Homemade Problem Collection

David Altizio

Last Updated March 15, 2021

Abstract

This document is a fairly comprehensive (though not exhaustive) list of problems I have proposed for various competitions. Exceptionally nice problems are marked with a star (\star).

Contents

1 Algebra 2
2 Combinatorics 13
3 Geometry 18
4 Number Theory 34
5 Miscellaneous/Undergraduate 41
6 Links to Solutions 44

List of Common Acronyms

- AIME: American Invitational Mathematics Exam
- AMC: American Mathematics Competition
- AMSP: AwesomeMath Summer Program
- ARML: American Regional Mathematics League
- CMIMC: Carnegie Mellon Informatics and Mathematics Competition
- IMO: International Mathematical Olympiad
- NIMO: National Internet Math Olympiad (now defunct)

1 Algebra

1. (AMC 10A 2021) What is the value of

$$
2^{1+2+3}-\left(2^{1}+2^{2}+2^{3}\right) ?
$$

2. (NIMO Summer Contest 2015) For all real numbers a and b, let

$$
a \bowtie b=\frac{a+b}{a-b}
$$

Compute $1008 \bowtie 1007$.
3. (Various Contests) $\sqrt[1]{1}$ Determine the value of $\frac{2011^{2}-1983^{2}}{2011+1983}$.
4. (AMC 10A 2018) Sangho uploaded a video to a website where viewers can vote that they like or dislike a video. Each video begins with a score of 0 , and the score increases by 1 for each like vote and decreases by 1 for each dislike vote. At one point Sangho saw that his video had a score of 90 , and that 65% of the votes cast on his video were like votes. How many votes had been cast on Sangho's video at that point?
5. (Mock AMC 12 2012) A set of 31 real numbers has a sum of 104 . A new set is formed by taking each number in the old set and increasing it by 3 . For instance, a 1 in the old set would become a 4 in the new set. What is the sum of the numbers in the new set?
6. (Mock AIME I 2015) David, Justin, Richard, and Palmer are demonstrating a "math magic" concept in front of an audience. There are four boxes, labeled A, B, C, and D, and each one contains a different number. First, David pulls out the numbers in boxes A and B and reports that their product is 14 . Justin then claims that the product of the numbers in boxes B and C is 16, and Richard states the product of the numbers in boxes C and D to be 18. Finally, Palmer announces the product of the numbers in boxes D and A . If k is the number that Palmer says, what is $20 k ? \sqrt[2]{2}$
7. (NIMO Summer Contest 2015) On a 30 question test, Question 1 is worth one point, Question 2 is worth two points, and so on up to Question 30. David takes the test and afterward finds out he answered nine of the questions incorrectly. However, he was not told which nine were incorrect. What is the highest possible score he could have attained? ${ }^{3}$
8. (NIMO 23) For real numbers x and y, define

$$
\nabla(x, y)=x-\frac{1}{y}
$$

If

$$
\underbrace{\nabla(2, \nabla(2, \nabla(2, \ldots \nabla(2, \nabla(2,2)) \ldots)))}_{2016 \nabla \mathrm{~s}}=\frac{m}{n}
$$

for relatively prime positive integers m, n, compute $100 m+n$.

[^0]9. (NIMO April 2017) For rational numbers a and b with $a>b$, define the fractional average of a and b to be the unique rational number c with the following property: when c is written in lowest terms, there exists an integer N such that adding N to both the numerator and denominator of c gives a, and subtracting N from both the numerator and denominator of c gives b. Suppose the fractional average of $\frac{1}{7}$ and $\frac{1}{10}$ is $\frac{m}{n}$, where m, n are coprime positive integers. What is $100 m+n$?
10. (CMIMC 2019) Points $A(0,0)$ and $B(1,1)$ are located on the parabola $y=x^{2}$. A third point C is positioned on this parabola between A and B such that $A C=C B=r$. What is r^{2} ?
11. (CMIMC 2018) The solutions in z to the equation
$$
\left(z+\frac{337}{z}\right)^{2}=1
$$
form the vertices of a quadrilateral in the complex plane. Compute the area of this quadrilateral 4^{4}
12. (CMIMC 2018) Suppose $x>1$ is a real number such that $x+\frac{1}{x}=\sqrt{22}$. What is $x^{2}-\frac{1}{x^{2}}$?
13. (Brilliant.org) Find the positive integer x such that
$$
\frac{1}{10 x}=\frac{1}{x^{2}+x}+\frac{1}{x^{2}+3 x+2}+\frac{1}{x^{2}+5 x+6}
$$
14. (Mock AMC 10/12 2013) Suppose a and b are real $\|^{5}$ numbers that satisfy the system of equations
\[

$$
\begin{aligned}
a+b & =9 \\
a(a-2)+b(b-2) & =21
\end{aligned}
$$
\]

What is $a b$?
15. (CMIMC 2019) Let $P(x)$ be a quadratic polynomial with real coefficients such that $P(3)=7$ and

$$
P(x)=P(0)+P(1) x+P(2) x^{2}
$$

for all real x. What is $P(-1)$?
16. Two problems about the difference between roots of a quadratic.
(a) (AMSP Team Contest 2015) A line passing through the point $(0,3)$ intersects the graph of $y=x^{2}$ in two distinct points. The positive difference in x-coordinates of these two points is 5. Compute the positive difference between the points' y-coordinates.
(b) (RHS Guts Round 2015) There exists a positive real number a such that the equation

$$
a x^{2}=x+a
$$

has two real solutions with the property that the larger one is 5 more than the smaller one. What is a^{2} ?

[^1]17. (CMIMC 2018) Let $P(x)=x^{2}+4 x+1$. What is the product of all real solutions to the equation $P(P(x))=0$?
18. (CMIMC 2016) Construction Mayhem University ${ }_{6}^{6}$ has been on mission to expand and improve its campus! The university has recently adopted a new construction schedule where a new project begins every two days. Each project will take exactly one more day than the previous one to complete (so the first project takes 3 , the second takes 4 , and so on.)
Suppose the new schedule starts on Day 1. On which day will there first be at least 10 projects in place at the same time?
19. (NIMO April 2017) Nonzero real numbers a, b, c satisfy the equations $a^{2}+b^{2}+c^{2}=2915$ and $(a-1)(b-1)(c-1)=a b c-1$. Compute $a+b+c$.
20. (CMIMC 2017) Suppose $P(x)$ is a quadratic polynomial with integer coefficients satisfying the identity
$$
P(P(x))-P(x)^{2}=x^{2}+x+2016
$$
for all real x. What is $P(1)$?
21. (NIMO 29) Let $\left\{a_{n}\right\}$ be a sequence of integers such that $a_{1}=2016$ and
$$
\frac{a_{n-1}+a_{n}}{2}=n^{2}-n+1
$$
for all $n \geq 1$. Compute a_{100}.
\star 22. (CMIMC 2016) Let ℓ be a real number satisfying the equation $\frac{(1+\ell)^{2}}{1+\ell^{2}}=\frac{13}{37}$. Then
$$
\frac{(1+\ell)^{3}}{1+\ell^{3}}=\frac{m}{n}
$$
where m and n are positive relatively prime integers. Find $m+n$.
23. (CMIMC 2018) 2018 little ducklings numbered 1 through 2018 are standing in a line, with each holding a slip of paper with a nonnegative number on it; it is given that ducklings 1 and 2018 have the number zero. At some point, ducklings 2 through 2017 simultaneously change their number to equal the average of the numbers of the ducklings to their immediate left and right. Suppose the new numbers on the ducklings sum to 1000 . What is the maximum possible sum of the original numbers on all 2018 slips? ${ }^{7}$
24. (Mock AMC 10/12 2013) Let p and q be real numbers with $|p|<1$ and $|q|<1$ such that
$$
p+p q+p q^{2}+p q^{3}+\cdots=2 \quad \text { and } \quad q+q p+q p^{2}+q p^{3}+\cdots=3
$$

What is $100 p q$?
25. (Mock AMC 12 2012) The polynomial $x^{3}-A x+15$ has three real roots. Two of these roots sum to 5 . What is $|A|$?
26. Two logarithm problems with a very similar flavor.

[^2](a) (Mock AMC 10/12 2013) Suppose x and y are real numbers such that $\log _{x}(y)=6$ and $\log _{2 x}(2 y)=5$. What is $\log _{4 x}(4 y)$?
(b) (Mock AIME I 2015) Suppose that x and y are real numbers such that $\log _{x} 3 y=\frac{20}{13}$ and $\log _{3 x} y=\frac{2}{3}$. The value of $\log _{3 x} 3 y$ can be expressed in the form $\frac{a}{b}$ where a and b are positive relatively prime integers. Find $a+b$.
27. (ARML Local 2019) Compute the maximum value of the function $f(x)=\sin x+\sin \left(x+\arccos \frac{4}{7}\right)$ as x varies over all real numbers.
28. (NIMO 16) Let a and b be positive real numbers such that $a b=2$ and
$$
\frac{a}{a+b^{2}}+\frac{b}{b+a^{2}}=\frac{7}{8} .
$$

Find $a^{6}+b^{6}$.
29. (CMIMC 2018) For all real numbers r, denote by $\{r\}$ the fractional part of r, i.e. the unique real number $s \in[0,1)$ such that $r-s$ is an integer. How many real numbers $x \in[1,2)$ satisfy the equation $\left\{x^{2018}\right\}=\left\{x^{2017}\right\}$?
30. (CMIMC 2020) For all real numbers x, let $P(x)=16 x^{3}-21 x$. What is the sum of all possible values of $\tan ^{2} \theta$, given that θ is an angle satisfying

$$
P(\sin \theta)=P(\cos \theta) ?
$$

31. (AMSP Team Contest 2015) There exists exactly one polynomial $g(z)$ with nonnegative coefficients such that

$$
g(z) g(-z)=z^{4}-47 z^{2}+1
$$

for all z. Find this polynomial $\|^{8}$
32. (NIMO 29) Let $\left\{a_{i}\right\}_{i=0}^{\infty}$ be a sequence of real numbers such that

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

for all $|x|<1$. Find a_{1000}.
33. (ARML Local 2018) Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Find the smallest possible value of $(a+b+c)^{2}$.
34. (CMIMC 2017) Suppose x, y, and z are nonzero complex numbers such that $(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)=$ $x^{3}+y^{3}+z^{3}$. Compute

$$
(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \cdot \square
$$

[^3]35. (NIMO 18) There exists a unique strictly increasing arithmetic sequence $\left\{a_{i}\right\}_{i=1}^{100}$ of positive integers such that
$$
a_{1}+a_{4}+a_{9}+\cdots+a_{100}=1000
$$
where the summation runs over all terms of the form $a_{i^{2}}$ for $1 \leq i \leq 10$. Find $a_{50} \sqrt[10]{10}$
36. (CMIMC 2016) A line with negative slope passing through the point $(18,8)$ intersects the x and y axes at $(a, 0)$ and $(0, b)$ respectively. What is the smallest possible value of $a+b ?{ }^{11}$
37. (Mock AMC 10/12 2013) For each positive integer n, let $a_{n}=\frac{n^{2}}{2 n+1}$. Furthermore, let P and Q be real numbers such that
$$
P=a_{1} a_{2} \ldots a_{2013}, \quad Q=\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots\left(a_{2013}+1\right)
$$

What is the sum of the digits of $\left\lfloor\frac{Q}{P}\right\rfloor$? (Note: $\lfloor x\rfloor$ denotes the largest integer $\leq x$.)
38. (NICE Spring 2021) ${ }^{12}$ Suppose x and y are nonzero real numbers satisfying the system of equations

$$
\begin{aligned}
& 3 x^{2}+y^{2}=13 x \\
& x^{2}+3 y^{2}=14 y .
\end{aligned}
$$

Find $x+y$.
39. (NIMO 27) Suppose there exist constants A, B, C, and D such that

$$
n^{4}=A\binom{n}{4}+B\binom{n}{3}+C\binom{n}{2}+D\binom{n}{1}
$$

holds true for all positive integers $n \geq 4$. What is $A+B+C+D ? ?^{13}$
40. (CMIMC 2018) Suppose a, b, and c are nonzero real numbers such that

$$
b c+\frac{1}{a}=c a+\frac{2}{b}=a b+\frac{7}{c}=\frac{1}{a+b+c}
$$

Find $a+b+c$.
41. (Mock AMC 10/12 2013) Suppose A and B are angles such that

$$
\begin{aligned}
\cos (A)+\cos (B) & =\frac{5}{4} \\
\cos (2 A)+\cos (2 B) & =\frac{1}{9}
\end{aligned}
$$

If $\cos (3 A)+\cos (3 B)$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator? 14

[^4]42. (AMC 10A 2019) Let p, q, and r be the distinct roots of the polynomial $x^{3}-22 x^{2}+80 x-67$. It is given that there exist real numbers A, B, and C such that
$$
\frac{1}{s^{3}-22 s^{2}+80 s-67}=\frac{A}{s-p}+\frac{B}{s-q}+\frac{C}{s-r}
$$
for all $s \notin\{p, q, r\}$. What is $\frac{1}{A}+\frac{1}{B}+\frac{1}{C}$?
43. (NIMO 24) Let f be the quadratic function with leading coefficient 1 whose graph is tangent to that of the lines $y=-5 x+6$ and $y=x-1$. The sum of the coefficients of f is $\frac{p}{q}$, where p and q are positive relatively prime integers. Find $100 p+q .{ }^{15}$
44. (NIMO 15) Let $S=\{1,2, \ldots, 2014\}$. Suppose that
$$
\sum_{T \subseteq S} i^{|T|}=p+q i
$$
where p and q are integers, $i=\sqrt{-1}$, and the summation runs over all 2^{2014} subsets of S. Find the remainder when $|p|+|q|$ is divided by 1000. (Here $|X|$ denotes the number of elements in a set X.)
45. (CMIMC 2016) Determine the value of the sum
$$
\left|\sum_{1 \leq i<j \leq 50} i j(-1)^{i+j}\right| .
$$
46. (Problem Stash 2) Let a, b, and c be nonzero real numbers such that $a+b+c=0$ and
$$
28\left(a^{4}+b^{4}+c^{4}\right)=a^{7}+b^{7}+c^{7}
$$

Find $a^{3}+b^{3}+c^{3}$.
47. (CMIMC 2017) Suppose P is a quintic polynomial with real coefficients with $P(0)=2$ and $P(1)=$ 3 such that $|z|=1$ whenever z is a complex number satisfying $P(z)=0$. What is the smallest possible value of $P(2)$ over all such polynomials P ?
48. (AMC 12A 2020) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be the sequences of real numbers such that

$$
(2+i)^{n}=a_{n}+b_{n} i
$$

for all integers $n \geq 0$, where $i=\sqrt{-1}$. What is

$$
\sum_{n=0}^{\infty} \frac{a_{n} b_{n}}{7^{n}} ?
$$

49. (NIMO 18) Find the sum of all positive integers $1 \leq k \leq 99$ such that there exist positive integers a and b with the property that

$$
x^{100}-a x^{k}+b=\left(x^{2}-2 x+1\right) P(x)
$$

for some polynomial P with integer coefficients.

