.
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G5.

Let ABC be a triangle with irumirle ω and inentre I. A line ℓ intersets the

lines AI, BI, and CI at points D, E, and F , respetively, distint from the points A, B, C,
and I. The perpendiular bisetors x, y, and z of the segments AD, BE, and CF , respetively
determine a triangle Θ. Show that the irumirle of the triangle Θ is tangent to ω.

(Denmark)

Preamble. Let X “ y X z, Y “ x X z, Z “ x X y and let Ω denote the irumirle of the

triangle XY Z. Denote by X0, Y0, and Z0 the seond intersetion points of AI, BI and CI,
respetively, with ω. It is known that Y0Z0 is the perpendiular bisetor of AI, Z0X0 is the

perpendiular bisetor of BI, and X0Y0 is the perpendiular bisetor of CI. In partiular, the

triangles XY Z and X0Y0Z0 are homotheti, beause their orresponding sides are parallel.

The solutions below mostly exploit the following approah. Consider the triangles XY Z
and X0Y0Z0, or some other pair of homotheti triangles ∆ and δ insribed into Ω and ω,
respetively. In order to prove that Ω and ω are tangent, it su�es to show that the entre T
of the homothety taking ∆ to δ lies on ω (or Ω), or, in other words, to show that ∆ and δ are
perspetive (i.e., the lines joining orresponding verties are onurrent), with their perspetor

lying on ω (or Ω).

We use direted angles throughout all the solutions.

Solution 1.

Claim 1. The re�etions ℓa, ℓb and ℓc of the line ℓ in the lines x, y, and z, respetively, are
onurrent at a point T whih belongs to ω.

A

B C
E

D
F

T

Z

z

I

Z 0

Db

Y0

Y

l

lb

lc

la

x

y

Dc

X0

X

W

w

Proof. Notie that ?pℓb, ℓcq “ ?pℓb, ℓq ` ?pℓ, ℓcq “ 2?py, ℓq ` 2?pℓ, zq “ 2?py, zq. But y K BI
and z K CI implies ?py, zq “ ?pBI, ICq, so, sine 2?pBI, ICq “ ?pBA,ACq, we obtain

?pℓb, ℓcq “ ?pBA,ACq. p1q

Sine A is the re�etion of D in x, A belongs to ℓa; similarly, B belongs to ℓb. Then p1q
shows that the ommon point T 1

of ℓa and ℓb lies on ω; similarly, the ommon point T 2
of ℓc

and ℓb lies on ω.

If B R ℓa and B R ℓc, then T 1
and T 2

are the seond point of intersetion of ℓb and ω, hene
they oinide. Otherwise, if, say, B P ℓc, then ℓc “ BC, so ?pBA,ACq “ ?pℓb, ℓcq “ ?pℓb, BCq,
whih shows that ℓb is tangent at B to ω and T 1 “ T 2 “ B. So T 1

and T 2
oinide in all the

ases, and the onlusion of the laim follows. l
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Now we prove that X , X0, T are ollinear. Denote by Db and Dc the re�etions of the point

D in the lines y and z, respetively. Then Db lies on ℓb, Dc lies on ℓc, and

?pDbX,XDcq “ ?pDbX,DXq ` ?pDX,XDcq “ 2?py,DXq ` 2?pDX, zq “ 2?py, zq
“ ?pBA,ACq “ ?pBT, TCq,

hene the quadrilateral XDbTDc is yli. Notie also that sine XDb “ XD “ XDc, the

points D,Db, Dc lie on a irle with entre X . Using in this irle the diameter DcD
1
c yields

?pDbDc, DcXq “ 90˝ ` ?pDbD
1
c, D

1
cXq “ 90˝ ` ?pDbD,DDcq. Therefore,

?pℓb, XT q “ ?pDbT,XT q “ ?pDbDc, DcXq “ 90˝ ` ?pDbD,DDcq
“ 90˝ ` ?pBI, ICq “ ?pBA,AIq “ ?pBA,AX0q “ ?pBT, TX0q “ ?pℓb, X0T q,

so the points X , X0, T are ollinear. By a similar argument, Y, Y0, T and Z,Z0, T are ollinear.

As mentioned in the preamble, the statement of the problem follows.

Comment 1. After proving Claim 1 one may proeed in another way. As it was shown, the re�etions

of ℓ in the sidelines of XY Z are onurrent at T . Thus ℓ is the Steiner line of T with respet to ∆XY Z
(that is the line ontaining the re�etions Ta, Tb, Tc of T in the sidelines of XY Z). The properties of
the Steiner line imply that T lies on Ω, and ℓ passes through the orthoentre H of the triangle XY Z.

A

B C
D

F

T

Z

z

I

H

Y

w

l

lb
lcla

X

x

y

Ta

Tc

Ha

Hc
Hb

Tb

W

E

Let Ha, Hb, and Hc be the re�etions of the point H in the lines x, y, and z, respetively. Then
the triangle HaHbHc is insribed in Ω and homotheti to ABC (by an easy angle hasing). Sine

Ha P ℓa, Hb P ℓb, and Hc P ℓc, the triangles HaHbHc and ABC form a required pair of triangles ∆ and

δ mentioned in the preamble.

Comment 2. The following observation shows how one may guess the desription of the tangeny

point T from Solution 1.

Let us �x a diretion and move the line ℓ parallel to this diretion with onstant speed.

Then the points D, E, and F are moving with onstant speeds along the lines AI, BI, and CI,
respetively. In this ase x, y, and z are moving with onstant speeds, de�ning a family of homotheti

triangles XY Z with a ommon entre of homothety T . Notie that the triangle X0Y0Z0 belongs to

this family (for ℓ passing through I). We may speify the loation of T onsidering the degenerate

ase when x, y, and z are onurrent. In this degenerate ase all the lines x, y, z, ℓ, ℓa, ℓb, ℓc have a
ommon point. Note that the lines ℓa, ℓb, ℓc remain onstant as ℓ is moving (keeping its diretion).

Thus T should be the ommon point of ℓa, ℓb, and ℓc, lying on ω.
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Solution 2. As mentioned in the preamble, it is su�ient to prove that the entre T of the

homothety taking XY Z to X0Y0Z0 belongs to ω. Thus, it su�es to prove that ?pTX0, TY0q “
?pZ0X0, Z0Y0q, or, equivalently, ?pXX0, Y Y0q “ ?pZ0X0, Z0Y0q.

Reall that Y Z and Y0Z0 are the perpendiular bisetors of AD and AI, respetively. Then,
the vetor

ÝÑx perpendiular to Y Z and shifting the line Y0Z0 to Y Z is equal to

1
2

ÝÑ
ID. De�ne

the shifting vetors

ÝÑy “ 1
2

ÝÑ
IE, ÝÑz “ 1

2

ÝÑ
IF similarly. Consider now the triangle UV W formed by

the perpendiulars to AI, BI, and CI through D, E, and F , respetively (see �gure below).

This is another triangle whose sides are parallel to the orresponding sides of XY Z.

Claim 2.

ÝÑ
IU “ 2

ÝÝÝÑ
X0X ,

ÝÑ
IV “ 2

ÝÝÑ
Y0Y ,

ÝÝÑ
IW “ 2

ÝÝÑ
Z0Z.

Proof.We prove one of the relations, the other proofs being similar. To prove the equality of two

vetors it su�es to projet them onto two non-parallel axes and hek that their projetions

are equal.

The projetion of

ÝÝÝÑ
X0X onto IB equals ~y, while the projetion of

ÝÑ
IU onto IB is

ÝÑ
IE “ 2~y.

The projetions onto the other axis IC are ~z and

ÝÑ
IF “ 2~z. Then

ÝÑ
IU “ 2

ÝÝÝÑ
X0X follows. l

Notie that the line ℓ is the Simson line of the point I with respet to the triangle UVW ;

thus U , V , W , and I are onyli. It follows from Claim 2 that ?pXX0, Y Y0q “ ?pIU, IV q “
?pWU,WV q “ ?pZ0X0, Z0Y0q, and we are done.

A

T I

C

F

D

B

Z
W

X
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Y

V

E

Ia

Ib

Ic
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y

z
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v

w

Z0

Y0

X0

w
W

l

Solution 3. Let Ia, Ib, and Ic be the exentres of triangle ABC orresponding to A, B, and
C, respetively. Also, let u, v, and w be the lines through D, E, and F whih are perpendiular

to AI, BI, and CI, respetively, and let UVW be the triangle determined by these lines, where

u “ VW , v “ UW and w “ UV (see �gure above).

Notie that the line u is the re�etion of IbIc in the line x, beause u, x, and IbIc are

perpendiular to AD and x is the perpendiular bisetor of AD. Likewise, v and IaIc are

re�etions of eah other in y, while w and IaIb are re�etions of eah other in z. It follows that
X , Y , and Z are the midpoints of UIa, V Ib and WIc, respetively, and that the triangles UVW ,

XY Z and IaIbIc are either translates of eah other or homotheti with a ommon homothety

entre.

Construt the points T and S suh that the quadrilaterals UV IW , XY TZ and IaIbSIc are
homotheti. Then T is the midpoint of IS. Moreover, note that ℓ is the Simson line of the

point I with respet to the triangle UV W , hene I belongs to the irumirle of the triangle

UV W , therefore T belongs to Ω.
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Consider now the homothety or translation h1 that maps XY ZT to IaIbIcS and the homo-

thety h2 with entre I and fator

1
2
. Furthermore, let h “ h2 ˝ h1. The transform h an be a

homothety or a translation, and

h pT q “ h2 ph1 pT qq “ h2 pSq “ T,

hene T is a �xed point of h. So, h is a homothety with entre T . Note that h2 maps the

exentres Ia, Ib, Ic to X0, Y0, Z0 de�ned in the preamble. Thus the entre T of the homothety

taking XY Z to X0Y0Z0 belongs to Ω, and this ompletes the proof.
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G6.

A onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

Solution 1. Let B1
be the re�etion of B in the internal angle bisetor of =AXC, so that

=AXB1 “ =CXB and =CXB1 “ =AXB. If X , D, and B1
are ollinear, then we are done.

Now assume the ontrary.

On the ray XB1
take a point E suh that XE ¨ XB “ XA ¨ XC, so that △AXE „

△BXC and △CXE „ △BXA. We have =XCE ` =XCD “ =XBA ` =XAB ă 180˝
and

=XAE ` =XAD “ =XDA ` =XAD ă 180˝
, whih proves that X lies inside the angles

=ECD and =EAD of the quadrilateral EADC. Moreover, X lies in the interior of exatly

one of the two triangles EAD, ECD (and in the exterior of the other).

A

B
C

D

X

E
B’

The similarities mentioned above imply XA ¨ BC “ XB ¨ AE and XB ¨ CE “ XC ¨ AB.
Multiplying these equalities with the given equality AB ¨CD “ BC ¨DA, we obtain XA ¨CD ¨
CE “ XC ¨ AD ¨ AE, or, equivalently,

XA ¨ DE

AD ¨ AE “ XC ¨ DE

CD ¨ CE
. p˚q

Lemma. Let PQR be a triangle, and let X be a point in the interior of the angle QPR suh that

=QPX “ =PRX . Then

PX ¨ QR

PQ ¨ PR
ă 1 if and only if X lies in the interior of the triangle PQR.

Proof. The lous of points X with =QPX “ =PRX lying inside the angle QPR is an ar α
of the irle γ through R tangent to PQ at P . Let γ interset the line QR again at Y (if γ

is tangent to QR, then set Y “ R). The similarity △QPY „ △QRP yields PY “ PQ ¨ PR

QR
.

Now it su�es to show that PX ă PY if and only if X lies in the interior of the triangle PQR.
Let m be a line through Y parallel to PQ. Notie that the points Z of γ satisfying PZ ă PY
are exatly those between the lines m and PQ.

Case 1: Y lies in the segment QR (see the left �gure below).

In this ase Y splits α into two ars

ŊPY and

ŊY R. The ar ŊPY lies inside the triangle PQR,
and

ŊPY lies between m and PQ, hene PX ă PY for points X P ŊPY . The other ar

ŊY R
lies outside triangle PQR, and ŊY R is on the opposite side of m than P , hene PX ą PY for

X P ŊY R.
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Case 2: Y lies on the ray QR beyond R (see the right �gure below).

In this ase the whole ar α lies inside triangle PQR, and between m and PQ, thus PX ă
PY for all X P α. l

P

Q

R

X

Y

P

Q
R

Y

X

Applying the Lemma (to △EAD with the point X , and to △ECD with the point X),

we obtain that exatly one of two expressions

XA ¨ DE

AD ¨ AE and

XC ¨ DE

CD ¨ CE
is less than 1, whih

ontradits (˚).

Comment 1. One may show that AB ¨ CD “ XA ¨ XC ` XB ¨ XD. We know that D,X,E are

ollinear and =DCE “ =CXD “ 180˝ ´ =AXB. Therefore,

AB ¨ CD “ XB ¨ sin=AXB

sin=BAX
¨ DE ¨ sin=CED

sin=DCE
“ XB ¨ DE.

Furthermore, XB ¨ DE “ XB ¨ pXD ` XEq “ XB ¨ XD ` XB ¨ XE “ XB ¨ XD ` XA ¨ XC.

Comment 2. For a onvex quadrilateral ABCD with AB ¨ CD “ BC ¨ DA, it is known that

=DAC ` =ABD ` =BCA` =CDB “ 180˝
(among other, it was used as a problem on the Regional

round of All-Russian olympiad in 2012), but it seems that there is no essential onnetion between this

fat and the original problem.

Solution 2. The solution onsists of two parts. In Part 1 we show that it su�es to prove

that

XB

XD
“ AB

CD
p1q

and

XA

XC
“ DA

BC
. p2q

In Part 2 we establish these equalities.

Part 1. Using the sine law and applying (1) we obtain

sin=AXB

sin=XAB
“ AB

XB
“ CD

XD
“ sin=CXD

sin=XCD
,

so sin=AXB “ sin=CXD by the problem onditions. Similarly, (2) yields sin=DXA “
sin=BXC. If at least one of the pairs p=AXB,=CXDq and p=BXC,=DXAq onsists of

supplementary angles, then we are done. Otherwise, =AXB “ =CXD and =DXA “ =BXC.
In this ase X “ AC X BD, and the problem onditions yield that ABCD is a parallelogram

and hene a rhombus. In this last ase the laim also holds.

Part 2. To prove the desired equality (1), invert ABCD at entre X with unit radius; the

images of points are denoted by primes.

We have

=A1B1C 1 “ =XB1A1 ` =XB1C 1 “ =XAB ` =XCB “ =XCD ` =XCB “ =BCD.
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Similarly, the orresponding angles of quadrilaterals ABCD and D1A1B1C 1
are equal.

Moreover, we have

A1B1 ¨ C 1D1 “ AB

XA ¨ XB
¨ CD

XC ¨ XD
“ BC

XB ¨ XC
¨ DA

XD ¨ DA
“ B1C 1 ¨ D1A1.

A

B

C

D

X 7→
A′

B′

C ′

D′

X

Now we need the following Lemma.

Lemma. Assume that the orresponding angles of onvex quadrilaterals XY ZT and X 1Y 1Z 1T 1

are equal, and that XY ¨ ZT “ Y Z ¨ TX and X 1Y 1 ¨ Z 1T 1 “ Y 1Z 1 ¨ T 1X 1
. Then the two

quadrilaterals are similar.

Proof. Take the quadrilateral XY Z1T1 similar to X 1Y 1Z 1T 1
and sharing the side XY with

XY ZT , suh that Z1 and T1 lie on the rays Y Z and XT , respetively, and Z1T1 ‖ ZT . We

need to prove that Z1 “ Z and T1 “ T . Assume the ontrary. Without loss of generality,

TX ą XT1. Let segments XZ and Z1T1 interset at U . We have

T1X

T1Z1

ă T1X

T1U
“ TX

ZT
“ XY

Y Z
ă XY

Y Z1

,

thus T1X ¨ Y Z1 ă T1Z1 ¨ XY . A ontradition. l
X Y

Z

T

U
Z1

T1

It follows from the Lemma that the quadrilaterals ABCD and D1A1B1C 1
are similar, hene

BC

AB
“ A1B1

D1A1
“ AB

XA ¨ XB
¨ XD ¨ XA

DA
“ AB

AD
¨ XD

XB
,

and therefore

XB

XD
“ AB2

BC ¨ AD “ AB2

AB ¨ CD
“ AB

CD
.

We obtain (1), as desired; (2) is proved similarly.

Comment. Part 1 is an easy one, while part 2 seems to be ruial. On the other hand, after the

proof of the similarity D1A1B1C 1 „ ABCD one may �nish the solution in di�erent ways, e.g., as

follows. The similarity taking D1A1B1C 1
to ABCD maps X to the point X 1

isogonally onjugate

of X with respet to ABCD (i.e. to the point X 1
inside ABCD suh that =BAX “ =DAX 1

,

=CBX “ =ABX 1
, =DCX “ =BCX 1

, =ADX “ =CDX 1
). It is known that the required equality

=AXB ` =CXD “ 180˝
is one of known onditions on a point X inside ABCD equivalent to the

existene of its isogonal onjugate.
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G7.

Let O be the irumentre, and Ω be the irumirle of an aute-angled triangle ABC.
Let P be an arbitrary point on Ω, distint from A, B, C, and their antipodes in Ω. Denote

the irumentres of the triangles AOP , BOP , and COP by OA, OB, and OC , respetively.

The lines ℓA, ℓB, and ℓC perpendiular to BC, CA, and AB pass through OA, OB, and OC ,

respetively. Prove that the irumirle of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .
(Russia)

Solution. As usual, we denote the direted angle between the lines a and b by ?pa, bq. We

frequently use the fat that a1 K a2 and b1 K b2 yield ?pa1, b1q “ ?pa2, b2q.
Let the lines ℓB and ℓC meet at LA; de�ne the points LB and LC similarly. Note that

the sidelines of the triangle LALBLC are perpendiular to the orresponding sidelines of ABC.
Points OA, OB, OC are loated on the orresponding sidelines of LALBLC ; moreover, OA, OB,

OC all lie on the perpendiular bisetor of OP .
A

B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
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OBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOB

OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
LALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALALA
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ωB

ωC

Ω

Claim 1. The points LB, P , OA, and OC are onyli.

Proof. Sine O is symmetri to P in OAOC , we have

?pOAP,OCP q “ ?pOCO,OAOq “ ?pCP,AP q “ ?pCB,ABq “ ?pOALB, OCLBq. l

Denote the irle through LB, P , OA, and OC by ωB. De�ne the irles ωA and ωC similarly.

Claim 2. The irumirle of the triangle LALBLC passes through P .

Proof. From yli quadruples of points in the irles ωB and ωC, we have

?pLCLA, LCP q “ ?pLCOB, LCP q “ ?pOAOB, OAP q
“ ?pOAOC , OAP q “ ?pLBOC , LBP q “ ?pLBLA, LBP q. l

Claim 3. The points P , LC , and C are ollinear.

Proof. We have ?pPLC , LCLAq “ ?pPLC , LCOBq “ ?pPOA, OAOBq. Further, sine OA is

the entre of the irle AOP , ?pPOA, OAOBq “ ?pPA,AOq. As O is the irumentre of the

triangle PCA, ?pPA,AOq “ π{2´?pCA,CP q “ ?pCP, LCLAq. We obtain ?pPLC , LCLAq “
?pCP, LCLAq, whih shows that P P CLC . l
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Similarly, the points P , LA, A are ollinear, and the points P , LB, B are also ollinear.

Finally, the omputation above also shows that

?pOP, PLAq “ ?pPA,AOq “ ?pPLC , LCLAq,

whih means that OP is tangent to the irle PLALBLC .

Comment 1. The proof of Claim 2 may be replaed by the following remark: sine P belongs to the

irles ωA and ωC , P is the Miquel point of the four lines ℓA, ℓB , ℓC , and OAOBOC .

Comment 2. Claims 2 and 3 an be proved in several di�erent ways and, in partiular, in the reverse

order.

Claim 3 implies that the triangles ABC and LALBLC are perspetive with perspetor P . Claim 2

an be derived from this observation using spiral similarity. Consider the entre Q of the spiral similarity

that maps ABC to LALBLC . From known spiral similarity properties, the points LA, LB , P,Q are

onyli, and so are LA, LC , P,Q.

Comment 3. The �nal onlusion an also be proved it terms of spiral similarity: the spiral similarity

with entre Q loated on the irle ABC maps the irle ABC to the irle PLALBLC . Thus these

irles are orthogonal.

Comment 4. Notie that the homothety with entre O and ratio 2 takes OA to A1
that is the ommon

point of tangents to Ω at A and P . Similarly, let this homothety take OB to B1
and OC to C 1

. Let

the tangents to Ω at B and C meet at A2
, and de�ne the points B2

and C2
similarly. Now, replaing

labels O with I, Ω with ω, and swapping labels A Ø A2
, B Ø B2

, C Ø C2
we obtain the following

Reformulation. Let ω be the inirle, and let I be the inentre of a triangle ABC. Let P be

a point of ω (other than the points of ontat of ω with the sides of ABC). The tangent to ω at P
meets the lines AB, BC, and CA at A1

, B1
, and C 1

, respetively. Line ℓA parallel to the internal

angle bisetor of =BAC passes through A1
; de�ne lines ℓB and ℓC similarly. Prove that the line IP is

tangent to the irumirle of the triangle formed by ℓA, ℓB, and ℓC .

Though this formulation is equivalent to the original one, it seems more hallenging, sine the point

of ontat is now �hidden�.
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Number Theory

N1.

Determine all pairs pn, kq of distint positive integers suh that there exists a positive

integer s for whih the numbers of divisors of sn and of sk are equal.

(Ukraine)

Answer: All pairs pn, kq suh that n ∤ k and k ∤ n.

Solution. As usual, the number of divisors of a positive integer n is denoted by dpnq. If

n “ ś

i p
αi

i is the prime fatorisation of n, then dpnq “ ś

ipαi ` 1q.
We start by showing that one annot �nd any suitable number s if k | n or n | k (and

k ‰ n). Suppose that n | k, and hoose any positive integer s. Then the set of divisors of sn is

a proper subset of that of sk, hene dpsnq ă dpskq. Therefore, the pair pn, kq does not satisfy
the problem requirements. The ase k | n is similar.

Now assume that n ∤ k and k ∤ n. Let p1, . . . , pt be all primes dividing nk, and onsider the

prime fatorisations

n “
t
ź

i“1

pαi

i and k “
t
ź

i“1

pβi

i .

It is reasonable to searh for the number s having the form

s “
t
ź

i“1

pγii .

The (nonnegative integer) exponents γi should be hosen so as to satisfy

dpsnq
dpskq “

t
ź

i“1

αi ` γi ` 1

βi ` γi ` 1
“ 1. (1)

First of all, if αi “ βi for some i, then, regardless of the value of γi, the orresponding fator
in (1) equals 1 and does not a�et the produt. So we may assume that there is no suh index i.
For the other fators in (1), the following lemma is useful.

Lemma. Let α ą β be nonnegative integers. Then, for every integer M ě β ` 1, there exists a
nonnegative integer γ suh that

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
“ M ` 1

M
.

Proof.

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
ðñ α ´ β

β ` γ ` 1
“ 1

M
ðñ γ “ Mpα ´ βq ´ pβ ` 1q ě 0. l

Now we an �nish the solution. Without loss of generality, there exists an index u suh that

αi ą βi for i “ 1, 2, . . . , u, and αi ă βi for i “ u` 1, . . . , t. The onditions n ∤ k and k ∤ n mean

that 1 ď u ď t ´ 1.
Choose an integer X greater than all the αi and βi. By the lemma, we an de�ne the

numbers γi so as to satisfy

αi ` γi ` 1

βi ` γi ` 1
“ uX ` i

uX ` i ´ 1
for i “ 1, 2, . . . , u, and

βu`i ` γu`i ` 1

αu`i ` γu`i ` 1
“ pt ´ uqX ` i

pt ´ uqX ` i ´ 1
for i “ 1, 2, . . . , t ´ u.
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Then we will have

dpsnq
dpskq “

u
ź

i“1

uX ` i

uX ` i ´ 1
¨
t´u
ź

i“1

pt ´ uqX ` i ´ 1

pt ´ uqX ` i
“ upX ` 1q

uX
¨ pt ´ uqX

pt ´ uqpX ` 1q “ 1,

as required.

Comment. The lemma an be used in various ways, in order to provide a suitable value of s. In

partiular, one may apply indution on the number t of prime fators, using identities like

n

n ´ 1
“ n2

n2 ´ 1
¨ n ` 1

n
.
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N2.

Let n ą 1 be a positive integer. Eah ell of an n ˆ n table ontains an integer.

Suppose that the following onditions are satis�ed:

piq Eah number in the table is ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any olumn, is ongruent

to n modulo n2
.

Let Ri be the produt of the numbers in the ith row, and Cj be the produt of the numbers in

the jth olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are ongruent modulo n4
.

(Indonesia)

Solution 1. Let Ai,j be the entry in the ith row and the jth olumn; let P be the produt of

all n2
entries. For onveniene, denote ai,j “ Ai,j ´ 1 and ri “ Ri ´ 1. We show that

n
ÿ

i“1

Ri ” pn ´ 1q ` P pmod n4q. (1)

Due to symmetry of the problem onditions, the sum of all the Cj is also ongruent to pn ´ 1q`P
modulo n4

, whene the onlusion.

By ondition piq, the number n divides ai,j for all i and j. So, every produt of at least two

of the ai,j is divisible by n2
, hene

Ri “
n
ź

j“1

p1`ai,jq “ 1`
n
ÿ

j“1

ai,j `
ÿ

1ďj1ăj2ďn

ai,j1ai,j2 `¨ ¨ ¨ ” 1`
n
ÿ

j“1

ai,j ” 1´n`
n
ÿ

j“1

Ai,j pmod n2q

for every index i. Using ondition piiq, we obtain Ri ” 1 pmod n2q, and so n2 | ri.
Therefore, every produt of at least two of the ri is divisible by n4

. Repeating the same

argument, we obtain

P “
n
ź

i“1

Ri “
n
ź

i“1

p1 ` riq ” 1 `
n
ÿ

i“1

ri pmod n4q,

whene

n
ÿ

i“1

Ri “ n `
n
ÿ

i“1

ri ” n ` pP ´ 1q pmod n4q,

as desired.

Comment. The original version of the problem statement ontained also the ondition

piiiq The produt of all the numbers in the table is ongruent to 1 modulo n4
.

This ondition appears to be super�uous, so it was omitted.

Solution 2. We present a more straightforward (though lengthier) way to establish (1). We

also use the notation of ai,j.

By ondition piq, all the ai,j are divisible by n. Therefore, we have

P “
n
ź

i“1

n
ź

j“1

p1 ` ai,jq ” 1 `
ÿ

pi,jq

ai,j `
ÿ

pi1,j1q, pi2,j2q

ai1,j1ai2,j2

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q

ai1,j1ai2,j2ai3,j3 pmod n4q,
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where the last two sums are taken over all unordered pairs/triples of pairwise di�erent pairs

pi, jq; suh onventions are applied throughout the solution.

Similarly,

n
ÿ

i“1

Ri “
n
ÿ

i“1

n
ź

j“1

p1 ` ai,jq ” n `
ÿ

i

ÿ

j

ai,j `
ÿ

i

ÿ

j1, j2

ai,j1ai,j2 `
ÿ

i

ÿ

j1, j2, j3

ai,j1ai,j2ai,j3 pmod n4q.

Therefore,

P ` pn ´ 1q ´
ÿ

i

Ri ”
ÿ

pi1,j1q, pi2,j2q
i1‰i2

ai1,j1ai2,j2 `
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2‰i3‰i1

ai1,j1ai2,j2ai3,j3

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2“i3

ai1,j1ai2,j2ai3,j3 pmod n4q.

We show that in fat eah of the three sums appearing in the right-hand part of this ongruene

is divisible by n4
; this yields (1). Denote those three sums by Σ1, Σ2, and Σ3 in order of

appearane. Reall that by ondition piiq we have
ÿ

j

ai,j ” 0 pmod n2q for all indies i.

For every two indies i1 ă i2 we have

ÿ

j1

ÿ

j2

ai1,j1ai2,j2 “
ˆ

ÿ

j1

ai1,j1

˙

¨
ˆ

ÿ

j2

ai2,j2

˙

” 0 pmod n4q,

sine eah of the two fators is divisible by n2
. Summing over all pairs pi1, i2q we obtain n4 | Σ1.

Similarly, for every three indies i1 ă i2 ă i3 we have

ÿ

j1

ÿ

j2

ÿ

j3

ai1,j1ai2,j2ai3,j3 “
ˆ

ÿ

j1

ai1,j1

˙

¨
ˆ

ÿ

j2

ai2,j2

˙

¨
ˆ

ÿ

j3

ai3,j3

˙

whih is divisible even by n6
. Hene n4 | Σ2.

Finally, for every indies i1 ‰ i2 “ i3 and j2 ă j3 we have

ai2,j2 ¨ ai2,j3 ¨
ÿ

j1

ai1,j1 ” 0 pmod n4q,

sine the three fators are divisible by n, n, and n2
, respetively. Summing over all 4-tuples of

indies pi1, i2, j2, j3q we get n4 | Σ3.
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N3.

De�ne the sequene a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequene whih an be expressed as a sum of (two or more) distint terms

of the sequene, as well as in�nitely many of those whih annot be expressed in suh a way.

(Serbia)

Solution 1. Call a nonnegative integer representable if it equals the sum of several (possibly 0
or 1) distint terms of the sequene. We say that two nonnegative integers b and c are equivalent
(written as b „ c) if they are either both representable or both non-representable.

One an easily ompute

Sn´1 :“ a0 ` ¨ ¨ ¨ ` an´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3.

Indeed, we have Sn ´ Sn´1 “ 2n ` 2tn{2u “ an so we an use the indution. In partiular,

S2k´1 “ 22k ` 2k`1 ´ 3.
Note that, if n ě 3, then 2rn{2s ě 22 ą 3, so

Sn´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3 ą 2n ` 2tn{2u “ an.

Also notie that Sn´1 ´ an “ 2rn{2s ´ 3 ă an.
The main tool of the solution is the following laim.

Claim 1. Assume that b is a positive integer suh that Sn´1 ´ an ă b ă an for some n ě 3.
Then b „ Sn´1 ´ b.

Proof. As seen above, we have Sn´1 ą an. Denote c “ Sn´1 ´ b; then Sn´1 ´ an ă c ă an, so
the roles of b and c are symmetrial.

Assume that b is representable. The representation annot ontain ai with i ě n, sine
b ă an. So b is the sum of some subset of ta0, a1, . . . , an´1u; then c is the sum of the omplement.

The onverse is obtained by swapping b and c. l

We also need the following version of this laim.

Claim 2. For any n ě 3, the number an an be represented as a sum of two or more distint

terms of the sequene if and only if Sn´1 ´ an “ 2rn{2s ´ 3 is representable.

Proof. Denote c “ Sn´1 ´ an ă an. If an satis�es the required ondition, then it is the sum

of some subset of ta0, a1, . . . , an´1u; then c is the sum of the omplement. Conversely, if c is

representable, then its representation onsists only of the numbers from ta0, . . . , an´1u, so an is

the sum of the omplement. l

By Claim 2, in order to prove the problem statement, it su�es to �nd in�nitely many

representable numbers of the form 2t ´ 3, as well as in�nitely many non-representable ones.

Claim 3. For every t ě 3, we have 2t ´ 3 „ 24t´6 ´ 3, and 24t´6 ´ 3 ą 2t ´ 3.

Proof. The inequality follows from t ě 3. In order to prove the equivalene, we apply Claim 1

twie in the following manner.

First, sine S2t´3 ´ a2t´2 “ 2t´1 ´ 3 ă 2t ´ 3 ă 22t´2 ` 2t´1 “ a2t´2, by Claim 1 we have

2t ´ 3 „ S2t´3 ´ p2t ´ 3q “ 22t´2
.

Seond, sine S4t´7 ´ a4t´6 “ 22t´3 ´ 3 ă 22t´2 ă 24t´6 ` 22t´3 “ a4t´6, by Claim 1 we have

22t´2 „ S4t´7 ´ 22t´2 “ 24t´6 ´ 3.
Therefore, 2t ´ 3 „ 22t´2 „ 24t´6 ´ 3, as required. l

Now it is easy to �nd the required numbers. Indeed, the number 23 ´ 3 “ 5 “ a0 ` a1 is

representable, so Claim 3 provides an in�nite sequene of representable numbers

23 ´ 3 „ 26 ´ 3 „ 218 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
On the other hand, the number 27 ´ 3 “ 125 is non-representable (sine by Claim 1 we have

125 „ S6 ´ 125 “ 24 „ S4 ´ 24 “ 17 „ S3 ´ 17 “ 4 whih is learly non-representable). So

Claim 3 provides an in�nite sequene of non-representable numbers

27 ´ 3 „ 222 ´ 3 „ 282 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
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Solution 2. We keep the notion of representability and the notation Sn from the previous

solution. We say that an index n is good if an writes as a sum of smaller terms from the

sequene a0, a1, . . .. Otherwise we say it is bad. We must prove that there are in�nitely many

good indies, as well as in�nitely many bad ones.

Lemma 1. If m ě 0 is an integer, then 4m is representable if and only if either of 2m ` 1 and

2m ` 2 is good.

Proof. The ase m “ 0 is obvious, so we may assume that m ě 1. Let n “ 2m ` 1 or 2m ` 2.
Then n ě 3. We notie that

Sn´1 ă an´2 ` an.

The inequality writes as 2n ` 2rn{2s ` 2tn{2u ´ 3 ă 2n ` 2tn{2u ` 2n´2 ` 2tn{2u´1
, i.e. as 2rn{2s ă

2n´2 ` 2tn{2u´1 ` 3. If n ě 4, then n{2 ď n ´ 2, so rn{2s ď n ´ 2 and 2rn{2s ď 2n´2
. For n “ 3

the inequality veri�es separately.

If n is good, then an writes as an “ ai1 ` ¨ ¨ ¨ ` air , where r ě 2 and i1 ă ¨ ¨ ¨ ă ir ă n.
Then ir “ n ´ 1 and ir´1 “ n ´ 2, for if n ´ 1 or n ´ 2 is missing from the sequene i1, . . . , ir,
then ai1 ` ¨ ¨ ¨ ` air ď a0 ` ¨ ¨ ¨ ` an´3 ` an´1 “ Sn´1 ´ an´2 ă an. Thus, if n is good, then both

an ´ an´1 and an ´ an´1 ´ an´2 are representable.

We now onsider the ases n “ 2m ` 1 and n “ 2m ` 2 separately.

If n “ 2m ` 1, then an ´ an´1 “ a2m`1 ´ a2m “ p22m`1 ` 2mq ´ p22m ` 2mq “ 22m. So we

proved that, if 2m ` 1 is good, then 22m is representable. Conversely, if 22m is representable,

then 22m ă a2m, so 22m is a sum of some distint terms ai with i ă 2m. It follows that

a2m`1 “ a2m ` 22m writes as a2m plus a sum of some distint terms ai with i ă 2m. Hene

2m ` 1 is good.

If n “ 2m ` 2, then an ´ an´1 ´ an´2 “ a2m`2 ´ a2m`1 ´ a2m “ p22m`2 ` 2m`1q ´ p22m`1 `
2mq ´ p22m ` 2mq “ 22m. So we proved that, if 2m ` 2 is good, then 22m is representable.

Conversely, if 22m is representable, then, as seen in the previous ase, it writes as a sum of some

distint terms ai with i ă 2m. Hene a2m`2 “ a2m`1 ` a2m ` 22m writes as a2m`1 ` a2m plus a

sum of some distint terms ai with i ă 2m. Thus 2m ` 2 is good. l

Lemma 2. If k ě 2, then 24k´2
is representable if and only if 2k`1

is representable.

In partiular, if s ě 2, then 4s is representable if and only if 44s´3
is representable. Also,

44s´3 ą 4s.