[^5]50. (The CALT ${ }^{16}$ Suppose u and v are complex numbers satisfying the system of equations
$$
(u-1)(v-1)=9 \quad \text { and } \quad u^{3}-u^{2}=v^{3}-v^{2}
$$

Find the sum of all possible values of $|u|^{2}+|v|^{2}$.
51. (ARML Local 2019 ${ }^{17}$ Given that $\sum_{k=0}^{\infty}\binom{2 k}{k} \frac{1}{5^{k}}=\sqrt{5}$, compute the value of the sum

$$
\sum_{k=0}^{\infty}\binom{2 k+1}{k} \frac{1}{5^{k}}
$$

52. (Problem Stash 1) Find the maximum possible value of $\sum_{j=1}^{n}\left|z_{j}\right|^{2}$ over all sequences $z_{1}, z_{2}, \ldots, z_{n}$ of complex numbers with nonnegative real parts satisfying

$$
\sum_{j=1}^{n} z_{j}=5 \quad \text { and } \quad \sum_{j=1}^{n} z_{j}^{2}=7
$$

53. (NIMO Summer Contest 2015) Suppose x and y are real numbers such that

$$
x^{2}+x y+y^{2}=2 \quad \text { and } \quad x^{2}-y^{2}=\sqrt{5} .
$$

The sum of all possible distinct values of $|x|$ can be written in the form $\sum_{i=1}^{n} \sqrt{a_{i}}$, where each of the a_{i} is a rational number. If $\sum_{i=1}^{n} a_{i}=\frac{m}{n}$ where m and n are positive relatively prime integers, what is $100 m+n$?
54. (Mock AIME I 2013) Let T_{n} denote the nth triangular number, i.e. $T_{n}=1+2+3+\cdots+n$. Let m and n be positive integers so that

$$
\sum_{i=3}^{\infty} \sum_{k=1}^{\infty}\left(\frac{3}{T_{i}}\right)^{k}=\frac{m}{n}
$$

Find $m+n .{ }^{18}$
55. (Problem Stash 2) Suppose α, β, and γ are real numbers satisfying the system of equations

$$
\begin{aligned}
& \cos \alpha \cos (\beta-\gamma)=\frac{3}{8}, \\
& \cos \beta \cos (\gamma-\alpha)=\frac{1}{2}, \\
& \cos \gamma \cos (\alpha-\beta)=\frac{3}{4} .
\end{aligned}
$$

The minimum possible value of $\cos (2 \gamma)$ can be written in the form $\frac{m-\sqrt{n}}{p}$, where m, n, and p are positive integers with m and p relatively prime. Find $m+n+p$.

[^6]56. (Mock AIME II 2012) There exist real values of a and b such that $a+b=n, a^{2}+b^{2}=2 n$, and $a^{3}+b^{3}=3 n$ for some value of n. Let S be the sum of all possible values of $a^{4}+b^{4}$. Find S.
57. Two similar-looking Vieta problems.
(a) (NICE Spring 2021) Let r_{1}, r_{2}, and r_{3} be the roots of the polynomial $x^{3}-x+1$. Then
$$
\frac{1}{r_{1}^{2}+r_{1}+1}+\frac{1}{r_{2}^{2}+r_{2}+1}+\frac{1}{r_{3}^{2}+r_{3}+1}=\frac{m}{n},
$$
where m and n are positive relatively prime integers. Find $1000 m+n$.
(b) (CMIMC 2016) Let $r_{1}, r_{2}, \ldots, r_{20}$ be the roots of the polynomial $x^{20}-7 x^{3}+1$. If
$$
\frac{1}{r_{1}^{2}+1}+\frac{1}{r_{2}^{2}+1}+\cdots+\frac{1}{r_{20}^{2}+1}
$$
can be written in the form $\frac{m}{n}$ where m and n are positive integers, find $m+n$.
58. (ARML Local 2018) For all nonnegative integers c, let $f(c)$ denote the unique real number x satisfying the equation
$$
\frac{x^{4}+x^{5}-48}{x^{9}-1}=c
$$

Compute $f(0) f(1) f(2) \cdots f(47) \cdot{ }^{19}$
59. (AOIME ${ }^{20}$ 2020) Let $P(x)=x^{2}-3 x-7$, and let $Q(x)$ and $R(x)$ be two quadratic polynomials also with the coefficient of x^{2} equal to 1 . David computes each of the three sums $P+Q, P+R$, and $Q+R$ and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If $Q(0)=2$, then $R(0)=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
60. (CMIMC 2019) Across all $x \in \mathbb{R}$, find the maximum value of the expression

$$
\sin x+\sin 3 x+\sin 5 x
$$

61. (CMIMC 2016) Suppose x and y are real numbers which satisfy the system of equations

$$
x^{2}-3 y^{2}=\frac{17}{x} \quad \text { and } \quad 3 x^{2}-y^{2}=\frac{23}{y} .
$$

Then $x^{2}+y^{2}$ can be written in the form $\sqrt[n 2]{n}$ where m and n are positive integers and m is as small as possible. Find $m+n$.
62. (CMIMC 2016) Suppose a, b, c, and d are positive real numbers which satisfy the system of equations

$$
\begin{aligned}
& (a+b)(c+d)=143 \\
& (a+c)(b+d)=150, \\
& (a+d)(b+c)=169 .
\end{aligned}
$$

[^7]Find the smallest possible value of $a^{2}+b^{2}+c^{2}+d^{2} \cdot 21$
63. (CMIMC 2017) The parabola \mathcal{P} given by equation $y=x^{2}$ is rotated some acute angle θ clockwise about the origin such that it hits both the x and y axes at two distinct points. Suppose the length of the segment \mathcal{P} cuts the x-axis is 1 . What is the length of the segment \mathcal{P} cuts the y-axis?
64. (CMIMC 2018, with Keerthana Gurushankar) Let a be a complex number, and set α, β, and γ to be the roots of the polynomial $x^{3}-x^{2}+a x-1$. Suppose

$$
\left(\alpha^{3}+1\right)\left(\beta^{3}+1\right)\left(\gamma^{3}+1\right)=2018
$$

Compute the product of all possible values of $a, 22$
65. (NIMO 15) For all positive integers k, define $f(k)=k^{2}+k+1$. Compute the largest positive integer n such that

$$
2015 f\left(1^{2}\right) f\left(2^{2}\right) \cdots f\left(n^{2}\right) \geq(f(1) f(2) \cdots f(n))^{2}
$$

66. (AIME 2020) Let $P(x)$ be a quadratic polynomial with complex coefficients whose x^{2} coefficient is 1 . Suppose the equation $P(P(x))=0$ has four distinct solutions, $x=3,4, a, b$. Find the sum of all possible values of $(a+b)^{2}$.
67. (CMIMC 2019) It is given that the roots of the polynomial $P(z)=z^{2019}-1$ can be written in the form $z_{k}=x_{k}+i y_{k}$ for $1 \leq k \leq 2019$. Let Q denote the monic polynomial with roots equal to $2 x_{k}+i y_{k}$ for $1 \leq k \leq 2019$. Compute $Q(-2)$.
68. (CMIMC 2018) Suppose P is a cubic polynomial satisfying $P(0)=3$ and

$$
\left(x^{3}-2 x+1-P(x)\right)\left(2 x^{3}-5 x^{2}+4-P(x)\right) \leq 0
$$

for all $x \in \mathbb{R}$. Determine all possible values of $P(-1) .23$
69. (CMIMC 2018) Suppose $a_{0}, a_{1}, \ldots, a_{2018}$ are integers such that

$$
\left(x^{2}-3 x+1\right)^{1009}=\sum_{k=0}^{2018} a_{k} x^{k}
$$

for all real numbers x. Compute the remainder when $a_{0}^{2}+a_{1}^{2}+\cdots+a_{2018}^{2}$ is divided by 2017,24
70. (Mock AIME I 2015) Suppose α, β, and γ are complex numbers that satisfy the system of equations

$$
\begin{aligned}
\alpha+\beta+\gamma & =6 \\
\alpha^{3}+\beta^{3}+\gamma^{3} & =87 \\
(\alpha+1)(\beta+1)(\gamma+1) & =33
\end{aligned}
$$

If $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{m}{n}$ for positive relatively prime integers m and n, find $m+n$.

[^8]71. (CMIMC 2017) Let a, b, and c be complex numbers satisfying the system of equations
\[

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=9 \\
& \frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}=32 \\
& \frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}=122
\end{aligned}
$$
\]

Find $a b c, 25$
72. (Mock AIME I 2013) Let a, b, and c be the roots of the equation $x^{3}+2 x-1=0$, and let X and Y be the two possible values of $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$. Find $(X+1)(Y+1)$.
73. (CMIMC 2017) Suppose $a_{1}, a_{2}, \ldots, a_{10}$ are nonnegative integers such that

$$
\sum_{k=1}^{10} a_{k}=15 \quad \text { and } \quad \sum_{k=1}^{10} k a_{k}=80
$$

Let M and m denote the maximum and minimum respectively of $\sum_{k=1}^{10} k^{2} a_{k}$. Compute $M-m, 26$
74. (ARML Local 2018) It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}{ }^{27}$
75. (CMIMC 2017) The polynomial $P(x)=x^{3}-6 x-2$ has three real roots, α, β, and γ. Depending on the assignment of the roots, there exist two different quadratics Q such that the graph of $y=Q(x)$ pass through the points $(\alpha, \beta),(\beta, \gamma)$, and (γ, α). What is the larger of the two values of $Q(1){ }^{28}$
76. (Mock AMC 10/12 2013) Let

$$
P(x)=\prod_{n=1}^{10}\left(x^{2^{n}}-x^{2^{n-1}}+1\right)=\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{8}-x^{4}+1\right) \ldots\left(x^{1024}-x^{512}+1\right)
$$

When $P(x)$ is expanded, how many terms does it contain? 29

[^9]\star 77. (CMIMC 2017) Let c denote the largest possible real number such that there exists a nonconstant polynomial P with
$$
P\left(z^{2}\right)=P(z-c) P(z+c)
$$
for all z. Compute the sum of all values of $P\left(\frac{1}{3}\right)$ over all nonconstant polynomials P satisfying the above constraint for this $c, 30$
78. (CMIMC 2016) Let \mathcal{P} be the unique parabola in the $x y$-plane which is tangent to the x-axis at $(5,0)$ and to the y-axis at $(0,12)$. We say a line ℓ is \mathcal{P}-friendly if the x-axis, y-axis, and \mathcal{P} divide ℓ into three segments, each of which has equal length. If the sum of the slopes of all \mathcal{P}-friendly lines can be written in the form $-\frac{m}{n}$ for m and n positive relatively prime integers, find $m+n$.
\star 79. (CMIMC 2016) Denote by $F_{0}(x), F_{1}(x), \ldots$ the sequence of Fibonacci polynomials, which satisfy the recurrence $F_{0}(x)=1, F_{1}(x)=x$, and $F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x)$ for all $n \geq 2.31$ It is given that there exist integers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{1000}$ such that
$$
x^{1000}=\sum_{i=0}^{1000} \lambda_{i} F_{i}(x)
$$
for all real x. For which integer k is $\left|\lambda_{k}\right|$ maximized: $\sqrt[3]{32}$

[^10]
2 Combinatorics

1. (Problem Stash 2) A new disease dubbed sineavirus has arrived! Symptoms include a fear of trigonometry, and so we want to detect it as soon as possible. Unfortunately, these symptoms do not show as soon as the virus infects the body. Indeed, for every integer $n \geq 1$, the probability that symptoms show ${ }^{33}$ on the $n^{\text {th }}$ day is $\frac{1}{2^{n}}$. (Symptoms do not show on the $0^{\text {th }}$ day.)
Suppose a patient is infected on a Sunday. The probability that this person's symptoms first show on a Thursday is $\frac{m}{n}$, where m and n are relatively prime positive integers. What is $m+n$?
2. (NIMO Summer Contest 2016) Evan writes a computer program that randomly rearranges the digits $0,2,4,6$, and 8 to create a five-digit number with no leading zeroes. If he executes this program once, the probability the program outputs an integer divisible by 4 can be written in the form $\frac{m}{n}$ where m and n are positive integers which share no common factors. What is $m+n:{ }^{34}$
3. (ARML Local 2018) The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition ${ }^{35}$
4. (Mock AMC 10/12 2013) A regular 2013-gon is placed in the plane in general position. A family of lines is drawn on this plane such that no two lines are parallel, and for every vertex A of the 2013-gon, there exists a line that passes through A. What is the smallest number of possible lines in the family?
5. (NIMO Summer Contest 2015, with Tony Kim) The NIMO problem writers have invented a new chess piece called the Oriented Knight. This new chess piece has a limited number of moves: it can either move two squares to the right and one square upward or two squares upward and one square to the right. How many ways can the knight move from the bottom-left square to the top-right square of a 16×16 chess board: ${ }^{36}$
6. (NIMO 30) David draws a 2×2 grid of squares in chalk on the sidewalk outside NIMO HQ. He then draws one arrow in each square, each pointing in one of the four cardinal directions (north, south, east, west) parallel to the sides of the grid. In how many ways can David draw his arrows such that no two of the arrows are pointing at each other?
7. (NIMO 21) In the Fragmented Game of Spoons, eight players sit in a row, each with a hand of four cards. Each round, the first player in the row selects the top card from the stack of unplayed cards and either passes it to the second player, which occurs with probability $\frac{1}{2}$, or swaps it with one of the four cards in his hand, each card having an equal chance of being chosen, and passes the new card to the second player. The second player then takes the card from the first player and chooses a card to pass to the third player in the same way. Play continues until the eighth player is passed a card, at which point the card he chooses to pass is removed from the game and the next round begins. To win, a player must hold four cards of the same number, one of each suit.
[^11]During a game, David is the eighth player in the row and needs an Ace of Clubs to win. At the start of the round, the dealer picks up a Ace of Clubs from the deck. Suppose that Justin, the fifth player, also has a Ace of Clubs, and that all other Ace of Clubs cards have been removed. The probability that David is passed an Ace of Clubs during the round is $\frac{m}{n}$, where m and n are positive integers with $\operatorname{gcd}(m, n)=1$. Find $100 m+n$.
8. (USAMTS 2020-2021) Infinitely many math beasts stand in a line, all six feet apart, wearing masks, and with clean hands. Grogg starts at the front of the line, holding n pieces of candy, $n \geq 1$, and everyone else has none. He passes his candy to the beasts behind him, one piece each to the next n beasts in line. Then, Grogg leaves the line. The other beasts repeat this process: the beast in front, who has k pieces of candy, passes one piece each to the next k beasts in line, and then leaves the line. For some values of n, another beast, besides Grogg, temporarily holds all the candy. For which values of n does this occur?
9. (CMIMC 2020) David is taking a true/false exam with 9 questions. Unfortunately, he doesn't know the answer to any of the questions, but he does know that exactly 5 of the answers are True. In accordance with this, David guesses the answers to all 9 questions, making sure that exactly 5 of his answers are True. What is the probability he answers at least 5 questions correctly?
10. (NIMO April 2017) Two neighboring towns, MWMTown and NIMOTown, have a strange relationship with regard to weather. On a certain day, the probability that it is sunny in either town is $\frac{1}{23}$ greater than the probability of MWMTown being sunny, and the probability that it is sunny in MWMTown, given that it is sunny in NIMOTown, is $\frac{12}{23}$. If the probability that it is sunny in NIMOTown is $\frac{p}{q}$, for coprime positive integers p, q, what is $100 p+q ?{ }^{37}$
11. (AMC 10A 2021) How many ways are there to place 3 indistinguishable red chips, 3 indistinguishable blue chips, and 3 indistinguishable green chips in the squares of a 3×3 grid so that no two chips of the same color are directly adjacent to each other, either vertically or horizontally?
12. (NICE Spring 2021) Ethan draws a 2×6 grid of points on a piece of paper such that each pair of adjacent points is distance 1 apart. How many ways can Ethan divide the 12 points into six pairs such that the distance between the points in each pair is in the interval $[2,4)$?
13. (Mock AMC 10/12 2013) Mr. Mebane's Preschool WOOT class is taking a class photograph. There are five boys in the class, and they are $48,49,50,51$, and 52 inches tall. In the class photograph, they are to sit themselves in five chairs positioned in a row. In how many ways can Mr. Mebane's students seat themselves such that no boy sits next to another boy who is exactly one inch taller than himself?
14. (AMSP Team Contest 2015) DG chooses a three-element subset of the set $\{-10,-9,-8, \ldots, 8,9,10\}$. What is the probability that the three elements in his subset sum to zero?
15. (NIMO Summer Contest 2015) On a blackboard lies 50 magnets in a line numbered from 1 to 50, with different magnets containing different numbers. David walks up to the blackboard and rearranges the magnets into some arbitrary order. He then writes underneath each pair of consecutive magnets the positive difference between the numbers on the magnets. If the expected number of times he writes the number ${ }^{38} 1$ can be written in the form $\frac{m}{n}$ for relatively prime positive integers m and n, compute $100 m+n$.

[^12]16. (CMIMC 2017) Emily draws six dots on a piece of paper such that no three lie on a straight line, then draws a line segment connecting each pair of dots. She then colors five of these segments red. Her coloring is said to be red-triangle-free if for every set of three points from her six drawn points there exists an uncolored segment connecting two of the three points. In how many ways can Emily color her drawing such that it is red-triangle-free?
17. (Problem Stash 1) Let \mathcal{T} denote the set of tilings of a 1×12 board using only 1×1 and 1×2 pieces. For each tiling $T \in \mathcal{T}$, let $f(T)$ denote the number of times a 1×1 square immediately precedes a 1×2 domino. What is
$$
\sum_{T \in \mathcal{T}} f(T) ?
$$
18. (NIMO April 2017) Twenty lamps are placed on the vertices of a regular 20-gon. The lights turn on and off according to the following rule: if, in second k the two lights adjacent to a light L are either both on or both off, L is on in second $k+1$; otherwise, L is off in second $k+1$. Let N denote the number of possible original settings of the lamps so that after four moves all lamps are on. What is the sum of the digits of N ?
19. (CMIMC 2019) There are 100 lightbulbs B_{1}, \ldots, B_{100} spaced evenly around a circle in this order. Additionally, there are 100 switches S_{1}, \ldots, S_{100} such that for all $1 \leq i \leq 100$, switch S_{i} toggles the states of lights B_{i-1} and B_{i+1} (where here $B_{101}=B_{1}$). Suppose David chooses whether to flick each switch with probability $\frac{1}{2}$. What is the expected number of lightbulbs which are on at the end of this process given that not all lightbulbs are off?
20. (AIME 2018) Find the number of functions f from $\{0,1,2,3,4,5,6\}$ to the integers such that $f(0)=0, f(6)=12$, and
$$
|x-y| \leq|f(x)-f(y)| \leq 3|x-y|
$$
for all x and y in $\{0,1,2,3,4,5,6\}$.
21. (CMIMC 2018) Compute the number of rearrangements $a_{1}, a_{2}, \ldots, a_{2018}$ of the sequence $1,2, \ldots, 2018$ such that $a_{k}>k$ for exactly one value of k.
22. (Problem Stash 2) A new new disease dubbed cosineavirus has arrived! Symptoms include a fear of trigonometry, and so we want to detect it as soon as possible. Unfortunately, these symptoms do not show as soon as the virus infects the body. Indeed, for every integer $n \geq 1$, the probability that symptoms show on the $n^{\text {th }}$ day is $\frac{1}{n(n+1)}$. (Symptoms do not show on the $0^{\text {th }}$ day.)

Suppose patient zero is infected on Day 0, and each day thereafter one new person is infected. Let r be the expected number of days after Day 0 until someone first shows symptoms. What is $\lfloor 100 r\rfloor ?^{39}$
23. (NIMO 18) In a 4×4 grid of unit squares, five squares are chosen at random. The probability that no two chosen squares share a side is $\frac{m}{n}$ for positive relatively prime integers m and n. Find $m+n 40$

[^13]24. (USAMTS 2017-2018) Let n be a positive integer. Aavid has a card deck consisting of 2 n cards, each colored with one of n colors such that every color is on exactly two of the cards. The $2 n$ cards are randomly ordered in a stack. Every second, he removes the top card from the stack and places the card into an area called the pit. If the other card of that color also happens to be in the pit, Aavid collects both cards of that color and discards them from the pit.

Of the (2n)! possible original orderings of the deck, determine how many have the following property: at every point, the pit contains cards of at most two distinct colors.
25. (CMIMC 2016) For how many permutations π of $\{1,2, \ldots, 9\}$ does there exist an integer N such that

$$
N \equiv \pi(i) \quad(\bmod i) \text { for all integers } 1 \leq i \leq 9 \cdot \sqrt{41}
$$

26. (CMIMC 2018) Let \mathcal{F} be a family of subsets of $\{1,2, \ldots, 2017\}$ with the following property: whenever S_{1} and S_{2} are two elements of \mathcal{F} with $S_{1} \subsetneq S_{2}$, the quantity $\left|S_{2} \backslash S_{1}\right|$ is odd. Compute the largest number of subsets \mathcal{F} may contain ${ }^{42}$
27. (CMIMC 2018) Consider an undirected, connected graph G with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$. Starting at the vertex v_{1}, an ant uses a DFS algorithm to traverse through G under the condition that if there are multiple unvisited neighbors of some vertex, the ant chooses the v_{i} with smallest i. How many possible graphs G are there satisfying the following property: for each $1 \leq i \leq 6$, the vertex v_{i} is the $i^{\text {th }}$ new vertex the ant traverses 4^{43}
28. (CMIMC 2016) For all positive integers $m \geq 1$, denote by \mathcal{G}_{m} the set of simple graphs with exactly m edges. Find the number of pairs of integers (m, n) with $1<2 n \leq m \leq 100$ such that there exists a simple graph $G \in \mathcal{G}_{m}$ satisfying the following property: it is possible to label the edges of G with labels $E_{1}, E_{2}, \ldots, E_{m}$ such that for all $i \neq j$, edges E_{i} and E_{j} are incident if and only if either $|i-j| \leq n$ or $|i-j| \geq m-n{ }^{44}$
29. (Problem Stash 2) David has 10 cards in a bowl, with each card containing a distinct integer between 1 and 10. He separates the cards into 5 bins, numbered 1 through 5, so that each bin contains exactly two cards; each possible distribution has an equal chance of occurring. Let p be the probability David may visit each of the bins in order and choose one number from each bin to obtain an increasing sequence. Then p can be written in the form $\frac{m}{n}$, where m and n are positive relatively prime integers. Find $m+n$.
(For example, if the first bin houses cards 2 and 4 and the second bin houses cards 1 and 3, then David may pick the 2 and 3 to obtain the desired sequence; however, he can not do this if the first bin holds cards 3 and 4 while the second holds cards 1 and 2.)
30. (IMO 2019 $\sqrt[45]{45}$ The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing H, then he turns over the k th coin from the

[^14]left; otherwise, all coins show T and he stops. For example, if $n=3$ the process starting with the configuration THT would be THT $\rightarrow H H T \rightarrow H T T \rightarrow T T T$, which stops after three operations.
(a) Show that, for each initial configuration, Harry stops after a finite number of operations.
(b) For each initial configuration C, let $L(C)$ be the number of operations before Harry stops. For example, $L(T H T)=3$ and $L(T T T)=0$. Determine the average value of $L(C)$ over all 2^{n} possible initial configurations C.

3 Geometry

1. (CMIMC 2019) The figure to the right depicts two congruent ${ }^{46}$ triangles with angle measures $40^{\circ}, 50^{\circ}$, and 90°. What is the measure of the obtuse angle α formed by the hypotenuses of these two triangles?

2. (CMIMC 2016) Let $\triangle A B C$ be an equilateral triangle and P a point on $\overline{B C}$. If $P B=50$ and $P C=30$, compute $P A \cdot{ }^{47}$
3. (CMIMC 2018) Let $A B C$ be a triangle. Point P lies in the interior of $A B C$ such that $\angle A B P=20^{\circ}$ and $\angle A C P=15^{\circ}$. Compute $\angle B P C-\angle B A C$.
4. (CMIMC 2017) Let $A B C$ be a triangle with $\angle B A C=117^{\circ}$. The angle bisector of $\angle A B C$ intersects side $A C$ at D. Suppose $\triangle A B D \sim \triangle A C B$. Compute the measure of $\angle A B C$, in degrees.
5. (AMSP Team Contest 2015) Suppose $A B C D$ is a convex quadrilateral with $\angle A B C=144^{\circ}, \angle A D C=$ 105°, and $A B=B D=D C$. Compute $\angle B C D-\angle B A D$.
6. (CMIMC 2016) Let $A B C D$ be an isosceles trapezoid with $A D=B C=15$ such that the distance between its bases $A B$ and $C D$ is 7 . Suppose further that the circles with diameters $\overline{A D}$ and $\overline{B C}$ are tangent to each other. What is the area of the trapezoid?
7. (NICE Spring 2021) What is the smallest possible area of a rhombus \mathcal{R} whose sides have length 5 and whose vertices are all points in the plane with integer coordinates?
8. (CMIMC 2019) Let $A B C$ be an equilateral triangle with side length 2 , and let M be the midpoint of $\overline{B C}$. Points X and Y are placed on $A B$ and $A C$ respectively such that $\triangle X M Y$ is an isosceles right triangle with a right angle at M. What is the length of $\overline{X Y}$?
9. (Problem Stash 2) Two congruent 3×11 rectangles fit into a triangle \mathcal{T} as shown below. What is the area of \mathcal{T} ?
10. (CMIMC 2018) Let $A B C D$ be a square of side length 1 , and let P be a variable point on $\overline{C D}$. Denote by Q the intersection point of the angle bisector of $\angle A P B$ with $\overline{A B}$. The set of possible locations for Q as P varies along $\overline{C D}$ is a line segment; what is the length of this segment?
11. (NIMO 28) Trapezoid $A B C D$ is an isosceles trapezoid with $A D=B C$. Point P is the intersection of the diagonals $A C$ and $B D$. If the area of $\triangle A B P$ is 50 and the area of $\triangle C D P$ is 72 , what is the area of the entire trapezoid? ${ }^{48}$

[^15]
12. (CMIMC 2018) Let X and Y be points on semicircle $A B$ with diameter 3. Suppose the distance from X to $A B$ is $\frac{5}{4}$ and the distance from Y to $A B$ is $\frac{1}{4}$. Compute
$$
(A X+B X)^{2}-(A Y+B Y)^{2}
$$
13. (Mock AMC 10/12 2013) Rectangle $A B C D$ has $A B=5$ and $B C=12 . C D$ is extended to a point E such that $\triangle A C E$ is isosceles with base $A C$. What is the area of triangle $A D E \cdot{ }^{49}$
14. (AMC 10A 2018) Two circles of radius 5 are externally tangent to each other and are internally tangent to a circle of radius 13 at points A and B, as shown in the diagram. The distance $A B$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. What is $m+n$?