Proof. We have 24k´2 ă a4k´2, so in a representation of 24k´2
we an have only terms ai with

i ď 4k ´ 3. Notie that

a0 ` ¨ ¨ ¨ ` a4k´3 “ 24k´2 ` 22k ´ 3 ă 24k´2 ` 22k ` 2k “ 24k´2 ` a2k.

Hene, any representation of 24k´2
must ontain all terms from a2k to a4k´3. (If any of these

terms is missing, then the sum of the remaining ones is ď pa0 ` ¨ ¨ ¨ ` a4k´3q ´ a2k ă 24k´2
.)

Hene, if 24k´2
is representable, then 24k´2 ´ ř4k´3

i“2k ai is representable. But

24k´2 ´
4k´3
ÿ

i“2k

ai “ 24k´2 ´ pS4k´3 ´ S2k´1q “ 24k´2 ´ p24k´2 ` 22k ´ 3q ` p22k ` 2k`1 ´ 3q “ 2k`1.

So, if 24k´2
is representable, then 2k`1

is representable. Conversely, if 2k`1
is representable,

then 2k`1 ă 22k ` 2k “ a2k, so 2k`1
writes as a sum of some distint terms ai with i ă 2k. It

follows that 24k´2 “ ř4k´3

i“2k ai ` 2k`1
writes as a4k´3 ` a4k´4 ` ¨ ¨ ¨ ` a2k plus the sum of some

distint terms ai with i ă 2k. Hene 24k´2
is representable.

For the seond statement, if s ě 2, then we just take k “ 2s´1 and we notie that 2k`1 “ 4s

and 24k´2 “ 44s´3
. Also, s ě 2 implies that 4s ´ 3 ą s. l



60 Cluj-Napoa � Romania, 3�14 July 2018

Now 42 “ a2`a3 is representable, whereas 4
6 “ 4096 is not. Indeed, note that 46 “ 212 ă a12,

so the only available terms for a representation are a0, . . . , a11, i.e., 2, 3, 6, 10, 20, 36, 72,
136, 272, 528, 1056, 2080. Their sum is S11 “ 4221, whih exeeds 4096 by 125. Then any

representation of 4096 must ontain all the terms from a0, . . . , a11 that are greater that 125,
i.e., 136, 272, 528, 1056, 2080. Their sum is 4072. Sine 4096´ 4072 “ 24 and 24 is learly not
representable, 4096 is non-representable as well.

Starting with these values of m, by using Lemma 2, we an obtain in�nitely many rep-

resentable powers of 4, as well as in�nitely many non-representable ones. By Lemma 1, this

solves our problem.
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N4.

Let a1, a2, . . ., an, . . . be a sequene of positive integers suh that

a1
a2

` a2
a3

` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m suh that an “ an`1 for all n ě m.

(Mongolia)

Solution 1. The argument hinges on the following two fats: Let a, b, c be positive integers
suh that N “ b{c ` pc ´ bq{a is an integer.

(1) If gcdpa, cq “ 1, then c divides b ; and
(2) If gcdpa, b, cq “ 1, then gcdpa, bq “ 1.

To prove (1), write ab “ cpaN ` b ´ cq. Sine gcdpa, cq “ 1, it follows that c divides b. To
prove (2), write c2 ´ bc “ apcN ´ bq to infer that a divides c2 ´ bc. Letting d “ gcdpa, bq, it
follows that d divides c2, and sine the two are relatively prime by hypothesis, d “ 1.

Now, let sn “ a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` an´1{an ` an{a1, let δn “ gcdpa1, an, an`1q and write

sn`1 ´ sn “ an
an`1

` an`1 ´ an
a1

“ an{δn
an`1{δn

` an`1{δn ´ an{δn
a1{δn

.

Let n ě k. Sine gcdpa1{δn, an{δn, an`1{δnq “ 1, it follows by (2) that gcdpa1{δn, an{δnq “ 1.
Let dn “ gcdpa1, anq. Then dn “ δn ¨ gcdpa1{δn, an{δnq “ δn, so dn divides an`1, and therefore

dn divides dn`1.

Consequently, from some rank on, the dn form a nondereasing sequene of integers not

exeeding a1, so dn “ d for all n ě ℓ, where ℓ is some positive integer.

Finally, sine gcdpa1{d, an`1{dq “ 1, it follows by (1) that an`1{d divides an{d, so an ě an`1

for all n ě ℓ. The onlusion follows.

Solution 2. We use the same notation sn. This time, we explore the exponents of primes in

the prime fatorizations of the an for n ě k.
To start, for every n ě k, we know that the number

sn`1 ´ sn “ an
an`1

` an`1

a1
´ an

a1
p˚q

is integer. Multiplying it by a1 we obtain that a1an{an`1 is integer as well, so that an`1 | a1an.
This means that an | an´k

1 ak, so all prime divisors of an are among those of a1ak. There are

�nitely many suh primes; therefore, it su�es to prove that the exponent of eah of them in

the prime fatorization of an is eventually onstant.

Choose any prime p | a1ak. Reall that vppqq is the standard notation for the exponent of p
in the prime fatorization of a nonzero rational number q. Say that an index n ě k is large if

vppanq ě vppa1q. We separate two ases.

Case 1: There exists a large index n.

If vppan`1q ă vppa1q, then vppan{an`1q and vppan{a1q are nonnegative, while vppan`1{a1q ă 0;
hene p˚q annot be an integer. This ontradition shows that index n ` 1 is also large.

On the other hand, if vppan`1q ą vppanq, then vppan{an`1q ă 0, while vp
`

pan`1´anq{a1
˘

ě 0,
so p˚q is not integer again. Thus, vppa1q ď vppan`1q ď vppanq.

The above arguments an now be applied suessively to indies n ` 1, n ` 2, . . . , showing
that all the indies greater than n are large, and the sequene vppanq, vppan`1q, vppan`2q, . . . is
noninreasing � hene eventually onstant.
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Case 2: There is no large index.

We have vppa1q ą vppanq for all n ě k. If we had vppan`1q ă vppanq for some n ě k,
then vppan`1{a1q ă vppan{a1q ă 0 ă vppan{an`1q whih would also yield that p˚q is not integer.
Therefore, in this ase the sequene vppakq, vppak`1q, vppak`2q, . . . is nondereasing and bounded
by vppa1q from above; hene it is also eventually onstant.

Comment. Given any positive odd integer m, onsider the m-tuple p2, 22, . . . , 2m´1, 2mq. Appending
an in�nite string of 1's to this m-tuple yields an eventually onstant sequene of integers satisfying

the ondition in the statement, and shows that the rank from whih the sequene stabilises may be

arbitrarily large.

There are more sophistiated examples. The solution to part (b) of 10532, Amer. Math. Monthly,

Vol. 105 No. 8 (Ot. 1998), 775�777 (available at https://www.jstor.org/stable/2589009), shows

that, for every integer m ě 5, there exists an m-tuple pa1, a2, . . . , amq of pairwise distint positive

integers suh that gcdpa1, a2q “ gcdpa2, a3q “ ¨ ¨ ¨ “ gcdpam´1, amq “ gcdpam, a1q “ 1, and the sum

a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` am´1{am ` am{a1 is an integer. Letting am`k “ a1, k “ 1, 2, . . ., extends suh an

m-tuple to an eventually onstant sequene of positive integers satisfying the ondition in the statement

of the problem at hand.

Here is the example given by the proposers of 10532. Let b1 “ 2, let bk`1 “ 1 ` b1 ¨ ¨ ¨ bk “
1` bkpbk ´1q, k ě 1, and set Bm “ b1 ¨ ¨ ¨ bm´4 “ bm´3 ´1. The m-tuple pa1, a2, . . . , amq de�ned below

satis�es the required onditions:

a1 “ 1, a2 “ p8Bm ` 1qBm ` 8, a3 “ 8Bm ` 1, ak “ bm´k for 4 ď k ď m ´ 1,

am “ a2
2

¨ a3 ¨ Bm

2
“
ˆ

1

2
p8Bm ` 1qBm ` 4

˙

¨ p8Bm ` 1q ¨ Bm

2
.

It is readily heked that a1 ă am´1 ă am´2 ă ¨ ¨ ¨ ă a3 ă a2 ă am. For further details we refer to

the solution mentioned above. Aquaintane with this example (or more elaborated examples derived

from) o�ers no advantage in takling the problem.

https://www.jstor.org/stable/2589009
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N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t. p˚q

Is it possible that both xy and zt are perfet squares?
(Russia)

Answer: No.

Solution 1. Arguing indiretly, assume that xy “ a2 and zt “ c2 with a, c ą 0.
Suppose that the number x ` y “ z ` t is odd. Then x and y have opposite parity, as well

as z and t. This means that both xy and zt are even, as well as xy´zt “ x`y; a ontradition.
Thus, x ` y is even, so the number s “ x`y

2
“ z`t

2
is a positive integer.

Next, we set b “ |x´y|
2

, d “ |z´t|
2
. Now the problem onditions yield

s2 “ a2 ` b2 “ c2 ` d2 (1)

and

2s “ a2 ´ c2 “ d2 ´ b2 (2)

(the last equality in (2) follows from (1)). We readily get from (2) that a, d ą 0.
In the sequel we will use only the relations (1) and (2), along with the fat that a, d, s

are positive integers, while b and c are nonnegative integers, at most one of whih may be

zero. Sine both relations are symmetri with respet to the simultaneous swappings a Ø d
and b Ø c, we assume, without loss of generality, that b ě c (and hene b ą 0). Therefore,

d2 “ 2s ` b2 ą c2, whene

d2 ą c2 ` d2

2
“ s2

2
. (3)

On the other hand, sine d2 ´ b2 is even by (2), the numbers b and d have the same parity,

so 0 ă b ď d ´ 2. Therefore,

2s “ d2 ´ b2 ě d2 ´ pd ´ 2q2 “ 4pd ´ 1q, i.e., d ď s

2
` 1. (4)

Combining (3) and (4) we obtain

2s2 ă 4d2 ď 4
´s

2
` 1

¯2

, or ps ´ 2q2 ă 8,

whih yields s ď 4.
Finally, an easy hek shows that eah number of the form s2 with 1 ď s ď 4 has a unique

representation as a sum of two squares, namely s2 “ s2 ` 02. Thus, (1) along with a, d ą 0
imply b “ c “ 0, whih is impossible.

Solution 2. We start with a omplete desription of all 4-tuples px, y, z, tq of positive integers
satisfying p˚q. As in the solution above, we notie that the numbers

s “ x ` y

2
“ z ` t

2
, p “ x ´ y

2
, and q “ z ´ t

2

are integers (we may, and will, assume that p, q ě 0). We have

2s “ xy ´ zt “ ps ` pqps ´ pq ´ ps ` qqps ´ qq “ q2 ´ p2,

so p and q have the same parity, and q ą p.



Shortlisted problems � solutions 65

Set now k “ q´p
2
, ℓ “ q`p

2
. Then we have s “ q2´p2

2
“ 2kℓ and hene

x “ s ` p “ 2kℓ ´ k ` ℓ, y “ s ´ p “ 2kℓ ` k ´ ℓ,

z “ s ` q “ 2kℓ ` k ` ℓ, t “ s ´ q “ 2kℓ ´ k ´ ℓ.
(5)

Reall here that ℓ ě k ą 0 and, moreover, pk, ℓq ‰ p1, 1q, sine otherwise t “ 0.

Assume now that both xy and zt are squares. Then xyzt is also a square. On the other

hand, we have

xyzt “ p2kℓ ´ k ` ℓqp2kℓ ` k ´ ℓqp2kℓ ` k ` ℓqp2kℓ ´ k ´ ℓq
“
`

4k2ℓ2 ´ pk ´ ℓq2
˘`

4k2ℓ2 ´ pk ` ℓq2
˘

“ p4k2ℓ2 ´ k2 ´ ℓ2q2 ´ 4k2ℓ2. (6)

Denote D “ 4k2ℓ2 ´ k2 ´ ℓ2 ą 0. From (6) we get D2 ą xyzt. On the other hand,

pD ´ 1q2 “ D2 ´ 2p4k2ℓ2 ´ k2 ´ ℓ2q ` 1 “ pD2 ´ 4k2ℓ2q ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2

“ xyzt ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2 ă xyzt,

sine ℓ ě 2 and k ě 1. Thus pD ´ 1q2 ă xyzt ă D2
, and xyzt annot be a perfet square; a

ontradition.

Comment. The �rst part of Solution 2 shows that all 4-tuples of positive integers x ě y, z ě t
satisfying p˚q have the form (5), where ℓ ě k ą 0 and ℓ ě 2. The onverse is also true: every pair

of positive integers ℓ ě k ą 0, exept for the pair k “ ℓ “ 1, generates via (5) a 4-tuple of positive

integers satisfying p˚q.
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N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a funtion suh that fpm`nq | fpmq ` fpnq for all
pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whih divides

all values of f .
(Mexio)

Solution 1. For every positive integer m, de�ne Sm “ tn : m | fpnqu.
Lemma. If the set Sm is in�nite, then Sm “ td, 2d, 3d, . . .u “ d ¨ Zą0 for some positive integer d.

Proof. Let d “ minSm; the de�nition of Sm yields m | fpdq.
Whenever n P Sm and n ą d, we have m | fpnq | fpn ´ dq ` fpdq, so m | fpn ´ dq and

therefore n ´ d P Sm. Let r ď d be the least positive integer with n ” r pmod dq; repeating
the same step, we an see that n ´ d, n ´ 2d, . . . , r P Sm. By the minimality of d, this shows
r “ d and therefore d | n.

Starting from an arbitrarily large element of Sm, the proess above reahes all multiples

of d; so they all are elements of Sm. l

The solution for the problem will be split into two ases.

Case 1: The funtion f is bounded.

Call a prime p frequent if the set Sp is in�nite, i.e., if p divides fpnq for in�nitely many

positive integers n; otherwise all p sporadi. Sine the funtion f is bounded, there are only

a �nite number of primes that divide at least one fpnq; so altogether there are �nitely many

numbers n suh that fpnq has a sporadi prime divisor. Let N be a positive integer, greater

than all those numbers n.
Let p1, . . . , pk be the frequent primes. By the lemma we have Spi “ di ¨ Zą0 for some di.

Consider the number

n “ Nd1d2 ¨ ¨ ¨ dk ` 1.

Due to n ą N , all prime divisors of fpnq are frequent primes. Let pi be any frequent prime

divisor of fpnq. Then n P Spi, and therefore di | n. But n ” 1 pmod diq, whih means di “ 1.
Hene Spi “ 1 ¨ Zą0 “ Zą0 and therefore pi is a ommon divisor of all values fpnq.
Case 2: f is unbounded.

We prove that fp1q divides all fpnq.
Let a “ fp1q. Sine 1 P Sa, by the lemma it su�es to prove that Sa is an in�nite set.

Call a positive integer p a peak if fppq ą max
`

fp1q, . . . , fpp ´ 1q
˘

. Sine f is not bounded,

there are in�nitely many peaks. Let 1 “ p1 ă p2 ă . . . be the sequene of all peaks, and let

hk “ fppkq. Notie that for any peak pi and for any k ă pi, we have fppiq | fpkq ` fppi ´ kq ă
2fppiq, hene

fpkq ` fppi ´ kq “ fppiq “ hi. p1q
By the pigeonhole priniple, among the numbers h1, h2, . . . there are in�nitely many that

are ongruent modulo a. Let k0 ă k1 ă k2 ă . . . be an in�nite sequene of positive integers

suh that hk0 ” hk1 ” . . . pmod aq. Notie that

fppki ´ pk0q “ fppkiq ´ fppk0q “ hki ´ hk0 ” 0 pmod aq,

so pki ´ pk0 P Sa for all i “ 1, 2, . . .. This provides in�nitely many elements in Sa.

Hene, Sa is an in�nite set, and therefore fp1q “ a divides fpnq for every n.

Comment. As an extension of the solution above, it an be proven that if f is not bounded then

fpnq “ an with a “ fp1q.
Take an arbitrary positive integer n; we will show that fpn ` 1q “ fpnq ` a. Then it follows by

indution that fpnq “ an.
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Take a peak p suh that p ą n ` 2 and h “ fppq ą fpnq ` 2a. By (1) we have fpp ´ 1q “
fppq ´ fp1q “ h ´ a and fpn ` 1q “ fppq ´ fpp ´ n ´ 1q “ h ´ fpp ´ n ´ 1q. From h ´ a “ fpp ´ 1q |
fpnq ` fpp ´ n ´ 1q ă fpnq ` h ă 2ph ´ aq we get fpnq ` fpp ´ n ´ 1q “ h ´ a. Then

fpn ` 1q ´ fpnq “
`

h ´ fpp ´ n ´ 1q
˘

´
`

h ´ a ´ fpp ´ n ´ 1q
˘

“ a.

On the other hand, there exists a wide family of bounded funtions satisfying the required proper-

ties. Here we present a few examples:

fpnq “ c; fpnq “
#

2c if n is even

c if n is odd;

fpnq “
#

2018c if n ď 2018

c if n ą 2018.

Solution 2. Let dn “ gcd
`

fpnq, fp1q
˘

. From dn`1 | fp1q and dn`1 | fpn ` 1q | fpnq ` fp1q,
we an see that dn`1 | fpnq; then dn`1 | gcd

`

fpnq, fp1q
˘

“ dn. So the sequene d1, d2, . . .
is noninreasing in the sense that every element is a divisor of the previous elements. Let

d “ minpd1, d2, . . .q “ gcdpd1.d2, . . .q “ gcd
`

fp1q, fp2q, . . .
˘

; we have to prove d ě 2.
For the sake of ontradition, suppose that the statement is wrong, so d “ 1; that means

there is some index n0 suh that dn “ 1 for every n ě n0, i.e., fpnq is oprime with fp1q.
Claim 1. If 2k ě n0 then fp2kq ď 2k.

Proof. By the ondition, fp2nq | 2fpnq; a trivial indution yields fp2kq | 2kfp1q. If 2k ě n0 then

fp2kq is oprime with fp1q, so fp2kq is a divisor of 2k. l

Claim 2. There is a onstant C suh that fpnq ă n ` C for every n.

Proof. Take the �rst power of 2 whih is greater than or equal to n0: let K “ 2k ě n0. By

Claim 1, we have fpKq ď K. Notie that fpn ` Kq | fpnq ` fpKq implies fpn ` Kq ď
fpnq ` fpKq ď fpnq ` K. If n “ tK ` r for some t ě 0 and 1 ď r ď K, then we onlude

fpnq ď K ` fpn ´ Kq ď 2K ` fpn ´ 2Kq ď . . . ď tK ` fprq ă n ` max
`

fp1q, fp2q, . . . , fpKq
˘

,

so the laim is true with C “ max
`

fp1q, . . . , fpKq
˘

. l

Claim 3. If a, b P Zą0 are oprime then gcd
`

fpaq, fpbq
˘

| fp1q. In partiular, if a, b ě n0 are

oprime then fpaq and fpbq are oprime.

Proof. Let d “ gcd
`

fpaq, fpbq
˘

. We an repliate Eulid's algorithm. Formally, apply indution

on a ` b. If a “ 1 or b “ 1 then we already have d | fp1q.
Without loss of generality, suppose 1 ă a ă b. Then d | fpaq and d | fpbq | fpaq ` fpb ´ aq,

so d | fpb´aq. Therefore d divides gcd
`

fpaq, fpb´aq
˘

whih is a divisor of fp1q by the indution
hypothesis. l

Let p1 ă p2 ă . . . be the sequene of all prime numbers; for every k, let qk be the lowest

power of pk with qk ě n0. (Notie that there are only �nitely many positive integers with

qk ‰ pk.)
Take a positive integer N , and onsider the numbers

fp1q, fpq1q, fpq2q, . . . , fpqNq.
Here we have N ` 1 numbers, eah being greater than 1, and they are pairwise oprime by

Claim 3. Therefore, they have at least N `1 di�erent prime divisors in total, and their greatest

prime divisor is at least pN`1. Hene, maxpfp1q, fpq1q, . . . , fpqNqq ě pN`1.

Choose N suh that maxpq1, . . . , qNq “ pN (this is ahieved if N is su�iently large), and

pN`1 ´ pN ą C (that is possible, beause there are arbitrarily long gaps between the primes).

Then we establish a ontradition

pN`1 ď maxpfp1q, fpq1q, . . . , fpqNqq ă maxp1 ` C, q1 ` C, . . . , qN ` Cq “ pN ` C ă pN`1

whih proves the statement.
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N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distint

positive integers not exeeding 5n. Suppose that the sequene

a1
b1
,
a2
b2
, . . . ,

an
bn

p1q

forms an arithmeti progression. Prove that the terms of the sequene are equal.

(Thailand)

Solution. Suppose that (1) is an arithmeti progression with nonzero di�erene. Let the

di�erene be ∆ “ c
d
, where d ą 0 and c, d are oprime.

We will show that too many denominators bi should be divisible by d. To this end, for any

1 ď i ď n and any prime divisor p of d, say that the index i is p-wrong, if vppbiq ă vppdq. (vppxq
stands for the exponent of p in the prime fatorisation of x.)

Claim 1. For any prime p, all p-wrong indies are ongruent modulo p. In other words, the

p-wrong indies (if they exist) are inluded in an arithmeti progression with di�erene p.

Proof. Let α “ vppdq. For the sake of ontradition, suppose that i and j are p-wrong indies

(i.e., none of bi and bj is divisible by pα) suh that i ı j pmod pq. Then the least ommon

denominator of

ai
bi
and

aj
bj
is not divisible by pα. But this is impossible beause in their di�erene,

pi ´ jq∆ “ pi´jqc
d

, the numerator is oprime to p, but pα divides the denominator d. l

Claim 2. d has no prime divisors greater than 5.

Proof. Suppose that p ě 7 is a prime divisor of d. Among the indies 1, 2, . . . , n, at most

P

n
p

T

ă n
p

` 1 are p-wrong, so p divides at least

p´1

p
n ´ 1 of b1, . . . , bn. Sine these denominators

are distint,

5n ě max
 

bi : p | bi
(

ě
ˆ

p ´ 1

p
n ´ 1

˙

p “ pp ´ 1qpn ´ 1q ´ 1 ě 6pn ´ 1q ´ 1 ą 5n,

a ontradition. l

Claim 3. For every 0 ď k ď n ´ 30, among the denominators bk`1, bk`2, . . . , bk`30, at least

ϕp30q “ 8 are divisible by d.

Proof. By Claim 1, the 2-wrong, 3-wrong and 5-wrong indies an be overed by three arithmeti

progressions with di�erenes 2, 3 and 5. By a simple inlusion-exlusion, p2´1q¨p3´1q¨p5´1q “ 8
indies are not overed; by Claim 2, we have d | bi for every unovered index i. l

Claim 4. |∆| ă 20
n´2

and d ą n´2
20

.

Proof. From the sequene (1), remove all frations with bn ă n
2
, There remain at least

n
2

frations, and they annot exeed

5n
n{2

“ 10. So we have at least

n
2
elements of the arithmeti

progression (1) in the interval p0, 10s, hene the di�erene must be below 10
n{2´1

“ 20
n´2

.

The seond inequality follows from

1
d

ď |c|
d

“ |∆|. l

Now we have everything to get the �nal ontradition. By Claim 3, we have d | bi for at
least

X

n
30

\

¨ 8 indies i. By Claim 4, we have d ě n´2
20

. Therefore,

5n ě max
 

bi : d | bi
(

ě
´Y n

30

]

¨ 8
¯

¨ d ą
´ n

30
´ 1

¯

¨ 8 ¨ n ´ 2

20
ą 5n.

Comment 1. It is possible that all terms in (1) are equal, for example with ai “ 2i´1 and bi “ 4i´2
we have

ai
bi

“ 1
2
.

Comment 2. The bound 5n in the statement is far from sharp; the solution above an be modi�ed

to work for 9n. For large n, the bound 5n an be replaed by n
3
2

´ε
.
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Problems

Algebra

A1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that, for all
integers a and b,

fp2aq ` 2fpbq “ fpfpa` bqq.
(South Africa)

A2. Let u1, u2, . . . , u2019 be real numbers satisfying

u1 ` u2 ` ¨ ¨ ¨ ` u2019 “ 0 and u21 ` u22 ` ¨ ¨ ¨ ` u22019 “ 1.

Let a “ minpu1, u2, . . . , u2019q and b “ maxpu1, u2, . . . , u2019q. Prove that

ab ď ´ 1

2019
.

(Germany)

A3. Let n ě 3 be a positive integer and let pa1, a2, . . . , anq be a strictly increasing
sequence of n positive real numbers with sum equal to 2. Let X be a subset of t1, 2, . . . , nu
such that the value of

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
ÿ

iPX

ai

ˇ

ˇ

ˇ

ˇ

ˇ

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers
pb1, b2, . . . , bnq with sum equal to 2 such that

ÿ

iPX

bi “ 1.

(New Zealand)

A4. Let n ě 2 be a positive integer and a1, a2, . . . , an be real numbers such that

a1 ` a2 ` ¨ ¨ ¨ ` an “ 0.

Define the set A by
A “

 

pi, jq
ˇ

ˇ 1 ď i ă j ď n, |ai ´ aj| ě 1
(

.

Prove that, if A is not empty, then
ÿ

pi,jqPA

aiaj ă 0.

(China)

A5. Let x1, x2, . . . , xn be different real numbers. Prove that

ÿ

1ďiďn

ź

j‰i

1 ´ xixj
xi ´ xj

“
#

0, if n is even;

1, if n is odd.

(Kazakhstan)
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A6. A polynomial P px, y, zq in three variables with real coefficients satisfies the identities

P px, y, zq “ P px, y, xy ´ zq “ P px, zx´ y, zq “ P pyz ´ x, y, zq.

Prove that there exists a polynomial F ptq in one variable such that

P px, y, zq “ F px2 ` y2 ` z2 ´ xyzq.

(Russia)

A7. Let Z be the set of integers. We consider functions f : Z Ñ Z satisfying

f
`

fpx` yq ` y
˘

“ f
`

fpxq ` y
˘

for all integers x and y. For such a function, we say that an integer v is f -rare if the set

Xv “ tx P Z : fpxq “ vu

is finite and nonempty.

(a) Prove that there exists such a function f for which there is an f -rare integer.

(b) Prove that no such function f can have more than one f -rare integer.

(Netherlands)
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Combinatorics

C1. The infinite sequence a0, a1, a2, . . . of (not necessarily different) integers has the
following properties: 0 ď ai ď i for all integers i ě 0, and

ˆ

k

a0

˙

`
ˆ

k

a1

˙

` ¨ ¨ ¨ `
ˆ

k

ak

˙

“ 2k

for all integers k ě 0.
Prove that all integers N ě 0 occur in the sequence (that is, for all N ě 0, there exists i ě 0

with ai “ N).
(Netherlands)

C2. You are given a set of n blocks, each weighing at least 1; their total weight is 2n.
Prove that for every real number r with 0 ď r ď 2n´ 2 you can choose a subset of the blocks
whose total weight is at least r but at most r ` 2.

(Thailand)

C3. Let n be a positive integer. Harry has n coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operation: if there are k coins showing heads
and k ą 0, then he flips the kth coin over; otherwise he stops the process. (For example, the
process starting with THT would be THT Ñ HHT Ñ HTT Ñ TTT , which takes three
steps.)

Letting C denote the initial configuration (a sequence of n H ’s and T ’s), write ℓpCq for the
number of steps needed before all coins show T . Show that this number ℓpCq is finite, and
determine its average value over all 2n possible initial configurations C.

(USA)

C4. On a flat plane in Camelot, King Arthur builds a labyrinth L consisting of n walls,
each of which is an infinite straight line. No two walls are parallel, and no three walls have a
common point. Merlin then paints one side of each wall entirely red and the other side entirely
blue.

At the intersection of two walls there are four corners: two diagonally opposite corners
where a red side and a blue side meet, one corner where two red sides meet, and one corner
where two blue sides meet. At each such intersection, there is a two-way door connecting the
two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The
knights can walk through doors, but cannot walk through walls.

Let kpLq be the largest number k such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at least k knights such that no two of them can ever meet. For
each n, what are all possible values for kpLq, where L is a labyrinth with n walls?

(Canada)

C5. On a certain social network, there are 2019 users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, there are 1010 people with 1009 friends each
and 1009 people with 1010 friends each. However, the friendships are rather unstable, so events
of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that A is friends with both B and C, but B and C
are not friends; then B and C become friends, but A is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after
which each user is friends with at most one other user.

(Croatia)
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C6. Let n ą 1 be an integer. Suppose we are given 2n points in a plane such that
no three of them are collinear. The points are to be labelled A1, A2, . . . , A2n in some order.
We then consider the 2n angles =A1A2A3, =A2A3A4, . . . , =A2n´2A2n´1A2n, =A2n´1A2nA1,
=A2nA1A2. We measure each angle in the way that gives the smallest positive value (i.e.
between 0˝ and 180˝). Prove that there exists an ordering of the given points such that the
resulting 2n angles can be separated into two groups with the sum of one group of angles equal
to the sum of the other group.

(USA)

C7. There are 60 empty boxes B1, . . . , B60 in a row on a table and an unlimited supply
of pebbles. Given a positive integer n, Alice and Bob play the following game.

In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integer k with 1 ď k ď 59 and splits the boxes into the two groups
B1, . . . , Bk and Bk`1, . . . , B60.

(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n
such that Alice can prevent Bob from winning.

(Czech Republic)

C8. Alice has a map of Wonderland, a country consisting of n ě 2 towns. For every
pair of towns, there is a narrow road going from one town to the other. One day, all the roads
are declared to be “one way” only. Alice has no information on the direction of the roads, but
the King of Hearts has offered to help her. She is allowed to ask him a number of questions.
For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one
outgoing road. Prove that she can always find out by asking at most 4n questions.

Comment. This problem could be posed with an explicit statement about points being awarded for
weaker bounds cn for some c ą 4, in the style of IMO 2014 Problem 6.

(Thailand)

C9. For any two different real numbers x and y, we define Dpx, yq to be the unique
integer d satisfying 2d ď |x ´ y| ă 2d`1. Given a set of reals F , and an element x P F , we say
that the scales of x in F are the values of Dpx, yq for y P F with x ‰ y.

Let k be a given positive integer. Suppose that each member x of F has at most k different
scales in F (note that these scales may depend on x). What is the maximum possible size of F?

(Italy)
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Geometry

G1. Let ABC be a triangle. Circle Γ passes through A, meets segments AB and AC
again at points D and E respectively, and intersects segment BC at F and G such that F lies
between B and G. The tangent to circle BDF at F and the tangent to circle CEG at G meet
at point T . Suppose that points A and T are distinct. Prove that line AT is parallel to BC.

(Nigeria)

G2. Let ABC be an acute-angled triangle and let D, E, and F be the feet of altitudes
from A, B, and C to sides BC, CA, and AB, respectively. Denote by ωB and ωC the incircles
of triangles BDF and CDE, and let these circles be tangent to segments DF and DE at M
and N , respectively. Let line MN meet circles ωB and ωC again at P ‰ M and Q ‰ N ,
respectively. Prove that MP “ NQ.

(Vietnam)

G3. In triangle ABC, let A1 and B1 be two points on sides BC and AC, and let P and Q
be two points on segments AA1 and BB1, respectively, so that line PQ is parallel to AB. On
ray PB1, beyond B1, let P1 be a point so that =PP1C “ =BAC. Similarly, on ray QA1,
beyond A1, let Q1 be a point so that =CQ1Q “ =CBA. Show that points P , Q, P1, and Q1

are concyclic.
(Ukraine)

G4. Let P be a point inside triangle ABC. Let AP meet BC at A1, let BP meet CA
at B1, and let CP meet AB at C1. Let A2 be the point such that A1 is the midpoint of PA2,
let B2 be the point such that B1 is the midpoint of PB2, and let C2 be the point such that
C1 is the midpoint of PC2. Prove that points A2, B2, and C2 cannot all lie strictly inside the
circumcircle of triangle ABC.

(Australia)

G5. Let ABCDE be a convex pentagon with CD “ DE and =EDC ‰ 2 ¨ =ADB.
Suppose that a point P is located in the interior of the pentagon such that AP “ AE and
BP “ BC. Prove that P lies on the diagonal CE if and only if areapBCDq ` areapADEq “
areapABDq ` areapABP q.

(Hungary)

G6. Let I be the incentre of acute-angled triangle ABC. Let the incircle meet BC, CA,
and AB at D, E, and F , respectively. Let line EF intersect the circumcircle of the triangle
at P and Q, such that F lies between E and P . Prove that =DPA` =AQD “ =QIP .

(Slovakia)

G7. The incircle ω of acute-angled scalene triangle ABC has centre I and meets sides BC,
CA, and AB at D, E, and F , respectively. The line through D perpendicular to EF meets ω
again at R. Line AR meets ω again at P . The circumcircles of triangles PCE and PBF meet
again at Q ‰ P . Prove that lines DI and PQ meet on the external bisector of angle BAC.

(India)

G8. Let L be the set of all lines in the plane and let f be a function that assigns to each
line ℓ P L a point fpℓq on ℓ. Suppose that for any point X, and for any three lines ℓ1, ℓ2, ℓ3
passing through X, the points fpℓ1q, fpℓ2q, fpℓ3q and X lie on a circle.

Prove that there is a unique point P such that fpℓq “ P for any line ℓ passing through P .
(Australia)
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Number Theory

N1. Find all pairs pm,nq of positive integers satisfying the equation

p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q “ m!

(El Salvador)

N2. Find all triples pa, b, cq of positive integers such that a3 ` b3 ` c3 “ pabcq2.
(Nigeria)

N3. We say that a set S of integers is rootiful if, for any positive integer n and any
a0, a1, . . . , an P S, all integer roots of the polynomial a0 ` a1x` ¨ ¨ ¨ ` anx

n are also in S. Find
all rootiful sets of integers that contain all numbers of the form 2a ´ 2b for positive integers
a and b.

(Czech Republic)

N4. Let Zą0 be the set of positive integers. A positive integer constant C is given. Find
all functions f : Zą0 Ñ Zą0 such that, for all positive integers a and b satisfying a` b ą C,

a` fpbq | a2 ` b fpaq.

(Croatia)

N5. Let a be a positive integer. We say that a positive integer b is a-good if
`

an
b

˘

´ 1 is
divisible by an ` 1 for all positive integers n with an ě b. Suppose b is a positive integer such
that b is a-good, but b` 2 is not a-good. Prove that b ` 1 is prime.

(Netherlands)

N6. Let H “
 X

i
?
2
\

: i P Zą0

(

“ t1, 2, 4, 5, 7, . . .u, and let n be a positive integer. Prove
that there exists a constant C such that, if A Ă t1, 2, . . . , nu satisfies |A| ě C

?
n, then there

exist a, b P A such that a´ b P H . (Here Zą0 is the set of positive integers, and tzu denotes the
greatest integer less than or equal to z.)

(Brazil)

N7. Prove that there is a constant c ą 0 and infinitely many positive integers n with the
following property: there are infinitely many positive integers that cannot be expressed as the
sum of fewer than cn logpnq pairwise coprime nth powers.

(Canada)

N8. Let a and b be two positive integers. Prove that the integer

a2 `
R

4a2

b

V

is not a square. (Here rzs denotes the least integer greater than or equal to z.)
(Russia)
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Solutions

Algebra

A1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that, for all
integers a and b,

fp2aq ` 2fpbq “ fpfpa` bqq. (1)

(South Africa)

Answer: The solutions are fpnq “ 0 and fpnq “ 2n` K for any constant K P Z.

Common remarks. Most solutions to this problem first prove that f must be linear, before
determining all linear functions satisfying (1).

Solution 1. Substituting a “ 0, b “ n` 1 gives fpfpn` 1qq “ fp0q ` 2fpn` 1q. Substituting
a “ 1, b “ n gives fpfpn` 1qq “ fp2q ` 2fpnq.

In particular, fp0q ` 2fpn ` 1q “ fp2q ` 2fpnq, and so fpn ` 1q ´ fpnq “ 1
2

pfp2q ´ fp0qq.
Thus fpn` 1q ´ fpnq must be constant. Since f is defined only on Z, this tells us that f must
be a linear function; write fpnq “ Mn`K for arbitrary constants M and K, and we need only
determine which choices of M and K work.