15. (CMIMC 2017) Triangle $A B C$ has an obtuse angle at $\angle A$. Points D and E are placed on $\overline{B C}$ in the order B, D, E, C such that $\angle B A D=\angle B C A$ and $\angle C A E=\angle C B A$. If $A B=10, A C=11$, and $D E=4$, determine $B C$.
16. (TKMT ${ }^{50}$) Suppose $A O P S$ is an isosceles trapezoid with $A O \| P S, A O=26$, and $S P=36$. If the bisectors of $\angle A S P$ and $\angle O P S$ intersect on $\overline{A O}$, compute the area of $A O P S$.
17. (NIMO Summer Contest 2015) Let $\triangle A B C$ have $A B=3, A C=5$, and $\angle A=90^{\circ}$. Point D is the foot of the altitude from A to $\overline{B C}$, and X and Y are the feet of the altitudes from D to $\overline{A B}$ and $\overline{A C}$ respectively. If $X Y^{2}$ can be written in the form $\frac{m}{n}$ where m and n are positive relatively prime integers, what is $100 m+n$?

[^16]18. (AMSP Team Contest 2015) Equilateral triangle $A B C$ has side length 6 . A circle ω is inscribed inside $\triangle A B C$. A point P is selected randomly on the circumference of ω. What is the probability that $\angle B P C$ is acute?
19. (CMIMC 2018) Let $A B C$ be a triangle with side lengths $5,4 \sqrt{2}$, and 7 . What is the area of the triangle with side lengths $\sin A, \sin B$, and $\sin C$?
20. (USAMTS 2020-2021) Find distinct points A, B, C, and D in the plane such that the length of the segment $A B$ is an even integer, and the lengths of the segments $A C, A D, B C, B D$, and $C D$ are all odd integers. ${ }^{51}$
21. (CMIMC 2019) Let $\triangle A_{1} B_{1} C_{1}$ be an equilateral triangle of area 60 . Chloe constructs a new triangle $\triangle A_{2} B_{2} C_{2}$ as follows. First, she flips a coin. If it comes up heads, she constructs point A_{2} such that B_{1} is the midpoint of $\overline{A_{2} C_{1}}$. If it comes up tails, she instead constructs A_{2} such that C_{1} is the midpoint of $\overline{A_{2} B_{1}}$. She performs analogous operations on B_{2} and C_{2}. What is the expected value of the area of $\triangle A_{2} B_{2} C_{2}$?
22. (CMIMC 2016) Let $A B C$ be a triangle. The angle bisector of $\angle B$ intersects $A C$ at point P, while the angle bisector of $\angle C$ intersects $A B$ at a point Q. Suppose the area of $\triangle A B P$ is 27 , the area of $\triangle A C Q$ is 32 , and the area of $\triangle A B C$ is 72 . The length of $\overline{B C}$ can be written in the form $m \sqrt{n}$ where m and n are positive integers with n as small as possible. What is $m+n ? 52$
23. (ARML Local 2018) Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute the length $X Y$.
24. (CMIMC 2018) Let $A B C$ be a triangle with $B C=30, A C=50$, and $A B=60$. Circle ω_{B} is the circle passing through A and B tangent to $B C$ at $B ; \omega_{C}$ is defined similarly. Suppose the tangent to $\odot(A B C)$ at A intersects ω_{B} and ω_{C} for the second time at X and Y respectively. Compute $X Y$.
25. (Mock AMC $10 / 12$ 2013) Let $A B C D$ be a rectangle such that $A B=3$ and $B C=4$. Suppose that M and N are the centers of the circles inscribed inside triangles $\triangle A B C$ and $\triangle A D C$ respectively. What is $M N^{2} \sqrt{53}$
26. (CMIMC 2016) Right isosceles triangle T is placed in the first quadrant of the coordinate plane. Suppose that the projection of T onto the x-axis has length 6 , while the projection of T onto the y-axis has length 8 . What is the sum of all possible areas of the triangle T ?
27. (Farewell Mock Geometry AMC) Two concentric squares, one of side length 8 and the other of side length 6 , are placed so that corresponding edges are parallel. A third square is placed so that it is inscribed inside the outer square but circumscribed around the inner square. What is the area of this third square? ${ }^{54}$
28. (Problem Stash 1, AMSP Team Contest 2019) Let $A B C$ be a triangle with $A B=13, B C=14$, and $A C=15$. Squares $A B D E$ and $A C G F$ are constructed externally to $\triangle A B C$, and lines $B G$ and $C D$ intersect at point P. If r is the distance from P to the line $B C$, compute $\lfloor 100 r\rfloor$.

[^17]
29. (CMIMC 2017) Let $A B C D$ be an isosceles trapezoid with $A D \| B C$. Points P and Q are placed on segments $\overline{C D}$ and $\overline{D A}$ respectively such that $A P \perp C D$ and $B Q \perp D A$, and point X is the intersection of these two altitudes. Suppose that $B X=3$ and $X Q=1$. Compute the largest possible area of $A B C D$.
30. (Mock AIME I 2015) Let A, B, C be points in the plane such that $A B=25, A C=29$, and $\angle B A C<$ 90°. Semicircles with diameters $\overline{A B}$ and $\overline{A C}$ intersect at a point P with $A P=20$. Find the length of line segment $\overline{B C}{ }^{55}$
31. (Mock AIME II 2012) Let $\triangle A B C$ be a triangle, and let I_{A}, I_{B}, and I_{C} be the points where the angle bisectors of A, B, and C, respectfully, intersect the sides opposite them. Given that $A I_{B}=5$, $C I_{B}=4$, and $C I_{A}=3$, then the ratio $A I_{C}: B I_{C}$ can be written in the form m / n where m and n are positive relatively prime integers. Find $m+n$.
32. (Mock AMC 10/12 2013) A rhombus has height 15 and diagonals with lengths in a ratio of $3: 4$. What is the length of the rhombus?
33. (AMC 10B/12B 2019) Points $A(6,13)$ and $B(12,11)$ lie on a circle Ω in the plane. Suppose that the tangents to Ω from A and B intersect at a point on the x-axis. What is the area of Ω ?
34. (Mock AIME II 2012) A circle with radius 5 and center in the first quadrant is placed so that it is tangent to the y-axis. If the line passing through the origin that is tangent to the circle has slope $\frac{1}{2}$, then the y-coordinate of the center of the circle can be written in the form $\frac{m+\sqrt{n}}{p}$ where m, n, and p are positive integers, and $\operatorname{gcd}(m, p)=1$. Find $m+n+p$.
35. (Farewell Mock Geometry AMC) Let $A B C D$ be a square with side length 4 . A circle ω is drawn inscribed inside this square. Point E is placed on $B C$ such that $B E=1$, and line segment $D E$ is drawn. This line segment intersects ω at distinct points F and G. Find the length $F G$.

[^18]36. (AMC 10B/12B 2021) The figure below is constructed from 11 line segments, each of which has length 2. The area of pentagon $A B C D E$ can be written as $\sqrt{m}+\sqrt{n}$, where m and n are positive integers. What is $m+n$?

37. (CMIMC 2019) Let MATH be a trapezoid with $M A=A T=T H=5$ and $M H=11$. Point S is the orthocenter of $\triangle A T H$. Compute the area of quadrilateral MASH.
38. (CMIMC 2017) In acute triangle $A B C$, points D and E are the feet of the angle bisector and altitude from A respectively. Suppose that $A C-A B=36$ and $D C-D B=24$. Compute $E C-E B[5]$
39. (Mock AMC 12 2012) Right triangle $\triangle A B C$ has $A B=15, B C=20$, and a right angle at B. Point D is placed on $A C$ such that $\triangle D A B$ is isosceles with base $A D$. The circumcircle of $\triangle D A B$ intersects line $C B$ at point $E \neq B$. What is $B E \sqrt{57}$
40. (CMIMC 2018) Let $A B C$ be a triangle with $A B=9, B C=10, C A=11$, and orthocenter H. Suppose point D is placed on $\overline{B C}$ such that $A H=H D$. Compute $A D$.
41. (AMC 12A 2021) Suppose that on a parabola with vertex V and a focus F there exists a point A such that $A F=20$ and $A V=21$. What is the sum of all possible values of the length $F V$?
42. (CMIMC 2017) Let \mathcal{S} be the sphere with center $(0,0,1)$ and radius 1 in \mathbb{R}^{3}. A plane \mathcal{P} is tangent to \mathcal{S} at the point $\left(x_{0}, y_{0}, z_{0}\right)$, where x_{0}, y_{0}, and z_{0} are all positive. Suppose the intersection of plane \mathcal{P} with the $x y$-plane is the line with equation $2 x+y=10$ in $x y$-space. What is $z_{0} \cdot \sqrt[58]{58}$
43. (NIMO 16) Let $A B C D$ be a square with side length 2 . Let M and N be the midpoints of $\overline{B C}$ and $\overline{C D}$ respectively, and let X and Y be the feet of the perpendiculars from A to $\overline{M D}$ and $\overline{N B}$, also respectively. The square of the length of segment $\overline{X Y}$ can be written in the form $\frac{p}{q}$ where p and q are positive relatively prime integers. What is $100 p+q$?
44. (Bridging the Gap) Triangle $A E F$ is a right triangle with $A E=4$ and $E F=3$. The triangle is inscribed inside square $A B C D$ with E on $B C$ and F on $C D$. What is the area of the square:59

[^19]45. (AMSP Team Contest 2015) Square $A B C D$ has side length 10 , and point M is the midpoint of $\overline{B C}$. Two circles are inscribed inside the square as shown. What is the ratio of the area of the larger circle to the area of the smaller one?

46. (Mock AMC 12 2012) Two chords are constructed in a circle with radius 4 such that their intersection point lies on the circle, and the angle formed by the two chords has measure 30°. One of the chords has length 5 . Given that the largest possible value for the length of the other chord is $\frac{\sqrt{m}+\sqrt{n}}{p}$ where m, n, and p are positive integers, what is $m+n+p$?
\star 47. (NICE Spring 2021) Let $A B C D$ be a parallelogram with $\angle B A D<90^{\circ}$. The circumcircle of $\triangle A B D$ intersects $\overline{B C}$ and $\overline{A C}$ again at E and Q, respectively. Let P be the intersection point of $\overline{E D}$ with $\overline{A C}$. If $A P=6, P Q=1$, and $Q C=3$, find the area of parallelogram $A B C D$.

48. (USAMTS 2020-2021) Find distinct points A, B, C, and D in the plane such that the length of the segment $A B$ is an even integer, and the lengths of the segments $A C, A D, B C, B D$, and $C D$ are all odd integers. In addition to stating the coordinates of the points and distances between points, please include a brief explanation of how you found the configuration of points and computed the distances ${ }^{60}$
49. (ARML Local 2019) Let \mathcal{T} be an isosceles trapezoid such that there exists a point P in the plane whose distances to the four vertices of \mathcal{T} are $5,6,8$, and 11 . Compute the largest possible ratio of the length of the longer base of \mathcal{T} to the length of its shorter base.

[^20]50. (NIMO 19) Let Ω_{1} and Ω_{2} be two circles in the plane. Suppose the common external tangent to Ω_{1} and Ω_{2} has length 2017 while their common internal tangent has length 2009 . Find the product of the radii of Ω_{1} and $\Omega_{2} .^{61}$
51. (Mock AMC 10/12 2013) In $\triangle A B C, A B=13, A C=14$, and $B C=15$. Let M denote the midpoint of $\overline{A C}$. Point P is placed on line segment $\overline{B M}$ such that $\overline{A P} \perp \overline{P C}$. Suppose that p, q, and r are positive integers with p and r relatively prime and q squarefree such that the area of $\triangle A P C$ can be written in the form $\frac{p \sqrt{q}}{r}$. What is $p+q+r$?
52. (Mock AMC 10/12 2013) One deleted scene from the movie Inception involved a square hanging in mid-air at a certain angle as shown. Scientists tried to determine the dimensions of the square directly, but to no avail. However, working her magic, a passerby named Ellen was able to extend the sides of the square until they met the ground at points P, A, G, and E in that order. Simple measurements showed that $P A=2$ and $G E=3$. What was the area of the square?