Now, (1) becomes

2Ma ` K ` 2pMb ` Kq “ MpMpa ` bq ` Kq ` K

which we may rearrange to form

pM ´ 2q
`

Mpa ` bq ` K
˘

“ 0.

Thus, either M “ 2, or Mpa` bq `K “ 0 for all values of a` b. In particular, the only possible
solutions are fpnq “ 0 and fpnq “ 2n`K for any constant K P Z, and these are easily seen to
work.

Solution 2. Let K “ fp0q.
First, put a “ 0 in (1); this gives

fpfpbqq “ 2fpbq ` K (2)

for all b P Z.
Now put b “ 0 in (1); this gives

fp2aq ` 2K “ fpfpaqq “ 2fpaq ` K,

where the second equality follows from (2). Consequently,

fp2aq “ 2fpaq ´ K (3)

for all a P Z.
Substituting (2) and (3) into (1), we obtain

fp2aq ` 2fpbq “ fpfpa` bqq
2fpaq ´ K ` 2fpbq “ 2fpa` bq ` K

fpaq ` fpbq “ fpa` bq ` K.
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Thus, if we set gpnq “ fpnq ´ K we see that g satisfies the Cauchy equation gpa ` bq “
gpaq`gpbq. The solution to the Cauchy equation over Z is well-known; indeed, it may be proven
by an easy induction that gpnq “ Mn for each n P Z, where M “ gp1q is a constant.

Therefore, fpnq “ Mn ` K, and we may proceed as in Solution 1.

Comment 1. Instead of deriving (3) by substituting b “ 0 into (1), we could instead have observed
that the right hand side of (1) is symmetric in a and b, and thus

fp2aq ` 2fpbq “ fp2bq ` 2fpaq.

Thus, fp2aq ´ 2fpaq “ fp2bq ´ 2fpbq for any a, b P Z, and in particular fp2aq ´ 2fpaq is constant.
Setting a “ 0 shows that this constant is equal to ´K, and so we obtain (3).

Comment 2. Some solutions initially prove that fpfpnqq is linear (sometimes via proving that
fpfpnqq ´ 3K satisfies the Cauchy equation). However, one can immediately prove that f is linear by
substituting something of the form fpfpnqq “ M 1n ` K 1 into (2).
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A2. Let u1, u2, . . . , u2019 be real numbers satisfying

u1 ` u2 ` ¨ ¨ ¨ ` u2019 “ 0 and u21 ` u22 ` ¨ ¨ ¨ ` u22019 “ 1.

Let a “ minpu1, u2, . . . , u2019q and b “ maxpu1, u2, . . . , u2019q. Prove that

ab ď ´ 1

2019
.

(Germany)

Solution 1. Notice first that b ą 0 and a ă 0. Indeed, since
2019
ř

i“1

u2i “ 1, the variables ui

cannot be all zero, and, since
2019
ř

i“1

ui “ 0, the nonzero elements cannot be all positive or all

negative.
Let P “ ti : ui ą 0u and N “ ti : ui ď 0u be the indices of positive and nonpositive elements

in the sequence, and let p “ |P | and n “ |N | be the sizes of these sets; then p ` n “ 2019. By

the condition
2019
ř

i“1

ui “ 0 we have 0 “
2019
ř

i“1

ui “ ř

iPP

ui ´ ř

iPN

|ui|, so

ÿ

iPP

ui “
ÿ

iPN

|ui|. p1q

After this preparation, estimate the sum of squares of the positive and nonpositive elements
as follows:

ÿ

iPP

u2i ď
ÿ

iPP

bui “ b
ÿ

iPP

ui “ b
ÿ

iPN

|ui| ď b
ÿ

iPN

|a| “ ´nab; (2)

ÿ

iPN

u2i ď
ÿ

iPN

|a| ¨ |ui| “ |a|
ÿ

iPN

|ui| “ |a|
ÿ

iPP

ui ď |a|
ÿ

iPP

b “ ´pab. (3)

The sum of these estimates is

1 “
2019
ÿ

i“1

u2i “
ÿ

iPP

u2i `
ÿ

iPN

u2i ď ´pp ` nqab “ ´2019ab;

that proves ab ď ´1
2019

.

Comment 1. After observing
ř

iPP
u2i ď b

ř

iPP
ui and

ř

iPN
u2i ď |a| ř

iPP
|ui|, instead of p2, 3q an alternative

continuation is

|ab| ě

ř

iPP
u2i

ř

iPP
ui

¨

ř

iPN
u2i

ř

iPN
|ui|

“

ř

iPP
u2i

´

ř

iPP
ui

¯2

ÿ

iPN

u2i ě 1

p

ÿ

iPN

u2i

(by the AM-QM or the Cauchy–Schwarz inequality) and similarly |ab| ě 1
n

ř

iPP

u2i .

Solution 2. As in the previous solution we conclude that a ă 0 and b ą 0.
For every index i, the number ui is a convex combination of a and b, so

ui “ xia` yib with some weights 0 ď xi, yi ď 1, with xi ` yi “ 1.

Let X “
2019
ř

i“1

xi and Y “
2019
ř

i“1

yi. From 0 “
2019
ř

i“1

ui “
2019
ř

i“1

pxia` yibq “ ´|a|X ` bY , we get

|a|X “ bY. p4q
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From
2019
ř

i“1

pxi ` yiq “ 2019 we have

X ` Y “ 2019. p5q
The system of linear equations p4, 5q has a unique solution:

X “ 2019b

|a| ` b
, Y “ 2019|a|

|a| ` b
.

Now apply the following estimate to every u2i in their sum:

u2i “ x2i a
2 ` 2xiyiab ` y2i b

2 ď xia
2 ` yib

2;

we obtain that

1 “
2019
ÿ

i“1

u2i ď
2019
ÿ

i“1

pxia2 ` yib
2q “ Xa2 ` Y b2 “ 2019b

|a| ` b
|a|2 ` 2019|a|

|a| ` b
b2 “ 2019|a|b “ ´2019ab.

Hence, ab ď ´1

2019
.

Comment 2. The idea behind Solution 2 is the following thought. Suppose we fix a ă 0 and b ą 0,
fix

ř

ui “ 0 and vary the ui to achieve the maximum value of
ř

u2i . Considering varying any two of
the ui while preserving their sum: the maximum value of

ř

u2i is achieved when those two are as far
apart as possible, so all but at most one of the ui are equal to a or b. Considering a weighted version of
the problem, we see the maximum (with fractional numbers of ui having each value) is achieved when
2019b

|a| ` b
of them are a and

2019|a|
|a| ` b

are b.

In fact, this happens in the solution: the number ui is replaced by xi copies of a and yi copies of b.
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A3. Let n ě 3 be a positive integer and let pa1, a2, . . . , anq be a strictly increasing
sequence of n positive real numbers with sum equal to 2. Let X be a subset of t1, 2, . . . , nu
such that the value of

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
ÿ

iPX

ai

ˇ

ˇ

ˇ

ˇ

ˇ

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers
pb1, b2, . . . , bnq with sum equal to 2 such that

ÿ

iPX

bi “ 1.

(New Zealand)

Common remarks. In all solutions, we say an index set X is paiq-minimising if it has
the property in the problem for the given sequence paiq. Write Xc for the complement of X,
and ra, bs for the interval of integers k such that a ď k ď b. Note that

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
ÿ

iPX

ai

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
ÿ

iPXc

ai

ˇ

ˇ

ˇ

ˇ

ˇ

,

so we may exchange X and Xc where convenient. Let

∆ “
ÿ

iPXc

ai ´
ÿ

iPX

ai

and note that X is paiq-minimising if and only if it minimises |∆|, and that
ř

iPX ai “ 1 if and
only if ∆ “ 0.

In some solutions, a scaling process is used. If we have a strictly increasing sequence of
positive real numbers ci (typically obtained by perturbing the ai in some way) such that

ÿ

iPX

ci “
ÿ

iPXc

ci,

then we may put bi “ 2ci{
řn

j“1 cj . So it suffices to construct such a sequence without needing
its sum to be 2.

The solutions below show various possible approaches to the problem. Solutions 1 and 2
perturb a few of the ai to form the bi (with scaling in the case of Solution 1, without scaling in
the case of Solution 2). Solutions 3 and 4 look at properties of the index set X. Solution 3 then
perturbs many of the ai to form the bi, together with scaling. Rather than using such perturba-
tions, Solution 4 constructs a sequence pbiq directly from the set X with the required properties.
Solution 4 can be used to give a complete description of sets X that are paiq-minimising for
some paiq.

Solution 1. Without loss of generality, assume
ř

iPX ai ď 1, and we may assume strict
inequality as otherwise bi “ ai works. Also, X clearly cannot be empty.

If n P X, add ∆ to an, producing a sequence of ci with
ř

iPX ci “ ř

iPXc ci, and then scale
as described above to make the sum equal to 2. Otherwise, there is some k with k P X and
k ` 1 P Xc. Let δ “ ak`1 ´ ak.

• If δ ą ∆, add ∆ to ak and then scale.

• If δ ă ∆, then considering X Y tk ` 1u z tku contradicts X being paiq-minimising.

• If δ “ ∆, choose any j ‰ k, k ` 1 (possible since n ě 3), and any ǫ less than the least
of a1 and all the differences ai`1 ´ ai. If j P X then add ∆ ´ ǫ to ak and ǫ to aj , then
scale; otherwise, add ∆ to ak and ǫ{2 to ak`1, and subtract ǫ{2 from aj, then scale.
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Solution 2. This is similar to Solution 1, but without scaling. As in that solution, without
loss of generality, assume

ř

iPX ai ă 1.
Suppose there exists 1 ď j ď n ´ 1 such that j P X but j ` 1 P Xc. Then aj`1 ´ aj ě ∆,

because otherwise considering X Y tj ` 1u z tju contradicts X being paiq-minimising.
If aj`1 ´ aj ą ∆, put

bi “

$

’

&

’

%

aj ` ∆{2, if i “ j;

aj`1 ´ ∆{2, if i “ j ` 1;

ai, otherwise.

If aj`1 ´aj “ ∆, choose any ǫ less than the least of ∆{2, a1 and all the differences ai`1 ´ai.
If |X| ě 2, choose k P X with k ‰ j, and put

bi “

$

’

’

’

&

’

’

’

%

aj ` ∆{2 ´ ǫ, if i “ j;

aj`1 ´ ∆{2, if i “ j ` 1;

ak ` ǫ, if i “ k;

ai, otherwise.

Otherwise, |Xc| ě 2, so choose k P Xc with k ‰ j ` 1, and put

bi “

$

’

’

’

&

’

’

’

%

aj ` ∆{2, if i “ j;

aj`1 ´ ∆{2 ` ǫ, if i “ j ` 1;

ak ´ ǫ, if i “ k;

ai, otherwise.

If there is no 1 ď j ď n such that j P X but j ` 1 P Xc, there must be some 1 ă k ď n
such that X “ rk, ns (certainly X cannot be empty). We must have a1 ą ∆, as otherwise
considering X Y t1u contradicts X being paiq-minimising. Now put

bi “

$

’

&

’

%

a1 ´ ∆{2, if i “ 1;

an ` ∆{2, if i “ n;

ai, otherwise.

Solution 3. Without loss of generality, assume
ř

iPX ai ď 1, so ∆ ě 0. If ∆ “ 0 we can take
bi “ ai, so now assume that ∆ ą 0.

Suppose that there is some k ď n such that |X X rk, ns| ą |Xc X rk, ns|. If we choose the
largest such k then |X X rk, ns| ´ |Xc X rk, ns| “ 1. We can now find the required sequence pbiq
by starting with ci “ ai for i ă k and ci “ ai ` ∆ for i ě k, and then scaling as described
above.

If no such k exists, we will derive a contradiction. For each i P X we can choose i ă ji ď n
in such a way that ji P Xc and all the ji are different. (For instance, note that necessarily
n P Xc and now just work downwards; each time an i P X is considered, let ji be the least
element of Xc greater than i and not yet used.) Let Y be the (possibly empty) subset of r1, ns
consisting of those elements in Xc that are also not one of the ji. In any case

∆ “
ÿ

iPX

paji ´ aiq `
ÿ

jPY

aj

where each term in the sums is positive. Since n ě 3 the total number of terms above is at
least two. Take a least such term and its corresponding index i and consider the set Z which
we form from X by removing i and adding ji (if it is a term of the first type) or just by adding j
if it is a term of the second type. The corresponding expression of ∆ for Z has the sign of its
least term changed, meaning that the sum is still nonnegative but strictly less than ∆, which
contradicts X being paiq-minimising.
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Solution 4. This uses some similar ideas to Solution 3, but describes properties of the index
sets X that are sufficient to describe a corresponding sequence pbiq that is not derived from paiq.

Note that, for two subsets X, Y of r1, ns, the following are equivalent:

• |X X ri, ns| ď |Y X ri, ns| for all 1 ď i ď n;

• Y is at least as large as X, and for all 1 ď j ď |Y |, the jth largest element of Y is at least
as big as the jth largest element of X;

• there is an injective function f : X Ñ Y such that fpiq ě i for all i P X.

If these equivalent conditions are satisfied, we write X ĺ Y . We write X ă Y if X ĺ Y and
X ‰ Y .

Note that if X ă Y , then
ř

iPX ai ă ř

iPY ai (the second description above makes this clear).

We claim first that, if n ě 3 and X ă Xc, then there exists Y with X ă Y ă Xc. Indeed,
as |X| ď |Xc|, we have |Xc| ě 2. Define Y to consist of the largest element of Xc, together
with all but the largest element of X; it is clear both that Y is distinct from X and Xc, and
that X ĺ Y ĺ Xc, which is what we need.

But, in this situation, we have

ÿ

iPX

ai ă
ÿ

iPY

ai ă
ÿ

iPXc

ai and 1 ´
ÿ

iPX

ai “ ´
˜

1 ´
ÿ

iPXc

ai

¸

,

so |1 ´ ř

iPY ai| ă |1 ´ ř

iPX ai|.
Hence if X is paiq-minimising, we do not have X ă Xc, and similarly we do not have

Xc ă X.

Considering the first description above, this immediately implies the following Claim.

Claim. There exist 1 ď k, ℓ ď n such that |X X rk, ns| ą n´k`1
2

and |X X rℓ, ns| ă n´ℓ`1
2

.

We now construct our sequence pbiq using this claim. Let k and ℓ be the greatest values
satisfying the claim, and without loss of generality suppose k “ n and ℓ ă n (otherwise
replace X by its complement). As ℓ is maximal, n ´ ℓ is even and |X X rℓ, ns| “ n´ℓ

2
. For

sufficiently small positive ǫ, we take

bi “ iǫ`

$

’

&

’

%

0, if i ă ℓ;

δ, if ℓ ď i ď n´ 1;

γ, if i “ n.

Let M “ ř

iPX i. So we require

Mǫ `
ˆ

n´ ℓ

2
´ 1

˙

δ ` γ “ 1

and
npn ` 1q

2
ǫ ` pn´ ℓqδ ` γ “ 2.

These give

γ “ 2δ `
ˆ

npn ` 1q
2

´ 2M

˙

ǫ

and for sufficiently small positive ǫ, solving for γ and δ gives 0 ă δ ă γ (since ǫ “ 0 gives
δ “ 1{pn´ℓ

2
` 1q and γ “ 2δ), so the sequence is strictly increasing and has positive values.
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Comment. This solution also shows that the claim gives a complete description of sets X that are
paiq-minimising for some paiq.

Another approach to proving the claim is as follows. We prove the existence of ℓ with the claimed
property; the existence of k follows by considering the complement of X.

Suppose, for a contradiction, that for all 1 ď ℓ ď n we have |X X rℓ, ns| ě
P

n´ℓ`1
2

T

. If we ever
have strict inequality, consider the set Y “ tn, n ´ 2, n ´ 4, . . .u. This set may be obtained from X by
possibly removing some elements and reducing the values of others. (To see this, consider the largest
k P X z Y , if any; remove it, and replace it by the greatest j P Xc with j ă k, if any. Such steps
preserve the given inequality, and are possible until we reach the set Y .) So if we had strict inequality,
and so X ‰ Y , we have

ÿ

iPX

ai ą
ÿ

iPY

ai ą 1,

contradicting X being paiq-minimising. Otherwise, we always have equality, meaning that X “ Y . But
now consider Z “ Y Y tn ´ 1u z tnu. Since n ě 3, we have

ÿ

iPY

ai ą
ÿ

iPZ

ai ą
ÿ

iPY c

ai “ 2 ´
ÿ

iPY

ai,

and so Z contradicts X being paiq-minimising.
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A4. Let n ě 2 be a positive integer and a1, a2, . . . , an be real numbers such that

a1 ` a2 ` ¨ ¨ ¨ ` an “ 0.

Define the set A by
A “

 

pi, jq
ˇ

ˇ 1 ď i ă j ď n, |ai ´ aj| ě 1
(

.

Prove that, if A is not empty, then
ÿ

pi,jqPA

aiaj ă 0.

(China)

Solution 1. Define sets B and C by

B “
 

pi, jq
ˇ

ˇ 1 ď i, j ď n, |ai ´ aj| ě 1
(

,

C “
 

pi, jq
ˇ

ˇ 1 ď i, j ď n, |ai ´ aj| ă 1
(

.

We have
ÿ

pi,jqPA

aiaj “ 1

2

ÿ

pi,jqPB

aiaj

ÿ

pi,jqPB

aiaj “
ÿ

1ďi,jďn

aiaj ´
ÿ

pi,jqRB

aiaj “ 0 ´
ÿ

pi,jqPC

aiaj .

So it suffices to show that if A (and hence B) are nonempty, then
ÿ

pi,jqPC

aiaj ą 0.

Partition the indices into sets P , Q, R, and S such that

P “
 

i
ˇ

ˇ ai ď ´1
(

R “
 

i
ˇ

ˇ 0 ă ai ă 1
(

Q “
 

i
ˇ

ˇ ´1 ă ai ď 0
(

S “
 

i
ˇ

ˇ 1 ď ai
(

.

Then
ÿ

pi,jqPC

aiaj ě
ÿ

iPPYS

a2i `
ÿ

i,jPQYR

aiaj “
ÿ

iPPYS

a2i `
˜

ÿ

iPQYR

ai

¸2

ě 0.

The first inequality holds because all of the positive terms in the RHS are also in the LHS,
and all of the negative terms in the LHS are also in the RHS. The first inequality attains
equality only if both sides have the same negative terms, which implies |ai ´ aj| ă 1 whenever
i, j P Q Y R; the second inequality attains equality only if P “ S “ ∅. But then we would
have A “ ∅. So A nonempty implies that the inequality holds strictly, as required.

Solution 2. Consider P,Q,R, S as in Solution 1, set

p “
ÿ

iPP

ai, q “
ÿ

iPQ

ai, r “
ÿ

iPR

ai, s “
ÿ

iPS

ai,

and let
t` “

ÿ

pi,jqPA, aiajě0

aiaj , t´ “
ÿ

pi,jqPA, aiajď0

aiaj .

We know that p ` q ` r ` s “ 0, and we need to prove that t` ` t´ ă 0.
Notice that t` ď p2{2`pq`rs`s2{2 (with equality only if p “ s “ 0), and t´ ď pr`ps`qs

(with equality only if there do not exist i P Q and j P R with aj ´ ai ą 1). Therefore,

t` ` t´ ď p2 ` s2

2
` pq ` rs ` pr ` ps ` qs “ pp ` q ` r ` sq2

2
´ pq ` rq2

2
“ ´pq ` rq2

2
ď 0.

If A is not empty and p “ s “ 0, then there must exist i P Q, j P R with |ai ´ aj| ą 1, and
hence the earlier equality conditions cannot both occur.



Shortlisted problems – solutions 19

Comment. The RHS of the original inequality cannot be replaced with any constant c ă 0 (indepen-
dent of n). Indeed, take

a1 “ ´ n

n ` 2
, a2 “ ¨ ¨ ¨ “ an´1 “ 1

n ` 2
, an “ 2

n ` 2
.

Then
ÿ

pi,jqPA

aiaj “ ´ 2n

pn ` 2q2 , which converges to zero as n Ñ 8.
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A5. Let x1, x2, . . . , xn be different real numbers. Prove that

ÿ

1ďiďn

ź

j‰i

1 ´ xixj
xi ´ xj

“
#

0, if n is even;

1, if n is odd.

(Kazakhstan)

Common remarks. Let Gpx1, x2, . . . , xnq be the function of the n variables x1, x2, . . . , xn on
the LHS of the required identity.

Solution 1 (Lagrange interpolation). Since both sides of the identity are rational functions,
it suffices to prove it when all xi R t˘1u. Define

fptq “
n
ź

i“1

p1 ´ xitq ,

and note that

fpxiq “ p1 ´ x2i q
ź

j‰i

1 ´ xixj .

Using the nodes `1,´1, x1, . . . , xn, the Lagrange interpolation formula gives us the following
expression for f :

n
ÿ

i“1

fpxiq
px´ 1qpx ` 1q

pxi ´ 1qpxi ` 1q
ź

j‰i

x ´ xj
xi ´ xj

` fp1qx` 1

1 ` 1

ź

1ďiďn

x´ xi
1 ´ xi

` fp´1q x ´ 1

´1 ´ 1

ź

1ďiďn

x ´ xi
1 ´ xi

.

The coefficient of tn`1 in fptq is 0, since f has degree n. The coefficient of tn`1 in the above
expression of f is

0 “
ÿ

1ďiďn

fpxiq
ź

j‰i

pxi ´ xjq ¨ pxi ´ 1qpxi ` 1q
` fp1q

ź

1ďjďn

p1 ´ xjq ¨ p1 ` 1q
` fp´1q

ź

1ďjďn

p´1 ´ xjq ¨ p´1 ´ 1q

“ ´Gpx1, . . . , xnq ` 1

2
` p´1qn`1

2
.

Comment. The main difficulty is to think of including the two extra nodes ˘1 and evaluating the
coefficient tn`1 in f when n ` 1 is higher than the degree of f .

It is possible to solve the problem using Lagrange interpolation on the nodes x1, . . . , xn, but the
definition of the polynomial being interpolated should depend on the parity of n. For n even, consider
the polynomial

P pxq “
ź

i

p1 ´ xxiq ´
ź

i

px ´ xiq.

Lagrange interpolation shows that G is the coefficient of xn´1 in the polynomial P pxq{p1 ´ x2q, i.e. 0.
For n odd, consider the polynomial

P pxq “
ź

i

p1 ´ xxiq ´ x
ź

i

px ´ xiq.

Now G is the coefficient of xn´1 in P pxq{p1 ´ x2q, which is 1.
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Solution 2 (using symmetries). Observe that G is symmetric in the variables x1, . . . , xn.
Define V “ ś

iăjpxj ´ xiq and let F “ G ¨ V , which is a polynomial in x1, . . . , xn. Since
V is alternating, F is also alternating (meaning that, if we exchange any two variables, then
F changes sign). Every alternating polynomial in n variables x1, . . . , xn vanishes when any two
variables xi, xj (i ‰ j) are equal, and is therefore divisible by xi ´ xj for each pair i ‰ j. Since
these linear factors are pairwise coprime, V divides F exactly as a polynomial. Thus G is in
fact a symmetric polynomial in x1, . . . , xn.

Now observe that if all xi are nonzero and we set yi “ 1{xi for i “ 1, . . . , n, then we have

1 ´ yiyj
yi ´ yj

“ 1 ´ xixj
xi ´ xj

,

so that

G

ˆ

1

x1
, . . . ,

1

xn

˙

“ Gpx1, . . . , xnq .

By continuity this is an identity of rational functions. Since G is a polynomial, it implies that
G is constant. (If G were not constant, we could choose a point pc1, . . . , cnq with all ci ‰ 0,
such that Gpc1, . . . , cnq ‰ Gp0, . . . , 0q; then gpxq :“ Gpc1x, . . . , cnxq would be a nonconstant

polynomial in the variable x, so |gpxq| Ñ 8 as x Ñ 8, hence
ˇ

ˇ

ˇ
G
´

y
c1
, . . . , y

cn

¯ˇ

ˇ

ˇ
Ñ 8 as y Ñ 0,

which is impossible since G is a polynomial.)

We may identify the constant by substituting xi “ ζ i, where ζ is a primitive nth root of unity
in C. In the ith term in the sum in the original expression we have a factor 1´ζ iζn´i “ 0, unless
i “ n or 2i “ n. In the case where n is odd, the only exceptional term is i “ n, which gives
the value

ś

j‰n
1´ζj

1´ζj
“ 1. When n is even, we also have the term

ś

j‰
n
2

1`ζj

´1´ζj
“ p´1qn´1 “ ´1,

so the sum is 0.

Comment. If we write out an explicit expression for F ,

F “
ÿ

1ďiďn

p´1qn´i
ź

jăk
j,k‰i

pxk ´ xjq
ź

j‰i

p1 ´ xixjq

then to prove directly that F vanishes when xi “ xj for some i ‰ j, but no other pair of variables
coincide, we have to check carefully that the two nonzero terms in this sum cancel.

A different and slightly less convenient way to identify the constant is to substitute xi “ 1 ` ǫζ i,
and throw away terms that are Opǫq as ǫ Ñ 0.

Solution 3 (breaking symmetry). Consider G as a rational function in xn with coefficients
that are rational functions in the other variables. We can write

Gpx1, . . . , xnq “ P pxnq
ś

j‰n pxn ´ xjq

where P pxnq is a polynomial in xn whose coefficients are rational functions in the other variables.
We then have

P pxnq “
˜

ź

j‰n

p1 ´ xnxjq
¸

`
ÿ

1ďiďn´1

pxixn ´ 1q
˜

ź

j‰i,n

pxn ´ xjq
¸˜

ź

j‰i,n

1 ´ xixj
xi ´ xj

¸

.

For any k ‰ n, substituting xn “ xk (which is valid when manipulating the numerator P pxnq
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on its own), we have (noting that xn ´ xj vanishes when j “ k)

P pxkq “
˜

ź

j‰n

p1 ´ xkxjq
¸

`
ÿ

1ďiďn´1

pxixk ´ 1q
˜

ź

j‰i,n

pxk ´ xjq
¸˜

ź

j‰i,n

1 ´ xixj
xi ´ xj

¸

“
˜

ź

j‰n

p1 ´ xkxjq
¸

`
`

x2k ´ 1
˘

˜

ź

j‰k,n

pxk ´ xjq
¸˜

ź

j‰k,n

1 ´ xkxj
xk ´ xj

¸

“
˜

ź

j‰n

p1 ´ xkxjq
¸

`
`

x2k ´ 1
˘

˜

ź

j‰k,n

p1 ´ xkxjq
¸

“ 0.

Note that P is a polynomial in xn of degree n ´ 1. For any choice of distinct real numbers
x1, . . . , xn´1, P has those real numbers as its roots, and the denominator has the same degree
and the same roots. This shows that G is constant in xn, for any fixed choice of distinct
x1, . . ., xn´1. Now, G is symmetric in all n variables, so it must be also be constant in each of
the other variables. G is therefore a constant that depends only on n. The constant may be
identified as in the previous solution.

Comment. There is also a solution in which we recognise the expression for F in the comment after
Solution 2 as the final column expansion of a certain matrix obtained by modifying the final column
of the Vandermonde matrix. The task is then to show that the matrix can be modified by column
operations either to make the final column identically zero (in the case where n even) or to recover the
Vandermonde matrix (in the case where n odd). The polynomial P {p1 ´ x2q is helpful for this task,
where P is the parity-dependent polynomial defined in the comment after Solution 1.
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A6. A polynomial P px, y, zq in three variables with real coefficients satisfies the identities

P px, y, zq “ P px, y, xy ´ zq “ P px, zx´ y, zq “ P pyz ´ x, y, zq. p˚q

Prove that there exists a polynomial F ptq in one variable such that

P px, y, zq “ F px2 ` y2 ` z2 ´ xyzq.

(Russia)

Common remarks. The polynomial x2 ` y2 ` z2 ´ xyz satisfies the condition (˚), so every
polynomial of the form F px2 `y2 `z2 ´xyzq does satisfy (˚). We will use without comment the
fact that two polynomials have the same coefficients if and only if they are equal as functions.

Solution 1. In the first two steps, we deal with any polynomial P px, y, zq satisfying P px, y, zq “
P px, y, xy ´ zq. Call such a polynomial weakly symmetric, and call a polynomial satisfying the
full conditions in the problem symmetric.

Step 1. We start with the description of weakly symmetric polynomials. We claim that they
are exactly the polynomials in x, y, and zpxy ´ zq. Clearly, all such polynomials are weakly
symmetric. For the converse statement, consider P1px, y, zq :“ P px, y, z ` 1

2
xyq, which satisfies

P1px, y, zq “ P1px, y,´zq and is therefore a polynomial in x, y, and z2. This means that P is a
polynomial in x, y, and pz ´ 1

2
xyq2 “ ´zpxy ´ zq ` 1

4
x2y2, and therefore a polynomial in x, y,

and zpxy ´ zq.
Step 2. Suppose that P is weakly symmetric. Consider the monomials in P px, y, zq of highest
total degree. Our aim is to show that in each such monomial µxaybzc we have a, b ě c. Consider
the expansion

P px, y, zq “
ÿ

i,j,k

µijkx
iyj

`

zpxy ´ zq
˘k
. p1.1q

The maximal total degree of a summand in p1.1q is m “ maxi,j,k : µijk‰0pi ` j ` 3kq. Now, for

any i, j, k satisfying i ` j ` 3k “ m the summand µi,j,kx
iyj

`

zpxy ´ zq
˘k

has leading term of
the form µxi`kyj`kzk. No other nonzero summand in p1.1q may have a term of this form in its
expansion, hence this term does not cancel in the whole sum. Therefore, deg P “ m, and the
leading component of P is exactly

ÿ

i`j`3k“m

µi,j,kx
i`kyj`kzk,

and each summand in this sum satisfies the condition claimed above.

Step 3. We now prove the problem statement by induction on m “ deg P . For m “ 0 the
claim is trivial. Consider now a symmetric polynomial P with degP ą 0. By Step 2, each
of its monomials µxaybzc of the highest total degree satisfies a, b ě c. Applying other weak
symmetries, we obtain a, c ě b and b, c ě a; therefore, P has a unique leading monomial of the
form µpxyzqc. The polynomial P0px, y, zq “ P px, y, zq ´µ

`

xyz´x2 ´y2 ´z2
˘c

has smaller total
degree. Since P0 is symmetric, it is representable as a polynomial function of xyz´x2 ´y2 ´z2.
Then P is also of this form, completing the inductive step.

Comment. We could alternatively carry out Step 1 by an induction on n “ degz P , in a manner
similar to Step 3. If n “ 0, the statement holds. Assume that n ą 0 and check the leading component
of P with respect to z:

P px, y, zq “ Qnpx, yqzn ` Rpx, y, zq ,
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where degz R ă n. After the change z ÞÑ xy ´ z, the leading component becomes Qnpx, yqp´zqn; on
the other hand, it should remain the same. Hence n is even. Now consider the polynomial

P0px, y, zq “ P px, y, zq ´ Qnpx, yq ¨
`

zpz ´ xyq
˘n{2

.

It is also weakly symmetric, and degz P0 ă n. By the inductive hypothesis, it has the form P0px, y, zq “
S
`

x, y, zpz ´ xyq
˘

. Hence the polynomial

P px, y, zq “ S
`

x, y, zpxy ´ zq
˘

` Qnpx, yq
`

zpz ´ xyq
˘n{2

also has this form. This completes the inductive step.

Solution 2. We will rely on the well-known identity

cos2 u` cos2 v ` cos2w ´ 2 cosu cos v cosw ´ 1 “ 0 whenever u ` v ` w “ 0. p2.1q

Claim 1. The polynomial P px, y, zq is constant on the surface

S “
 

p2 cosu, 2 cos v, 2 coswq : u ` v ` w “ 0
(

.

Proof. Notice that for x “ 2 cosu, y “ 2 cos v, z “ 2 cosw, the Vieta jumps x ÞÑ yz ´ x,
y ÞÑ zx´y, z ÞÑ xy´z in p˚q replace pu, v, wq by pv´w,´v, wq, pu, w´u,´wq and p´u, v, u´vq,
respectively. For example, for the first type of jump we have

yz ´ x “ 4 cos v cosw ´ 2 cosu “ 2 cospv ` wq ` 2 cospv ´ wq ´ 2 cosu “ 2 cospv ´ wq.

Define Gpu, v, wq “ P p2 cosu, 2 cos v, 2 coswq. For u ` v ` w “ 0, the jumps give

Gpu, v, wq “ Gpv ´ w,´v, wq “ Gpw ´ v,´v, pv ´ wq ´ p´vqq “ Gp´u´ 2v,´v, 2v ´ wq
“ Gpu ` 2v, v, w ´ 2vq .

By induction,
Gpu, v, wq “ G

`

u ` 2kv, v, w ´ 2kv
˘

pk P Zq. p2.2q
Similarly,

Gpu, v, wq “ G
`

u, v ´ 2ℓu, w ` 2ℓu
˘

pℓ P Zq. p2.3q
And, of course, we have

Gpu, v, wq “ G
`

u` 2pπ, v ` 2qπ, w ´ 2pp ` qqπ
˘

pp, q P Zq. p2.4q

Take two nonzero real numbers u, v such that u, v and π are linearly independent over Q. By
combining (2.2–2.4), we can see that G is constant on a dense subset of the plane u`v`w “ 0.
By continuity, G is constant on the entire plane and therefore P is constant on S. l

Claim 2. The polynomial T px, y, zq “ x2 ` y2 ` z2 ´ xyz ´ 4 divides P px, y, zq ´ P p2, 2, 2q.
Proof. By dividing P by T with remainders, there exist some polynomials Rpx, y, zq, Apy, zq
and Bpy, zq such that

P px, y, zq ´ P p2, 2, 2q “ T px, y, zq ¨ Rpx, y, zq ` Apy, zqx` Bpy, zq. p2.5q

On the surface S the LHS of (2.5) is zero by Claim 1 (since p2, 2, 2q P S) and T “ 0 by (2.1).
Hence, Apy, zqx ` Bpy, zq vanishes on S.

Notice that for every y “ 2 cos v and z “ 2 cosw with π
3

ă v, w ă 2π
3

, there are two
distinct values of x such that px, y, zq P S, namely x1 “ 2 cospv ` wq (which is negative), and
x2 “ 2 cospv ´ wq (which is positive). This can happen only if Apy, zq “ Bpy, zq “ 0. Hence,
Apy, zq “ Bpy, zq “ 0 for |y| ă 1, |z| ă 1. The polynomials A and B vanish on an open set, so
A and B are both the zero polynomial. l
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The quotient pP px, y, zq ´ P p2, 2, 2qq{T px, y, zq is a polynomial of lower degree than P and
it also satisfies (˚). The problem statement can now be proven by induction on the degree of P .

Comment. In the proof of p2.2q and p2.3q we used two consecutive Vieta jumps; in fact from p˚q we
used only P px, y, xy ´ zq “ P px, zx ´ y, zq “ P pyz ´ x, y, zq.

Solution 3 (using algebraic geometry, just for interest). Let Q “ x2 ` y2 ` z2 ´ xyz
and let t P C. Checking where Q ´ t, BQ

Bx
, BQ

By
and BQ

Bz
vanish simultaneously, we find that the

surface Q “ t is smooth except for the cases t “ 0, when the only singular point is p0, 0, 0q,
and t “ 4, when the four points p˘2,˘2,˘2q that satisfy xyz “ 8 are the only singular points.
The singular points are the fixed points of the group Γ of polynomial automorphisms of C3

generated by the three Vieta involutions

ι1 : px, y, zq ÞÑ px, y, xy ´ zq, ι2 : px, y, zq ÞÑ px, xz ´ y, zq, ι3 : px, y, zq ÞÑ pyz ´ x, y, zq .

Γ acts on each surface Vt : Q ´ t “ 0. If Q ´ t were reducible then the surface Q “ t would
contain a curve of singular points. Therefore Q ´ t is irreducible in Crx, y, zs. (One can also
prove algebraically that Q´ t is irreducible, for example by checking that its discriminant as a
quadratic polynomial in x is not a square in Cry, zs, and likewise for the other two variables.)
In the following solution we will only use the algebraic surface V0.

Let U be the Γ-orbit of p3, 3, 3q. Consider ι3 ˝ ι2, which leaves z invariant. For each fixed
value of z, ι3 ˝ ι2 acts linearly on px, yq by the matrix

Mz :“
ˆ

z2 ´ 1 ´z
z ´1

˙

.

The reverse composition ι2˝ι3 acts by M´1
z “ Madj

z . Note detMz “ 1 and trMz “ z2´2. When
z does not lie in the real interval r´2, 2s, the eigenvalues of Mz do not have absolute value 1,
so every orbit of the group generated by Mz on C2 z tp0, 0qu is unbounded. For example, fixing
z “ 3 we find p3F2k`1, 3F2k´1, 3q P U for every k P Z, where pFnqnPZ is the Fibonacci sequence
with F0 “ 0, F1 “ 1.

Now we may start at any point p3F2k`1, 3F2k´1, 3q and iteratively apply ι1 ˝ ι2 to generate
another infinite sequence of distinct points of U , Zariski dense in the hyperbola cut out of V0 by
the plane x´ 3F2k`1 “ 0. (The plane x “ a cuts out an irreducible conic when a R t´2, 0, 2u.)
Thus the Zariski closure U of U contains infinitely many distinct algebraic curves in V0. Since
V0 is an irreducible surface this implies that U “ V0.

For any polynomial P satisfying (˚), we have P ´ P p3, 3, 3q “ 0 at each point of U . Since
U “ V0, P ´ P p3, 3, 3q vanishes on V0. Then Hilbert’s Nullstellensatz and the irreducibility
of Q imply that P ´ P p3, 3, 3q is divisible by Q. Now pP ´ P p3, 3, 3qq{Q is a polynomial also
satisfying (˚), so we may complete the proof by an induction on the total degree, as in the other
solutions.

Comment. We remark that Solution 2 used a trigonometric parametrisation of a real component of
V4; in contrast V0 is birationally equivalent to the projective space P2 under the maps

px, y, zq Ñ px : y : zq, pa : b : cq Ñ
ˆ

a2 ` b2 ` c2

bc
,
a2 ` b2 ` c2

ac
,
a2 ` b2 ` c2

ab

˙

.

The set U in Solution 3 is contained in Z3 so it is nowhere dense in V0 in the classical topology.

Comment (background to the problem). A triple pa, b, cq P Z3 is called a Markov triple if
a2 ` b2 ` c2 “ 3abc, and an integer that occurs as a coordinate of some Markov triple is called a
Markov number. (The spelling Markoff is also frequent.) Markov triples arose in A. Markov’s work
in the 1870s on the reduction theory of indefinite binary quadratic forms. For every Markov triple,
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p3a, 3b, 3cq lies on Q “ 0. It is well known that all nonzero Markov triples can be generated from
p1, 1, 1q by sequences of Vieta involutions, which are the substitutions described in equation (˚) in the
problem statement. There has been recent work by number theorists about the properties of Markov
numbers (see for example Jean Bourgain, Alex Gamburd and Peter Sarnak, Markoff triples and strong

approximation, Comptes Rendus Math. 345, no. 2, 131–135 (2016), arXiv:1505.06411). Each Markov
number occurs in infinitely many triples, but a famous old open problem is the unicity conjecture,
which asserts that each Markov number occurs in only one Markov triple (up to permutations and sign
changes) as the largest coordinate in absolute value in that triple. It is a standard fact in the modern
literature on Markov numbers that the Markov triples are Zariski dense in the Markov surface. Proving
this is the main work of Solution 3. Algebraic geometry is definitely off-syllabus for the IMO, and one
still has to work a bit to prove the Zariski density. On the other hand the approaches of Solutions
1 and 2 are elementary and only use tools expected to be known by IMO contestants. Therefore we
do not think that the existence of a solution using algebraic geometry necessarily makes this problem
unsuitable for the IMO.
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A7. Let Z be the set of integers. We consider functions f : Z Ñ Z satisfying

f
`

fpx` yq ` y
˘

“ f
`

fpxq ` y
˘

for all integers x and y. For such a function, we say that an integer v is f -rare if the set

Xv “ tx P Z : fpxq “ vu
is finite and nonempty.

(a) Prove that there exists such a function f for which there is an f -rare integer.

(b) Prove that no such function f can have more than one f -rare integer.

(Netherlands)

Solution 1. a) Let f be the function where fp0q “ 0 and fpxq is the largest power of 2
dividing 2x for x ‰ 0. The integer 0 is evidently f -rare, so it remains to verify the functional
equation.

Since fp2xq “ 2fpxq for all x, it suffices to verify the functional equation when at least one
of x and y is odd (the case x “ y “ 0 being trivial). If y is odd, then we have

fpfpx` yq ` yq “ 2 “ fpfpxq ` yq
since all the values attained by f are even. If, on the other hand, x is odd and y is even, then
we already have

fpx` yq “ 2 “ fpxq
from which the functional equation follows immediately.

b) An easy inductive argument (substituting x ` ky for x) shows that

fpfpx` kyq ` yq “ fpfpxq ` yq (˚)
for all integers x, y and k. If v is an f -rare integer and a is the least element of Xv, then by
substituting y “ a´ fpxq in the above, we see that

fpx` k ¨ pa´ fpxqqq ´ fpxq ` a P Xv

for all integers x and k, so that in particular

fpx ` k ¨ pa´ fpxqqq ě fpxq
for all integers x and k, by assumption on a. This says that on the (possibly degenerate)
arithmetic progression through x with common difference a ´ fpxq, the function f attains its
minimal value at x.

Repeating the same argument with a replaced by the greatest element b of Xv shows that

fpx` k ¨ pb´ fpxqq ď fpxq
for all integers x and k. Combined with the above inequality, we therefore have

fpx` k ¨ pa´ fpxqq ¨ pb ´ fpxqqq “ fpxq (:)
for all integers x and k.

Thus if fpxq ‰ a, b, then the set Xfpxq contains a nondegenerate arithmetic progression, so
is infinite. So the only possible f -rare integers are a and b.

In particular, the f -rare integer v we started with must be one of a or b, so that fpvq “
fpaq “ fpbq “ v. This means that there cannot be any other f -rare integers v1, as they would
on the one hand have to be either a or b, and on the other would have to satisfy fpv1q “ v1.
Thus v is the unique f -rare integer.



Shortlisted problems – solutions 29

Comment 1. If f is a solution to the functional equation, then so too is any conjugate of f by a
translation, i.e. any function x ÞÑ fpx ` nq ´ n for an integer n. Thus in proving part (b), one is free
to consider only functions f for which 0 is f -rare, as in the following solution.

Solution 2, part (b) only. Suppose v is f -rare, and let a and b be the least and greatest
elements of Xv, respectively. Substituting x “ v and y “ a´ v into the equation shows that

fpvq ´ v ` a P Xv

and in particular fpvq ě v. Repeating the same argument with x “ v and y “ b´ v shows that
fpvq ď v, and hence fpvq “ v.

Suppose now that v1 is a second f -rare integer. We may assume that v “ 0 (see Comment 1).
We’ve seen that fpv1q “ v1; we claim that in fact fpkv1q “ v1 for all positive integers k. This
gives a contradiction unless v1 “ v “ 0.

This claim is proved by induction on k. Supposing it to be true for k, we substitute y “ kv1

and x “ 0 into the functional equation to yield

fppk ` 1qv1q “ fpfp0q ` kv1q “ fpkv1q “ v1

using that fp0q “ 0. This completes the induction, and hence the proof.

Comment 2. There are many functions f satisfying the functional equation for which there is an
f -rare integer. For instance, one may generalise the construction in part (a) of Solution 1 by taking
a sequence 1 “ a0, a1, a2, . . . of positive integers with each ai a proper divisor of ai`1 and choosing
arbitrary functions fi : pZ{aiZq z t0u Ñ aiZ z t0u from the nonzero residue classes modulo ai to the
nonzero multiples of ai. One then defines a function f : Z Ñ Z by

fpxq :“
#

fi`1px mod ai`1q, if ai | x but ai`1 ∤ x;

0, if x “ 0.

If one writes vpxq for the largest i such that ai | x (with vp0q “ 8), then it is easy to verify the
functional equation for f separately in the two cases vpyq ą vpxq and vpxq ě vpyq. Hence this f
satisfies the functional equation and 0 is an f -rare integer.

Comment 3. In fact, if v is an f -rare integer for an f satisfying the functional equation, then its
fibre Xv “ tvu must be a singleton. We may assume without loss of generality that v “ 0. We’ve
already seen in Solution 1 that 0 is either the greatest or least element of X0; replacing f with the
function x ÞÑ ´fp´xq if necessary, we may assume that 0 is the least element of X0. We write b for
the largest element of X0, supposing for contradiction that b ą 0, and write N “ p2bq!.

It now follows from (˚) that we have

fpfpNbq ` bq “ fpfp0q ` bq “ fpbq “ 0,

from which we see that fpNbq ` b P X0 Ď r0, bs. It follows that fpNbq P r´b, 0q, since by construction
Nb R Xv. Now it follows that pfpNbq ´ 0q ¨ pfpNbq ´ bq is a divisor of N , so from (:) we see that
fpNbq “ fp0q “ 0. This yields the desired contradiction.
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Combinatorics

C1. The infinite sequence a0, a1, a2, . . . of (not necessarily different) integers has the
following properties: 0 ď ai ď i for all integers i ě 0, and

ˆ

k

a0

˙

`
ˆ

k

a1

˙

` ¨ ¨ ¨ `
ˆ

k

ak

˙

“ 2k

for all integers k ě 0.
Prove that all integers N ě 0 occur in the sequence (that is, for all N ě 0, there exists i ě 0

with ai “ N).
(Netherlands)

Solution. We prove by induction on k that every initial segment of the sequence, a0, a1, . . . , ak,
consists of the following elements (counted with multiplicity, and not necessarily in order), for
some ℓ ě 0 with 2ℓ ď k ` 1:

0, 1, . . . , ℓ ´ 1, 0, 1, . . . , k ´ ℓ.

For k “ 0 we have a0 “ 0, which is of this form. Now suppose that for k “ m the elements
a0, a1, . . . , am are 0, 0, 1, 1, 2, 2, . . . , ℓ ´ 1, ℓ ´ 1, ℓ, ℓ ` 1, . . . , m ´ ℓ ´ 1, m ´ ℓ for some ℓ with
0 ď 2ℓ ď m ` 1. It is given that

ˆ

m ` 1

a0

˙

`
ˆ

m ` 1

a1

˙

` ¨ ¨ ¨ `
ˆ

m ` 1

am

˙

`
ˆ

m ` 1

am`1

˙

“ 2m`1,

which becomes

ˆˆ

m` 1

0

˙

`
ˆ

m` 1

1

˙

` ¨ ¨ ¨ `
ˆ

m ` 1

ℓ ´ 1

˙˙

`
ˆˆ

m` 1

0

˙

`
ˆ

m` 1

1

˙

` ¨ ¨ ¨ `
ˆ

m ` 1

m ´ ℓ

˙˙

`
ˆ

m` 1

am`1

˙

“ 2m`1,

or, using
`

m`1

i

˘

“
`

m`1

m`1´i

˘

, that

ˆˆ

m` 1

0

˙

`
ˆ

m` 1

1

˙

` ¨ ¨ ¨ `
ˆ

m ` 1

ℓ ´ 1

˙˙

`
ˆˆ

m` 1

m` 1

˙

`
ˆ

m` 1

m

˙

` ¨ ¨ ¨ `
ˆ

m ` 1

ℓ ` 1

˙˙

`
ˆ

m` 1

am`1

˙

“ 2m`1.

On the other hand, it is well known that
ˆ

m` 1

0

˙

`
ˆ

m` 1

1

˙

` ¨ ¨ ¨ `
ˆ

m` 1

m` 1

˙

“ 2m`1,

and so, by subtracting, we get
ˆ

m` 1

am`1

˙

“
ˆ

m` 1

ℓ

˙

.

From this, using the fact that the binomial coefficients
`

m`1

i

˘

are increasing for i ď m`1
2

and
decreasing for i ě m`1

2
, we conclude that either am`1 “ ℓ or am`1 “ m ` 1 ´ ℓ. In either case,

a0, a1, . . . , am`1 is again of the claimed form, which concludes the induction.
As a result of this description, any integer N ě 0 appears as a term of the sequence ai for

some 0 ď i ď 2N .
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C2. You are given a set of n blocks, each weighing at least 1; their total weight is 2n.
Prove that for every real number r with 0 ď r ď 2n´ 2 you can choose a subset of the blocks
whose total weight is at least r but at most r ` 2.

(Thailand)

Solution 1. We prove the following more general statement by induction on n.

Claim. Suppose that you have n blocks, each of weight at least 1, and of total weight s ď 2n.
Then for every r with ´2 ď r ď s, you can choose some of the blocks whose total weight is at
least r but at most r ` 2.

Proof. The base case n “ 1 is trivial. To prove the inductive step, let x be the largest
block weight. Clearly, x ě s{n, so s ´ x ď n´1

n
s ď 2pn ´ 1q. Hence, if we exclude a

block of weight x, we can apply the inductive hypothesis to show the claim holds (for this
smaller set) for any ´2 ď r ď s ´ x. Adding the excluded block to each of those combi-
nations, we see that the claim also holds when x ´ 2 ď r ď s. So if x ´ 2 ď s ´ x, then
we have covered the whole interval r´2, ss. But each block weight is at least 1, so we have
x ´ 2 ď ps ´ pn´ 1qq ´ 2 “ s ´ p2n´ pn´ 1qq ď s ´ ps ´ pn ´ 1qq ď s ´ x, as desired. l

Comment. Instead of inducting on sets of blocks with total weight s ď 2n, we could instead prove the
result only for s “ 2n. We would then need to modify the inductive step to scale up the block weights
before applying the induction hypothesis.

Solution 2. Let x1, . . . , xn be the weights of the blocks in weakly increasing order. Consider
the set S of sums of the form

ř

jPJ xj for a subset J Ď t1, 2, . . . , nu. We want to prove that the
mesh of S – i.e. the largest distance between two adjacent elements – is at most 2.

For 0 ď k ď n, let Sk denote the set of sums of the form
ř

iPJ xi for a subset J Ď t1, 2, . . . , ku.
We will show by induction on k that the mesh of Sk is at most 2.

The base case k “ 0 is trivial (as S0 “ t0u). For k ą 0 we have

Sk “ Sk´1 Y pxk ` Sk´1q

(where pxk ` Sk´1q denotes txk ` s : s P Sk´1u), so it suffices to prove that xk ď ř

jăk xj ` 2.
But if this were not the case, we would have xl ą ř

jăk xj ` 2 ě k ` 1 for all l ě k, and hence

2n “
n
ÿ

j“1

xj ą pn ` 1 ´ kqpk ` 1q ` k ´ 1.

This rearranges to n ą kpn`1´kq, which is false for 1 ď k ď n, giving the desired contradiction.
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C3. Let n be a positive integer. Harry has n coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operation: if there are k coins showing heads
and k ą 0, then he flips the kth coin over; otherwise he stops the process. (For example, the
process starting with THT would be THT Ñ HHT Ñ HTT Ñ TTT , which takes three
steps.)

Letting C denote the initial configuration (a sequence of n H ’s and T ’s), write ℓpCq for the
number of steps needed before all coins show T . Show that this number ℓpCq is finite, and
determine its average value over all 2n possible initial configurations C.

(USA)

Answer: The average is 1
4
npn ` 1q.

Common remarks. Throughout all these solutions, we let Epnq denote the desired average
value.

Solution 1. We represent the problem using a directed graph Gn whose vertices are the
length-n strings of H ’s and T ’s. The graph features an edge from each string to its successor
(except for TT ¨ ¨ ¨TT , which has no successor). We will also write H̄ “ T and T̄ “ H .

The graph G0 consists of a single vertex: the empty string. The main claim is that Gn can
be described explicitly in terms of Gn´1:

• We take two copies, X and Y , of Gn´1.

• In X, we take each string of n´1 coins and just append a T to it. In symbols, we replace
s1 ¨ ¨ ¨ sn´1 with s1 ¨ ¨ ¨ sn´1T .

• In Y , we take each string of n ´ 1 coins, flip every coin, reverse the order, and append
an H to it. In symbols, we replace s1 ¨ ¨ ¨ sn´1 with s̄n´1s̄n´2 ¨ ¨ ¨ s̄1H .

• Finally, we add one new edge from Y to X, namely HH ¨ ¨ ¨HHH Ñ HH ¨ ¨ ¨HHT .

We depict G4 below, in a way which indicates this recursive construction:

Y

X

HHTH HTHH THTH TTHH

HHHH HTTH TTTH THHH

HTTT THTT HTHT THHT

TTTT HHTT HHHT TTHT

We prove the claim inductively. Firstly, X is correct as a subgraph of Gn, as the operation on
coins is unchanged by an extra T at the end: if s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s1 ¨ ¨ ¨ sn´1T
is sent to t1 ¨ ¨ ¨ tn´1T .

Next, Y is also correct as a subgraph of Gn, as if s1 ¨ ¨ ¨ sn´1 has k occurrences of H , then
s̄n´1 ¨ ¨ ¨ s̄1H has pn ´ 1 ´ kq ` 1 “ n ´ k occurrences of H , and thus (provided that k ą 0), if
s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s̄n´1 ¨ ¨ ¨ s̄1H is sent to t̄n´1 ¨ ¨ ¨ t̄1H .

Finally, the one edge from Y to X is correct, as the operation does send HH ¨ ¨ ¨HHH to
HH ¨ ¨ ¨HHT .
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To finish, note that the sequences in X take an average of Epn ´ 1q steps to terminate,
whereas the sequences in Y take an average of Epn ´ 1q steps to reach HH ¨ ¨ ¨H and then an
additional n steps to terminate. Therefore, we have

Epnq “ 1

2
pEpn´ 1q ` pEpn´ 1q ` nqq “ Epn ´ 1q ` n

2
.

We have Ep0q “ 0 from our description of G0. Thus, by induction, we have Epnq “ 1
2
p1` ¨ ¨ ¨ `

nq “ 1
4
npn ` 1q, which in particular is finite.

Solution 2. We consider what happens with configurations depending on the coins they start
and end with.

• If a configuration starts with H , the last n´1 coins follow the given rules, as if they were
all the coins, until they are all T , then the first coin is turned over.

• If a configuration ends with T , the last coin will never be turned over, and the first
n ´ 1 coins follow the given rules, as if they were all the coins.

• If a configuration starts with T and ends with H , the middle n´ 2 coins follow the given
rules, as if they were all the coins, until they are all T . After that, there are 2n´ 1 more
steps: first coins 1, 2, . . . , n´ 1 are turned over in that order, then coins n, n´ 1, . . . , 1
are turned over in that order.

As this covers all configurations, and the number of steps is clearly finite for 0 or 1 coins, it
follows by induction on n that the number of steps is always finite.

We define EABpnq, where A and B are each one of H , T or ˚, to be the average number of
steps over configurations of length n restricted to those that start with A, if A is not ˚, and
that end with B, if B is not ˚ (so ˚ represents “either H or T ”). The above observations tell us
that, for n ě 2:

• EH˚pnq “ Epn ´ 1q ` 1.

• E˚T pnq “ Epn´ 1q.

• EHT pnq “ Epn´ 2q ` 1 (by using both the observations for H˚ and for ˚T ).

• ETHpnq “ Epn´ 2q ` 2n´ 1.

Now EH˚pnq “ 1
2
pEHHpnq ` EHT pnqq, so EHHpnq “ 2Epn ´ 1q ´ Epn ´ 2q ` 1. Similarly,

ETT pnq “ 2Epn´ 1q ´ Epn´ 2q ´ 1. So

Epnq “ 1

4
pEHT pnq ` EHHpnq ` ETT pnq ` ETHpnqq “ Epn´ 1q ` n

2
.

We have Ep0q “ 0 and Ep1q “ 1
2
, so by induction on n we have Epnq “ 1

4
npn` 1q.

Solution 3. Let Hi be the number of heads in positions 1 to i inclusive (so Hn is the total
number of heads), and let Ii be 1 if the ith coin is a head, 0 otherwise. Consider the function

tpiq “ Ii ` 2pminti, Hnu ´ Hiq.

We claim that tpiq is the total number of times coin i is turned over (which implies that the
process terminates). Certainly tpiq “ 0 when all coins are tails, and tpiq is always a nonnegative
integer, so it suffices to show that when the kth coin is turned over (where k “ Hn), tpkq goes
down by 1 and all the other tpiq are unchanged. We show this by splitting into cases:
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• If i ă k, Ii and Hi are unchanged, and minti, Hnu “ i both before and after the coin flip,
so tpiq is unchanged.

• If i ą k, minti, Hnu “ Hn both before and after the coin flip, and both Hn and Hi change
by the same amount, so tpiq is unchanged.

• If i “ k and the coin is heads, Ii goes down by 1, as do both minti, Hnu “ Hn and Hi; so
tpiq goes down by 1.

• If i “ k and the coin is tails, Ii goes up by 1, minti, Hnu “ i is unchanged and Hi goes
up by 1; so tpiq goes down by 1.

We now need to compute the average value of

n
ÿ

i“1

tpiq “
n
ÿ

i“1

Ii ` 2
n
ÿ

i“1

minti, Hnu ´ 2
n
ÿ

i“1

Hi.

The average value of the first term is 1
2
n, and that of the third term is ´1

2
npn`1q. To compute

the second term, we sum over choices for the total number of heads, and then over the possible
values of i, getting

21´n
n
ÿ

j“0

ˆ

n

j

˙ n
ÿ

i“1

minti, ju “ 21´n
n
ÿ

j“0

ˆ

n

j

˙ˆ

nj ´
ˆ

j

2

˙˙

.

Now, in terms of trinomial coefficients,

n
ÿ

j“0

j

ˆ

n

j

˙

“
n
ÿ

j“1

ˆ

n

n´ j, j ´ 1, 1

˙

“ n
n´1
ÿ

j“0

ˆ

n ´ 1

j

˙

“ 2n´1n

and
n
ÿ

j“0

ˆ

j

2

˙ˆ

n

j

˙

“
n
ÿ

j“2

ˆ

n

n´ j, j ´ 2, 2

˙

“
ˆ

n

2

˙ n´2
ÿ

j“0

ˆ

n´ 2

j

˙

“ 2n´2

ˆ

n

2

˙

.

So the second term above is

21´n

ˆ

2n´1n2 ´ 2n´2

ˆ

n

2

˙˙

“ n2 ´ npn ´ 1q
4

,

and the required average is

Epnq “ 1

2
n` n2 ´ npn ´ 1q

4
´ 1

2
npn ` 1q “ npn ` 1q

4
.

Solution 4. Harry has built a Turing machine to flip the coins for him. The machine is
initially positioned at the kth coin, where there are k heads (and the position before the first
coin is considered to be the 0th coin). The machine then moves according to the following rules,
stopping when it reaches the position before the first coin: if the coin at its current position
is H , it flips the coin and moves to the previous coin, while if the coin at its current position
is T , it flips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the
machine has a consecutive moves to the next coin, before a move to the previous coin. After
those a moves, the a coins flipped in those moves are all heads, as is the coin the machine
is now at, so at least the next a ` 1 moves will all be moves to the previous coin. Similarly,
a consecutive moves to the previous coin are followed by at least a ` 1 consecutive moves to
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the next coin. There cannot be more than n consecutive moves in the same direction, so this
proves that the process terminates (with a move from the first coin to the position before the
first coin).

Thus we have a (possibly empty) sequence a1 ă ¨ ¨ ¨ ă at ď n giving the lengths of maximal
sequences of consecutive moves in the same direction, where the final at moves must be moves
to the previous coin, ending before the first coin. We claim there is a bijection between initial
configurations of the coins and such sequences. This gives

Epnq “ 1

2
p1 ` 2 ` ¨ ¨ ¨ ` nq “ npn` 1q

4

as required, since each i with 1 ď i ď n will appear in half of the sequences, and will contribute i
to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the
machine just before the first coin and all coins showing tails. This certainly determines a unique
configuration of coins that could possibly correspond to the given sequence. Furthermore, every
coin flipped as part of the aj consecutive moves is also flipped as part of all subsequent sequences
of ak consecutive moves, for all k ą j, meaning that, as we follow the moves backwards, each
coin is always in the correct state when flipped to result in a move in the required direction.
(Alternatively, since there are 2n possible configurations of coins and 2n possible such ascending
sequences, the fact that the sequence of moves determines at most one configuration of coins,
and thus that there is an injection from configurations of coins to such ascending sequences, is
sufficient for it to be a bijection, without needing to show that coins are in the right state as
we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins.
Suppose that C contain k heads at positions 1 ď c1 ă c2 ă ¨ ¨ ¨ ă ck ď n.

Let i be the minimal index such that ci ě k. Then the first few steps will consist of turning
over the kth, pk ` 1qth, . . . , ci

th, pci ´ 1qth, pci ´ 2qth, . . . , kth coins in this order. After that we
get a configuration with k ´ 1 heads at the same positions as in the initial one, except for ci.
This part of the process takes 2pci ´ kq ` 1 steps.

After that, the process acts similarly; by induction on the number of heads we deduce that
the process ends. Moreover, if the ci disappear in order ci1 , . . . , cik , the whole process takes

ℓpCq “
k
ÿ

j“1

`

2pcij ´ pk ` 1 ´ jqq ` 1
˘

“ 2
k
ÿ

j“1

cj ´ 2
k
ÿ

j“1

pk ` 1 ´ jq ` k “ 2
k
ÿ

j“1

cj ´ k2

steps.
Now let us find the total value Sk of ℓpCq over all

`

n
k

˘

configurations with exactly k heads.
To sum up the above expression over those, notice that each number 1 ď i ď n appears as cj
exactly

`

n´1

k´1

˘

times. Thus

Sk “ 2

ˆ

n ´ 1

k ´ 1

˙ n
ÿ

i“1

i ´
ˆ

n

k

˙

k2 “ 2
pn´ 1q ¨ ¨ ¨ pn´ k ` 1q

pk ´ 1q! ¨ npn ` 1q
2

´ n ¨ ¨ ¨ pn ´ k ` 1q
k!

k2

“ npn ´ 1q ¨ ¨ ¨ pn´ k ` 1q
pk ´ 1q!

`

pn` 1q ´ k
˘

“ npn´ 1q
ˆ

n ´ 2

k ´ 1

˙

` n

ˆ

n´ 1

k ´ 1

˙

.

Therefore, the total value of ℓpCq over all configurations is

n
ÿ

k“1

Sk “ npn´ 1q
n
ÿ

k“1

ˆ

n´ 2

k ´ 1

˙

` n
n
ÿ

k“1

ˆ

n´ 1

k ´ 1

˙

“ npn´ 1q2n´2 ` n2n´1 “ 2n
npn` 1q

4
.

Hence the required average is Epnq “ npn`1q
4

.
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C4. On a flat plane in Camelot, King Arthur builds a labyrinth L consisting of n walls,
each of which is an infinite straight line. No two walls are parallel, and no three walls have a
common point. Merlin then paints one side of each wall entirely red and the other side entirely
blue.

At the intersection of two walls there are four corners: two diagonally opposite corners
where a red side and a blue side meet, one corner where two red sides meet, and one corner
where two blue sides meet. At each such intersection, there is a two-way door connecting the
two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The
knights can walk through doors, but cannot walk through walls.

Let kpLq be the largest number k such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at least k knights such that no two of them can ever meet. For
each n, what are all possible values for kpLq, where L is a labyrinth with n walls?

(Canada)

Answer: The only possible value of k is k “ n` 1, no matter what shape the labyrinth is.

Solution 1. First we show by induction that the n walls divide the plane into
`

n`1

2

˘

`1 regions.
The claim is true for n “ 0 as, when there are no walls, the plane forms a single region. When
placing the nth wall, it intersects each of the n´1 other walls exactly once and hence splits each
of n of the regions formed by those other walls into two regions. By the induction hypothesis,
this yields

``

n
2

˘

` 1
˘

` n “
`

n`1

2

˘

` 1 regions, proving the claim.

Now let G be the graph with vertices given by the
`

n`1

2

˘

` 1 regions, and with two regions
connected by an edge if there is a door between them.

We now show that no matter how Merlin paints the n walls, Morgana can place at least
n ` 1 knights. No matter how the walls are painted, there are exactly

`

n
2

˘

intersection points,
each of which corresponds to a single edge inG. Consider adding the edges of G sequentially and
note that each edge reduces the number of connected components by at most one. Therefore
the number of connected components of G is at least

`

n`1

2

˘

`1´
`

n
2

˘

“ n`1. If Morgana places
a knight in regions corresponding to different connected components of G, then no two knights
can ever meet.

Now we give a construction showing that, no matter what shape the labyrinth is, Merlin
can colour it such that there are exactly n ` 1 connected components, allowing Morgana to
place at most n` 1 knights.

First, we choose a coordinate system on the labyrinth so that none of the walls run due
north-south, or due east-west. We then have Merlin paint the west face of each wall red, and
the east face of each wall blue. We label the regions according to how many walls the region is
on the east side of: the labels are integers between 0 and n.

We claim that, for each i, the regions labelled i are connected by doors. First, we note that
for each i with 0 ď i ď n there is a unique region labelled i which is unbounded to the north.

Now, consider a knight placed in some region with label i, and ask them to walk north
(moving east or west by following the walls on the northern sides of regions, as needed). This
knight will never get stuck: each region is convex, and so, if it is bounded to the north, it has
a single northernmost vertex with a door northwards to another region with label i.

Eventually it will reach a region which is unbounded to the north, which will be the unique
such region with label i. Hence every region with label i is connected to this particular region,
and so all regions with label i are connected to each other.

As a result, there are exactly n` 1 connected components, and Morgana can place at most
n ` 1 knights.
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Comment. Variations on this argument exist: some of them capture more information, and some of
them capture less information, about the connected components according to this system of numbering.

For example, it can be shown that the unbounded regions are numbered 0, 1, . . . , n´1, n, n´1, . . . , 1
as one cycles around them, that the regions labelled 0 and n are the only regions in their connected
components, and that each other connected component forms a single chain running between the two
unbounded ones. It is also possible to argue that the regions are acyclic without revealing much about
their structure.

Solution 2. We give another description of a strategy for Merlin to paint the walls so that
Morgana can place no more than n ` 1 knights.

Merlin starts by building a labyrinth of n walls of his own design. He places walls in turn
with increasing positive gradients, placing each so far to the right that all intersection points
of previously-placed lines lie to the left of it. He paints each in such a way that blue is on the
left and red is on the right.

For example, here is a possible sequence of four such lines ℓ1, ℓ2, ℓ3, ℓ4:

ℓ1

ℓ2

ℓ3

ℓ4

We say that a region is “on the right” if it has x-coordinate unbounded above (note that if
we only have one wall, then both regions are on the right). We claim inductively that, after
placing n lines, there are n` 1 connected components in the resulting labyrinth, each of which
contains exactly one region on the right. This is certainly true after placing 0 lines, as then
there is only one region (and hence one connected component) and it is on the right.

When placing the nth line, it then cuts every one of the n ´ 1 previously placed lines, and
since it is to the right of all intersection points, the regions it cuts are exactly the n regions on
the right.

b
lu

e

r
e
d

blue

red

blue

red

blue

red

1

2

3

4

2

3

4

5

The addition of this line leaves all previous connected components with exactly one region on
the right, and creates a new connected component containing exactly one region, and that
region is also on the right. As a result, by induction, this particular labyrinth will have n ` 1
connected components.

Having built this labyrinth, Merlin then moves the walls one-by-one (by a sequence of
continuous translations and rotations of lines) into the proper position of the given labyrinth,
in such a way that no two lines ever become parallel.



38 Bath — UK, 11th–22nd July 2019

The only time the configuration is changed is when one wall is moved through an intersection
point of two others:

blue

red

red

blue

b
lu

e

r
e
d

2

1 3

3

4

2
3

blue

red

red

blue

b
lu

e

r
e
d

2
3

1

2

2 4

3

Note that all moves really do switch between two configurations like this: all sets of three lines
have this colour configuration initially, and the rules on rotations mean they are preserved (in
particular, we cannot create three lines creating a triangle with three red edges inwards, or
three blue edges inwards).

However, as can be seen, such a move preserves the number of connected components, so in
the painting this provides for Arthur’s actual labyrinth, Morgana can still only place at most
n ` 1 knights.

Comment. While these constructions are superficially distinct, they in fact result in the same colour-
ings for any particular labyrinth. In fact, using the methods of Solution 2, it is possible to show that
these are the only colourings that result in exactly n ` 1 connected components.
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C5. On a certain social network, there are 2019 users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, there are 1010 people with 1009 friends each
and 1009 people with 1010 friends each. However, the friendships are rather unstable, so events
of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that A is friends with both B and C, but B and C
are not friends; then B and C become friends, but A is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after
which each user is friends with at most one other user.

(Croatia)

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One
is given a graph G with 2019 vertices, 1010 of which have degree 1009 and 1009 of which have
degree 1010. One is allowed to perform operations on G of the following kind:

Suppose that vertex A is adjacent to two distinct vertices B and C which are not
adjacent to each other. Then one may remove the edges AB and AC from G and
add the edge BC into G.

Call such an operation a refriending. One wants to prove that, via a sequence of such refriend-
ings, one can reach a graph which is a disjoint union of single edges and vertices.

All of the solutions presented below will use this reformulation.

Solution 1. Note that the given graph is connected, since the total degree of any two vertices
is at least 2018 and hence they are either adjacent or have at least one neighbour in common.
Hence the given graph satisfies the following condition:

Every connected component of G with at least three vertices is not complete
and has a vertex of odd degree.

(1)

We will show that if a graph G satisfies condition (1) and has a vertex of degree at least 2, then
there is a refriending on G that preserves condition (1). Since refriendings decrease the total
number of edges of G, by using a sequence of such refriendings, we must reach a graph G with
maximal degree at most 1, so we are done.

A
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Pick a vertex A of degree at least 2 in a connected component G1 of G. Since no component
of G with at least three vertices is complete we may assume that not all of the neighbours
of A are adjacent to one another. (For example, pick a maximal complete subgraph K of G1.
Some vertex A of K has a neighbour outside K, and this neighbour is not adjacent to every
vertex of K by maximality.) Removing A from G splits G1 into smaller connected components
G1, . . . , Gk (possibly with k “ 1), to each of which A is connected by at least one edge. We
divide into several cases.

Case 1: k ě 2 and A is connected to some Gi by at least two edges.

Choose a vertex B of Gi adjacent to A, and a vertex C in another component Gj adjacent
to A. The vertices B and C are not adjacent, and hence removing edges AB and AC and
adding in edge BC does not disconnect G1. It is easy to see that this preserves the condition,
since the refriending does not change the parity of the degrees of vertices.

Case 2: k ě 2 and A is connected to each Gi by exactly one edge.

Consider the induced subgraph on any Gi and the vertex A. The vertex A has degree 1 in
this subgraph; since the number of odd-degree vertices of a graph is always even, we see that
Gi has a vertex of odd degree (in G). Thus if we let B and C be any distinct neighbours of A,
then removing edges AB and AC and adding in edge BC preserves the above condition: the
refriending creates two new components, and if either of these components has at least three
vertices, then it cannot be complete and must contain a vertex of odd degree (since each Gi

does).

Case 3: k “ 1 and A is connected to G1 by at least three edges.

By assumption, A has two neighbours B and C which are not adjacent to one another.
Removing edges AB and AC and adding in edge BC does not disconnect G1. We are then done
as in Case 1.

Case 4: k “ 1 and A is connected to G1 by exactly two edges.

Let B and C be the two neighbours of A, which are not adjacent. Removing edges AB
and AC and adding in edge BC results in two new components: one consisting of a single
vertex; and the other containing a vertex of odd degree. We are done unless this second
component would be a complete graph on at least 3 vertices. But in this case, G1 would be a
complete graph minus the single edge BC, and hence has at least 4 vertices since G1 is not a
4-cycle. If we let D be a third vertex of G1, then removing edges BA and BD and adding in
edge AD does not disconnect G1. We are then done as in Case 1.