53. (AMSP Team Contest 2015) Let $A B C D$ be an isosceles trapezoid with $A D=B C, A B=6$, and $C D=10$. Suppose the distance from A to the centroid of $\triangle B C D$ is 8 . Compute the area of $A B C D 6$
54. (CMIMC 2019) Let $A B C$ be a triangle with $A B=209, A C=243$, and $\angle B A C=60^{\circ}$, and denote by N the midpoint of the major arc $\widehat{B A C}$ of circle $\odot(A B C)$. Suppose the parallel to $A B$ through N intersects $\overline{B C}$ at a point X. Compute the ratio $\frac{B X}{X C}$.
55. (NIMO Summer Contest 2015) Let $\triangle A B C$ be a triangle with $A B=85, B C=125, C A=140$, and incircle ω. Let D, E, F be the points of tangency of ω with $\overline{B C}, \overline{C A}, \overline{A B}$ respectively, and furthermore denote by X, Y, and Z the incenters of $\triangle A E F, \triangle B F D$, and $\triangle C D E$, also respectively. Find the circumradius of $\triangle X Y Z$.
56. (AMC 12B 2021) Let $A B C D$ be a parallelogram with area 15 . Points P and Q are the projections of A and C, respectively, onto the line $B D$; and points R and S are the projections of B and D, respectively, onto the line $A C$. See the figure, which also shows the relative locations of these points.
Suppose $P Q=6$ and $R S=8$, and let d denote the length of $\overline{B D}$, the longer diagonal of $A B C D$. Then d^{2} can be written in the form $m+n \sqrt{p}$, where m, n, and p are positive integers and p is not divisible by the square of any prime. What is $m+n+p$?
57. (CMIMC 2016, with Joshua Siktar) Let \mathcal{P} be a parallelepiped with side lengths x, y, and z. Suppose that the four space diagonals of \mathcal{P} have lengths $15,17,21$, and 23 . Compute $x^{2}+y^{2}+z^{2}, 63$

[^21]
58. (NICE Spring 2021, with Arul Kolla) Let $A B C$ be an isosceles right triangle with $A B=A C$, and denote by M the midpoint of $\overline{B C}$. Construct rectangle $A X B Y$, with X in the interior of $\triangle A B C$, such that $Y M=8$ and $A Y^{3}+B Y^{3}=10^{3}$. The area of quadrilateral $A X B C$ can be expressed in the form $\frac{m \sqrt{n}}{p}$, where m, n, and p are positive integers such that m and p are relatively prime and n is not divisible by the square of any prime. Find $1000000 m+1000 n+p .64$

59. (AIME 2021) Let $A B C D$ be an isosceles trapezoid with $A D=B C$ and $A B<C D$. Suppose that the distances from A to the lines $B C, C D$, and $B D$ are 15,18 , and 10 , respectively. Let K be the area of $A B C D$. Find $\sqrt{2} \cdot K$.
60. (CMIMC 2020) Points P and Q lie on a circle ω. The tangents to ω at P and Q intersect at point T, and point R is chosen on ω so that T and R lie on opposite sides of $P Q$ and $\angle P Q R=\angle P T Q$. Let $R T$ meet ω for the second time at point S. Given that $P Q=12$ and $T R=28$, determine $P S$.
61. (CMIMC 2020) Two circles ω_{A} and ω_{B} have centers at points A and B respectively and intersect at points P and Q in such a way that A, B, P, and Q all lie on a common circle ω. The tangent to ω at P intersects ω_{A} and ω_{B} again at points X and Y respectively. Suppose $A B=17$ and $X Y=20$. Compute the sum of the radii of ω_{A} and ω_{B}.
62. (AMC 12B 2021) Let $A B C D$ be an isoceles trapezoid having parallel bases $\overline{A B}$ and $\overline{C D}$ with $A B>C D$. Line segments from a point inside $A B C D$ to the vertices divide the trapezoid into four triangles whose areas are $2,3,4$, and 5 starting with the triangle with base $\overline{C D}$ and moving clockwise as shown in the diagram below. What is the ratio $\frac{A B}{C D}$?

[^22]
63. (ARML Local 2019) Let Ω be a circle with radius 5 , and suppose A, B, C, and D are points on Ω in that order such that $A B=B C=C D=4$. Determine the radius of the circle below, which is tangent to $A C, B D$, and minor arc $\widehat{A D}$.

64. (CMIMC 2019) Let $A B C$ be a triangle with $A B=13, B C=14$, and $A C=15$. Denote by ω its incircle. A line ℓ tangent to ω intersects $\overline{A B}$ and $\overline{A C}$ at X and Y respectively. Suppose $X Y=5$. Compute the positive difference between the lengths of $\overline{A X}$ and $\overline{A Y}$.
65. (Farewell Geometry Mock AMC) Let S be a square with side length 5. Square S is rotated at an angle of θ° clockwise about its center, $0<\theta<45$, to form square S^{\prime}. If θ is chosen so that $\left[S \cup S^{\prime}\right]=29 \frac{2}{7}$, what is $\lfloor 1000 \tan \theta]$? (Note: $[X]$ is defined as the area of region X. ${ }^{65}$
66. (AMC 12B 2018) Circles ω_{1}, ω_{2}, and ω_{3} each have radius 4 and are placed in the plane so that each circle is externally tangent to the other two. Points P_{1}, P_{2}, and P_{3} lie on ω_{1}, ω_{2}, and ω_{3} respectively such that $P_{1} P_{2}=P_{2} P_{3}=P_{3} P_{1}$ and line $P_{i} P_{i+1}$ is tangent to ω_{i} for each $i=1,2,3$, where $P_{4}=P_{1}$. See the figure below. The area of $\triangle P_{1} P_{2} P_{3}$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers a and b. What is $a+b ? ?^{66}$
67. (AMC 12B 2019) Let $A B C D$ be a convex quadrilateral with $B C=2$ and $C D=6$. Suppose that the centroids of $\triangle A B C, \triangle B C D$, and $\triangle C D A$ form the vertices of an equilateral triangle. What is the maximum possible area of $A B C D$?
68. (CMIMC 2019) Let $\triangle A B C$ be a triangle with side lengths a, b, and c. Circle ω_{A} is the A-excircle of $\triangle A B C$, defined as the circle tangent to $B C$ and to the extensions of $A B$ and $A C$ past B and C respectively. Let \mathcal{T}_{A} denote the triangle whose vertices are these three tangency points; denote

[^23]
\mathcal{T}_{B} and \mathcal{T}_{C} similarly. Suppose the areas of $\mathcal{T}_{A}, \mathcal{T}_{B}$, and \mathcal{T}_{C} are 4,5 , and 6 respectively. Find the ratio $a: b: c$.
69. (ARML Local 2018) Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P \sqrt{67}$
70. (CMIMC 2017) Two circles ω_{1} and ω_{2} are said to be orthogonal if they intersect each other at right angles. In other words, for any point P lying on both ω_{1} and ω_{2}, if ℓ_{1} is the line tangent to ω_{1} at P and ℓ_{2} is the line tangent to ω_{2} at P, then $\ell_{1} \perp \ell_{2}$. (Two circles which do not intersect are not orthogonal.)

Let $\triangle A B C$ be a triangle with area 20 . Orthogonal circles ω_{B} and ω_{C} are drawn with ω_{B} centered at B and ω_{C} centered at C. Points T_{B} and T_{C} are placed on ω_{B} and ω_{C} respectively such that $A T_{B}$ is tangent to ω_{B} and $A T_{C}$ is tangent to ω_{C}. If $A T_{B}=7$ and $A T_{C}=11$, what is $\tan \angle B A C$?
71. (USAMTS 2018-2019) Cyclic quadrilateral $A B C D$ has $A C \perp B D, A B+C D=12$, and $B C+A D=13$. Find the greatest possible area of $A B C D \sqrt{68}$
72. (NIMO 20) Let $A B C$ be a triangle with $A B=20, A C=34$, and $B C=42$. Let ω_{1} and ω_{2} be the semicircles with diameters $\overline{A B}$ and $\overline{A C}$ erected outwards of $\triangle A B C$ and denote by ℓ the common external tangent to ω_{1} and ω_{2}. The line through A perpendicular to $\overline{B C}$ intersects ℓ at X and $B C$ at Y. The length of $\overline{X Y}$ can be written in the form $m+\sqrt{n}$ where m and n are positive integers. Find $100 m+n \sqrt{69}$
73. (CMIMC 2017) Cyclic quadrilateral $A B C D$ satisfies $\angle A B D=70^{\circ}, \angle A D B=50^{\circ}$, and $B C=C D$. Suppose $A B$ intersects $C D$ at point P, while $A D$ intersects $B C$ at point Q. Compute $\angle A P Q-$ $\angle A Q P{ }^{70}$

[^24]74. (ARML Local 2018) Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute $E F$.
75. (NICE Spring 2021) David attempts to draw a regular hexagon $A B C D E F$ inscribed in a circle ω of radius 1 . However, while the points A through E are accurately placed, his point F is slightly off, and so the diagonals $A D, B E$, and $C F$ do not concur (Fortunately for him, the location of point F on ω is the only inaccurate part of the diagram). Undeterred by his artistic deficiencies, David pretends that the diagram is accurate ${ }^{711}$ by shading in the circumcircle of the triangle bounded by these three line segments, which has radius $\frac{1}{24}$. He then continues to draw the rest of the diagram.
The area of the hexagon $A B C D E F$ that David actually drew can be expressed in the form $a-\frac{b}{c} \sqrt{d}$, where a, b, c, and d are positive integers such that b and c are relatively prime and d is not divisible by the square of any prime. Find $a+b+c+d$.
76. (AMSP Team Contest 2015) Rectangles $A B C D$ and $A P C Q$ share the same diagonal $\overline{A C}$. Suppose that $A B=7, A D=4$, and $A P=1$. Compute the maximum possible area of quadrilateral $B P D Q$.
77. (CMIMC 2016) In parallelogram $A B C D$, angles B and D are acute while angles A and C are obtuse. The perpendicular from C to $A B$ and the perpendicular from A to $B C$ intersect at a point P inside the parallelogram. If $P B=700$ and $P D=821$, what is $A C$?
78. (NIMO April 2017) Let $A B C D E$ be a convex pentagon inscribed inside a circle of radius 38. Let I_{1} and I_{2} denote the incenters of $\triangle A B D$ and $\triangle E B D$ respectively. Suppose that $A E=4 \sqrt{37}$ and $B C=C D=57$. Over all such pentagons, compute the square of the maximum possible value of $I_{1} I_{2}$.
79. (CMIMC 2016) In $\triangle A B C, A B=17, A C=25$, and $B C=28$. Points M and N are the midpoints of $\overline{A B}$ and $\overline{A C}$ respectively, and P is a point on $\overline{B C}$. Let Q be the second intersection point of the circumcircles of $\triangle B M P$ and $\triangle C N P$. It is known that as P moves along $\overline{B C}$, line $P Q$ passes through some fixed point X. Compute the sum of the squares of the distances from X to each of A, B, and C.
\star 80. (AIME 2021) Circles ω_{1} and ω_{2} with radii 961 and 625 , respectively, intersect at distinct points A and B. A third circle ω is externally tangent to both ω_{1} and ω_{2}. Suppose line $A B$ intersects ω at two points P and Q such that the measure of minor arc $\widehat{P Q}$ is 120°. Find the distance between the centers of ω_{1} and ω_{2}.
81. (CMIMC 2019) Points A, B, and C lie in the plane such that $A B=13, B C=14$, and $C A=15$. A peculiar laser is fired from A perpendicular to $\overline{B C}$. After bouncing off $B C$, it travels in a direction perpendicular to $C A$. When it hits $C A$, it travels in a direction perpendicular to $A B$, and after hitting $A B$ its new direction is perpendicular to $B C$ again. If this process is continued indefinitely, the laser path will eventually approach some finite polygonal shape T_{∞}. What is the ratio of the perimeter of T_{∞} to the perimeter of $\triangle A B C: \sqrt{72}$
82. (AIME 2018) Let $\triangle A B C$ have side lengths $A B=30, B C=32$, and $A C=34$. Point X lies in the interior of $\overline{B C}$, and points I_{1} and I_{2} are the incenters of $\triangle A B X$ and $\triangle A C X$, respectively. Find the minimum possible area of $\triangle A I_{1} I_{2}$ as X varies along $\overline{B C}$.

[^25]83. (CMIMC 2018) Circles ω_{1} and ω_{2} intersect at P and Q. The common external tangent ℓ to the two circles closer to Q touches ω_{1} and ω_{2} at A and B respectively. Line $A Q$ intersects ω_{2} at X while $B Q$ intersects ω_{1} again at Y. Let M and N denote the midpoints of $\overline{A Y}$ and $\overline{B X}$, also respectively. If $A Q=6, B Q=7$, and $A B=8$, then find the length of $M N .7^{73}$
84. (Problem Stash 2) Let \mathcal{T} be a triangle with inradius 52 and circumradius 117. Suppose ω is the unique circle with the property that inversion about ω sends the incircle of \mathcal{T} to the circumcircle of \mathcal{T}. The radius of ω can be written in the form $m \sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $m+n$.
85. (CMIMC 2017) Points A, B, and C lie on a circle Ω such that A and C are diametrically opposite each other. A line ℓ tangent to the incircle of $\triangle A B C$ at T intersects Ω at points X and Y. Suppose that $A B=30, B C=40$, and $X Y=48$. Compute $T X \cdot T Y$.
86. (CMIMC 2018) Let $A B C$ be a triangle with $A B=10, A C=11$, and circumradius 6 . Points D and E are located on the circumcircle of $\triangle A B C$ such that $\triangle A D E$ is equilateral. Line segments $\overline{D E}$ and $\overline{B C}$ intersect at X. Find $\frac{B X}{X C}$.
87. (AMSP Team Contest 2016) Let $A B C D$ be a convex cyclic quadrilateral inscribed in a circle of radius 30 satisfying $D A=D C=28$ and $D B=49$. If P is the intersection of lines $A C$ and $B D$, compute
$$
A B \cdot B C-A P \cdot P C 74
$$
88. (CMIMC 2016) Let $A B C$ be a triangle with incenter I and incircle ω. It is given that there exist points X and Y on the circumference of ω such that $\angle B X C=\angle B Y C=90^{\circ}$. Suppose further that X, I, and Y are collinear. If $A B=80$ and $A C=97$, compute the length of $B C$.
89. (CMIMC 2017) Two non-intersecting circles, ω and Ω, have centers C_{ω} and C_{Ω} respectively. It is given that the radius of Ω is strictly larger than the radius of ω. The two common external tangents of Ω and ω intersect at a point P, and an internal tangent of the two circles intersects the common external tangents at X and Y. Suppose that the radius of ω is 4, the circumradius of $\triangle P X Y$ is 9 , and $X Y$ bisects $\overline{P C_{\Omega}}$. Compute $X Y$.
90. (Northeastern WOOTers Mock AIME I) Let $\triangle A B C$ be a triangle with $A B=39, B C=42$, and $C A=45$. A point D is placed on the extension of $B C$ past C. Let O_{1} and O_{2} be the circumcenters of $\triangle A B D$ and $\triangle A C D$ respectively. If $O_{1} O_{2}=29$, then the ratio $\frac{B D}{C D}$ can be written in the form $\frac{m}{n}$ for relatively prime positive integers m and n. Find $m+n$.
91. (Mock AMC 10/12 2013) A hexomino is a geometric shape consisting of six congruent squares arranged in a pattern such that any two squares that share an edge also share the two endpoints of this edge. Suppose that a hexomino is inscribed inside a square as shown below.
What is the ratio of the area of the hexomino to the area of the square: ${ }^{75}$
92. (AMSP Team Contest 2015) A semicircle ω has radius 1 and diameter $\overline{A B}$. Two distinct circles ω_{1} and ω_{2} of a radius r are constructed internally tangent to ω and tangent to the segment $\overline{A B}$.

[^26]

Circle \mathcal{A} is then constructed externally tangent to ω_{1} and ω_{2} as well as $\overline{A B}$, while circle \mathcal{B} is constructed externally tangent to ω_{1} and ω_{2} and internally tangent to ω. Suppose circles \mathcal{A} and \mathcal{B} are externally tangent to each other. Compute r.
93. (NIMO 30) Let $A B C$ be a triangle with $A B=4, A C=5, B C=6$, and circumcircle Ω. Points E and F lie on $A C$ and $A B$ respectively such that $\angle A B E=\angle C B E$ and $\angle A C F=\angle B C F$. The second intersection point of the circumcircle of $\triangle A E F$ with Ω (other than A) is P. Suppose $A P^{2}=\frac{m}{n}$ where m and n are positive relatively prime integers. Find $100 m+n$.
94. (CMIMC 2016) Suppose $A B C D$ is a convex quadrilateral satisfying $A B=B C, A C=B D, \angle A B D=$ 80°, and $\angle C B D=20^{\circ}$. What is $\angle B C D$ in degrees?
95. (Problem Stash 1) Let \mathcal{E} be an ellipse passing through $(0,0),(0,5)$, and $(6,0)$. The largest value of d such that the distance from $(0,0)$ to the center of \mathcal{E} is at least d can be written in the form $\frac{m}{\sqrt{n}}$, where m and n are positive relatively prime integers. Find $m+n$.
96. (NIMO 16) Let $\triangle A B C$ have $A B=6, B C=7$, and $C A=8$, and denote by ω its circumcircle. Let N be a point on ω such that $A N$ is a diameter of ω. Furthermore, let the tangent to ω at A intersect $B C$ at T, and let the second intersection point of $N T$ with ω be X. The length of $\overline{A X}$ can be written in the form $\frac{m}{\sqrt{n}}$ for positive integers m and n, where n is not divisible by the square of any prime. Find $100 m+n$.
97. (Problem Stash 1) Two perpendicular chords are drawn inside a circle Ω. These two chords divide the interior of Ω into four sectors, labeled S_{1} through S_{4} clockwise as shown below. Within each sector S_{i} a circle ω_{i} is inscribed, touching each of the two chords as well as the circle Ω internally. Suppose the radii of the circles ω_{1}, ω_{2}, and ω_{3} are 1,2 , and 3 respectively. Then the radius of ω_{4} can be expressed in the form $\frac{m-\sqrt{n}}{p}$, where m, n, and p are positive integers with m and p relatively prime. Find $m+n+p$.

98. (CMIMC 2020) Let \mathcal{E} be an ellipse with foci F_{1} and F_{2}. Parabola \mathcal{P}, having vertex F_{1} and focus F_{2}, intersects \mathcal{E} at two points X and Y. Suppose the tangents to \mathcal{E} at X and Y intersect on the directrix of \mathcal{P}. Compute the eccentricity of \mathcal{E}.
(A parabola \mathcal{P} is the set of points which are equidistant from a point, called the focus of \mathcal{P}, and a line, called the directrix of \mathcal{P}. An ellipse \mathcal{E} is the set of points P such that the sum $P F_{1}+P F_{2}$ is some constant d, where F_{1} and F_{2} are the foci of \mathcal{E}. The eccentricity of \mathcal{E} is defined to be the ratio $F_{1} F_{2} / d$. .
99. (AIME 2018) David found four sticks of different lengths that can be used to form three noncongruent convex cyclic quadrilaterals, A, B, C, which can each be inscribed in a circle with radius 1 . Let φ_{A} denote the measure of the acute angle made by the diagonals of quadrilateral A, and define φ_{B} and φ_{C} similarly. Suppose that $\sin \varphi_{A}=\frac{2}{3}, \sin \varphi_{B}=\frac{3}{5}$, and $\sin \varphi_{C}=\frac{6}{7}$. All three quadrilaterals have the same area K, which can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
100. (TKMT) Let $A B C$ be a triangle with $A B=3$ and $A C=4$. Points O and H are the circumcenter and orthocenter respectively of the triangle. If $O H \| B C$, then $\cos A$ can be expressed in the form $\frac{m-\sqrt{n}}{p}$ where m, n, and p are positive integers with m and p relatively prime. Find $m+n+p$.
101. (CMIMC 2017, with Evan Chen) In triangle $A B C$ with $A B=23, A C=27$, and $B C=20$, let D be the foot of the A altitude. Let \mathcal{P} be the parabola with focus A passing through B and C, and denote by T the intersection point of $A D$ with the directrix of \mathcal{P}. Determine the value of $D T^{2}-D A^{2}$. (Recall that a parabola \mathcal{P} is the set of points which are equidistant from a point, called the focus of \mathcal{P}, and a line, called the directrix of $\mathcal{P} .{ }^{76}$
102. (NIMO 18) Let $A B C$ be a non-degenerate triangle with incenter I and circumcircle Γ. Denote by M_{a} the midpoint of the arc $\widehat{B C}$ of Γ not containing A, and define M_{b}, M_{c} similarly. Suppose $\triangle A B C$ has inradius 4 and circumradius 9 . Compute the maximum possible value of

$$
I M_{a}^{2}+I M_{b}^{2}+I M_{c}^{2}
$$

103. (NIMO 23) Let $\triangle A B C$ be an equilateral triangle with side length s and P a point in the interior of this triangle. Suppose that $P A, P B$, and $P C$ are the roots of the polynomial $t^{3}-18 t^{2}+91 t-89$. Then s^{2} can be written in the form $m+\sqrt{n}$ where m and n are positive integers. Find $100 m+n[7]$
104. (NIMO 21, with Evan Chen) Let $A B C D$ be an isosceles trapezoid with $A D \| B C$ and $B C>A D$ such that the distance between the incenters of $\triangle A B C$ and $\triangle D B C$ is 16 . If the perimeters of $A B C D$ and $A B C$ are 120 and 114 respectively, then the area of $A B C D$ can be written as $m \sqrt{n}$, where m and n are positive integers with n not divisible by the square of any prime. Find $100 m+n{ }^{78}$
105. (AIME 2020) Let $A B C$ be an acute triangle with circumcircle ω and orthocenter H. Suppose the tangent to the circumcircle of $\triangle H B C$ at H intersects ω at points X and Y with $H A=3, H X=2$, $H Y=6$. The area of $\triangle A B C$ can be written as $m \sqrt{n}$, where m and n are positive integers, and n is not divisible by the square of any prime. Find $m+n$.

[^27]106. (CMIMC 2018) Let $A B C$ be a triangle with incircle ω and incenter I. The circle ω is tangent to $B C, C A$, and $A B$ at D, E, and F respectively. Point P is the foot of the angle bisector from A to $B C$, and point Q is the foot of the altitude from D to $E F$. Suppose $A I=7, I P=5$, and $D Q=4$. Compute the radius of ω.
107. (CMIMC 2016) Triangle $A B C$ satisfies $A B=28, B C=32$, and $C A=36$, and M and N are the midpoints of $\overline{A B}$ and $\overline{A C}$ respectively. Let point P be the unique point in the plane $A B C$ such that $\triangle P B M \sim \triangle P N C$. What is $A P: 79$
108. (CMIMC 2017) Triangle $A B C$ satisfies $A B=104, B C=112$, and $C A=120$. Let ω and ω_{A} denote the incircle and A-excircle of $\triangle A B C$, respectively. There exists a unique circle Ω passing through A which is internally tangent to ω and externally tangent to ω_{A}. Compute the radius of $\Omega .80$
\star 109. (NIMO 21) Triangle $A B C$ has $A B=25, A C=29$, and $B C=36$. Additionally, Ω and ω are the circumcircle and incircle of $\triangle A B C$. Point D is situated on Ω such that $A D$ is a diameter of Ω, and line $A D$ intersects ω in two distinct points X and Y. Compute $X Y^{2}{ }^{81}$
110. (AIME 2019) In acute triangle $A B C$ points P and Q are the feet of the perpendiculars from C to $\overline{A B}$ and from B to $\overline{A C}$, respectively. Line $P Q$ intersects the circumcircle of $\triangle A B C$ in two distinct points, X and Y. Suppose $X P=10, P Q=25$, and $Q Y=15$. The value of $A B \cdot A C$ can be written in the form $m \sqrt{n}$, where m and n are positive integers, and n is not divisible by the square of any prime. Find $m+n$.
111. (CMC ${ }^{82}$ 2018) Let $\triangle A B C$ be a triangle with incenter I, and let P be the intersection of line $A I$ with the circumcircle of $\triangle A B C$. Let points X and Y denote the incenters of $\triangle A B P$ and $\triangle A P C$, respectively. Suppose that $X Y=2$ and $B I^{2}+C I^{2}=15$. The value of $\cos \angle B A C$ can be written as $\frac{p}{q}$ for some relatively prime integers p and q. What is the value of $p+q$?
112. (CMIMC 2017) Suppose $\triangle A B C$ is such that $A B=13, A C=15$, and $B C=14$. It is given that there exists a unique point D on side $\overline{B C}$ such that the Euler lines of $\triangle A B D$ and $\triangle A C D$ are parallel. Determine the value of $\frac{B D}{C D}$. (The Euler line of a triangle $A B C$ is the line connecting the centroid, circumcenter, and orthocenter of $A B C$. ${ }^{83}$
113. (CMIMC 2017) Circles ω_{1} and ω_{2} are externally tangent to each other. Circle Ω is placed such that ω_{1} is internally tangent to Ω at X while ω_{2} is internally tangent to Ω at Y. Line ℓ is tangent to ω_{1} at P and ω_{2} at Q and furthermore intersects Ω at points A and B with $A P<A Q$. Suppose that $A P=2, P Q=4$, and $Q B=3$. Compute the length of line segment $\overline{X Y}$.
114. (USAMTS 2018-2019) Acute scalene triangle $\triangle A B C$ has circumcenter O and orthocenter H. Points X and Y, distinct from B and C, lie on the circumcircle of $\triangle A B C$ such that $\angle B X H=$

[^28]$\angle C Y H=90^{\circ}$. Show that if lines $X Y, A H$, and $B C$ are concurrent, then $\overline{O H}$ is parallel to $\overline{B C}{ }^{84}$
115. (Mock AIME I 2015) Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be a hexagon inscribed inside a circle of radius r. Furthermore, for each positive integer $1 \leq i \leq 6$ let M_{i} be the midpoint of the segment $\overline{A_{i} A_{i+1}}$, where $A_{7} \equiv A_{1}$. Suppose that hexagon $M_{1} M_{2} M_{3} M_{4} M_{5} M_{6}$ can also be inscribed inside a circle. If $A_{1} A_{2}=A_{3} A_{4}=5$ and $A_{5} A_{6}=23$, then r^{2} can be written in the form $\frac{m}{n}$ where m and n are positive relatively prime integers. Find $m+n$.
116. (Mock AIME I 2015) Let $\triangle A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Let O denote its circumcenter and H its orthocenter. The circumcircle of $\triangle A O H$ intersects $A B$ and $A C$ at D and E respectively. Suppose $\frac{A D}{A E}=\frac{m}{n}$ where m and n are positive relatively prime integers. Find $m-n{ }^{85}$
\star 117. (CMIMC 2017) Let $\triangle A B C$ be an acute triangle with circumcenter O, and let $Q \neq A$ denote the point on $\odot(A B C)$ for which $A Q \perp B C$. The circumcircle of $\triangle B O C$ intersects lines $A C$ and $A B$ for the second time at D and E respectively. Suppose that $A Q, B C$, and $D E$ are concurrent. If $O D=3$ and $O E=7$, compute $A Q \cdot{ }^{86}$
\star 118. (CMIMC 2016) Let $\triangle A B C$ be a triangle with $A B=65, B C=70$, and $C A=75$. A semicircle Γ with diameter $\overline{B C}$ is erected outside the triangle. Suppose there exists a circle ω tangent to $A B$ and $A C$ and furthermore internally tangent to Γ at a point X. The length $A X$ can be written in the form $m \sqrt{n}$ where m and n are positive integers with n not divisible by the square of any prime. Find $m+n{ }^{87}$
119. (CMIMC 2016) Let $\triangle A B C$ be a triangle with circumcircle Ω and let N be the midpoint of the major arc $\widehat{B C}$. The incircle ω of $\triangle A B C$ is tangent to $A C$ and $A B$ at points E and F respectively. Suppose point X is placed on the same side of $E F$ as A such that $\triangle X E F \sim \triangle A B C$. Let $N X$ intersect $B C$ at a point P. If $A B=15, B C=16$, and $C A=17$, then compute $\frac{P X}{X N}{ }^{88}$