A

B C

D

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a
graph of maximal degree ď 1 by a sequence of refriendings.
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Solution 2. As in the previous solution, note that a refriending preserves the property that a
graph has a vertex of odd degree and (trivially) the property that it is not complete; note also
that our initial graph is connected. We describe an algorithm to reduce our initial graph to a
graph of maximal degree at most 1, proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing the graph to a tree.

Proof. Since the number of edges decreases with each refriending, it suffices to prove the fol-
lowing: as long as the graph contains a cycle, there exists a refriending such that the resulting
graph is still connected. We will show that the graph in fact contains a cycle Z and vertices
A,B,C such that A and B are adjacent in the cycle Z, C is not in Z, and is adjacent to A but
not B. Removing edges AB and AC and adding in edge BC keeps the graph connected, so we
are done.

A

B C

To find this cycle Z and vertices A,B,C, we pursue one of two strategies. If the graph
contains a triangle, we consider a largest complete subgraph K, which thus contains at least
three vertices. Since the graph itself is not complete, there is a vertex C not in K connected
to a vertex A of K. By maximality of K, there is a vertex B of K not connected to C, and
hence we are done by choosing a cycle Z in K through the edge AB.

A

B C

If the graph is triangle-free, we consider instead a smallest cycle Z. This cycle cannot
be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by
minimality the graph would then have no other edges, and hence would have even degree at
every vertex. We may thus choose a vertex C not in Z adjacent to a vertex A of Z. Since the
graph is triangle-free, it is not adjacent to any neighbour B of A in Z, and we are done. l

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence
of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence
of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further
refriendings. The maximal degree of any such graph is 1: if it had a vertex A with two
neighbours B,C, then B and C would necessarily be nonadjacent since the graph is cycle-free,
and so a refriending would be possible. Thus we reach a graph with maximal degree at most 1
as desired. l



42 Bath — UK, 11th–22nd July 2019

C6. Let n ą 1 be an integer. Suppose we are given 2n points in a plane such that
no three of them are collinear. The points are to be labelled A1, A2, . . . , A2n in some order.
We then consider the 2n angles =A1A2A3, =A2A3A4, . . . , =A2n´2A2n´1A2n, =A2n´1A2nA1,
=A2nA1A2. We measure each angle in the way that gives the smallest positive value (i.e.
between 0˝ and 180˝). Prove that there exists an ordering of the given points such that the
resulting 2n angles can be separated into two groups with the sum of one group of angles equal
to the sum of the other group.

(USA)

Comment. The first three solutions all use the same construction involving a line separating the
points into groups of n points each, but give different proofs that this construction works. Although
Solution 1 is very short, the Problem Selection Committee does not believe any of the solutions is easy
to find and thus rates this as a problem of medium difficulty.

Solution 1. Let ℓ be a line separating the points into two groups (L and R) with n points in
each. Label the points A1, A2, . . . , A2n so that L “ tA1, A3, . . . , A2n´1u. We claim that this
labelling works.

Take a line s “ A2nA1.

(a) Rotate s around A1 until it passes through A2; the rotation is performed in a direction
such that s is never parallel to ℓ.

(b) Then rotate the new s around A2 until it passes through A3 in a similar manner.

(c) Perform 2n´ 2 more such steps, after which s returns to its initial position.

The total (directed) rotation angle Θ of s is clearly a multiple of 180˝. On the other hand,
s was never parallel to ℓ, which is possible only if Θ “ 0. Now it remains to partition all the
2n angles into those where s is rotated anticlockwise, and the others.

Solution 2. When tracing a cyclic path through the Ai in order, with straight line segments
between consecutive points, let θi be the exterior angle at Ai, with a sign convention that it
is positive if the path turns left and negative if the path turns right. Then

ř2n
i“1 θi “ 360k˝

for some integer k. Let φi “ =Ai´1AiAi`1 (indices mod 2n), defined as in the problem; thus
φi “ 180˝ ´ |θi|.

Let L be the set of i for which the path turns left at Ai and let R be the set for which it
turns right. Then S “ ř

iPL φi ´ř

iPR φi “ p180p|L| ´ |R|q ´ 360kq˝, which is a multiple of 360˝

since the number of points is even. We will show that the points can be labelled such that
S “ 0, in which case L and R satisfy the required condition of the problem.

Note that the value of S is defined for a slightly larger class of configurations: it is OK
for two points to coincide, as long as they are not consecutive, and OK for three points to be
collinear, as long as Ai, Ai`1 and Ai`2 do not appear on a line in that order. In what follows
it will be convenient, although not strictly necessary, to consider such configurations.

Consider how S changes if a single one of the Ai is moved along some straight-line path
(not passing through any Aj and not lying on any line AjAk, but possibly crossing such lines).
Because S is a multiple of 360˝, and the angles change continuously, S can only change when a
point moves between R and L. Furthermore, if φj “ 0 when Aj moves between R and L, S is
unchanged; it only changes if φj “ 180˝ when Aj moves between those sets.

For any starting choice of points, we will now construct a new configuration, with labels such
that S “ 0, that can be perturbed into the original one without any φi passing through 180˝,
so that S “ 0 for the original configuration with those labels as well.

Take some line such that there are n points on each side of that line. The new configuration
has n copies of a single point on each side of the line, and a path that alternates between
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sides of the line; all angles are 0, so this configuration has S “ 0. Perturbing the points into
their original positions, while keeping each point on its side of the line, no angle φi can pass
through 180˝, because no straight line can go from one side of the line to the other and back.
So the perturbation process leaves S “ 0.

Comment. More complicated variants of this solution are also possible; for example, a path defined
using four quadrants of the plane rather than just two half-planes.

Solution 3. First, let ℓ be a line in the plane such that there are n points on one side and the
other n points on the other side. For convenience, assume ℓ is horizontal (otherwise, we can
rotate the plane). Then we can use the terms “above”, “below”, “left” and “right” in the usual
way. We denote the n points above the line in an arbitrary order as P1, P2, . . . , Pn, and the
n points below the line as Q1, Q2, . . ., Qn.

If we connect Pi and Qj with a line segment, the line segment will intersect with the line ℓ.
Denote the intersection as Iij. If Pi is connected to Qj and Qk, where j ă k, then Iij and Iik
are two different points, because Pi, Qj and Qk are not collinear.

Now we define a “sign” for each angle =QjPiQk. Assume j ă k. We specify that the sign is
positive for the following two cases:

• if i is odd and Iij is to the left of Iik,

• if i is even and Iij is to the right of Iik.

Otherwise the sign of the angle is negative. If j ą k, then the sign of =QjPiQk is taken to be
the same as for =QkPiQj .

Similarly, we can define the sign of =PjQiPk with j ă k (or equivalently =PkQiPj). For
example, it is positive when i is odd and Iji is to the left of Iki.

Henceforth, whenever we use the notation =QjPiQk or =PjQiPk for a numerical quantity,
it is understood to denote either the (geometric) measure of the angle or the negative of this
measure, depending on the sign as specified above.

We now have the following important fact for signed angle measures:

=Qi1PkQi3 “ =Qi1PkQi2 ` =Qi2PkQi3 p1q

for all points Pk, Qi1 , Qi2 and Qi3 with i1 ă i2 ă i3. The following figure shows a “natural”
arrangement of the points. Equation (1) still holds for any other arrangement, as can be easily
verified.

Pk

Qi1

Qi2 Qi3

Similarly, we have

=Pi1QkPi3 “ =Pi1QkPi2 ` =Pi2QkPi3, p2q

for all points Qk, Pi1, Pi2 and Pi3, with i1 ă i2 ă i3.
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We are now ready to specify the desired ordering A1, . . . , A2n of the points:

• if i ď n is odd, put Ai “ Pi and A2n`1´i “ Qi;

• if i ď n is even, put Ai “ Qi and A2n`1´i “ Pi.

For example, for n “ 3 this ordering is P1, Q2, P3, Q3, P2, Q1. This sequence alternates between
P ’s and Q’s, so the above conventions specify a sign for each of the angles Ai´1AiAi`1. We
claim that the sum of these 2n signed angles equals 0. If we can show this, it would complete
the proof.

We prove the claim by induction. For brevity, we use the notation =Pi to denote whichever
of the 2n angles has its vertex at Pi, and =Qi similarly.

First let n “ 2. If the four points can be arranged to form a convex quadrilateral, then the
four line segments P1Q1, P1Q2, P2Q1 and P2Q2 constitute a self-intersecting quadrilateral. We
use several figures to illustrate the possible cases.

The following figure is one possible arrangement of the points.

P1

P2

Q1 Q2

I11 I21 I12 I22

Then =P1 and =Q1 are positive, =P2 and =Q2 are negative, and we have

|=P1| ` |=Q1| “ |=P2| ` |=Q2|.

With signed measures, we have

=P1 ` =Q1 ` =P2 ` =Q2 “ 0. p3q

If we switch the labels of P1 and P2, we have the following picture:

P2

P1

Q1 Q2

I11I21 I12I22

Switching labels P1 and P2 has the effect of flipping the sign of all four angles (as well as swap-
ping the magnitudes on the relabelled points); that is, the new values of p=P1,=P2,=Q1,=Q2q
equal the old values of p´=P2,´=P1,´=Q1,´=Q2q. Consequently, equation (3) still holds.
Similarly, when switching the labels of Q1 and Q2, or both the P ’s and the Q’s, equation (3)
still holds.
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The remaining subcase of n “ 2 is that one point lies inside the triangle formed by the other
three. We have the following picture.

P1

P2

Q1 Q2

I11

I21

I12

I22

We have

|=P1| ` |=Q1| ` |=Q2| “ |=P2|.
and equation (3) holds.

Again, switching the labels for P ’s or the Q’s will not affect the validity of equation (3).
Also, if the point lying inside the triangle of the other three is one of the Q’s rather than
the P ’s, the result still holds, since our sign convention is preserved when we relabel Q’s as P ’s
and vice-versa and reflect across ℓ.

We have completed the proof of the claim for n “ 2.
Assume the claim holds for n “ k, and we wish to prove it for n “ k ` 1. Suppose we are

given our 2pk ` 1q points. First ignore Pk`1 and Qk`1, and form 2k angles from P1, . . . , Pk,
Q1, . . ., Qk as in the n “ k case. By the induction hypothesis we have

k
ÿ

i“1

p=Pi ` =Qiq “ 0.

When we add in the two points Pk`1 and Qk`1, this changes our angles as follows:

• the angle at Pk changes from =Qk´1PkQk to =Qk´1PkQk`1;

• the angle at Qk changes from =Pk´1QkPk to =Pk´1QkPk`1;

• two new angles =QkPk`1Qk`1 and =PkQk`1Pk`1 are added.

We need to prove the changes have no impact on the total sum. In other words, we need to
prove

p=Qk´1PkQk`1 ´ =Qk´1PkQkq ` p=Pk´1QkPk`1 ´ =Pk´1QkPkq ` p=Pk`1 ` =Qk`1q “ 0. p4q

In fact, from equations (1) and (2), we have

=Qk´1PkQk`1 ´ =Qk´1PkQk “ =QkPkQk`1,

and

=Pk´1QkPk`1 ´ =Pk´1QkPk “ =PkQkPk`1.

Therefore, the left hand side of equation (4) becomes =QkPkQk`1`=PkQkPk`1`=QkPk`1Qk`1`
=PkQk`1Pk`1, which equals 0, simply by applying the n “ 2 case of the claim. This completes
the induction.
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Solution 4. We shall think instead of the problem as asking us to assign a weight ˘1 to each
angle, such that the weighted sum of all the angles is zero.

Given an ordering A1, . . . , A2n of the points, we shall assign weights according to the fol-
lowing recipe: walk in order from point to point, and assign the left turns `1 and the right
turns ´1. This is the same weighting as in Solution 3, and as in that solution, the weighted
sum is a multiple of 360˝.

We now aim to show the following:

Lemma. Transposing any two consecutive points in the ordering changes the weighted sum by
˘360˝ or 0.

Knowing that, we can conclude quickly: if the ordering A1, . . . , A2n has weighted angle
sum 360k˝, then the ordering A2n, . . . , A1 has weighted angle sum ´360k˝ (since the angles
are the same, but left turns and right turns are exchanged). We can reverse the ordering of A1,
. . . , A2n by a sequence of transpositions of consecutive points, and in doing so the weighted
angle sum must become zero somewhere along the way.

We now prove that lemma:

Proof. Transposing two points amounts to taking a section AkAk`1Ak`2Ak`3 as depicted, re-
versing the central line segment Ak`1Ak`2, and replacing its two neighbours with the dotted
lines.

Ak

Ak`1

Ak`2

Ak`3

Ak

Ak`1

Ak`2

Ak`3

Figure 1: Transposing two consecutive vertices: before (left) and afterwards (right)

In each triangle, we alter the sum by ˘180˝. Indeed, using (anticlockwise) directed angles
modulo 360˝, we either add or subtract all three angles of each triangle.

Hence both triangles together alter the sum by ˘180 ˘ 180˝, which is ˘360˝ or 0. l
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C7. There are 60 empty boxes B1, . . . , B60 in a row on a table and an unlimited supply
of pebbles. Given a positive integer n, Alice and Bob play the following game.

In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integer k with 1 ď k ď 59 and splits the boxes into the two groups
B1, . . . , Bk and Bk`1, . . . , B60.

(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n
such that Alice can prevent Bob from winning.

(Czech Republic)

Answer: n “ 960. In general, if there are N ą 1 boxes, the answer is n “
X

N
2

` 1
\ P

N
2

` 1
T

´1.

Common remarks. We present solutions for the general case of N ą 1 boxes, and write
M “

X

N
2

` 1
\ P

N
2

` 1
T

´ 1 for the claimed answer. For 1 ď k ă N , say that Bob makes a
k-move if he splits the boxes into a left group tB1, . . . , Bku and a right group tBk`1, . . . , BNu.
Say that one configuration dominates another if it has at least as many pebbles in each box,
and say that it strictly dominates the other configuration if it also has more pebbles in at least
one box. (Thus, if Bob wins in some configuration, he also wins in every configuration that it
dominates.)

It is often convenient to consider ‘V-shaped’ configurations; for 1 ď i ď N , let Vi be the
configuration where Bj contains 1 ` |j ´ i| pebbles (i.e. where the ith box has a single pebble
and the numbers increase by one in both directions, so the first box has i pebbles and the last
box has N ` 1 ´ i pebbles). Note that Vi contains 1

2
ipi ` 1q ` 1

2
pN ` 1 ´ iqpN ` 2 ´ iq ´ 1

pebbles. If i “
P

N
2

T

, this number equals M .

Solutions split naturally into a strategy for Alice (starting with M pebbles and showing she
can prevent Bob from winning) and a strategy for Bob (showing he can win for any starting
configuration with at most M ´ 1 pebbles). The following observation is also useful to simplify
the analysis of strategies for Bob.

Observation A. Consider two consecutive rounds. Suppose that in the first round Bob made
a k-move and Alice picked the left group, and then in the second round Bob makes an ℓ-move,
with ℓ ą k. We may then assume, without loss of generality, that Alice again picks the left
group.

Proof. Suppose Alice picks the right group in the second round. Then the combined effect of
the two rounds is that each of the boxes Bk`1, . . . , Bℓ lost two pebbles (and the other boxes
are unchanged). Hence this configuration is strictly dominated by that before the first round,
and it suffices to consider only Alice’s other response. l

Solution 1 (Alice). Alice initially distributes pebbles according to VrN
2 s. Suppose the current

configuration of pebbles dominates Vi. If Bob makes a k-move with k ě i then Alice picks the
left group, which results in a configuration that dominates Vi`1. Likewise, if Bob makes a
k-move with k ă i then Alice picks the right group, which results in a configuration that
dominates Vi´1. Since none of V1, . . . , VN contains an empty box, Alice can prevent Bob from
ever winning.
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Solution 1 (Bob). The key idea in this solution is the following claim.

Claim. If there exist a positive integer k such that there are at least 2k boxes that have at
most k pebbles each then Bob can force a win.

Proof. We ignore the other boxes. First, Bob makes a k-move (splits the 2k boxes into two
groups of k boxes each). Without loss of generality, Alice picks the left group. Then Bob makes
a pk ` 1q-move, . . . , a p2k ´ 1q-move. By Observation A, we may suppose Alice always picks
the left group. After Bob’s p2k ´ 1q-move, the rightmost box becomes empty and Bob wins.

l

Now, we claim that if n ă M then either there already exists an empty box, or there exist
a positive integer k and 2k boxes with at most k pebbles each (and thus Bob can force a win).
Otherwise, assume each box contains at least 1 pebble, and for each 1 ď k ď

X

N
2

\

, at least
N ´ p2k ´ 1q “ N ` 1 ´ 2k boxes contain at least k ` 1 pebbles. Summing, there are at least
as many pebbles in total as in VrN

2 s; that is, at least M pebbles, as desired.

Solution 2 (Alice). Let K “
X

N
2

` 1
\

. Alice starts with the boxes in the configuration VK .
For each of Bob’s N ´ 1 possible choices, consider the subset of rounds in which he makes that
choice. In that subset of rounds, Alice alternates between picking the left group and picking the
right group; the first time Bob makes that choice, Alice picks the group containing the Kth box.
Thus, at any time during the game, the number of pebbles in each box depends only on which
choices Bob has made an odd number of times. This means that the number of pebbles in a
box could decrease by at most the number of choices for which Alice would have started by
removing a pebble from the group containing that box. These numbers are, for each box,

X

N
2

\

,
X

N
2

´ 1
\

, . . . , 1, 0, 1, . . . ,
P

N
2

´ 1
T

.

These are pointwise less than the numbers of pebbles the boxes started with, meaning that no
box ever becomes empty with this strategy.

Solution 2 (Bob). Let K “
X

N
2

` 1
\

. For Bob’s strategy, we consider a configuration X with
at most M ´ 1 pebbles, and we make use of Observation A. Consider two configurations with
M pebbles: VK and VN`1´K (if n is odd, they are the same configuration; if n is even, one is
the reverse of the other). The configuration X has fewer pebbles than VK in at least one box,
and fewer pebbles than VN`1´K in at least one box.

Suppose first that, with respect to one of those configurations (without loss of generality VK),
X has fewer pebbles in one of the boxes in the half where they have 1, 2, . . . ,

P

N
2

T

pebbles (the
right half in VK if N is even; if N is odd, we can take it to be the right half, without loss of
generality, as the configuration is symmetric). Note that the number cannot be fewer in the
box with 1 pebble in VK , because then it would have 0 pebbles. Bob then does a K-move.
If Alice picks the right group, the total number of pebbles goes down and we restart Bob’s
strategy with a smaller number of pebbles. If Alice picks the left group, Bob follows with a
pK` 1q-move, a pK` 2q-move, and so on; by Observation A we may assume Alice always picks
the left group. But whichever box in the right half had fewer pebbles in X than in VK ends up
with 0 pebbles at some point in this sequence of moves.

Otherwise, N is even, and for both of those configurations, there are fewer pebbles in X
only on the 2, 3, . . . , N

2
` 1 side. That is, the numbers of pebbles in X are at least

N
2
, N

2
´ 1, . . . , 1, 1, . . . , N

2
pCq

with equality occurring at least once on each side. Bob does an N
2
-move. Whichever group

Alice chooses, the total number of pebbles is unchanged, and the side from which pebbles are
removed now has a box with fewer pebbles than in (C), so the previous case of Bob’s strategy
can now be applied.
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Solution 3 (Bob). For any configuration C, define LpCq to be the greatest integer such that,
for all 0 ď i ď N ´ 1, the box Bi`1 contains at least LpCq ´ i pebbles. Similarly, define RpCq
to be greatest integer such that, for all 0 ď i ď N ´ 1, the box BN´i contains at least
RpCq ´ i pebbles. (Thus, C dominates the ‘left half’ of VLpCq and the ‘right half’ of VN`1´RpCq.)
Then C dominates a ‘V-shaped’ configuration if and only if LpCq ` RpCq ě N ` 1. Note that
if C dominates a V-shaped configuration, it has at least M pebbles.

Now suppose that there are fewer than M pebbles, so we have LpCq ` RpCq ď N . Then
Bob makes an LpCq-move (or more generally any move with at least LpCq boxes on the left and
RpCq boxes on the right). Let C 1 be the new configuration, and suppose that no box becomes
empty (otherwise Bob has won). If Alice picks the left group, we have LpC 1q “ LpCq ` 1 and
RpC 1q “ RpCq ´ 1. Otherwise, we have LpC 1q “ LpCq ´ 1 and RpC 1q “ RpCq ` 1. In either
case, we have LpC 1q ` RpC 1q ď N .

Bob then repeats this strategy, until one of the boxes becomes empty. Since the condition
in Observation A holds, we may assume that Alice picks a group on the same side each time.
Then one of L and R is strictly decreasing; without loss of generality assume that L strictly
decreases. At some point we reach L “ 1. If B2 is still nonempty, then B1 must contain a
single pebble. Bob makes a 1-move, and by Observation A, Alice must (eventually) pick the
right group, making this box empty.
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C8. Alice has a map of Wonderland, a country consisting of n ě 2 towns. For every
pair of towns, there is a narrow road going from one town to the other. One day, all the roads
are declared to be “one way” only. Alice has no information on the direction of the roads, but
the King of Hearts has offered to help her. She is allowed to ask him a number of questions.
For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one
outgoing road. Prove that she can always find out by asking at most 4n questions.

Comment. This problem could be posed with an explicit statement about points being awarded for
weaker bounds cn for some c ą 4, in the style of IMO 2014 Problem 6.

(Thailand)

Solution. We will show Alice needs to ask at most 4n ´ 7 questions. Her strategy has the
following phases. In what follows, S is the set of towns that Alice, so far, does not know to
have more than one outgoing road (so initially |S| “ n).

Phase 1. Alice chooses any two towns, say A and B. Without loss of generality, suppose
that the King of Hearts’ answer is that the road goes from A to B.

At the end of this phase, Alice has asked 1 question.
Phase 2. During this phase there is a single (variable) town T that is known to have at

least one incoming road but not yet known to have any outgoing roads. Initially, T is B. Alice
does the following n ´ 2 times: she picks a town X she has not asked about before, and asks
the direction of the road between T and X. If it is from X to T , T is unchanged; if it is
from T to X, X becomes the new choice of town T , as the previous T is now known to have
an outgoing road.

At the end of this phase, Alice has asked a total of n´ 1 questions. The final town T is not
yet known to have any outgoing roads, while every other town has exactly one outgoing road
known. The undirected graph of roads whose directions are known is a tree.

Phase 3. During this phase, Alice asks about the directions of all roads between T and
another town she has not previously asked about, stopping if she finds two outgoing roads
from T . This phase involves at most n ´ 2 questions. If she does not find two outgoing roads
from T , she has answered her original question with at most 2n ´ 3 ď 4n ´ 7 questions, so in
what follows we suppose that she does find two outgoing roads, asking a total of k questions in
this phase, where 2 ď k ď n ´ 2 (and thus n ě 4 for what follows).

For every question where the road goes towards T , the town at the other end is removed
from S (as it already had one outgoing road known), while the last question resulted in T being
removed from S. So at the end of this phase, |S| “ n´k`1, while a total of n`k´1 questions
have been asked. Furthermore, the undirected graph of roads within S whose directions are
known contains no cycles (as T is no longer a member of S, all questions asked in this phase
involved T and the graph was a tree before this phase started). Every town in S has exactly
one outgoing road known (not necessarily to another town in S).

Phase 4. During this phase, Alice repeatedly picks any pair of towns in S for which she
does not know the direction of the road between them. Because every town in S has exactly
one outgoing road known, this always results in the removal of one of those two towns from S.
Because there are no cycles in the graph of roads of known direction within S, this can continue
until there are at most 2 towns left in S.

If it ends with t towns left, n ´ k ` 1 ´ t questions were asked in this phase, so a total of
2n ´ t questions have been asked.

Phase 5. During this phase, Alice asks about all the roads from the remaining towns
in S that she has not previously asked about. She has definitely already asked about any road
between those towns (if t “ 2). She must also have asked in one of the first two phases about
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at least one other road involving one of those towns (as those phases resulted in a tree with
n ą 2 vertices). So she asks at most tpn´ tq ´ 1 questions in this phase.

At the end of this phase, Alice knows whether any town has at most one outgoing road.
If t “ 1, at most 3n ´ 3 ď 4n ´ 7 questions were needed in total, while if t “ 2, at most
4n ´ 7 questions were needed in total.

Comment 1. The version of this problem originally submitted asked only for an upper bound
of 5n, which is much simpler to prove. The Problem Selection Committee preferred a version with an
asymptotically optimal constant. In the following comment, we will show that the constant is optimal.

Comment 2. We will show that Alice cannot always find out by asking at most 4n ´ 3plog2 nq ´
15 questions, if n ě 8.

To show this, we suppose the King of Hearts is choosing the directions as he goes along, only
picking the direction of a road when Alice asks about it for the first time. We provide a strategy for
the King of Hearts that ensures that, after the given number of questions, the map is still consistent
both with the existence of a town with at most one outgoing road, and with the nonexistence of such
a town. His strategy has the following phases. When describing how the King of Hearts’ answer to
a question is determined below, we always assume he is being asked about a road for the first time
(otherwise, he just repeats his previous answer for that road). This strategy is described throughout
in graph-theoretic terms (vertices and edges rather than towns and roads).

Phase 1. In this phase, we consider the undirected graph formed by edges whose directions are
known. The phase terminates when there are exactly 8 connected components whose undirected graphs
are trees. The following invariant is maintained: in a component with k vertices whose undirected graph
is a tree, every vertex has at most tlog2 ku edges into it.

• If the King of Hearts is asked about an edge between two vertices in the same component, or
about an edge between two components at least one of which is not a tree, he chooses any
direction for that edge arbitrarily.

• If he is asked about an edge between a vertex in component A that has a vertices and is a tree
and a vertex in component B that has b vertices and is a tree, suppose without loss of generality
that a ě b. He then chooses the edge to go from A to B. In this case, the new number of edges
into any vertex is at most maxttlog2 au, tlog2 bu ` 1u ď tlog2pa ` bqu.

In all cases, the invariant is preserved, and the number of tree components either remains unchanged
or goes down by 1. Assuming Alice does not repeat questions, the process must eventually terminate
with 8 tree components, and at least n ´ 8 questions having been asked.

Note that each tree component contains at least one vertex with no outgoing edges. Colour one
such vertex in each tree component red.

Phase 2. Let V1, V2 and V3 be the three of the red vertices whose components are smallest (so their
components together have at most

X

3
8
n
\

vertices, with each component having at most
X

3
8
n ´ 2

\

ver-
tices). Let sets C1, C2, . . . be the connected components after removing the Vj. By construction,
there are no edges with known direction between Ci and Cj for i ‰ j, and there are at least five such
components.

If at any point during this phase, the King of Hearts is asked about an edge within one of the Ci,
he chooses an arbitrary direction. If he is asked about an edge between Ci and Cj for i ‰ j, he answers
so that all edges go from Ci to Ci`1 and Ci`2, with indices taken modulo the number of components,
and chooses arbitrarily for other pairs. This ensures that all vertices other than the Vj will have more
than one outgoing edge.

For edges involving one of the Vj he answers as follows, so as to remain consistent for as long
as possible with both possibilities for whether one of those vertices has at most one outgoing edge.
Note that as they were red vertices, they have no outgoing edges at the start of this phase. For edges
between two of the Vj , he answers that the edges go from V1 to V2, from V2 to V3 and from V3 to V1.
For edges between Vj and some other vertex, he always answers that the edge goes into Vj , except for
the last such edge for which he is asked the question for any given Vj, for which he answers that the
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edge goes out of Vj. Thus, as long as at least one of the Vj has not had the question answered for all
the vertices that are not among the Vj, his answers are still compatible both with all vertices having
more than one outgoing edge, and with that Vj having only one outgoing edge.

At the start of this phase, each of the Vj has at most
X

log2
X

3
8
n ´ 2

\\

ă plog2 nq ´ 1 incoming
edges. Thus, Alice cannot determine whether some vertex has only one outgoing edge within 3pn ´
3 ´ pplog2 nq ´ 1qq ´ 1 questions in this phase; that is, 4n ´ 3plog2 nq ´ 15 questions total.

Comment 3. We can also improve the upper bound slightly, to 4n´ 2plog2 nq ` 1. (We do not know
where the precise minimum number of questions lies between 4n´3plog2 nq`Op1q and 4n´2plog2 nq`
Op1q.) Suppose n ě 5 (otherwise no questions are required at all).

To do this, we replace Phases 1 and 2 of the given solution with a different strategy that also
results in a spanning tree where one vertex V is not known to have any outgoing edges, and all other
vertices have exactly one outgoing edge known, but where there is more control over the numbers of
incoming edges. In Phases 3 and 4 we then take more care about the order in which pairs of towns are
chosen, to ensure that each of the remaining towns has already had a question asked about at least
log2 n ` Op1q edges.

Define trees Tm with 2m vertices, exactly one of which (the root) has no outgoing edges and the rest
of which have exactly one outgoing edge, as follows: T0 is a single vertex, while Tm is constructed by
joining the roots of two copies of Tm´1 with an edge in either direction. If n “ 2m we can readily ask
n´1 questions, resulting in a tree Tm for the edges with known direction: first ask about 2m´1 disjoint
pairs of vertices, then about 2m´2 disjoint pairs of the roots of the resulting T1 trees, and so on. For
the general case, where n is not a power of 2, after k stages of this process we have

X

n{2k
\

trees, each
of which is like Tk but may have some extra vertices (but, however, a unique root). If there are an
even number of trees, then ask about pairs of their roots. If there are an odd number (greater than 1)
of trees, when a single Tk is left over, ask about its root together with that of one of the Tk`1 trees.

Say m “ tlog2 nu. The result of that process is a single Tm tree, possibly with some extra vertices
but still a unique root V . That root has at least m incoming edges, and we may list vertices V0,
. . . , Vm´1 with edges to V , such that, for all 0 ď i ă m, vertex Vi itself has at least i incoming edges.

Now divide the vertices other than V into two parts: A has all vertices at an odd distance from V
and B has all the vertices at an even distance from B. Both A and B are nonempty; A contains the Vi,
while B contains a sequence of vertices with at least 0, 1, . . . , m ´ 2 incoming edges respectively,
similar to the Vi. There are no edges with known direction within A or within B.

In Phase 3, then ask about edges between V and other vertices: first those in B, in order of
increasing number of incoming edges to the other vertex, then those in A, again in order of increasing
number of incoming edges, which involves asking at most n ´ 1 ´ m questions in this phase. If two
outgoing edges are not found from V , at most 2n ´ 2 ´ m ď 4n ´ 2plog2 nq ` 1 questions needed
to be asked in total, so we suppose that two outgoing edges were found, with k questions asked in
this phase, where 2 ď k ď n ´ 1 ´ m. The state of S is as described in the solution above, with
the additional property that, since S must still contain all vertices with edges to V , it contains the
vertices Vi described above.

In Phase 4, consider the vertices left in B, in increasing order of number of edges incoming to a
vertex. If s is the least number of incoming edges to such a vertex, then, for any s ď t ď m ´ 2, there
are at least m ´ t ´ 2 vertices with more than t incoming edges. Repeatedly asking about the pair of
vertices left in B with the least numbers of incoming edges results in a single vertex left over (if any
were in B at all at the start of this phase) with at least m´ 2 incoming edges. Doing the same with A
(which must be nonempty) leaves a vertex with at least m ´ 1 incoming edges.

Thus if only A is nonempty we ask at most n ´ m questions in Phase 5, so in total at most
3n ´ m ´ 1 questions, while if both are nonempty we ask at most 2n ´ 2m ` 1 questions in Phase 5,
so in total at most 4n ´ 2m ´ 1 ă 4n ´ 2plog2 nq ` 1 questions.
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C9. For any two different real numbers x and y, we define Dpx, yq to be the unique
integer d satisfying 2d ď |x ´ y| ă 2d`1. Given a set of reals F , and an element x P F , we say
that the scales of x in F are the values of Dpx, yq for y P F with x ‰ y.

Let k be a given positive integer. Suppose that each member x of F has at most k different
scales in F (note that these scales may depend on x). What is the maximum possible size of F?

(Italy)

Answer: The maximum possible size of F is 2k.

Common remarks. For convenience, we extend the use of the word scale: we say that the
scale between two reals x and y is Dpx, yq.

Solution. We first construct a set F with 2k members, each member having at most k different
scales in F . Take F “ t0, 1, 2, . . . , 2k ´ 1u. The scale between any two members of F is in the
set t0, 1, . . . , k ´ 1u.

We now show that 2k is an upper bound on the size of F . For every finite set S of real
numbers, and every real x, let rSpxq denote the number of different scales of x in S. That
is, rSpxq “ |tDpx, yq : x ‰ y P Su|. Thus, for every element x of the set F in the problem
statement, we have rFpxq ď k. The condition |F | ď 2k is an immediate consequence of the
following lemma.

Lemma. Let S be a finite set of real numbers, and define

wpSq “
ÿ

xPS

2´rSpxq .

Then wpSq ď 1.

Proof. Induction on n “ |S|. If S “ txu, then rSpxq “ 0, so wpSq “ 1.
Assume now n ě 2, and let x1 ă ¨ ¨ ¨ ă xn list the members of S. Let d be the minimal scale

between two distinct elements of S; then there exist neighbours xt and xt`1 withDpxt, xt`1q “ d.
Notice that for any two indices i and j with j ´ i ą 1 we have Dpxi, xjq ą d, since

|xi ´ xj | “ |xi`1 ´ xi| ` |xj ´ xi`1| ě 2d ` 2d “ 2d`1.

Now choose the minimal i ď t and the maximal j ě t ` 1 such that Dpxi, xi`1q “
Dpxi`1, xi`2q “ ¨ ¨ ¨ “ Dpxj´1, xjq “ d.

Let E be the set of all the xs with even indices i ď s ď j, O be the set of those with
odd indices i ď s ď j, and R be the rest of the elements (so that S is the disjoint union of
E, O and R). Set SO “ R Y O and SE “ R Y E; we have |SO| ă |S| and |SE | ă |S|, so
wpSOq, wpSEq ď 1 by the inductive hypothesis.

Clearly, rSO
pxq ď rSpxq and rSE

pxq ď rSpxq for any x P R, and thus

ÿ

xPR

2´rSpxq “ 1

2

ÿ

xPR

p2´rSpxq ` 2´rSpxqq

ď 1

2

ÿ

xPR

p2´rSO
pxq ` 2´rSE

pxqq .

On the other hand, for every x P O, there is no y P SO such that DSO
px, yq “ d (as all

candidates from S were in E). Hence, we have rSO
pxq ď rSpxq ´ 1, and thus

ÿ

xPO

2´rSpxq ď 1

2

ÿ

xPO

2´rSO
pxq .
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Similarly, for every x P E, we have

ÿ

xPE

2´rSpxq ď 1

2

ÿ

xPE

2´rSE
pxq .

We can then combine these to give

wpSq “
ÿ

xPR

2´rSpxq `
ÿ

xPO

2´rSpxq `
ÿ

xPE

2´rSpxq

ď 1

2

ÿ

xPR

p2´rSO
pxq ` 2´rSE

pxqq ` 1

2

ÿ

xPO

2´rSO
pxq ` 1

2

ÿ

xPE

2´rSE
pxq

“ 1

2

˜

ÿ

xPSO

2´rSO
pxq `

ÿ

xPSE

2´rSE
pxq

¸

(since SO “ O Y R and SE “ E Y R)

“ 1

2
pwpSOq ` wpSEqqq (by definition of wp¨q)

ď 1 (by the inductive hypothesis)

which completes the induction. l

Comment 1. The sets O and E above are not the only ones we could have chosen. Indeed, we could
instead have used the following definitions:

Let d be the maximal scale between two distinct elements of S; that is, d “ Dpx1, xnq. Let
O “ tx P S : Dpx, xnq “ du (a ‘left’ part of the set) and let E “ tx P S : Dpx1, xq “ du (a ‘right’
part of the set). Note that these two sets are disjoint, and nonempty (since they contain x1 and xn
respectively). The rest of the proof is then the same as in Solution 1.