[^29]
4 Number Theory

1. (AMC 10B 2021) The ages of Jonie's four cousins are distinct single-digit positive integers. Two of the cousins' ages multiplied together give 24 , while the other two multiply to 30 . What is the sum of the ages of Jonie's four cousins?
2. (CMIMC 2016) David, when submitting a problem for CMIMC, wrote his answer as $100 \frac{x}{y}$, where x and y are two positive integers with $x<y$. Andrew interpreted the expression as a product of two rational numbers, while Patrick interpreted the answer as a mixed fraction. In this case, Patrick's number was exactly double Andrew's! What is the smallest possible value of $x+y:{ }^{89}$
3. (CMIMC 2017) There exist two distinct positive integers, both of which are divisors of 10^{10}, with sum equal to 157 . What are they: 9
4. (CMIMC 2018) Suppose a, b, and c are relatively prime integers such that

$$
\frac{a}{b+c}=2 \quad \text { and } \quad \frac{b}{a+c}=3 .
$$

What is the value of $|c|$?
5. (ARML Local 2019) Compute the number of ordered pairs of positive integers (x, y) that satisfy the equality $x^{y}=2^{9!} \cdot 91$
6. (ARML Local 2018) Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.
7. (NIMO Summer Contest 2017) If p, q, and r are nonzero integers satisfying

$$
p^{2}+q^{2}=r^{2},
$$

compute the smallest possible value of $(p+q+r)^{2}$.
8. (NIMO Summer Contest 2015) A list of integers with average 89 is split into two disjoint groups. The average of the integers in the first group is 73 while the average of the integers in the second group is 111 . What is the smallest possible number of integers in the original list?
9. (NIMO 16) For any interval \mathcal{A} in the real number line not containing zero, define its reciprocal to be the set of numbers of the form $\frac{1}{x}$ where x is an element in \mathcal{A}. Compute the number of ordered pairs of positive integers (m, n) with $m<n$ such that the length of the interval $[m, n]$ is 10^{10} times the length of its reciprocal.
10. (CMIMC 2017) Determine all possible values of $m+n$, where m and n are positive integers satisfying

$$
\operatorname{lcm}(m, n)-\operatorname{gcd}(m, n)=103 .
$$

11. (NICE Spring 2021) How many positive integers $N \leq 1000$ are there for which N^{2} and $(N+1)^{2}$ both have at least five positive divisors? It is known there are 168 primes between 1 and 1000 .

[^30]12. (The CALT) For all positive integer n, let $f(n)$ denote the closest prime to n. (If two such integers exist, take the larger of the two.) What is the smallest integer n such that
$$
f(n+1)^{2}-f(n)^{2}=120 ?
$$
13. (AMSP Team Contest 2017) Let $\tau(n)$ denote the number of positive divisors of n. For example, $\tau(6)=4$ since the divisors of 6 are $1,2,3$, and 6 . What is the value of
$$
1 \cdot(-1)^{\tau(1)}+2 \cdot(-1)^{\tau(2)}+3 \cdot(-1)^{\tau(3)}+\cdots+100 \cdot(-1)^{\tau(100)} ?
$$
14. (The CALT) For each pair (m, n) of non negative integers with $m \leq n$, let $f(m, n)$ denote the remainder when $1+7+\ldots+7^{n}$ is divided by $1+7+\ldots+7^{m}$. Find, with proof, the maximum possible value of $f(m, n)$ over all pairs (m, n) with $1 \leq m \leq n \leq 100$.
15. (CMIMC 2019) Determine the number of ordered pairs of positive integers (m, n) with $1 \leq m \leq$ 100 and $1 \leq n \leq 100$ such that
$$
\operatorname{gcd}(m+1, n+1)=10 \operatorname{gcd}(m, n)
$$
16. (NIMO April 2017) Compute the least composite positive integer N such that the sum of all prime numbers that divide N is 37 .
17. Two related problems.
(a) (Mock AMC 12 2012) Let $x_{1}, x_{2}, x_{3}, x_{4}$ be a sequence of positive integers. Given that
$$
\sum_{i=1}^{n}\left(3^{x_{i}}+2^{x_{i}}\right)=930
$$
determine $\sum_{i=1}^{4} x_{i}$.
(b) (AMSP Team Contest 2015) What is the smallest positive integer n such that there exists a sequence of positive integers $x_{1}, x_{2}, \ldots, x_{n}$ satisfying
$$
3^{x_{1}}+3^{x_{2}}+\cdots+3^{x_{n}}=2^{x_{1}}+2^{x_{2}}+\cdots+2^{x_{n}}+2015 ?
$$
18. (Problem Stash 2) Let $\tau(n)$ denote the number of positive divisors of n. Compute the sum of the five smallest positive three-digit integers N such that the numbers $\tau(N), \tau(2 N)$, and $\tau(3 N)$ form an increasing arithmetic progression.
19. (NIMO April 2017) Compute the least possible value of $m+100 n$, where m and n are positive integers such that
$$
\frac{1^{2}+2^{2}+\cdots+m^{2}}{1^{2}+2^{2}+\cdots+n^{2}}=\frac{31}{254}
$$
20. (NIMO 30) Suppose a, b and c are positive integers with the property that $a b, b c$, and $a c$ are pairwise distinct perfect squares. What is the smallest possible value of $a+b+c:{ }^{92}$

[^31]21. (CMIMC 2016) Let a_{1}, a_{2}, \ldots be an infinite sequence of (positive) integers such that k divides $\operatorname{gcd}\left(a_{k-1}, a_{k}\right)$ for all $k \geq 2$. Compute the smallest possible value of $a_{1}+a_{2}+\cdots+a_{10}{ }^{.93}$
22. (Northeastern WOOTers Mock AIME I) It is given that 181^{2} can be written as the difference of the cubes of two consecutive positive integers. Find the sum of these two integers.
23. (CMIMC 2017) For how many triples of positive integers (a, b, c) with $1 \leq a, b, c \leq 5$ is the quantity
$$
(a+b)(a+c)(b+c)
$$
not divisible by 4 ?
24. (RHS Guts Round 2015) Congratulations on making it halfway through the test! I wanted to reward you with an easy problem, but unfortunately some crazy physicist named Scott Pede ${ }^{94}$ messed with my computer and now one of the digits on my keypad (not 0 , thank goodness) outputs a \downarrow instead. That's okay, though, I'll still put the problem here; after all, you should still be able to solve it, right?
What is the quotient when 1 q $4 \downarrow 3$ is divided by $\mathfrak{q 1}$, given that there is no remainder?
25. (Mock AMC 10/12 2013) Define the sequence $\left\{a_{k}\right\}$ such that $a_{k}=1!+2!+3!+\cdots+k$! for each positive integer k. (Note: the factorial function $x!$ is defined as the product of the first x positive integers.) For how many positive integers $1 \leq n \leq 2013$ does the quantity $a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ end in the digit 3?
26. (Problem Stash 1) Let A denote the set of positive integers a such that
$$
\frac{8!}{\operatorname{gcd}(a, 8!)} \text { divides } \frac{7!}{\operatorname{gcd}(a, 7!)}
$$

Then the density of A, that is, the limit

$$
\lim _{n \rightarrow \infty} \frac{|A \cap\{1,2, \ldots, n\}|}{n},
$$

can be written in the form $\frac{p}{q}$ where p and q are positive relatively prime integers. Find $p+q$.
27. (CMIMC 2018) Let $a>1$ be a positive integer. The sequence of natural numbers $\left\{a_{n}\right\}$ is defined as follows: $a_{1}=a$ and for all $n \geq 1, a_{n+1}$ is the largest prime factor of $a_{n}^{2}-1$. Determine the smallest possible value of a such that the numbers $a_{1}, a_{2}, \ldots, a_{7}$ are all distinct.
28. Two more related problems.
(a) (Mock AMC 12 2012) How many positive integers n exist such that the sum of the first $2 n$ positive perfect squares is an integer multiple of the sum of the first n positive odd integers?
(b) (Brilliant.org) Compute the sum of all integers n with $1 \leq n \leq 100$ such that

$$
\frac{1^{2}+2^{2}+\cdots+n^{2}}{1+2+\cdots+n}
$$

is an integer ${ }^{95}$

[^32]29. (CMIMC 2019) Determine the sum of all positive integers n between 1 and 100 inclusive such that
$$
\operatorname{gcd}\left(n, 2^{n}-1\right)=3
$$
30. (AMC 10A 2021) Hiram's algebra notes are 50 pages long and are printed on 25 sheets of paper; the first sheet contains pages 1 and 2 , the second sheet contains pages 3 and 4 , and so on. One day he leaves his notes on the table before leaving for lunch, and his roommate decides to borrow some pages from the middle of the notes. When Hiram comes back, he discovers that his roommate has taken a consecutive set of sheets from the notes and that the average (mean) of the page numbers on all remaining sheets is exactly 19 . How many sheets were borrowed?
31. (Mock AMC 10/12 2013) An integer is said to be two-separable if it can be represented as the product of two positive integers that differ by two. (For example, since $8=2 \cdot 4,8$ is twoseparable.) Similarly, an integer is said to be nine-separable if it can be represented as the product of two positive integers that differ by 9 . What is the sum of all positive integers that are both two-separable and nine-separable? ${ }^{96}$
32. (NIMO Summer Contest 2015) It is given that the number $4^{11}+1$ is divisible by some prime greater than 1000. Determine this prime.
33. (Mock AIME I 2015) In an urn there are a certain number (at least two) of black marbles and a certain number of white marbles. Steven blindfolds himself and chooses two marbles from the urn at random. Suppose the probability that the two marbles are of opposite color is $\frac{1}{2}$. Let $k_{1}<k_{2}<\cdots<k_{100}$ be the 100 smallest possible values for the total number of marbles in the urn. Compute the remainder when
$$
k_{1}+k_{2}+k_{3}+\cdots+k_{100}
$$
is divided by 1000 .
34. (Mock AIME I 2015) For all points P in the coordinate plane, let P^{\prime} denote the reflection of P across the line $y=x$. For example, if $P=(3,1)$, then $P^{\prime}=(1,3)$. Define a function f such that for all points $P, f(P)$ denotes the area of the triangle with vertices $(0,0), P$, and P^{\prime}. Determine the number of lattice points Q in the first quadrant such that $f(Q)=8$!.
35. (CMIMC 2018) It is given that there exist unique integers m_{1}, \ldots, m_{100} such that
$$
0 \leq m_{1}<m_{2}<\cdots<m_{100} \quad \text { and } \quad 2018=\binom{m_{1}}{1}+\binom{m_{2}}{2}+\cdots+\binom{m_{100}}{100}
$$

Find $m_{1}+m_{2}+\cdots+m_{100} \cdot{ }^{97}$
36. (NICE Spring 2021) What is the sum of all two-digit primes p for which there exist positive integers x, y, and D such that

$$
x^{2}-D y^{2}=(x+1)^{2}-D(y+1)^{2}=p ?
$$

[^33]37. (Problem Stash 1) Determine the number of nonzero polynomials $P(x)$ with nonnegative integer coefficients such that $P(1) \leq 100$ and $P(n)$ divides n^{2020} for infinitely many positive integers n.
\star 38. (CMIMC 2017) One can define the greatest common divisor of two positive rational numbers as follows: for a, b, c, and d positive integers with $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1$, write
$$
\operatorname{gcd}\left(\frac{a}{b}, \frac{c}{d}\right)=\frac{\operatorname{gcd}(a d, b c)}{b d}
$$

For all positive integers K, let $f(K)$ denote the number of ordered pairs of positive rational numbers (m, n) with $m<1$ and $n<1$ such that

$$
\operatorname{gcd}(m, n)=\frac{1}{K}
$$

What is $f(2017)-f(2016)$?
39. (Mock AMC 10/12 2013) On a table are n marbles, each of which has a different integer weight in the set $1,2,3, \ldots, n$. The marbles are partitioned into three boxes, and the average weight of the marbles in each box is written on said box. Suppose that the numbers written on the boxes are 6,10 , and 11 . How many possible integer values of n are there? 98
40. (CMIMC 2016) Suppose integers $a<b<c$ satisfy

$$
a+b+c=95 \quad \text { and } \quad a^{2}+b^{2}+c^{2}=3083 .
$$

Find c.
41. (Problem Stash 2) Determine the number of ordered quadruples (p, q, r, s) of odd primes such that

$$
\frac{p q r s}{(p-2)(q-2)(r-2)(s-2)}
$$

is an integer.
42. (NICE Spring 2021) ${ }^{99}$ Determine the number of ordered pairs (b, c) of integers with $0 \leq b \leq 2016$ and $0 \leq c \leq 2016$ such that 2017 divides $x^{3}-b x^{2}+c$ for exactly one integer x with $0 \leq x \leq 2016$.
43. (CMIMC 2019) For all positive integers n, let

$$
f(n)=\sum_{k=1}^{n} \varphi(k)\left\lfloor\frac{n}{k}\right\rfloor^{2}
$$

Compute $f(2019)-f(2018)$. Here $\varphi(n)$ denotes the number of positive integers less than or equal to n which are relatively prime to n.
44. (CMIMC 2017) Find the largest positive integer N satisfying the following properties:

- N is divisible by 7;

[^34]- Swapping the $i^{\text {th }}$ and $j^{\text {th }}$ digits of N (for any i and j with $i \neq j$) gives an integer which is not divisible by 7 .