Comment 2. Another possible set F containing 2k members could arise from considering a binary
tree of height k, allocating a real number to each leaf, and trying to make the scale between the values
of two leaves dependent only on the (graph) distance between them. The following construction makes
this more precise.

We build up sets Fk recursively. Let F0 “ t0u, and then let Fk`1 “ Fk Y tx ` 3 ¨ 4k : x P Fku (i.e.
each half of Fk`1 is a copy of Fk). We have that Fk is contained in the interval r0, 4k`1q, and so it
follows by induction on k that every member of Fk`1 has k different scales in its own half of Fk`1 (by
the inductive hypothesis), and only the single scale 2k ` 1 in the other half of Fk`1.

Both of the constructions presented here have the property that every member of F has exactly k
different scales in F . Indeed, it can be seen that this must hold (up to a slight perturbation) for any
such maximal set. Suppose there were some element x with only k ´ 1 different scales in F (and every
other element had at most k different scales). Then we take some positive real ǫ, and construct a new
set F 1 “ ty : y P F , y ď xu Y ty ` ǫ : y P F , y ě xu. We have |F 1| “ |F | ` 1, and if ǫ is sufficiently
small then F 1 will also satisfy the property that no member has more than k different scales in F 1.

This observation might be used to motivate the idea of weighting members of an arbitrary set S
of reals according to how many different scales they have in S.
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Geometry

G1. Let ABC be a triangle. Circle Γ passes through A, meets segments AB and AC
again at points D and E respectively, and intersects segment BC at F and G such that F lies
between B and G. The tangent to circle BDF at F and the tangent to circle CEG at G meet
at point T . Suppose that points A and T are distinct. Prove that line AT is parallel to BC.

(Nigeria)

Solution. Notice that =TFB “ =FDA because FT is tangent to circle BDF , and moreover
=FDA “ =CGA because quadrilateral ADFG is cyclic. Similarly, =TGB “ =GEC because
GT is tangent to circle CEG, and =GEC “ =CFA. Hence,

=TFB “ =CGA and =TGB “ =CFA. p1q

B F G C

E

AT

D

Γ

Triangles FGA and GFT have a common side FG, and by p1q their angles at F,G are the
same. So, these triangles are congruent. So, their altitudes starting from A and T , respectively,
are equal and hence AT is parallel to line BFGC.

Comment. Alternatively, we can prove first that T lies on Γ. For example, this can be done by
showing that =AFT “ =AGT using p1q. Then the statement follows as =TAF “ =TGF “ =GFA.
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G2. Let ABC be an acute-angled triangle and let D, E, and F be the feet of altitudes
from A, B, and C to sides BC, CA, and AB, respectively. Denote by ωB and ωC the incircles
of triangles BDF and CDE, and let these circles be tangent to segments DF and DE at M
and N , respectively. Let line MN meet circles ωB and ωC again at P ‰ M and Q ‰ N ,
respectively. Prove that MP “ NQ.

(Vietnam)

Solution. Denote the centres of ωB and ωC by OB and OC, let their radii be rB and rC , and
let BC be tangent to the two circles at T and U , respectively.

A

ωB

B T D U C

ϕ ψ

OB
OC

ϕ

ϕ

ψ

M

N

Q

ωC

E

F

rC

rB

P

ψ

From the cyclic quadrilaterals AFDC and ABDE we have

=MDOB “ 1

2
=FDB “ 1

2
=BAC “ 1

2
=CDE “ =OCDN,

so the right-angled triangles DMOB and DNOC are similar. The ratio of similarity between
the two triangles is

DN

DM
“ OCN

OBM
“ rC
rB
.

Let ϕ “ =DMN and ψ “ =MND. The lines FM and EN are tangent to ωB and ωC ,
respectively, so

=MTP “ =FMP “ =DMN “ ϕ and =QUN “ =QNE “ =MND “ ψ.

(It is possible that P or Q coincides with T or U , or lie inside triangles DMT or DUN ,
respectively. To reduce case-sensitivity, we may use directed angles or simply ignore angles
MTP and QUN .)

In the circles ωB and ωC the lengths of chords MP and NQ are

MP “ 2rB ¨ sin=MTP “ 2rB ¨ sinϕ and NQ “ 2rC ¨ sin=QUN “ 2rC ¨ sinψ.
By applying the sine rule to triangle DNM we get

DN

DM
“ sin=DMN

sin=MND
“ sinϕ

sinψ
.

Finally, putting the above observations together, we get

MP

NQ
“ 2rB sinϕ

2rC sinψ
“ rB
rC

¨ sinϕ
sinψ

“ DM

DN
¨ sinϕ
sinψ

“ sinψ

sinϕ
¨ sinϕ
sinψ

“ 1,

so MP “ NQ as required.
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G3. In triangle ABC, let A1 and B1 be two points on sides BC and AC, and let P and Q
be two points on segments AA1 and BB1, respectively, so that line PQ is parallel to AB. On
ray PB1, beyond B1, let P1 be a point so that =PP1C “ =BAC. Similarly, on ray QA1,
beyond A1, let Q1 be a point so that =CQ1Q “ =CBA. Show that points P , Q, P1, and Q1

are concyclic.
(Ukraine)

Solution 1. Throughout the solution we use oriented angles.
Let rays AA1 and BB1 intersect the circumcircle of △ACB at A2 and B2, respectively. By

=QPA2 “ =BAA2 “ =BB2A2 “ =QB2A2,

points P,Q,A2, B2 are concyclic; denote the circle passing through these points by ω. We shall
prove that P1 and Q1 also lie on ω.

QP

P1

Q1

A2

BA

B2

B1
A1

C

ω

By
=CA2A1 “ =CA2A “ =CBA “ =CQ1Q “ =CQ1A1,

points C,Q1, A2, A1 are also concyclic. From that we get

=QQ1A2 “ =A1Q1A2 “ =A1CA2 “ =BCA2 “ =BAA2 “ =QPA2,

so Q1 lies on ω.
It follows similarly that P1 lies on ω.

Solution 2. First consider the case when lines PP1 and QQ1 intersect each other at some
point R.

Let line PQ meet the sides AC and BC at E and F , respectively. Then

=PP1C “ =BAC “ =PEC,

so points C,E, P, P1 lie on a circle; denote that circle by ωP . It follows analogously that points
C, F,Q,Q1 lie on another circle; denote it by ωQ.

Let AQ and BP intersect at T . Applying Pappus’ theorem to the lines AA1P and BB1Q
provides that points C “ AB1 X BA1, R “ A1Q X B1P and T “ AQX BP are collinear.

Let line RCT meet PQ and AB at S and U , respectively. From AB ‖ PQ we obtain

SP

SQ
“ UB

UA
“ SF

SE
,

so

SP ¨ SE “ SQ ¨ SF.
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R

Q1

C

BUA

P

S

Q

F

B1

A1

E

T

P1

ωQ

ωP

So, point S has equal powers with respect to ωP and ωQ, hence line RCS is their radical
axis; then R also has equal powers to the circles, so RP ¨RP1 “ RQ ¨RQ1, proving that points
P, P1, Q,Q1 are indeed concyclic.

Now consider the case when PP1 and QQ1 are parallel. Like in the previous case, let AQ
and BP intersect at T . Applying Pappus’ theorem again to the lines AA1P and BB1Q, in this
limit case it shows that line CT is parallel to PP1 and QQ1.

Let line CT meet PQ and AB at S and U , as before. The same calculation as in the
previous case shows that SP ¨SE “ SQ ¨SF , so S lies on the radical axis between ωP and ωQ.

P1

Q1

A1

B1

E F

QP

S

T

UA B

C

ωP

ωQ

ℓ

Line CST , that is the radical axis between ωP and ωQ, is perpendicular to the line ℓ of centres
of ωP and ωQ. Hence, the chords PP1 and QQ1 are perpendicular to ℓ. So the quadrilateral
PP1Q1Q is an isosceles trapezium with symmetry axis ℓ, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus’ theorem. For example,
one may consider the points K “ PB1 X BC and L “ QA1 X AC. Applying Pappus’ theorem to the
lines AA1P and QB1B we get that K, L, and PQ X AB are collinear, i.e. that KL ‖ AB. Therefore,
cyclicity of P , Q, P1, and Q1 is equivalent to that of K, L, P1, and Q1. The latter is easy after noticing
that C also lies on that circle. Indeed, e.g. =pLK,LCq “ =pAB,ACq “ =pP1K,P1Cq shows that K
lies on circle KLC.

This approach also has some possible degeneracy, as the points K and L may happen to be ideal.
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G4. Let P be a point inside triangle ABC. Let AP meet BC at A1, let BP meet CA
at B1, and let CP meet AB at C1. Let A2 be the point such that A1 is the midpoint of PA2,
let B2 be the point such that B1 is the midpoint of PB2, and let C2 be the point such that
C1 is the midpoint of PC2. Prove that points A2, B2, and C2 cannot all lie strictly inside the
circumcircle of triangle ABC.

(Australia)

A

B

C

P

A3

B3

C3

A1

B1

C1
A2

C2

B2

Solution 1. Since

=APB ` =BPC ` =CPA “ 2π “ pπ ´ =ACBq ` pπ ´ =BACq ` pπ ´ =CBAq,
at least one of the following inequalities holds:

=APB ě π ´ =ACB, =BPC ě π ´ =BAC, =CPA ě π ´ =CBA .

Without loss of generality, we assume that =BPC ě π ´ =BAC. We have =BPC ą =BAC
because P is inside △ABC. So =BPC ě maxp=BAC, π ´ =BACq and hence

sin=BPC ď sin=BAC . p˚q
Let the rays AP , BP , and CP cross the circumcircle Ω again at A3, B3, and C3, respectively.

We will prove that at least one of the ratios PB1

B1B3
and PC1

C1C3
is at least 1, which yields that one

of the points B2 and C2 does not lie strictly inside Ω.
Because A,B,C,B3 lie on a circle, the triangles CB1B3 and BB1A are similar, so

CB1

B1B3

“ BB1

B1A
.

Applying the sine rule we obtain

PB1

B1B3

“ PB1

CB1

¨ CB1

B1B3

“ PB1

CB1

¨ BB1

B1A
“ sin=ACP

sin=BPC
¨ sin=BAC

sin=PBA
.

Similarly,
PC1

C1C3

“ sin=PBA

sin=BPC
¨ sin=BAC

sin=ACP
.

Multiplying these two equations we get

PB1

B1B3

¨ PC1

C1C3

“ sin2 =BAC

sin2 =BPC
ě 1

using p˚q, which yields the desired conclusion.



Shortlisted problems – solutions 61

Comment. It also cannot happen that all three points A2, B2, and C2 lie strictly outside Ω. The same
proof works almost literally, starting by assuming without loss of generality that =BPC ď π´ =BAC
and using =BPC ą =BAC to deduce that sin=BPC ě sin=BAC. It is possible for A2, B2, and C2

all to lie on the circumcircle; from the above solution we may derive that this happens if and only if P
is the orthocentre of the triangle ABC, (which lies strictly inside ABC if and only if ABC is acute).

Solution 2. Define points A3, B3, and C3 as in Solution 1. Assume for the sake of contradiction
that A2, B2, and C2 all lie strictly inside circle ABC. It follows that PA1 ă A1A3, PB1 ă B1B3,
and PC1 ă C1C3.

Observe that △PBC3 „ △PCB3. Let X be the point on side PB3 that corresponds to
point C1 on side PC3 under this similarity. In other words, X lies on segment PB3 and satisfies
PX : XB3 “ PC1 : C1C3. It follows that

=XCP “ =PBC1 “ =B3BA “ =B3CB1 .

Hence lines CX and CB1 are isogonal conjugates in △PCB3.

A

B C

P

A1

A3

C3

B3

C1

B1

x y
xy

y

α

α

α
Y

X

Let Y be the foot of the bisector of =B3CP in △PCB3. Since PC1 ă C1C3, we have
PX ă XB3. Also, we have PY ă Y B3 because PB1 ă B1B3 and Y lies between X and B1.
By the angle bisector theorem in △PCB3, we have PY : Y B3 “ PC : CB3. So PC ă CB3

and it follows that =PB3C ă =CPB3. Now since =PB3C “ =BB3C “ =BAC, we have

=BAC ă =CPB3 .

Similarly, we have

=CBA ă =APC3 and =ACB ă =BPA3 “ =B3PA .

Adding these three inequalities yields π ă π, and this contradiction concludes the proof.
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Solution 3. Choose coordinates such that the circumcentre of △ABC is at the origin and
the circumradius is 1. Then we may think of A, B, and C as vectors in R2 such that

|A|2 “ |B|2 “ |C|2 “ 1 .

P may be represented as a convex combination αA`βB`γC where α, β, γ ą 0 and α`β`γ “ 1.
Then

A1 “ βB ` γC

β ` γ
“ 1

1 ´ α
P ´ α

1 ´ α
A,

so

A2 “ 2A1 ´ P “ 1 ` α

1 ´ α
P ´ 2α

1 ´ α
A .

Hence

|A2|2 “
ˆ

1 ` α

1 ´ α

˙2

|P |2 `
ˆ

2α

1 ´ α

˙2

|A|2 ´ 4αp1 ` αq
p1 ´ αq2 A ¨ P .

Using |A|2 “ 1 we obtain

p1 ´ αq2
2p1 ` αq |A2|2 “ 1 ` α

2
|P |2 ` 2α2

1 ` α
´ 2αA ¨ P. (1)

Likewise
p1 ´ βq2
2p1 ` βq|B2|2 “ 1 ` β

2
|P |2 ` 2β2

1 ` β
´ 2βB ¨ P (2)

and
p1 ´ γq2
2p1 ` γq |C2|2 “ 1 ` γ

2
|P |2 ` 2γ2

1 ` γ
´ 2γC ¨ P. (3)

Summing (1), (2) and (3) we obtain on the LHS the positive linear combination

LHS “ p1 ´ αq2
2p1 ` αq|A2|2 ` p1 ´ βq2

2p1 ` βq|B2|2 ` p1 ´ γq2
2p1 ` γq |C2|2

and on the RHS the quantity
ˆ

1 ` α

2
` 1 ` β

2
` 1 ` γ

2

˙

|P |2 `
ˆ

2α2

1 ` α
` 2β2

1 ` β
` 2γ2

1 ` γ

˙

´ 2pαA ¨ P ` βB ¨ P ` γC ¨ P q .

The first term is 2|P |2 and the last term is ´2P ¨ P , so

RHS “
ˆ

2α2

1 ` α
` 2β2

1 ` β
` 2γ2

1 ` γ

˙

“ 3α´ 1

2
` p1 ´ αq2

2p1 ` αq ` 3β ´ 1

2
` p1 ´ βq2

2p1 ` βq ` 3γ ´ 1

2
` p1 ´ γq2

2p1 ` γq

“ p1 ´ αq2
2p1 ` αq ` p1 ´ βq2

2p1 ` βq ` p1 ´ γq2
2p1 ` γq .

Here we used the fact that

3α ´ 1

2
` 3β ´ 1

2
` 3γ ´ 1

2
“ 0 .

We have shown that a linear combination of |A1|2, |B1|2, and |C1|2 with positive coefficients is
equal to the sum of the coefficients. Therefore at least one of |A1|2, |B1|2, and |C1|2 must be at
least 1, as required.

Comment. This proof also works when P is any point for which α, β, γ ą ´1, α ` β ` γ “ 1, and
α, β, γ ‰ 1. (In any cases where α “ 1 or β “ 1 or γ “ 1, some points in the construction are not
defined.)
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G5. Let ABCDE be a convex pentagon with CD “ DE and =EDC ‰ 2 ¨ =ADB.
Suppose that a point P is located in the interior of the pentagon such that AP “ AE and
BP “ BC. Prove that P lies on the diagonal CE if and only if areapBCDq ` areapADEq “
areapABDq ` areapABP q.

(Hungary)

Solution 1. Let P 1 be the reflection of P across line AB, and let M and N be the midpoints of
P 1E and P 1C respectively. Convexity ensures that P 1 is distinct from both E and C, and hence
from both M and N . We claim that both the area condition and the collinearity condition in
the problem are equivalent to the condition that the (possibly degenerate) right-angled triangles
AP 1M and BP 1N are directly similar (equivalently, AP 1E and BP 1C are directly similar).

C

DE

P 1

M

N
A

B

For the equivalence with the collinearity condition, let F denote the foot of the perpendicular
from P 1 to AB, so that F is the midpoint of PP 1. We have that P lies on CE if and only if F lies
on MN , which occurs if and only if we have the equality =AFM “ =BFN of signed angles
modulo π. By concyclicity of AP 1FM and BFP 1N , this is equivalent to =AP 1M “ =BP 1N ,
which occurs if and only if AP 1M and BP 1N are directly similar.

P 1

M

N
A

B

F

For the other equivalence with the area condition, we have the equality of signed areas
areapABDq ` areapABP q “ areapAP 1BDq “ areapAP 1Dq ` areapBDP 1q. Using the identity
areapADEq ´ areapAP 1Dq “ areapADEq ` areapADP 1q “ 2 areapADMq, and similarly for B,
we find that the area condition is equivalent to the equality

areapDAMq “ areapDBNq.

Now note that A and B lie on the perpendicular bisectors of P 1E and P 1C, respectively. If
we write G and H for the feet of the perpendiculars from D to these perpendicular bisectors
respectively, then this area condition can be rewritten as

MA ¨GD “ NB ¨HD.

(In this condition, we interpret all lengths as signed lengths according to suitable conventions:
for instance, we orient P 1E from P 1 to E, orient the parallel line DH in the same direction, and
orient the perpendicular bisector of P 1E at an angle π{2 clockwise from the oriented segment
P 1E – we adopt the analogous conventions at B.)
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C

DE

P 1

M

N
A B

G
H

To relate the signed lengths GD and HD to the triangles AP 1M and BP 1N , we use the
following calculation.

Claim. Let Γ denote the circle centred on D with both E and C on the circumference, and
h the power of P 1 with respect to Γ. Then we have the equality

GD ¨ P 1M “ HD ¨ P 1N “ 1

4
h ‰ 0.

Proof. Firstly, we have h ‰ 0, since otherwise P 1 would lie on Γ, and hence the internal angle
bisectors of =EDP 1 and =P 1DC would pass through A and B respectively. This would violate
the angle inequality =EDC ‰ 2 ¨ =ADB given in the question.

Next, let E 1 denote the second point of intersection of P 1E with Γ, and let E2 denote the
point on Γ diametrically opposite E 1, so that E2E is perpendicular to P 1E. The point G lies
on the perpendicular bisectors of the sides P 1E and EE2 of the right-angled triangle P 1EE2;
it follows that G is the midpoint of P 1E2. Since D is the midpoint of E 1E2, we have that
GD “ 1

2
P 1E 1. Since P 1M “ 1

2
P 1E, we have GD ¨P 1M “ 1

4
P 1E 1 ¨P 1E “ 1

4
h. The other equality

HD ¨ P 1N follows by exactly the same argument.

D

E

P 1

M

G

Γ

E 1

E2

l

From this claim, we see that the area condition is equivalent to the equality

pMA : P 1Mq “ pNB : P 1Nq

of ratios of signed lengths, which is equivalent to direct similarity of AP 1M and BP 1N , as
desired.
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Solution 2. Along the perpendicular bisector of CE, define the linear function

fpXq “ areapBCXq ` areapAXEq ´ areapABXq ´ areapABP q,

where, from now on, we always use signed areas. Thus, we want to show that C, P,E are
collinear if and only if fpDq “ 0.

A

P

E

D C

B

Let P 1 be the reflection of P across line AB. The point P 1 does not lie on the line CE.
To see this, we let A2 and B2 be the points obtained from A and B by dilating with scale
factor 2 about P 1, so that P is the orthogonal projection of P 1 onto A2B2. Since A lies on the
perpendicular bisector of P 1E, the triangle A2EP 1 is right-angled at E (and B2CP 1 similarly).
If P 1 were to lie on CE, then the lines A2E and B2C would be perpendicular to CE and A2

and B2 would lie on the opposite side of CE to D. It follows that the line A2B2 does not meet
triangle CDE, and hence point P does not lie inside CDE. But then P must lie inside ABCE,
and it is clear that such a point cannot reflect to a point P 1 on CE.

We thus let O be the centre of the circle CEP 1. The lines AO and BO are the perpendicular
bisectors of EP 1 and CP 1, respectively, so

areapBCOq ` areapAOEq “ areapOP 1Bq ` areapP 1OAq “ areapP 1BOAq
“ areapABOq ` areapBAP 1q “ areapABOq ` areapABP q,

and hence fpOq “ 0.
Notice that if point O coincides with D then points A,B lie in angle domain CDE and

=EOC “ 2 ¨ =AOB, which is not allowed. So, O and D must be distinct. Since f is linear and
vanishes at O, it follows that fpDq “ 0 if and only if f is constant zero – we want to show this
occurs if and only if C, P,E are collinear.

P ′

B

C

E
O

A

P

C

P

T

E

A B

In the one direction, suppose firstly that C, P,E are not collinear, and let T be the centre
of the circle CEP . The same calculation as above provides

areapBCT q ` areapATEq “ areapPBTAq “ areapABT q ´ areapABP q

so
fpT q “ ´2 areapABP q ‰ 0.
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Hence, the linear function f is nonconstant with its zero is at O, so that fpDq ‰ 0.

In the other direction, suppose that the points C, P,E are collinear. We will show that f is
constant zero by finding a second point (other than O) at which it vanishes.

P

C

B′
Q

A B

E

A′

Let Q be the reflection of P across the midpoint of AB, so PAQB is a parallelogram. It
is easy to see that Q is on the perpendicular bisector of CE; for instance if A1 and B1 are the
points produced from A and B by dilating about P with scale factor 2, then the projection
of Q to CE is the midpoint of the projections of A1 and B1, which are E and C respectively.
The triangles BCQ and AQE are indirectly congruent, so

fpQq “
`

areapBCQq ` areapAQEq
˘

´
`

areapABQq ´ areapBAP q
˘

“ 0 ´ 0 “ 0.

The points O and Q are distinct. To see this, consider the circle ω centred on Q with P 1 on
the circumference; since triangle PP 1Q is right-angled at P 1, it follows that P lies outside ω.
On the other hand, P lies between C and E on the line CPE. It follows that C and E cannot
both lie on ω, so that ω is not the circle CEP 1 and Q ‰ O.

Since O and Q are distinct zeroes of the linear function f , we have fpDq “ 0 as desired.

Comment 1. The condition =EDC ‰ 2¨=ADB cannot be omitted. If D is the centre of circle CEP 1,
then the condition on triangle areas is satisfied automatically, without having P on line CE.

Comment 2. The “only if” part of this problem is easier than the “if” part. For example, in
the second part of Solution 2, the triangles EAQ and QBC are indirectly congruent, so the sum
of their areas is 0, and DCQE is a kite. Now one can easily see that =pAQ,DEq “ =pCD,CBq
and =pBQ,DCq “ =pED,EAq, whence areapBCDq “ areapAQDq ` areapEQAq and areapADEq “
areapBDQq ` areapBQCq, which yields the result.
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Comment 3. The origin of the problem is the following observation. Let ABDH be a tetrahedron
and consider the sphere S that is tangent to the four face planes, internally to planes ADH and BDH
and externally to ABD and ABH (or vice versa). It is known that the sphere S exists if and only
if areapADHq ` areapBDHq ‰ areapABHq ` areapABDq; this relation comes from the usual formula
for the volume of the tetrahedron.

Let T, Ta, Tb, Td be the points of tangency between the sphere and the four planes, as shown in the
picture. Rotate the triangle ABH inward, the triangles BDH and ADH outward, into the triangles
ABP , BDC and ADE, respectively, in the plane ABD. Notice that the points Td, Ta, Tb are rotated
to T , so we have HTa “ HTb “ HTd “ PT “ CT “ ET . Therefore, the point T is the centre of the
circle CEP . Hence, if the sphere exists then C,E,P cannot be collinear.

If the condition =EDC ‰ 2 ¨ =ADB is replaced by the constraint that the angles =EDA, =ADB
and =BDC satisfy the triangle inequality, it enables reconstructing the argument with the tetrahedron
and the tangent sphere.

H

D

T

Tb

Ta

P

A

E

C

B

Td
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G6. Let I be the incentre of acute-angled triangle ABC. Let the incircle meet BC, CA,
and AB at D, E, and F , respectively. Let line EF intersect the circumcircle of the triangle
at P and Q, such that F lies between E and P . Prove that =DPA` =AQD “ =QIP .

(Slovakia)

Solution 1. Let N and M be the midpoints of the arcs ŊBC of the circumcircle, containing
and opposite vertex A, respectively. By =FAE “ =BAC “ =BNC , the right-angled kites
AFIE and NBMC are similar. Consider the spiral similarity ϕ (dilation in case of AB “ AC)
that moves AFIE to NBMC. The directed angle in which ϕ changes directions is =pAF,NBq,
same as =pAP,NP q and =pAQ,NQq; so lines AP and AQ are mapped to lines NP and NQ,
respectively. Line EF is mapped to BC; we can see that the intersection points P “ EF XAP
and Q “ EF XAQ are mapped to points BC XNP and BC XNQ, respectively. Denote these
points by P 1 and Q1, respectively.

ZP ′ B

M

C Q′L D

I

P

F

E

A

N

Γ

Q

Let L be the midpoint of BC. We claim that points P,Q,D, L are concyclic (if D “ L
then line BC is tangent to circle PQD). Let PQ and BC meet at Z. By applying Menelaus’
theorem to triangle ABC and line EFZ, we have

BD

DC
“ BF

FA
¨ AE
EC

“ ´BZ

ZC
,

so the pairs B,C and D,Z are harmonic. It is well-known that this implies ZB ¨ZC “ ZD ¨ZL.
(The inversion with pole Z that swaps B and C sends Z to infinity and D to the midpoint
of BC, because the cross-ratio is preserved.) Hence, ZD ¨ ZL “ ZB ¨ ZC “ ZP ¨ ZQ by the
power of Z with respect to the circumcircle; this proves our claim.

By =MPP 1 “ =MQQ1 “ =MLP 1 “ =MLQ1 “ 90˝, the quadrilaterals MLPP 1 and
MLQQ1 are cyclic. Then the problem statement follows by

=DPA` =AQD “ 360˝ ´ =PAQ ´ =QDP “ 360˝ ´ =PNQ ´ =QLP

“ =LPN ` =NQL “ =P 1ML ` =LMQ1 “ =P 1MQ1 “ =PIQ.
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Solution 2. Define the point M and the same spiral similarity ϕ as in the previous solution.
(The point N is not necessary.) It is well-known that the centre of the spiral similarity that
maps F,E to B,C is the Miquel point of the lines FE, BC, BF and CE; that is, the second
intersection of circles ABC and AEF . Denote that point by S.

By ϕpF q “ B and ϕpEq “ C the triangles SBF and SCE are similar, so we have

SB

SC
“ BF

CE
“ BD

CD
.

By the converse of the angle bisector theorem, that indicates that line SD bisects =BSC and
hence passes through M .

Let K be the intersection point of lines EF and SI. Notice that ϕ sends points S, F, E, I
to S,B, C,M , so ϕpKq “ ϕpFE X SIq “ BC X SM “ D. By ϕpIq “ M , we have KD ‖ IM .

B

M

D

P

AΓ

S

C

Q

F

E

I

K

L

We claim that triangles SPI and SDQ are similar, and so are triangles SPD and SIQ.
Let ray SI meet the circumcircle again at L. Note that the segment EF is perpendicular to
the angle bisector AM . Then by =AML “ =ASL “ =ASI “ 90˝, we have ML ‖ PQ. Hence,
ŇPL “ ŊMQ and therefore =PSL “ =MSQ “ =DSQ. By =QPS “ =QMS, the triangles
SPK and SMQ are similar. Finally,

SP

SI
“ SP

SK
¨ SK
SI

“ SM

SQ
¨ SD
SM

“ SD

SQ

shows that triangles SPI and SDQ are similar. The second part of the claim can be proved
analogously.

Now the problem statement can be proved by

=DPA` =AQD “ =DPS ` =SQD “ =QIS ` =SIP “ =QIP .
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Solution 3. Denote the circumcircle of triangle ABC by Γ, and let rays PD and QD meet Γ
again at V and U , respectively. We will show that AU K IP and AV K IQ. Then the problem
statement will follow as

=DPA` =AQD “ =V UA ` =AV U “ 180˝ ´ =UAV “ =QIP .

Let M be the midpoint of arc ŔBUV C and let N be the midpoint of arc ŐCAB; the lines AIM
and AN being the internal and external bisectors of angle BAC, respectively, are perpendicular.
Let the tangents drawn to Γ at B and C meet at R; let line PQ meet AU , AI, AV and BC at
X, T , Y and Z, respectively.

As in Solution 1, we observe that the pairs B,C and D,Z are harmonic. Projecting these
points from Q onto the circumcircle, we can see that B,C and U, P are also harmonic. Anal-
ogously, the pair V,Q is harmonic with B,C. Consider the inversion about the circle with
centre R, passing through B and C. Points B and C are fixed points, so this inversion ex-
changes every point of Γ by its harmonic pair with respect to B,C. In particular, the inversion
maps points B,C,N, U, V to points B,C,M, P,Q, respectively.

Combine the inversion with projecting Γ from A to line PQ; the points B,C,M, P,Q are
projected to F,E, T, P,Q, respectively.

A
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F
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Y E
Q
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B C

Γ

Z

The combination of these two transformations is projective map from the lines AB, AC,
AN , AU , AV to IF , IE, IT , IP , IQ, respectively. On the other hand, we have AB K IF ,
AC K IE and AN K AT , so the corresponding lines in these two pencils are perpendicular.
This proves AU K IP and AV K IQ, and hence completes the solution.
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G7. The incircle ω of acute-angled scalene triangle ABC has centre I and meets sides BC,
CA, and AB at D, E, and F , respectively. The line through D perpendicular to EF meets ω
again at R. Line AR meets ω again at P . The circumcircles of triangles PCE and PBF meet
again at Q ‰ P . Prove that lines DI and PQ meet on the external bisector of angle BAC.

(India)

Common remarks. Throughout the solution, =pa, bq denotes the directed angle between
lines a and b, measured modulo π.

Solution 1.
Step 1. The external bisector of =BAC is the line through A perpendicular to IA. Let DI

meet this line at L and let DI meet ω at K. Let N be the midpoint of EF , which lies on IA
and is the pole of line AL with respect to ω. Since AN ¨ AI “ AE2 “ AR ¨ AP , the points R,
N , I, and P are concyclic. As IR “ IP , the line NI is the external bisector of =PNR, so PN
meets ω again at the point symmetric to R with respect to AN – i.e. at K.

Let DN cross ω again at S. Opposite sides of any quadrilateral inscribed in the circle ω
meet on the polar line of the intersection of the diagonals with respect to ω. Since L lies on
the polar line AL of N with respect to ω, the line PS must pass through L. Thus it suffices to
prove that the points S, Q, and P are collinear.
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Step 2. Let Γ be the circumcircle of △BIC. Notice that

=pBQ,QCq “ =pBQ,QP q ` =pPQ,QCq “ =pBF, FP q ` =pPE,ECq
“ =pEF,EP q ` =pFP, FEq “ =pFP,EP q “ =pDF,DEq “ =pBI, ICq,

so Q lies on Γ. Let QP meet Γ again at T . It will now suffice to prove that S, P , and T
are collinear. Notice that =pBI, IT q “ =pBQ,QT q “ =pBF, FP q “ =pFK,KP q. Note
FD K FK and FD K BI so FK ‖ BI and hence IT is parallel to the line KNP . Since
DI “ IK, the line IT crosses DN at its midpoint M .

Step 3. Let F 1 and E 1 be the midpoints of DE and DF , respectively. Since DE 1 ¨E 1F “ DE 12 “
BE 1 ¨E 1I, the point E 1 lies on the radical axis of ω and Γ; the same holds for F 1. Therefore, this
radical axis is E 1F 1, and it passes through M . Thus IM ¨MT “ DM ¨MS, so S, I, D, and T
are concyclic. This shows =pDS, ST q “ =pDI, IT q “ =pDK,KP q “ =pDS, SP q, whence the
points S, P , and T are collinear, as desired.
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Comment. Here is a longer alternative proof in step 1 that P , S, and L are collinear, using a circular
inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ω meet on the
polar line with respect to ω of the intersection of the diagonals. Let G be the foot of the altitude from
N to the line DIKL. Observe that N,G,K, S are concyclic (opposite right angles) so

=DIP “ 2=DKP “ =GKN ` =DSP “ =GSN ` =NSP “ =GSP ,

hence I,G, S, P are concyclic. We have IG ¨ IL “ IN ¨ IA “ r2 since △IGN „ △IAL. Inverting the
circle IGSP in circle ω, points P and S are fixed and G is taken to L so we find that P, S, and L are
collinear.
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Solution 2. We start as in Solution 1. Namely, we introduce the same points K, L, N , and S,
and show that the triples pP,N,Kq and pP, S, Lq are collinear. We conclude that K and R are
symmetric in AI, and reduce the problem statement to showing that P , Q, and S are collinear.

Step 1. Let AR meet the circumcircle Ω of ABC again at X. The lines AR and AK are
isogonal in the angle BAC; it is well known that in this case X is the tangency point of Ω with
the A-mixtilinear circle. It is also well known that for this point X, the line XI crosses Ω again
at the midpoint M 1 of arc BAC.

Step 2. Denote the circles BFP and CEP by ΩB and ΩC , respectively. Let ΩB cross AR
and EF again at U and Y , respectively. We have

=pUB,BF q “ =pUP, PF q “ =pRP, PF q “ =pRF, FAq,

so UB ‖ RF .
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Next, we show that the points B, I, U , and X are concyclic. Since

=pUB,UXq “ =pRF,RXq “ =pAF,ARq ` =pFR, FAq “ =pM 1B,M 1Xq ` =pDR,DF q,

it suffices to prove =pIB, IXq “ =pM 1B,M 1Xq ` =pDR,DF q, or =pIB,M 1Bq “ =pDR,DF q.
But both angles equal =pCI, CBq, as desired. (This is where we used the fact that M 1 is the
midpoint of arc BAC of Ω.)

It follows now from circles BUIX and BPUFY that

=pIU, UBq “ =pIX,BXq “ =pM 1X,BXq “ π ´ =A

2
“ =pEF,AF q “ =pY F,BF q “ =pY U,BUq ,

so the points Y , U , and I are collinear.
Let EF meet BC at W . We have

=pIY, Y W q “ =pUY, FY q “ =pUB, FBq “ =pRF,AF q “ =pCI, CW q,

so the points W , Y , I, and C are concyclic.
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Similarly, if V and Z are the second meeting points of ΩC with AR and EF , we get that
the 4-tuples pC, V, I,Xq and pB, I, Z,W q are both concyclic.

Step 3. Let Q1 “ CY X BZ. We will show that Q1 “ Q.
First of all, we have

=pQ1Y,Q1Bq “ =pCY, ZBq “ =pCY, ZY q ` =pZY,BZq

“ =pCI, IW q ` =pIW, IBq “ =pCI, IBq “ π ´ =A

2
“ =pFY, FBq,

so Q1 P ΩB. Similarly, Q1 P ΩC . Thus Q1 P ΩB X ΩC “ tP,Qu and it remains to prove that
Q1 ‰ P . If we had Q1 “ P , we would have =pPY, PZq “ =pQ1Y,Q1Zq “ =pIC, IBq. This
would imply

=pPY, Y F q ` =pEZ,ZP q “ =pPY, PZq “ =pIC, IBq “ =pPE, PF q,

so circles ΩB and ΩC would be tangent at P . That is excluded in the problem conditions, so
Q1 “ Q.
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Step 4. Now we are ready to show that P , Q, and S are collinear.
Notice that A and D are the poles of EW and DW with respect to ω, so W is the pole

of AD. Hence, WI K AD. Since CI K DE, this yields =pIC,WIq “ =pDE,DAq. On the
other hand, DA is a symmedian in △DEF , so =pDE,DAq “ =pDN,DF q “ =pDS,DF q.
Therefore,

=pPS, PF q “ =pDS,DF q “ =pDE,DAq “ =pIC, IW q
“ =pY C, YW q “ =pY Q, Y F q “ =pPQ, PF q,

which yields the desired collinearity.
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G8. Let L be the set of all lines in the plane and let f be a function that assigns to each
line ℓ P L a point fpℓq on ℓ. Suppose that for any point X, and for any three lines ℓ1, ℓ2, ℓ3
passing through X, the points fpℓ1q, fpℓ2q, fpℓ3q and X lie on a circle.

Prove that there is a unique point P such that fpℓq “ P for any line ℓ passing through P .
(Australia)

Common remarks. The condition on f is equivalent to the following: There is some func-
tion g that assigns to each point X a circle gpXq passing through X such that for any line ℓ
passing through X, the point fpℓq lies on gpXq. (The function g may not be uniquely defined
for all points, if some points X have at most one value of fpℓq other than X; for such points,
an arbitrary choice is made.)

If there were two points P and Q with the given property, fpPQq would have to be both
P and Q, so there is at most one such point, and it will suffice to show that such a point exists.

Solution 1. We provide a complete characterisation of the functions satisfying the given
condition.

Write =pℓ1, ℓ2q for the directed angle modulo 180˝ between the lines ℓ1 and ℓ2. Given a
point P and an angle α P p0, 180˝q, for each line ℓ, let ℓ1 be the line through P satisfying
=pℓ1, ℓq “ α, and let hP,αpℓq be the intersection point of ℓ and ℓ1. We will prove that there is
some pair pP, αq such that f and hP,α are the same function. Then P is the unique point in
the problem statement.

Given an angle α and a point P , let a line ℓ be called pP, αq-good if fpℓq “ hP,αpℓq. Let
a point X ‰ P be called pP, αq-good if the circle gpXq passes through P and some point
Y ‰ P,X on gpXq satisfies =pPY, Y Xq “ α. It follows from this definition that if X is pP, αq-
good then every point Y ‰ P,X of gpXq satisfies this angle condition, so hP,αpXY q “ Y for
every Y P gpXq. Equivalently, fpℓq P tX, hP,αpℓqu for each line ℓ passing through X. This
shows the following lemma.

Lemma 1. If X is pP, αq-good and ℓ is a line passing through X then either fpℓq “ X or ℓ is
pP, αq-good.

Lemma 2. If X and Y are different pP, αq-good points, then line XY is pP, αq-good.

Proof. If XY is not pP, αq-good then by the previous Lemma, fpXY q “ X and similarly
fpXY q “ Y , but clearly this is impossible as X ‰ Y . l

Lemma 3. If ℓ1 and ℓ2 are different pP, αq-good lines which intersect at X ‰ P , then either
fpℓ1q “ X or fpℓ2q “ X or X is pP, αq-good.

Proof. If fpℓ1q, fpℓ2q ‰ X, then gpXq is the circumcircle of X, fpℓ1q and fpℓ2q. Since ℓ1 and ℓ2
are pP, αq-good lines, the angles

=pPfpℓ1q, fpℓ1qXq “ =pPfpℓ2q, fpℓ2qXq “ α,

so P lies on gpXq. Hence, X is pP, αq-good. l

Lemma 4. If ℓ1, ℓ2 and ℓ3 are different pP, αq-good lines which intersect at X ‰ P , then X is
pP, αq-good.

Proof. This follows from the previous Lemma since at most one of the three lines ℓi can satisfy
fpℓiq “ X as the three lines are all pP, αq-good. l

Lemma 5. If ABC is a triangle such that A, B, C, fpABq, fpACq and fpBCq are all different
points, then there is some point P and some angle α such that A, B and C are pP, αq-good
points and AB, BC and CA are pP, αq-good lines.



Shortlisted problems – solutions 77

A

B C
D

E

F

gpAq

gpBq
gpCq

P

Proof. Let D, E, F denote the points fpBCq, fpACq, fpABq, respectively. Then gpAq,
gpBq and gpCq are the circumcircles of AEF , BDF and CDE, respectively. Let P ‰ F
be the second intersection of circles gpAq and gpBq (or, if these circles are tangent at F , then
P “ F ). By Miquel’s theorem (or an easy angle chase), gpCq also passes through P . Then by
the cyclic quadrilaterals, the directed angles

=pPD,DCq “ =pPF, FBq “ =pPE,EAq “ α,

for some angle α. Hence, lines AB, BC and CA are all pP, αq-good, so by Lemma 3, A, B and C
are pP, αq-good. (In the case where P “ D, the line PD in the equation above denotes the line
which is tangent to gpBq at P “ D. Similar definitions are used for PE and PF in the cases
where P “ E or P “ F .) l

Consider the set Ω of all points px, yq with integer coordinates 1 ď x, y ď 1000, and consider
the set LΩ of all horizontal, vertical and diagonal lines passing through at least one point in Ω.
A simple counting argument shows that there are 5998 lines in LΩ. For each line ℓ in LΩ we
colour the point fpℓq red. Then there are at most 5998 red points. Now we partition the points
in Ω into 10000 ten by ten squares. Since there are at most 5998 red points, at least one of
these squares Ω10 contains no red points. Let pm,nq be the bottom left point in Ω10. Then the
triangle with vertices pm,nq, pm ` 1, nq and pm,n ` 1q satisfies the condition of Lemma 5, so
these three vertices are all pP, αq-good for some point P and angle α, as are the lines joining
them. From this point on, we will simply call a point or line good if it is pP, αq-good for this
particular pair pP, αq. Now by Lemma 1, the line x “ m ` 1 is good, as is the line y “ n ` 1.
Then Lemma 3 implies that pm`1, n`1q is good. By applying these two lemmas repeatedly, we
can prove that the line x`y “ m`n`2 is good, then the points pm,n`2q and pm`2, nq then
the lines x “ m`2 and y “ n`2, then the points pm`2, n`1q, pm`1, n`2q and pm`2, n`2q
and so on until we have prove that all points in Ω10 are good.

Now we will use this to prove that every point S ‰ P is good. Since gpSq is a circle, it
passes through at most two points of Ω10 on any vertical line, so at most 20 points in total.
Moreover, any line ℓ through S intersects at most 10 points in Ω10. Hence, there are at least
eight lines ℓ through S which contain a point Q in Ω10 which is not on gpSq. Since Q is not
on gpSq, the point fpℓq ‰ Q. Hence, by Lemma 1, the line ℓ is good. Hence, at least eight good
lines pass through S, so by Lemma 4, the point S is good. Hence, every point S ‰ P is good,
so by Lemma 2, every line is good. In particular, every line ℓ passing through P is good, and
therefore satisfies fpℓq “ P , as required.

Solution 2. Note that for any distinct points X, Y , the circles gpXq and gpY q meet on XY
at the point fpXY q P gpXq X gpY q X pXY q. We write spX, Y q for the second intersection point
of circles gpXq and gpY q.
Lemma 1. Suppose that X, Y and Z are not collinear, and that fpXY q R tX, Y u and similarly
for Y Z and ZX. Then spX, Y q “ spY, Zq “ spZ,Xq.
Proof. The circles gpXq, gpY q and gpZq through the vertices of triangle XY Z meet pairwise on
the corresponding edges (produced). By Miquel’s theorem, the second points of intersection of
any two of the circles coincide. (See the diagram for Lemma 5 of Solution 1.) l
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Now pick any line ℓ and any six different points Y1, . . . , Y6 on ℓ z tfpℓqu. Pick a point X
not on ℓ or any of the circles gpYiq. Reordering the indices if necessary, we may suppose that
Y1, . . . , Y4 do not lie on gpXq, so that fpXYiq R tX, Yiu for 1 ď i ď 4. By applying the above
lemma to triangles XYiYj for 1 ď i ă j ď 4, we find that the points spYi, Yjq and spX, Yiq are
all equal, to point O say. Note that either O does not lie on ℓ, or O “ fpℓq, since O P gpYiq.

Now consider an arbitrary point X 1 not on ℓ or any of the circles gpYiq for 1 ď i ď 4. As
above, we see that there are two indices 1 ď i ă j ď 4 such that Yi and Yj do not lie on gpX 1q.
By applying the above lemma to triangle X 1YiYj we see that spX 1, Yiq “ O, and in particular
gpX 1q passes through O.

We will now show that fpℓ1q “ O for all lines ℓ1 through O. By the above note, we may
assume that ℓ1 ‰ ℓ. Consider a variable point X 1 P ℓ1 z tOu not on ℓ or any of the circles gpYiq
for 1 ď i ď 4. We know that fpℓ1q P gpX 1q X ℓ1 “ tX 1, Ou. Since X 1 was suitably arbitrary, we
have fpℓ1q “ O as desired.

Solution 3. Notice that, for any two different points X and Y , the point fpXY q lies on both
gpXq and gpY q, so any two such circles meet in at least one point. We refer to two circles as
cutting only in the case where they cross, and so meet at exactly two points, thus excluding
the cases where they are tangent or are the same circle.

Lemma 1. Suppose there is a point P such that all circles gpXq pass through P . Then P has
the given property.

Proof. Consider some line ℓ passing through P , and suppose that fpℓq ‰ P . Consider someX P ℓ
with X ‰ P and X ‰ fpℓq. Then gpXq passes through all of P , fpℓq and X, but those three
points are collinear, a contradiction. l

Lemma 2. Suppose that, for all ǫ ą 0, there is a point Pǫ with gpPǫq of radius at most ǫ. Then
there is a point P with the given property.

Proof. Consider a sequence ǫi “ 2´i and corresponding points Pǫi. Because the two circles
gpPǫiq and gpPǫjq meet, the distance between Pǫi and Pǫj is at most 21´i ` 21´j . As

ř

i ǫi con-
verges, these points converge to some point P . For all ǫ ą 0, the point P has distance at
most 2ǫ from Pǫ, and all circles gpXq pass through a point with distance at most 2ǫ from Pǫ,
so distance at most 4ǫ from P . A circle that passes distance at most 4ǫ from P for all ǫ ą 0
must pass through P , so by Lemma 1 the point P has the given property. l

Lemma 3. Suppose no two of the circles gpXq cut. Then there is a point P with the given
property.

Proof. Consider a circle gpXq with centre Y . The circle gpY q must meet gpXq without cutting
it, so has half the radius of gpXq. Repeating this argument, there are circles with arbitrarily
small radius and the result follows by Lemma 2. l

Lemma 4. Suppose there are six different points A, B1, B2, B3, B4, B5 such that no three
are collinear, no four are concyclic, and all the circles gpBiq cut pairwise at A. Then there is a
point P with the given property.

Proof. Consider some line ℓ through A that does not pass through any of the Bi and is not
tangent to any of the gpBiq. Fix some direction along that line, and let Xǫ be the point on ℓ
that has distance ǫ from A in that direction. In what follows we consider only those ǫ for which
Xǫ does not lie on any gpBiq (this restriction excludes only finitely many possible values of ǫ).

Consider the circle gpXǫq. Because no four of the Bi are concyclic, at most three of them
lie on this circle, so at least two of them do not. There must be some sequence of ǫ Ñ 0 such
that it is the same two of the Bi for all ǫ in that sequence, so now restrict attention to that
sequence, and suppose without loss of generality that B1 and B2 do not lie on gpXǫq for any ǫ
in that sequence.
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Then fpXǫB1q is not B1, so must be the other point of intersection of XǫB1 with gpB1q,
and the same applies with B2. Now consider the three points Xǫ, fpXǫB1q and fpXǫB2q. As
ǫ Ñ 0, the angle at Xǫ tends to =B1AB2 or 180˝ ´ =B1AB2, which is not 0 or 180˝ because
no three of the points were collinear. All three distances between those points are bounded
above by constant multiples of ǫ (in fact, if the triangle is scaled by a factor of 1{ǫ, it tends to
a fixed triangle). Thus the circumradius of those three points, which is the radius of gpXǫq, is
also bounded above by a constant multiple of ǫ, and so the result follows by Lemma 2. l

Lemma 5. Suppose there are two points A and B such that gpAq and gpBq cut. Then there is
a point P with the given property.

Proof. Suppose that gpAq and gpBq cut at C and D. One of those points, without loss of
generality C, must be fpABq, and so lie on the line AB. We now consider two cases, according
to whether D also lies on that line.

Case 1: D does not lie on that line.

In this case, consider a sequence of Xǫ at distance ǫ from D, tending to D along some line
that is not a tangent to either circle, but perturbed slightly (by at most ǫ2) to ensure that no
three of the points A, B and Xǫ are collinear and no four are concyclic.

Consider the points fpXǫAq and fpXǫBq, and the circles gpXǫq on which they lie. The
point fpXǫAq might be either A or the other intersection of XǫA with the circle gpAq, and the
same applies for B. If, for some sequence of ǫ Ñ 0, both those points are the other point of
intersection, the same argument as in the proof of Lemma 4 applies to find arbitrarily small
circles. Otherwise, we have either infinitely many of those circles passing through A, or infinitely
many passing through B; without loss of generality, suppose infinitely many through A.

We now show we can find five points Bi satisfying the conditions of Lemma 4 (together
with A). Let B1 be any of the Xǫ for which gpXǫq passes through A. Then repeat the following
four times, for 2 ď i ď 5.

Consider some line ℓ “ XǫA (different from those considered for previous i) that is not
tangent to any of the gpBjq for j ă i, and is such that fpℓq “ A, so gpY q passes through A
for all Y on that line. If there are arbitrarily small circles gpY q we are done by Lemma 2, so
the radii of such circles must be bounded below. But as Y Ñ A, along any line not tangent
to gpBjq, the radius of a circle through Y and tangent to gpBjq at A tends to 0. So there must
be some Y such that gpY q cuts gpBjq at A rather than being tangent to it there, for all of the
previous Bj, and we may also pick it such that no three of the Bi and A are collinear and no
four are concyclic. Let Bi be this Y . Now the result follows by Lemma 4.

Case 2: D does lie on that line.

In this case, we follow a similar argument, but the sequence of Xǫ needs to be slightly
different. C and D both lie on the line AB, so one must be A and the other must be B.
Consider a sequence of Xǫ tending to B. Rather than tending to B along a straight line (with
small perturbations), let the sequence be such that all the points are inside the two circles, with
the angle between XǫB and the tangent to gpBq at B tending to 0.

Again consider the points fpXǫAq and fpXǫBq. If, for some sequence of ǫ Ñ 0, both those
points are the other point of intersection with the respective circles, we see that the angle at Xǫ

tends to the angle between AB and the tangent to gpBq at B, which is not 0 or 180˝, while the
distances tend to 0 (although possibly slower than any multiple of ǫ), so we have arbitrarily
small circumradii and the result follows by Lemma 2. Otherwise, we have either infinitely many
of the circles gpXǫq passing through A, or infinitely many passing through B, and the same
argument as in the previous case enables us to reduce to Lemma 4. l

Lemmas 3 and 5 together cover all cases, and so the required result is proved.
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Comment. From the property that all circles gpXq pass through the same point P , it is possible to
deduce that the function f has the form given in Solution 1. For any line ℓ not passing through P we
may define a corresponding angle αpℓq, which we must show is the same for all such lines. For any
point X ‰ P , with at least one line ℓ through X and not through P , such that fpℓq ‰ X, this angle
must be equal for all such lines through X (by (directed) angles in the same segment of gpXq).

Now consider all horizontal and all vertical lines not through P . For any pair consisting of a
horizontal line ℓ1 and a vertical line ℓ2, we have αpℓ1q “ αpℓ2q unless fpℓ1q or fpℓ2q is the point of
intersection of those lines. Consider the bipartite graph whose vertices are those lines and where an
edge joins a horizontal and a vertical line with the same value of α. Considering a subgraph induced
by n horizontal and n vertical lines, it must have at least n2 ´ 2n edges, so some horizontal line has
edges to at least n ´ 2 of the vertical lines. Thus, in the original graph, all but at most two of the
vertical lines have the same value of α, and likewise all but at most two of the horizontal lines have
the same value of α, and, restricting attention to suitable subsets of those lines, we see that this value
must be the same for the vertical lines and for the horizontal lines.

But now we can extend this to all vertical and horizontal lines not through P (and thus to lines
in other directions as well, since the only requirement for ‘vertical’ and ‘horizontal’ above is that they
are any two nonparallel directions). Consider any horizontal line ℓ1 not passing through P , and we
wish to show that αpℓ1q has the same value α it has for all but at most two lines not through P in any
direction. Indeed, we can deduce this by considering the intersection with any but at most five of the
vertical lines: the only ones to exclude are the one passing through P , the one passing through fpℓ1q,
at most two such that αpℓq ‰ α, and the one passing through hP,αpℓ1q (defined as in Solution 1). So
all lines ℓ not passing through P have the same value of αpℓq.

Solution 4. For any point X, denote by tpXq the line tangent to gpXq at X; notice that
fptpXqq “ X, so f is surjective.

Step 1: We find a point P for which there are at least two different lines p1 and p2 such that
fppiq “ P .

Choose any point X. If X does not have this property, take any Y P gpXq z tXu; then
fpXY q “ Y . If Y does not have the property, tpY q “ XY , and the circles gpXq and gpY q meet
again at some point Z. Then fpXZq “ Z “ fpY Zq, so Z has the required property.

We will show that P is the desired point. From now on, we fix two different lines p1
and p2 with fpp1q “ fpp2q “ P . Assume for contradiction that fpℓq “ Q ‰ P for some line ℓ
through P . We fix ℓ, and note that Q P gpP q.

Step 2: We prove that P P gpQq.
Take an arbitrary point X P ℓ z tP,Qu. Two cases are possible for the position of tpXq

in relation to the pi; we will show that each case (and subcase) occurs for only finitely many
positions of X, yielding a contradiction.

Case 2.1: tpXq is parallel to one of the pi; say, to p1.

Let tpXq cross p2 at R. Then gpRq is the circle pPRXq, as fpRP q “ P and fpRXq “ X.
Let RQ cross gpRq again at S. Then fpRQq P tR, Su X gpQq, so gpQq contains one of the
points R and S.

If R P gpQq, then R is one of finitely many points in the intersection gpQq X p2, and each of
them corresponds to a unique position of X, since RX is parallel to p1.

If S P gpQq, then =pQS, SP q “ =pRS, SP q “ =pRX,XP q “ =pp1, ℓq, so =pQS, SP q is
constant for all such points X, and all points S obtained in such a way lie on one circle γ
passing through P and Q. Since gpQq does not contain P , it is different from γ, so there are
only finitely many points S. Each of them uniquely determines R and thus X.
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So, Case 2.1 can occur for only finitely many points X.

Case 2.2: tpXq crosses p1 and p2 at R1 and R2, respectively.

Clearly, R1 ‰ R2, as tpXq is the tangent to gpXq at X, and gpXq meets ℓ only at X and Q.
Notice that gpRiq is the circle pPXRiq. Let RiQ meet gpRiq again at Si; then Si ‰ Q, as gpRiq
meets ℓ only at P and X. Then fpRiQq P tRi, Siu, and we distinguish several subcases.
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Subcase 2.2.1: fpR1Qq “ S1, fpR2Qq “ S2; so S1, S2 P gpQq.
In this case we have 0 “ =pR1X,XP q ` =pXP,R2Xq “ =pR1S1, S1P q ` =pS2P, S2R2q “

=pQS1, S1P q ` =pS2P, S2Qq, which shows P P gpQq.

Subcase 2.2.2: fpR1Qq “ R1, fpR2Qq “ R2; so R1, R2 P gpQq.
This can happen for at most four positions of X – namely, at the intersections of ℓ with a

line of the form K1K2, where Ki P gpQq X pi.
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Subcase 2.2.3: fpR1Qq “ S1, fpR2Qq “ R2 (the case fpR1Qq “ R1, fpR2Qq “ S2 is similar).

In this case, there are at most two possible positions for R2 – namely, the meeting points
of gpQq with p2. Consider one of them. Let X vary on ℓ. Then R1 is the projection of X to p1
via R2, S1 is the projection of R1 to gpQq via Q. Finally, =pQS1, S1Xq “ =pR1S1, S1Xq “
=pR1P, PXq “ =pp1, ℓq ‰ 0, so X is obtained by a fixed projective transform gpQq Ñ ℓ from S1.
So, if there were three points X satisfying the conditions of this subcase, the composition of the
three projective transforms would be the identity. But, if we apply it to X “ Q, we successively
get some point R1

1, then R2, and then some point different from Q, a contradiction.

Thus Case 2.2 also occurs for only finitely many points X, as desired.

Step 3: We show that fpPQq “ P , as desired.

The argument is similar to that in Step 2, with the roles of Q and X swapped. Again, we
show that there are only finitely many possible positions for a point X P ℓ z tP,Qu, which is
absurd.

Case 3.1: tpQq is parallel to one of the pi; say, to p1.

Let tpQq cross p2 at R; then gpRq is the circle pPRQq. Let RX cross gpRq again at S. Then
fpRXq P tR, Su X gpXq, so gpXq contains one of the points R and S.
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ℓ
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tpQq
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gpQq
gpRq

S

Subcase 3.1.1: S “ fpRXq P gpXq.
We have =ptpXq, QXq “ =pSX, SQq “ =pSR, SQq “ =pPR, PQq “ =pp2, ℓq. Hence

tpXq ‖ p2. Now we recall Case 2.1: we let tpXq cross p1 at R1, so gpR1q “ pPR1Xq, and let R1Q
meet gpR1q again at S 1; notice that S 1 ‰ Q. Excluding one position of X, we may assume that
R1 R gpQq, so R1 ‰ fpR1Qq. Therefore, S 1 “ fpR1Qq P gpQq. But then, as in Case 2.1, we get
=ptpQq, PQq “ =pQS 1, S 1P q “ =pR1X,XP q “ =pp2, ℓq. This means that tpQq is parallel to p2,
which is impossible.

Subcase 3.1.2: R “ fpRXq P gpXq.
In this case, we have =ptpXq, ℓq “ =pRX,RQq “ =pRX, p1q. Again, let R1 “ tpXqXp1; this

point exists for all but at most one position of X. Then gpR1q “ pR1XP q; let R1Q meet gpR1q
again at S 1. Due to =pR1X,XRq “ =pQX,QRq “ =pℓ, p1q, R1 determines X in at most two
ways, so for all but finitely many positions of X we have R1 R gpQq. Therefore, for those
positions we have S 1 “ fpR1Qq P gpQq. But then =pRX, p1q “ =pR1X,XP q “ =pR1S 1, S 1P q “
=pQS 1, S 1P q “ =ptpQq, QP q is fixed, so this case can hold only for one specific position of X
as well.

Thus, in Case 3.1, there are only finitely many possible positions of X, yielding a contra-
diction.
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Case 3.2: tpQq crosses p1 and p2 at R1 and R2, respectively.

By Step 2, R1 ‰ R2. Notice that gpRiq is the circle pPQRiq. Let RiX meet gpRiq at Si;
then Si ‰ X. Then fpRiXq P tRi, Siu, and we distinguish several subcases.

p1

p2

P

ℓ

X

R1

R2

Q

tpQq

gpQq

gpR1q

gpR2q

S1

S2

Subcase 3.2.1: fpR1Xq “ S1 and fpR2Xq “ S2, so S1, S2 P gpXq.
As in Subcase 2.2.1, we have 0 “ =pR1Q,QP q`=pQP,R2Qq “ =pXS1, S1P q`=pS2P, S2Xq,

which shows P P gpXq. But X,Q P gpXq as well, so gpXq meets ℓ at three distinct points,
which is absurd.

Subcase 3.2.2: fpR1Xq “ R1, fpR2Xq “ R2, so R1, R2 P gpXq.
Now three distinct collinear points R1, R2, and Q belong to gpXq, which is impossible.

Subcase 3.2.3: fpR1Xq “ S1, fpR2Xq “ R2 (the case fpR1Xq “ R1, fpR2Xq “ S2 is similar).

We have =pXR2, R2Qq “ =pXS1, S1Qq “ =pR1S1, S1Qq “ =pR1P, PQq “ =pp1, ℓq, so this
case can occur for a unique position of X.

Thus, in Case 3.2, there is only a unique position of X, again yielding the required contra-
diction.
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Number Theory

N1. Find all pairs pm,nq of positive integers satisfying the equation

p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q “ m! p1q

(El Salvador)

Answer: The only such pairs are p1, 1q and p3, 2q.

Common remarks. In all solutions, for any prime p and positive integer N , we will denote
by vppNq the exponent of the largest power of p that divides N . The left-hand side of p1q will
be denoted by Ln; that is, Ln “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q.

Solution 1. We will get an upper bound on n from the speed at which v2pLnq grows.

From

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2n´1q “ 21`2`¨¨¨`pn´1qp2n ´ 1qp2n´1 ´ 1q ¨ ¨ ¨ p21 ´ 1q

we read

v2pLnq “ 1 ` 2 ` ¨ ¨ ¨ ` pn´ 1q “ npn´ 1q
2

.

On the other hand, v2pm!q is expressed by the Legendre formula as

v2pm!q “
8
ÿ

i“1

Ym

2i

]

.

As usual, by omitting the floor functions,

v2pm!q ă
8
ÿ

i“1

m

2i
“ m.

Thus, Ln “ m! implies the inequality

npn´ 1q
2

ă m. p2q

In order to obtain an opposite estimate, observe that

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2n´1q ă p2nqn “ 2n
2

.

We claim that

2n
2 ă

ˆ

npn ´ 1q
2

˙

! for n ě 6. p3q

For n “ 6 the estimate p3q is true because 26
2 ă 6.9 ¨ 1010 and

`

npn´1q
2

˘

! “ 15! ą 1.3 ¨ 1012.
For n ě 7 we prove p3q by the following inequalities:

ˆ

npn´ 1q
2

˙

! “ 15! ¨ 16 ¨ 17 ¨ ¨ ¨ npn ´ 1q
2

ą 236 ¨ 16npn´1q

2
´15

“ 22npn´1q´24 “ 2n
2 ¨ 2npn´2q´24 ą 2n

2

.
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Putting together p2q and p3q, for n ě 6 we get a contradiction, since

Ln ă 2n
2 ă

ˆ

npn´ 1q
2

˙

! ă m! “ Ln.

Hence n ě 6 is not possible.

Checking manually the cases n ď 5 we find

L1 “ 1 “ 1!, L2 “ 6 “ 3!, 5! ă L3 “ 168 ă 6!,

7! ă L4 “ 20 160 ă 8! and 10! ă L5 “ 9 999 360 ă 11!.

So, there are two solutions:

pm,nq P
 

p1, 1q, p3, 2q
(

.

Solution 2. Like in the previous solution, the cases n “ 1, 2, 3, 4 are checked manually. We
will exclude n ě 5 by considering the exponents of 3 and 31 in p1q.

For odd primes p and distinct integers a, b, coprime to p, with p | a ´ b, the Lifting The
Exponent lemma asserts that

vppak ´ bkq “ vppa ´ bq ` vppkq.

Notice that 3 divides 2k ´ 1 if only if k is even; moreover, by the Lifting The Exponent lemma
we have

v3p22k ´ 1q “ v3p4k ´ 1q “ 1 ` v3pkq “ v3p3kq.
Hence,

v3pLnq “
ÿ

2kďn

v3p4k ´ 1q “
ÿ

kďtn
2

u

v3p3kq.

Notice that the last expression is precisely the exponent of 3 in the prime factorisation of
`

3tn
2
u
˘

!.
Therefore

v3pm!q “ v3pLnq “ v3

ˆ

´

3
X

n
2

\

¯

!

˙

3

Z

n

2

^

ď m ď 3

Z

n

2

^

` 2. (4)

Suppose that n ě 5. Note that every fifth factor in Ln is divisible by 31 “ 25 ´1, and hence
we have v31pLnq ě tn

5
u. Then

n

10
ď
Yn

5

]

ď v31pLnq “ v31pm!q “
8
ÿ

k“1

Y m

31k

]

ă
8
ÿ

k“1

m

31k
“ m

30
. p5q

By combining p4q and p5q,
3n ă m ď 3n

2
` 2

so n ă 4
3

which is inconsistent with the inequality n ě 5.

Comment 1. There are many combinations of the ideas above; for example combining p2q and p4q
also provides n ă 5. Obviously, considering the exponents of any two primes in p1q, or considering one
prime and the magnitude orders lead to an upper bound on n and m.
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Comment 2. This problem has a connection to group theory. Indeed, the left-hand side is the
order of the group GLnpF2q of invertible n-by-n matrices with entries modulo 2, while the right-hand
side is the order of the symmetric group Sm on m elements. The result thus shows that the only
possible isomorphisms between these groups are GL1pF2q – S1 and GL2pF2q – S3, and there are in
fact isomorphisms in both cases. In general, GLnpF2q is a simple group for n ě 3, as it is isomorphic
to PSLnpF2q.

There is also a near-solution of interest: the left-hand side for n “ 4 is half of the right-hand side
when m “ 8; this turns out to correspond to an isomorphism GL4pF2q – A8 with the alternating group
on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use
in solving it!
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N2. Find all triples pa, b, cq of positive integers such that a3 ` b3 ` c3 “ pabcq2.
(Nigeria)

Answer: The solutions are p1, 2, 3q and its permutations.

Common remarks. Note that the equation is symmetric. In all solutions, we will assume
without loss of generality that a ě b ě c, and prove that the only solution is pa, b, cq “ p3, 2, 1q.

The first two solutions all start by proving that c “ 1.

Solution 1. We will start by proving that c “ 1. Note that

3a3 ě a3 ` b3 ` c3 ą a3 .

So 3a3 ě pabcq2 ą a3 and hence 3a ě b2c2 ą a. Now b3 ` c3 “ a2pb2c2 ´ aq ě a2, and so

18b3 ě 9pb3 ` c3q ě 9a2 ě b4c4 ě b3c5 ,

so 18 ě c5 which yields c “ 1.
Now, note that we must have a ą b, as otherwise we would have 2b3 ` 1 “ b4 which has no

positive integer solutions. So
a3 ´ b3 ě pb ` 1q3 ´ b3 ą 1

and
2a3 ą 1 ` a3 ` b3 ą a3 ,

which implies 2a3 ą a2b2 ą a3 and so 2a ą b2 ą a. Therefore

4p1 ` b3q “ 4a2pb2 ´ aq ě 4a2 ą b4 ,

so 4 ą b3pb ´ 4q; that is, b ď 4.
Now, for each possible value of b with 2 ď b ď 4 we obtain a cubic equation for a with

constant coefficients. These are as follows:

b “ 2 : a3 ´ 4a2 ` 9 “ 0

b “ 3 : a3 ´ 9a2 ` 28 “ 0

b “ 4 : a3 ´ 16a2 ` 65 “ 0.

The only case with an integer solution for a with b ď a is b “ 2, leading to pa, b, cq “ p3, 2, 1q.

Comment 1.1. Instead of writing down each cubic equation explicitly, we could have just observed
that a2 | b3 ` 1, and for each choice of b checked each square factor of b3 ` 1 for a2.

We could also have observed that, with c “ 1, the relation 18b3 ě b4c4 becomes b ď 18, and we
can simply check all possibilities for b (instead of working to prove that b ď 4). This check becomes
easier after using the factorisation b3 ` 1 “ pb ` 1qpb2 ´ b ` 1q and observing that no prime besides 3
can divide both of the factors.

Comment 1.2. Another approach to finish the problem after establishing that c ď 1 is to set
k “ b2c2 ´ a, which is clearly an integer and must be positive as it is equal to pb3 ` c3q{a2. Then we
divide into cases based on whether k “ 1 or k ě 2; in the first case, we have b3 ` 1 “ a2 “ pb2 ´ 1q2
whose only positive root is b “ 2, and in the second case we have b2 ď 3a, and so

b4 ď p3aq2 ď 9

2
pka2q “ 9

2
pb3 ` 1q,

which implies that b ď 4.
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Solution 2. Again, we will start by proving that c “ 1. Suppose otherwise that c ě 2. We
have a3 ` b3 ` c3 ď 3a3, so b2c2 ď 3a. Since c ě 2, this tells us that b ď

a

3a{4. As the
right-hand side of the original equation is a multiple of a2, we have a2 ď 2b3 ď 2p3a{4q3{2. In
other words, a ď 27

16
ă 2, which contradicts the assertion that a ě c ě 2. So there are no

solutions in this case, and so we must have c “ 1.
Now, the original equation becomes a3 ` b3 ` 1 “ a2b2. Observe that a ě 2, since otherwise

a “ b “ 1 as a ě b.
The right-hand side is a multiple of a2, so the left-hand side must be as well. Thus, b3 `1 ě

a2. Since a ě b, we also have

b2 “ a` b3 ` 1

a2
ď 2a` 1

a2

and so b2 ď 2a since b2 is an integer. Thus p2aq3{2 ` 1 ě b3 ` 1 ě a2, from which we deduce
a ď 8.

Now, for each possible value of a with 2 ď a ď 8 we obtain a cubic equation for b with
constant coefficients. These are as follows:

a “ 2 : b3 ´ 4b2 ` 9 “ 0

a “ 3 : b3 ´ 9b2 ` 28 “ 0

a “ 4 : b3 ´ 16b2 ` 65 “ 0

a “ 5 : b3 ´ 25b2 ` 126 “ 0

a “ 6 : b3 ´ 36b2 ` 217 “ 0

a “ 7 : b3 ´ 49b2 ` 344 “ 0

a “ 8 : b3 ´ 64b2 ` 513 “ 0.

The only case with an integer solution for b with a ě b is a “ 3, leading to pa, b, cq “ p3, 2, 1q.

Comment 2.1. As in Solution 1, instead of writing down each cubic equation explicitly, we could
have just observed that b2 | a3 ` 1, and for each choice of a checked each square factor of a3 ` 1 for b2.

Comment 2.2. This solution does not require initially proving that c “ 1, in which case the bound
would become a ď 108. The resulting cases could, in principle, be checked by a particularly industrious
student.

Solution 3. Set k “ pb3 ` c3q{a2 ď 2a, and rewrite the original equation as a ` k “ pbcq2.
Since b3 and c3 are positive integers, we have pbcq3 ě b3 ` c3 ´ 1 “ ka2 ´ 1, so

a` k ě pka2 ´ 1q2{3.

As in Comment 1.2, k is a positive integer; for each value of k ě 1, this gives us a polynomial
inequality satisfied by a:

k2a4 ´ a3 ´ 5ka2 ´ 3k2a ´ pk3 ´ 1q ď 0.

We now prove that a ď 3. Indeed,

0 ě k2a4 ´ a3 ´ 5ka2 ´ 3k2a´ pk3 ´ 1q
k2

ě a4 ´ a3 ´ 5a2 ´ 3a´ k ě a4 ´ a3 ´ 5a2 ´ 5a,

which fails when a ě 4.
This leaves ten triples with 3 ě a ě b ě c ě 1, which may be checked manually to give

pa, b, cq “ p3, 2, 1q.
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Solution 4. Again, observe that b3 ` c3 “ a2pb2c2 ´ aq, so b ď a ď b2c2 ´ 1.
We consider the function fpxq “ x2pb2c2 ´ xq. It can be seen that that on the interval

r0, b2c2 ´ 1s the function f is increasing if x ă 2
3
b2c2 and decreasing if x ą 2

3
b2c2. Consequently,

it must be the case that

b3 ` c3 “ fpaq ě min
´

fpbq, fpb2c2 ´ 1q
¯

.

First, suppose that b3 ` c3 ě fpb2c2 ´ 1q. This may be written b3 ` c3 ě pb2c2 ´ 1q2, and so

2b3 ě b3 ` c3 ě pb2c2 ´ 1q2 ą b4c4 ´ 2b2c2 ě b4c4 ´ 2b3c4.

Thus, pb ´ 2qc4 ă 2, and the only solutions to this inequality have pb, cq “ p2, 2q or b ď 3 and
c “ 1. It is easy to verify that the only case giving a solution for a ě b is pa, b, cq “ p3, 2, 1q.

Otherwise, suppose that b3 ` c3 “ fpaq ě fpbq. Then, we have

2b3 ě b3 ` c3 “ a2pb2c2 ´ aq ě b2pb2c2 ´ bq.

Consequently bc2 ď 3, with strict inequality in the case that b ‰ c. Hence c “ 1 and b ď 2.
Both of these cases have been considered already, so we are done.

Comment 4.1. Instead of considering which of fpbq and fpb2c2 ´ 1q is less than fpaq, we may also
proceed by explicitly dividing into cases based on whether a ě 2

3
b2c2 or a ă 2

3
b2c2. The first case may

now be dealt with as follows. We have b3c3 ` 1 ě b3 ` c3 as b3 and c3 are positive integers, so we have

b3c3 ` 1 ě b3 ` c3 ě a2 ě 4

9
b4c4.

This implies bc ď 2, and hence c “ 1 and b ď 2.
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N3. We say that a set S of integers is rootiful if, for any positive integer n and any
a0, a1, . . . , an P S, all integer roots of the polynomial a0 ` a1x` ¨ ¨ ¨ ` anx

n are also in S. Find
all rootiful sets of integers that contain all numbers of the form 2a ´ 2b for positive integers
a and b.

(Czech Republic)

Answer: The set Z of all integers is the only such rootiful set.

Solution 1. The set Z of all integers is clearly rootiful. We shall prove that any rootiful set S
containing all the numbers of the form 2a ´ 2b for a, b P Zą0 must be all of Z.

First, note that 0 “ 21 ´ 21 P S and 2 “ 22 ´ 21 P S. Now, ´1 P S, since it is a root of
2x` 2, and 1 P S, since it is a root of 2x2 ´ x´ 1. Also, if n P S then ´n is a root of x` n, so
it suffices to prove that all positive integers must be in S.

Now, we claim that any positive integer n has a multiple in S. Indeed, suppose that n “ 2α ¨t
for α P Zě0 and t odd. Then t | 2φptq ´1, so n | 2α`φptq`1 ´2α`1. Moreover, 2α`φptq`1 ´2α`1 P S,
and so S contains a multiple of every positive integer n.

We will now prove by induction that all positive integers are in S. Suppose that 0, 1, . . . , n´
1 P S; furthermore, let N be a multiple of n in S. Consider the base-n expansion of N , say
N “ akn

k`ak´1n
k´1`¨ ¨ ¨`a1n`a0. Since 0 ď ai ă n for each ai, we have that all the ai are in S.

Furthermore, a0 “ 0 since N is a multiple of n. Therefore, akn
k `ak´1n

k´1 ` ¨ ¨ ¨`a1n´N “ 0,
so n is a root of a polynomial with coefficients in S. This tells us that n P S, completing the
induction.

Solution 2. As in the previous solution, we can prove that 0, 1 and ´1 must all be in any
rootiful set S containing all numbers of the form 2a ´ 2b for a, b P Zą0.

We show that, in fact, every integer k with |k| ą 2 can be expressed as a root of a polynomial
whose coefficients are of the form 2a ´ 2b. Observe that it suffices to consider the case where k
is positive, as if k is a root of anx

n ` ¨ ¨ ¨ ` a1x` a0 “ 0, then ´k is a root of p´1qnanxn ` ¨ ¨ ¨ ´
a1x ` a0 “ 0.

Note that
p2an ´ 2bnqkn ` ¨ ¨ ¨ ` p2a0 ´ 2b0q “ 0

is equivalent to
2ankn ` ¨ ¨ ¨ ` 2a0 “ 2bnkn ` ¨ ¨ ¨ ` 2b0 .

Hence our aim is to show that two numbers of the form 2ankn ` ¨ ¨ ¨ ` 2a0 are equal, for a
fixed value of n. We consider such polynomials where every term 2aiki is at most 2kn; in other
words, where 2 ď 2ai ď 2kn´i, or, equivalently, 1 ď ai ď 1 ` pn ´ iq log2 k. Therefore, there
must be 1 ` tpn´ iq log2 ku possible choices for ai satisfying these constraints.

The number of possible polynomials is then

n
ź

i“0

p1 ` tpn ´ iq log2 kuq ě
n´1
ź

i“0

pn ´ iq log2 k “ n!plog2 kqn

where the inequality holds as 1 ` txu ě x.
As there are pn ` 1q such terms in the polynomial, each at most 2kn, such a polynomial

must have value at most 2knpn ` 1q. However, for large n, we have n!plog2 kqn ą 2knpn ` 1q.
Therefore there are more polynomials than possible values, so some two must be equal, as
required.
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N4. Let Zą0 be the set of positive integers. A positive integer constant C is given. Find
all functions f : Zą0 Ñ Zą0 such that, for all positive integers a and b satisfying a` b ą C,

a` fpbq | a2 ` b fpaq. (˚)

(Croatia)

Answer: The functions satisfying (˚) are exactly the functions fpaq “ ka for some constant
k P Zą0 (irrespective of the value of C).

Common remarks. It is easy to verify that the functions fpaq “ ka satisfy (˚). Thus, in the
proofs below, we will only focus on the converse implication: that condition (˚) implies that
f “ ka.

A common minor part of these solutions is the derivation of some relatively easy bounds on
the function f . An upper bound is easily obtained by setting a “ 1 in (˚), giving the inequality

fpbq ď b ¨ fp1q

for all sufficiently large b. The corresponding lower bound is only marginally more difficult to
obtain: substituting b “ 1 in the original equation shows that

a ` fp1q | pa2 ` fpaqq ´ pa´ fp1qq ¨ pa` fp1qq “ fp1q2 ` fpaq

for all sufficiently large a. It follows from this that one has the lower bound

fpaq ě a ` fp1q ¨ p1 ´ fp1qq,

again for all sufficiently large a.
Each of the following proofs makes use of at least one of these bounds.

Solution 1. First, we show that b | fpbq2 for all b. To do this, we choose a large positive
integer n so that nb´ fpbq ě C. Setting a “ nb ´ fpbq in (˚) then shows that

nb | pnb ´ fpbqq2 ` bfpnb ´ fpbqq

so that b | fpbq2 as claimed.
Now in particular we have that p | fppq for every prime p. If we write fppq “ kppq ¨ p, then

the bound fppq ď fp1q ¨ p (valid for p sufficiently large) shows that some value k of kppq must
be attained for infinitely many p. We will show that fpaq “ ka for all positive integers a. To
do this, we substitute b “ p in (˚), where p is any sufficiently large prime for which kppq “ k,
obtaining

a` kp | pa2 ` pfpaqq ´ apa ` kpq “ pfpaq ´ pka.

For suitably large p we have gcdpa ` kp, pq “ 1, and hence we have

a` kp | fpaq ´ ka.

But the only way this can hold for arbitrarily large p is if fpaq ´ ka “ 0. This concludes the
proof.

Comment. There are other ways to obtain the divisibility p | fppq for primes p, which is all that
is needed in this proof. For instance, if fppq were not divisible by p then the arithmetic progression
p2 ` bfppq would attain prime values for infinitely many b by Dirichlet’s Theorem: hence, for these
pairs p, b, we would have p ` fpbq “ p2 ` bfppq. Substituting a ÞÑ b and b ÞÑ p in (˚) then shows that
pfppq2 ´ p2qpp ´ 1q is divisible by b ` fppq and hence vanishes, which is impossible since p ∤ fppq by
assumption.
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Solution 2. First, we substitute b “ 1 in (˚) and rearrange to find that

fpaq ` fp1q2
a` fp1q “ fp1q ´ a` a2 ` fpaq

a ` fp1q
is a positive integer for sufficiently large a. Since fpaq ď afp1q, for all sufficiently large a, it

follows that fpaq`fp1q2

a`fp1q
ď fp1q also and hence there is a positive integer k such that fpaq`fp1q2

a`fp1q
“ k

for infinitely many values of a. In other words,

fpaq “ ka` fp1q ¨ pk ´ fp1qq
for infinitely many a.

Fixing an arbitrary choice of a in (˚), we have that

a2 ` bfpaq
a` kb ` fp1q ¨ pk ´ fp1qq

is an integer for infinitely many b (the same b as above, maybe with finitely many exceptions).

On the other hand, for b taken sufficiently large, this quantity becomes arbitrarily close to fpaq
k

;

this is only possible if fpaq
k

is an integer and

a2 ` bfpaq
a ` kb` fp1q ¨ pk ´ fp1qq “ fpaq

k

for infinitely many b. This rearranges to

fpaq
k

¨
`

a` fp1q ¨ pk ´ fp1qq
˘

“ a2. (˚˚)

Hence a2 is divisible by a ` fp1q ¨ pk ´ fp1qq, and hence so is fp1q2pk ´ fp1qq2. The only way
this can occur for all a is if k “ fp1q, in which case (˚˚) provides that fpaq “ ka for all a, as
desired.

Solution 3. Fix any two distinct positive integers a and b. From (˚) it follows that the two
integers

pa2 ` cfpaqq ¨ pb ` fpcqq and pb2 ` cfpbqq ¨ pa` fpcqq
are both multiples of pa ` fpcqq ¨ pb ` fpcqq for all sufficiently large c. Taking an appropriate
linear combination to eliminate the cfpcq term, we find after expanding out that the integer

“

a2fpbq ´ b2fpaq
‰

¨ fpcq `
“

pb´ aqfpaqfpbq
‰

¨ c`
“

abpafpbq ´ bfpaqq
‰

(:)
is also a multiple of pa ` fpcqq ¨ pb` fpcqq.

But as c varies, (:) is bounded above by a positive multiple of c while pa` fpcqq ¨ pb` fpcqq
is bounded below by a positive multiple of c2. The only way that such a divisibility can hold
is if in fact

“

a2fpbq ´ b2fpaq
‰

¨ fpcq `
“

pb´ aqfpaqfpbq
‰

¨ c`
“

abpafpbq ´ bfpaqq
‰

“ 0 (::)
for sufficiently large c. Since the coefficient of c in this linear relation is nonzero, it follows that
there are constants k, ℓ such that fpcq “ kc` ℓ for all sufficiently large c; the constants k and ℓ
are necessarily integers.

The value of ℓ satisfies
“

a2fpbq ´ b2fpaq
‰

¨ ℓ `
“

abpafpbq ´ bfpaqq
‰

“ 0 (:::)
and hence b | ℓa2fpbq for all a and b. Taking b sufficiently large so that fpbq “ kb ` ℓ, we thus
have that b | ℓ2a2 for all sufficiently large b; this implies that ℓ “ 0. From (:::) it then follows

that fpaq
a

“ fpbq
b

for all a ‰ b, so that there is a constant k such that fpaq “ ka for all a (k is
equal to the constant defined earlier).
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Solution 4. Let Γ denote the set of all points pa, fpaqq, so that Γ is an infinite subset of
the upper-right quadrant of the plane. For a point A “ pa, fpaqq in Γ, we define a point
A1 “ p´fpaq,´fpaq2{aq in the lower-left quadrant of the plane, and let Γ1 denote the set of all
such points A1.

O

A

A1

B

B1

C

C 1

Claim. For any point A P Γ, the set Γ is contained in finitely many lines through the point A1.

Proof. Let A “ pa, fpaqq. The functional equation (with a and b interchanged) can be rewritten
as b` fpaq | afpbq ´ bfpaq, so that all but finitely many points in Γ are contained in one of the
lines with equation

ay ´ fpaqx “ mpx ` fpaqq
for m an integer. Geometrically, these are the lines through A1 “ p´fpaq,´fpaq2{aq with

gradient fpaq`m
a

. Since Γ is contained, with finitely many exceptions, in the region 0 ď y ď
fp1q ¨ x and the point A1 lies strictly in the lower-left quadrant of the plane, there are only
finitely many values of m for which this line meets Γ. This concludes the proof of the claim.

l

Now consider any distinct points A,B P Γ. It is clear that A1 and B1 are distinct. A line
through A1 and a line through B1 only meet in more than one point if these two lines are equal
to the line A1B1. It then follows from the above claim that the line A1B1 must contain all but
finitely many points of Γ. If C is another point of Γ, then the line A1C 1 also passes through all
but finitely many points of Γ, which is only possible if A1C 1 “ A1B1.

We have thus seen that there is a line ℓ passing through all points of Γ1 and through all
but finitely many points of Γ. We claim that this line passes through the origin O and passes
through every point of Γ. To see this, note that by construction A,O,A1 are collinear for every
point A P Γ. Since ℓ “ AA1 for all but finitely many points A P Γ, it thus follows that O P ℓ.
Thus any A P Γ lies on the line ℓ “ A1O.

Since Γ is contained in a line through O, it follows that there is a real constant k (the
gradient of ℓ) such that fpaq “ ka for all a. The number k is, of course, a positive integer.

Comment. Without the a ` b ą C condition, this problem is approachable by much more naive
methods. For instance, using the given divisibility for a, b P t1, 2, 3u one can prove by a somewhat
tedious case-check that fp2q “ 2fp1q and fp3q “ 3fp1q; this then forms the basis of an induction
establishing that fpnq “ nfp1q for all n.
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N5. Let a be a positive integer. We say that a positive integer b is a-good if
`

an
b

˘

´ 1 is
divisible by an ` 1 for all positive integers n with an ě b. Suppose b is a positive integer such
that b is a-good, but b` 2 is not a-good. Prove that b ` 1 is prime.

(Netherlands)

Solution 1. For p a prime and n a nonzero integer, we write vppnq for the p-adic valuation
of n: the largest integer t such that pt | n.

We first show that b is a-good if and only if b is even, and p | a for all primes p ď b.
To start with, the condition that an ` 1 |

`

an
b

˘

´ 1 can be rewritten as saying that

anpan ´ 1q ¨ ¨ ¨ pan´ b ` 1q
b!

” 1 pmod an ` 1q. (1)

Suppose, on the one hand, there is a prime p ď b with p ∤ a. Take t “ vppb!q. Then there
exist positive integers c such that ac ” 1 pmod pt`1q. If we take c big enough, and then take
n “ pp´1qc, then an “ app´1qc ” p´1 pmod pt`1q and an ě b. Since p ď b, one of the terms
of the numerator anpan ´ 1q ¨ ¨ ¨ pan ´ b ` 1q is an ´ p ` 1, which is divisible by pt`1. Hence
the p-adic valuation of the numerator is at least t` 1, but that of the denominator is exactly t.
This means that p |

`

an
b

˘

, so p ∤
`

an
b

˘

´ 1. As p | an ` 1, we get that an ` 1 ∤
`

an
b

˘

, so b is not
a-good.

On the other hand, if for all primes p ď b we have p | a, then every factor of b! is coprime
to an` 1, and hence invertible modulo an` 1: hence b! is also invertible modulo an` 1. Then
equation (1) reduces to:

anpan ´ 1q ¨ ¨ ¨ pan´ b ` 1q ” b! pmod an ` 1q.

However, we can rewrite the left-hand side as follows:

anpan ´ 1q ¨ ¨ ¨ pan´ b ` 1q ” p´1qp´2q ¨ ¨ ¨ p´bq ” p´1qbb! pmod an` 1q.

Provided that an ą 1, if b is even we deduce p´1qbb! ” b! as needed. On the other hand, if b is
odd, and we take an ` 1 ą 2pb!q, then we will not have p´1qbb! ” b!, so b is not a-good. This
completes the claim.

To conclude from here, suppose that b is a-good, but b` 2 is not. Then b is even, and p | a
for all primes p ď b, but there is a prime q ď b ` 2 for which q ∤ a: so q “ b ` 1 or q “ b ` 2.
We cannot have q “ b ` 2, as that is even too, so we have q “ b ` 1: in other words, b ` 1 is
prime.

Solution 2. We show only half of the claim of the previous solution: we show that if b is
a-good, then p | a for all primes p ď b. We do this with Lucas’ theorem.

Suppose that we have p ď b with p ∤ a. Then consider the expansion of b in base p; there
will be some digit (not the final digit) which is nonzero, because p ď b. Suppose it is the pt digit
for t ě 1.

Now, as n varies over the integers, an ` 1 runs over all residue classes modulo pt`1; in
particular, there is a choice of n (with an ą b) such that the p0 digit of an is p ´ 1 (so
p | an` 1) and the pt digit of an is 0. Consequently, p | an` 1 but p |

`

an
b

˘

(by Lucas’ theorem)
so p ∤

`

an
b

˘

´ 1. Thus b is not a-good.
Now we show directly that if b is a-good but b` 2 fails to be so, then there must be a prime

dividing an ` 1 for some n, which also divides pb ` 1qpb ` 2q. Indeed, the ratio between
`

an
b`2

˘

and
`

an
b

˘

is pb` 1qpb` 2q{pan´ bqpan´ b´ 1q. We know that there must be a choice of an` 1
such that the former binomial coefficient is 1 modulo an` 1 but the latter is not, which means
that the given ratio must not be 1 mod an`1. If b`1 and b`2 are both coprime to an`1 then
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the ratio is 1, so that must not be the case. In particular, as any prime less than b divides a,
it must be the case that either b ` 1 or b ` 2 is prime.

However, we can observe that b must be even by insisting that an ` 1 is prime (which is
possible by Dirichlet’s theorem) and hence

`

an
b

˘

” p´1qb “ 1. Thus b ` 2 cannot be prime, so
b ` 1 must be prime.
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N6. Let H “
 X

i
?
2
\

: i P Zą0

(

“ t1, 2, 4, 5, 7, . . .u, and let n be a positive integer. Prove
that there exists a constant C such that, if A Ă t1, 2, . . . , nu satisfies |A| ě C

?
n, then there

exist a, b P A such that a´ b P H . (Here Zą0 is the set of positive integers, and tzu denotes the
greatest integer less than or equal to z.)

(Brazil)

Common remarks. In all solutions, we will assume that A is a set such that ta´b : a, b P Au
is disjoint from H , and prove that |A| ă C

?
n.

Solution 1. First, observe that if n is a positive integer, then n P H exactly when
"

n?
2

*

ą 1 ´ 1?
2
. (1)

To see why, observe that n P H if and only if 0 ă i
?
2´n ă 1 for some i P Zą0. In other words,

0 ă i ´ n{
?
2 ă 1{

?
2, which is equivalent to (1).

Now, write A “ ta1 ă a2 ă ¨ ¨ ¨ ă aku, where k “ |A|. Observe that the set of differences is
not altered by shifting A, so we may assume that A Ď t0, 1, . . . , n´ 1u with a1 “ 0.

From (1), we learn that tai{
?
2u ă 1 ´ 1{

?
2 for each i ą 1 since ai ´ a1 R H . Furthermore,

we must have tai{
?
2u ă taj{

?
2u whenever i ă j; otherwise, we would have

´
ˆ

1 ´ 1?
2

˙

ă
"

aj?
2

*

´
"

ai?
2

*

ă 0.

Since tpaj ´ aiq{
?
2u “ taj{

?
2u ´ tai{

?
2u ` 1, this implies that tpaj ´ aiq{

?
2u ą 1{

?
2 ą

1 ´ 1{
?
2, contradicting (1).

Now, we have a sequence 0 “ a1 ă a2 ă ¨ ¨ ¨ ă ak ă n, with

0 “
"

a1?
2

*

ă
"

a2?
2

*

ă ¨ ¨ ¨ ă
"

ak?
2

*

ă 1 ´ 1?
2
.

We use the following fact: for any d P Z, we have
"

d?
2

*

ą 1

2d
?
2
. (2)

To see why this is the case, let h “
X

d{
?
2
\

, so
 

d{
?
2
(

“ d{
?
2 ´ h. Then

"

d?
2

*ˆ

d?
2

` h

˙

“ d2 ´ 2h2

2
ě 1

2
,

since the numerator is a positive integer. Because d{
?
2 ` h ă 2d{

?
2, inequality (2) follows.

Let di “ ai`1 ´ ai, for 1 ď i ă k. Then tai`1{
?
2u ´ tai{

?
2u “ tdi{

?
2u, and we have

1 ´ 1?
2

ą
ÿ

i

"

di?
2

*

ą 1

2
?
2

ÿ

i

1

di
ě pk ´ 1q2

2
?
2

1
ř

i di
ą pk ´ 1q2

2
?
2

¨ 1
n
. (3)

Here, the first inequality holds because tak{
?
2u ă 1 ´ 1{

?
2, the second follows from (2), the

third follows from an easy application of the AM–HM inequality (or Cauchy–Schwarz), and the
fourth follows from the fact that

ř

i di “ ak ă n.
Rearranging this, we obtain

b

2
?
2 ´ 2 ¨

?
n ą k ´ 1,

which provides the required bound on k.
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Solution 2. Let α “ 2 `
?
2, so p1{αq ` p1{

?
2q “ 1. Thus, J “

 

tiαu : i P Zą0

(

is the
complementary Beatty sequence to H (in other words, H and J are disjoint with HYJ “ Zą0).
Write A “ ta1 ă a2 ă ¨ ¨ ¨ ă aku. Suppose that A has no differences in H , so all its differences
are in J and we can set ai ´ a1 “ tαbiu for bi P Zą0.

For any j ą i, we have aj ´ai “ tαbju´tαbiu. Because aj ´ai P J , we also have aj ´ai “ tαtu
for some positive integer t. Thus, tαtu “ tαbju ´ tαbiu. The right hand side must equal either
tαpbj ´ biqu or tαpbj ´ biqu ´ 1, the latter of which is not a member of J as α ą 2. Therefore,
t “ bj ´ bi and so we have tαbju ´ tαbiu “ tαpbj ´ biqu.

For 1 ď i ă k we now put di “ bi`1 ´ bi, and we have
[

α
ÿ

i

di

_

“ tαbku “
ÿ

i

tαdiu ;

that is,
ř

itαdiu ă 1. We also have

1 `
[

α
ÿ

i

di

_

“ 1 ` ak ´ a1 ď ak ď n

so
ř

i di ď n{α.
With the above inequalities, an argument similar to (3) (which uses the fact that tαdu “

td
?
2u ą 1{p2d

?
2q for positive integers d) proves that 1 ą

`

pk´ 1q2{p2
?
2q
˘

pα{nq, which again
rearranges to give

b

2
?
2 ´ 2 ¨

?
n ą k ´ 1.

Comment. The use of Beatty sequences in Solution 2 is essentially a way to bypass (1). Both Solutions
1 and 2 use the fact that

?
2 ă 2; the statement in the question would still be true if

?
2 did not have

this property (for instance, if it were replaced with α), but any argument along the lines of Solutions
1 or 2 would be more complicated.

Solution 3. Again, define J “ Zą0 zH , so all differences between elements of A are in J . We
start by making the following observation. Suppose we have a set B Ď t1, 2, . . . , nu such that
all of the differences between elements of B are in H . Then |A| ¨ |B| ď 2n.

To see why, observe that any two sums of the form a ` b with a P A, b P B are different;
otherwise, we would have a1 ` b1 “ a2 ` b2, and so |a1 ´ a2| “ |b2 ´ b1|. However, then the left
hand side is in J whereas the right hand side is in H . Thus, ta ` b : a P A, b P Bu is a set of
size |A| ¨ |B| all of whose elements are no greater than 2n, yielding the claimed inequality.

With this in mind, it suffices to construct a set B, all of whose differences are in H and
whose size is at least C 1

?
n for some constant C 1 ą 0.

To do so, we will use well-known facts about the negative Pell equation X2 ´ 2Y 2 “ ´1;
in particular, that there are infinitely many solutions and the values of X are given by the
recurrence X1 “ 1, X2 “ 7 and Xm “ 6Xm´1 ´ Xm´2. Therefore, we may choose X to be a
solution with

?
n{6 ă X ď ?

n.
Now, we claim that we may choose B “ tX, 2X, . . . , tp1{3q?

nuXu. Indeed, we have
ˆ

X?
2

´ Y

˙ˆ

X?
2

` Y

˙

“ ´1

2

and so

0 ą
ˆ

X?
2

´ Y

˙

ě ´3?
2n
,

from which it follows that tX{
?
2u ą 1 ´ p3{

?
2nq. Combined with (1), this shows that all

differences between elements of B are in H .
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Comment. Some of the ideas behind Solution 3 may be used to prove that the constant C “
a

2
?
2 ´ 2

(from Solutions 1 and 2) is optimal, in the sense that there are arbitrarily large values of n and sets
An Ď t1, 2, . . . , nu of size roughly C

?
n, all of whose differences are contained in J .

To see why, choose X to come from a sufficiently large solution to the Pell equation X2´2Y 2 “ 1, so
tX{

?
2u « 1{p2X

?
2q. In particular, tXu, t2Xu, . . . , tt2X

?
2p1´ 1{

?
2quXu are all less than 1´ 1{

?
2.

Thus, by (1) any positive integer of the form iX for 1 ď i ď t2X
?
2p1 ´ 1{

?
2qu lies in J .

Set n « 2X2
?
2p1 ´ 1{

?
2q. We now have a set A “ tiX : i ď t2X

?
2p1 ´ 1{

?
2quu containing

roughly 2X
?
2p1 ´ 1{

?
2q elements less than or equal to n such that all of the differences lie in J , and

we can see that |A| « C
?
n with C “

a

2
?
2 ´ 2.

Solution 4. As in Solution 3, we will provide a construction of a large set B Ď t1, 2, . . . , nu,
all of whose differences are in H .

Choose Y to be a solution to the Pell-like equation X2 ´2Y 2 “ ˘1; such solutions are given
by the recurrence Y1 “ 1, Y2 “ 2 and Ym “ 2Ym´1 ` Ym´2, and so we can choose Y such that
n{p3

?
2q ă Y ď n{

?
2. Furthermore, it is known that for such a Y and for 1 ď x ă Y ,

tx
?
2u ` tpY ´ xq

?
2u “ tY {

?
2u (4)

if X2 ´ 2Y 2 “ 1, and
tx

?
2u ` tpY ´ xq

?
2u “ 1 ` tY {

?
2u (5)

if X2 ´ 2Y 2 “ ´1. Indeed, this is a statement of the fact that X{Y is a best rational approxi-
mation to

?
2, from below in the first case and from above in the second.

Now, consider the sequence t
?
2u, t2

?
2u, . . . , tpY ´ 1q

?
2u. The Erdős–Szekeres theorem

tells us that this sequence has a monotone subsequence with at least
?
Y ´ 2 ` 1 ą

?
Y

elements; if that subsequence is decreasing, we may reflect (using (4) or (5)) to ensure that it
is increasing. Call the subsequence ty1

?
2u, ty2

?
2u, . . . , tyt

?
2u for t ą

?
Y .

Now, set B “ ttyi
?
2u : 1 ď i ď tu. We have tyj

?
2u ´ tyi

?
2u “ tpyj ´ yiq

?
2u for i ă j

(because the corresponding inequality for the fractional parts holds by the ordering assumption
on the tyi

?
2u), which means that all differences between elements of B are indeed in H . Since

|B| ą
?
Y ą ?

n{
a

3
?
2, this is the required set.

Comment. Any solution to this problem will need to use the fact that
?
2 cannot be approximated

well by rationals, either directly or implicitly (for example, by using facts about solutions to Pell-
like equations). If

?
2 were replaced by a value of θ with very good rational approximations (from

below), then an argument along the lines of Solution 3 would give long arithmetic progressions in
ttiθu : 0 ď i ă nu (with initial term 0) for certain values of n.
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N7. Prove that there is a constant c ą 0 and infinitely many positive integers n with the
following property: there are infinitely many positive integers that cannot be expressed as the
sum of fewer than cn logpnq pairwise coprime nth powers.

(Canada)

Solution 1. Suppose, for an integer n, that we can find another integer N satisfying the
following property:

n is divisible by ϕppeq for every prime power pe exactly dividing N . (:)

This property ensures that all nth powers are congruent to 0 or 1 modulo each such prime
power pe, and hence that any sum of m pairwise coprime nth powers is congruent to m or m´1
modulo pe, since at most one of the nth powers is divisible by p. Thus, if k denotes the number
of distinct prime factors of N , we find by the Chinese Remainder Theorem at most 2km residue
classes modulo N which are sums of at most m pairwise coprime nth powers. In particular, if
N ą 2km then there are infinitely many positive integers not expressible as a sum of at most
m pairwise coprime nth powers.

It thus suffices to prove that there are arbitrarily large pairs pn,Nq of integers satisfying (:)
such that

N ą c ¨ 2kn logpnq

for some positive constant c.

We construct such pairs as follows. Fix a positive integer t and choose (distinct) prime
numbers p | 22

t´1 ` 1 and q | 22t ` 1; we set N “ pq. It is well-known that 2t | p ´ 1 and
2t`1 | q ´ 1, hence

n “ pp ´ 1qpq ´ 1q
2t

is an integer and the pair pn,Nq satisfies (:).
Estimating the size of N and n is now straightforward. We have

log2pnq ď 2t´1 ` 2t ´ t ă 2t`1 ă 2 ¨ N
n
,

which rearranges to

N ą 1

8
¨ 22n log2pnq

and so we are done if we choose c ă 1
8 logp2q

« 0.18.

Comment 1. The trick in the above solution was to find prime numbers p and q congruent to 1
modulo some d “ 2t and which are not too large. An alternative way to do this is via Linnik’s Theorem,
which says that there are absolute constants b and L ą 1 such that for any coprime integers a and d,
there is a prime congruent to a modulo d and of size ď bdL. If we choose some d not divisible by 3 and
choose two distinct primes p, q ď b ¨ p3dqL congruent to 1 modulo d (and, say, distinct modulo 3), then

we obtain a pair pn,Nq satisfying (:) with N “ pq and n “ pp´1qpq´1q
d . A straightforward computation

shows that

N ą Cn1` 1
2L´1

for some constant C, which is in particular larger than any c¨22n logpnq for p large. Thus, the statement
of the problem is true for any constant c. More strongly, the statement of the problem is still true
when cn logpnq is replaced by n1`δ for a sufficiently small δ ą 0.
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Solution 2, obtaining better bounds. As in the preceding solution, we seek arbitrarily
large pairs of integers n and N satisfying (:) such that N ą c2kn logpnq.

This time, to construct such pairs, we fix an integer x ě 4, set N to be the lowest common
multiple of 1, 2, . . . , 2x, and set n to be twice the lowest common multiple of 1, 2, . . . , x. The
pair pn,Nq does indeed satisfy the condition, since if pe is a prime power divisor of N then
ϕppeq

2
ď x is a factor of n

2
“ lcmrďxprq.

Now 2N{n is the product of all primes having a power lying in the interval px, 2xs, and
hence 2N{n ą xπp2xq´πpxq. Thus for sufficiently large x we have

log

ˆ

2N

2πp2xqn

˙

ą pπp2xq ´ πpxqq logpxq ´ logp2qπp2xq „ x,

using the Prime Number Theorem πptq „ t{ logptq.
On the other hand, n is a product of at most πpxq prime powers less than or equal to x,

and so we have the upper bound

logpnq ď πpxq logpxq „ x,

again by the Prime Number Theorem. Combined with the above inequality, we find that for
any ǫ ą 0, the inequality

log

ˆ

N

2πp2xqn

˙

ą p1 ´ ǫq logpnq

holds for sufficiently large x. Rearranging this shows that

N ą 2πp2xqn2´ǫ ą 2πp2xqn logpnq

for all sufficiently large x and we are done.

Comment 2. The stronger bound N ą 2πp2xqn2´ǫ obtained in the above proof of course shows
that infinitely many positive integers cannot be written as a sum of at most n2´ǫ pairwise coprime
nth powers.

By refining the method in Solution 2, these bounds can be improved further to show that infinitely
many positive integers cannot be written as a sum of at most nα pairwise coprime nth powers for any
positive α ą 0. To do this, one fixes a positive integer d, sets N equal to the product of the primes
at most dx which are congruent to 1 modulo d, and n “ d lcmrďxprq. It follows as in Solution 2 that
pn,Nq satisfies (:).

Now the Prime Number Theorem in arithmetic progressions provides the estimates logpNq „ d
ϕpdqx,

logpnq „ x and πpdxq „ dx
logpxq for any fixed d. Combining these provides a bound

N ą 2πpdxqnd{ϕpdq´ǫ

for any positive ǫ, valid for x sufficiently large. Since the ratio d
ϕpdq can be made arbitrarily large by a

judicious choice of d, we obtain the nα bound claimed.

Comment 3. While big results from analytic number theory such as the Prime Number Theorem
or Linnik’s Theorem certainly can be used in this problem, they do not seem to substantially simplify
matters: all known solutions involve first reducing to condition (:), and even then analytic results do
not make it clear how to proceed. For this reason, we regard this problem as suitable for the IMO.

Rather than simplifying the problem, what nonelementary results from analytic number theory
allow one to achieve is a strengthening of the main bound, typically replacing the n logpnq growth with
a power n1`δ. However, we believe that such stronger bounds are unlikely to be found by students in
the exam.

The strongest bound we know how to achieve using purely elementary methods is a bound of the
form N ą 2kn logpnqM for any positive integer M . This is achieved by a variant of the argument
in Solution 1, choosing primes p0, . . . , pM with pi | 22

t`i´1 ` 1 and setting N “
ś

i pi and n “
2´tM

ś

ippi ´ 1q.
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N8. Let a and b be two positive integers. Prove that the integer

a2 `
R

4a2

b

V

is not a square. (Here rzs denotes the least integer greater than or equal to z.)
(Russia)

Solution 1. Arguing indirectly, assume that

a2 `
R

4a2

b

V

“ pa` kq2, or

Rp2aq2
b

V

“ p2a` kqk.

Clearly, k ě 1. In other words, the equation

R

c2

b

V

“ pc` kqk p1q

has a positive integer solution pc, kq, with an even value of c.
Choose a positive integer solution of p1q with minimal possible value of k, without regard

to the parity of c. From
c2

b
ą
R

c2

b

V

´ 1 “ ck ` k2 ´ 1 ě ck

and
pc´ kqpc` kq

b
ă c2

b
ď
R

c2

b

V

“ pc` kqk

it can be seen that c ą bk ą c´ k, so

c “ kb ` r with some 0 ă r ă k.

By substituting this in p1q we get

R

c2

b

V

“
Rpbk ` rq2

b

V

“ k2b ` 2kr `
R

r2

b

V

and
pc ` kqk “ pkb` r ` kqk “ k2b ` 2kr ` kpk ´ rq,

so
R

r2

b

V

“ kpk ´ rq. p2q

Notice that relation p2q provides another positive integer solution of p1q, namely c1 “ r and
k1 “ k´r, with c1 ą 0 and 0 ă k1 ă k. That contradicts the minimality of k, and hence finishes
the solution.
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Solution 2. Suppose that

a2 `
R

4a2

b

V

“ c2

with some positive integer c ą a, so

c2 ´ 1 ă a2 ` 4a2

b
ď c2,

0 ď c2b´ a2pb ` 4q ă b. (3)

Let d “ c2b ´ a2pb ` 4q, x “ c ` a and y “ c´ a; then we have c “ x ` y

2
and a “ x´ y

2
, and

p3q can be re-written as follows:

´x` y

2

¯2

b ´
´x ´ y

2

¯2

pb ` 4q “ d,

x2 ´ pb ` 2qxy ` y2 ` d “ 0; 0 ď d ă b. (4)

So, by the indirect assumption, the equation p4q has some positive integer solution px, yq.
Fix b and d, and take a pair px, yq of positive integers, satisfying p4q, such that x ` y is

minimal. By the symmetry in p4q we may assume that x ě y ě 1.
Now we perform a usual “Vieta jump”. Consider p4q as a quadratic equation in variable x,

and let z be its second root. By the Vieta formulas,

x ` z “ pb` 2qy, and zx “ y2 ` d,

so

z “ pb` 2qy ´ x “ y2 ` d

x
.

The first formula shows that z is an integer, and by the second formula z is positive. Hence
pz, yq is another positive integer solution of p4q. From

px ´ 1qpz ´ 1q “ xz ´ px` zq ` 1 “ py2 ` dq ´ pb ` 2qy ` 1

ă py2 ` bq ´ pb` 2qy ` 1 “ py ´ 1q2 ´ bpy ´ 1q ď py ´ 1q2 ď px´ 1q2

we can see that z ă x and therefore z` y ă x` y. But this contradicts the minimality of x` y
among the positive integer solutions of p4q.
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