45. (NIMO April 2017) Let N denote the number of positive integers n between 1 and 1000 inclusive such that $\binom{3 n}{n}$ is odd. What are the last two digits of $N ?^{100}$
46. (Mock AIME I 2015) Let f be a function defined along the rational numbers such that $f\left(\frac{m}{n}\right)=\frac{1}{n}$ for all relatively prime positive integers m and n. The product of all rational numbers $0<x<1$ such that

$$
f\left(\frac{x-f(x)}{1-f(x)}\right)=f(x)+\frac{9}{52}
$$

can be written in the form $\frac{p}{q}$ for positive relatively prime integers p and q. Find $p+q$.
47. (AIME 2021) Consider the sequence $\left(a_{k}\right)_{k \geq 1}$ of positive rational numbers defined by $a_{1}=\frac{2020}{2021}$ and for $k \geq 1$, if $a_{k}=\frac{m}{n}$ for relatively prime positive integers m and n, then

$$
a_{k+1}=\frac{m+18}{n+19} .
$$

Determine the sum of all positive integers j such that the rational number a_{j} can be written in the form $\frac{t}{t+1}$ for some positive integer t.
48. (USEMO 2020) Which positive integers can be written in the form

$$
\frac{\operatorname{lcm}(x, y)+\operatorname{lcm}(y, z)}{\operatorname{lcm}(x, z)}
$$

for positive integers x, y, z ?
49. (CMIMC 2016) Recall that in any row of Pascal's Triangle, the first and last elements of the row are 1 and each other element in the row is the sum of the two elements above it from the previous row. With this in mind, define the Pascal Squared Triangle as follows:

- In the $n^{\text {th }}$ row, where $n \geq 1$, the first and last elements of the row equal n^{2};
- Each other element is the sum of the two elements directly above it.

The first few rows of the Pascal Squared Triangle are shown below.

Let S_{n} denote the sum of the entries in the $n^{\text {th }}$ row. For how many integers $1 \leq n \leq 10^{6}$ is S_{n} divisible by $13: 101$

[^35]50. (CMIMC 2018) It is given that there exists a unique triple of positive primes (p, q, r) such that $p<q<r$ and
$$
\frac{p^{3}+q^{3}+r^{3}}{p+q+r}=249
$$

Find r.
51. (CMIMC 2016) Determine the smallest positive prime p which satisfies the congruence

$$
p+p^{-1} \equiv 25 \quad(\bmod 143)
$$

Here, p^{-1} as usual denotes multiplicative inverse 102
52. (NIMO Summer Contest 2017) For all positive integers n, denote by $\sigma(n)$ the sum of the positive divisors of n and $v_{p}(n)$ the largest power of p which divides n. Compute the largest positive integer k such that 5^{k} divides

$$
\sum_{d \mid N} v_{3}(d!)(-1)^{\sigma(d)}
$$

where $N=6^{1999}$.
53. (NIMO 23) Let $p=2017$ be a prime. Find the remainder when

$$
\left\lfloor\frac{1^{p}}{p}\right\rfloor+\left\lfloor\frac{2^{p}}{p}\right\rfloor+\left\lfloor\frac{3^{p}}{p}\right\rfloor+\cdots+\left\lfloor\frac{2015^{p}}{p}\right\rfloor
$$

is divided by p. Here $\lfloor\cdot\rfloor$ denotes the greatest integer function 103
54. (CMIMC 2016) Compute the number of positive integers $n \leq 50$ such that there exist distinct positive integers a, b satisfying

$$
\frac{a}{b}+\frac{b}{a}=n\left(\frac{1}{a}+\frac{1}{b}\right)
$$

55. (AMM 12239) Determine all positive integers r such that there exist at least two pairs of positive integers (m, n) satisfying the equation $2^{m}=n!+r$.
56. (CMIMC 2018) Let $a_{1}<a_{2}<\cdots<a_{k}$ denote the sequence of all positive integers between 1 and 91 which are relatively prime to 91 , and set $\omega=e^{2 \pi i / 91}$. Define

$$
S=\prod_{1 \leq q<p \leq k}\left(\omega^{a_{p}}-\omega^{a_{q}}\right)
$$

Given that S is a positive integer, compute the number of positive divisors of $S,{ }^{104}$

[^36]
5 Miscellaneous/Undergraduate

1. (NICE Spring 2021) In a hat, there are ten slips, each containing a different integer from 1 to 10 , inclusive. David reaches into the hat and keeps for himself two numbers that differ by seven. Ankan then reaches into the hat and picks two numbers that differ by five. What is the largest possible sum of the four picked numbers?
2. (CMIMC 2019) David recently bought a large supply of letter tiles. One day he arrives back to his dorm to find that some of the tiles have been arranged to read Central Michigan University. What is the smallest number of tiles David must remove and/or replace so that he can rearrange them to read Carnegie Mellon University? ${ }^{105}$
3. (CMIMC 2017) We are given the following function f, which takes a list of integers and outputs another list of integers. (Note that here the list is zero-indexed.)
```
FUNCTION f(A)
    FOR i=1,\ldots,length(A)-1:
            A[i]\leftarrowA[A[i]]
            A[0]}\leftarrowA[0]-
        RETURN A
```

Suppose the list B is equal to $[0,1,2,8,2,0,1,7,0]$. In how many entries do B and $f(B)$ differ?
4. (Problem Stash 1) David is given the diagram shown below. He is able to write down the numbers 1 through 5 in each box such that the following two conditions hold:

- Each row and column uses the numbers 1 through 5 exactly once;
- The sum of the numbers in each "cage" (region bounded by a heavy border) is equal to the number written in the upper left corner of said cage.

When he is finished, David reads from left to right along each long diagonal to obtain two fivedigit numbers. Find their sum.
5. (CMIMC 2020) Find all sets of five positive integers whose mode, mean, median, and range are all equal to 5 .

[^37]6. (Problem Stash 2) Compute the smallest possible value of
$$
\int_{0}^{10}\left|x^{2}-t\right| d x
$$
as t ranges over all real numbers ${ }^{106}$
7. (CMIMC 2018) How many ordered triples (a, b, c) of integers satisfy the inequality
$$
a^{2}+b^{2}+c^{2} \leq a+b+c+2: 107
$$
8. (RHS Guts Round 2015) Mr. Douglas, bored of scaring his students with pop trigonometry quizzes, decides one day to work on a logic puzzle. He is challenged to place each of the digits 1 through 8 in the eight boxes below, with one integer per box, such that each bold box contains an integer equal to the sum of the numbers in the squares immediately adjacent to it. After he is done, he takes each of the integers in the four bold boxes and multiplies them together. What is his result?

9. (CMIMC 2018) You are given the existence of an unsorted sequence a_{1}, \ldots, a_{5} of five distinct real numbers. The Erdos-Szekeres theorem states that there exists a subsequence of length 3 which is either strictly increasing or strictly decreasing. You do not have access to the a_{i}, but you do have an oracle which, when given two indexes $1 \leq i<j \leq 5$, will tell you whether $a_{i}<a_{j}$ or $a_{i}>a_{j}$. What is the minimum number of calls to the oracle needed in order to identify one such requested subsequence?
10. (ARML Local 2018) Compute the number of positive integers N between 1 and 100 inclusive with the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.
11. (CMIMC 2018) How many nonnegative integers with at most 40 digits consisting of entirely zeroes and ones are divisible by $11 ?{ }^{108}$
12. (NICE Spring 2021) Suppose a and b are positive integers with $a<b$ such that the four intersection points of the lines $y=x+a$ and $y=x+b$ with the parabola $y=x^{2}$ are the vertices of a quadrilateral with area 720 . Find $1000 a+b$.

[^38]13. (AMC 10A/12A 2020) There exists a unique strictly increasing sequence of nonnegative integers $a_{1}<a_{2}<\ldots<a_{k}$ such that
$$
\frac{2^{289}+1}{2^{17}+1}=2^{a_{1}}+2^{a_{2}}+\ldots+2^{a_{k}} .
$$

What is k ?
14. (CMIMC 2017) Define $\left\{p_{n}\right\}_{n=0}^{\infty} \subset \mathbb{N}$ and $\left\{q_{n}\right\}_{n=0}^{\infty} \subset \mathbb{N}$ to be sequences of natural numbers as follows:

- $p_{0}=q_{0}=1$;
- For all $n \in \mathbb{N}, q_{n}$ is the smallest natural number such that there exists a natural number p_{n} with $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$ satisfying

$$
\frac{p_{n-1}}{q_{n-1}}<\frac{p_{n}}{q_{n}}<\sqrt{2} .
$$

Find q_{3}.
15. (AMC 12A 2021) The five solutions to the equation

$$
(z-1)\left(z^{2}+2 z+4\right)\left(z^{2}+4 z+6\right)=0
$$

may be written in the form $x_{k}+y_{k} i$ for $1 \leq k \leq 5$, where x_{k} and y_{k} are real. Let \mathcal{E} be the unique ellipse that passes through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$, and $\left(x_{5}, y_{5}\right)$. The eccentricity of \mathcal{E} can be written in the form $\sqrt{\frac{m}{n}}$ where m and n are relatively prime positive integers. What is $m+n$? (Recall that the eccentricity of an ellipse \mathcal{E} is the ratio $\frac{c}{a}$, where $2 a$ is the length of the major axis of \mathcal{E} and $2 c$ is the is the distence between its two foci.)
16. (Illinois Mock Putnam 2019) Find all locally integrable functions $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{1} g(f(x)) d x=g\left(\int_{0}^{1} f(x) d x\right)
$$

for every integrable function $f:[0,1] \rightarrow \mathbb{R}$.
17. (Problem Stash $1 /$ Illinois Undergraduate Contest 2020) For each positive integer n, let U_{n} denote the area enclosed by the graph of $|x|^{n}+|y|^{n}=1$. The value of

$$
\lim _{n \rightarrow \infty} n^{2}\left(4-U_{n}\right)
$$

can be written in the form $\frac{a \pi^{b}}{c}$, where a, b, and c are positive integers with a and c relatively prime. Compute $100 a+10 b+c$.
18. (CMIMC 2016 ${ }^{109}$ For any language $L \in\{0,1\}^{*}$, define a language L_{0} which consists of the set of words of the form

$$
a_{1} s_{1,2} a_{2} s_{2,3} a_{3} \ldots a_{k-1} s_{k-1, k} a_{k}
$$

where $a_{1} a_{2} a_{3} \ldots a_{k}$ is a word in L. Here, $s_{i, j}$ is 1 when $a_{i} \neq a_{j}$ and zero otherwise. For example, the word 1101 in L corresponds to the word 1011011 in L_{0}.
Suppose L is regular. Must L_{0} also be regular?
${ }^{109}$ More specifically, the power round from that year; for information on the terminology used in this problem, see here

6 Links to Solutions

Here are links to solutions to the majority of the problems organized by source. Some of these redirect to solutions manuals, while others redirect to various parts of the AoPS community.

- CMIMC: http://cmimc.co/archive.html
- Mock AIME I 2015: https://www.dropbox.com/s/d66fcsu4hdfmotz/MockAIMEI2015Solutions. pdf? $\mathrm{dl}=0$
- Mock AMC 10/12 2013: No good source here, since a solutions manual was never written. Search +Mock +AMC +Problem with author djmathman in the AoPS Advanced search for links to problem threads.
- NIMO:http://www.artofproblemsolving.com/community/c3423_nimo_problems

[^0]: ${ }^{1}$ Okay sure, this problem is definitely not original, but I've used it probably at least three times for three different contests and changed the year each time, so I figured I might as well put it here. (As a side note, the number 1983 was chosen because that was the year of the very first AIME!)
 ${ }^{2}$ This problem achieved a 100% success rate among users who submitted for grading. Hooray!
 ${ }^{3}$ The legendary 420 problem!

[^1]: ${ }^{4}$ The choice of 337 came from the fact that this was the second half of a relay question.
 ${ }^{5}$ Note: they're not actually real

[^2]: ${ }^{6}$ Sorry CMU!
 ${ }^{7}$ The wording here is clarified to reflect the original intention of the problem. Apologies for any confusion!

[^3]: ${ }^{8}$ The number of submissions during the contest which had the polynomial written in terms of x as opposed to in terms of z was quite astonishing.
 ${ }^{9}$ This may seem incredibly high placement given the fact this was problem 2 on the team round, but the latter placement was because I figured teams could easily fakesolve it by say plugging $x=y=1$ and I didn't want to remove the beauty of the problem statement by adding in an unnecessary "maximum" clause.

[^4]: ${ }^{10}$ Inspired from what eventually would become NIMO 24 \#1, hence the dual authorship with Tony Kim
 ${ }^{11}$ Compare with 2016 Spring OMO \#5. Fortunately, no harm was done, although I became very scared when I first saw the connection.
 ${ }^{12}$ An extensive account of the creation of this problem can be found here
 ${ }^{13}$ This problem has interesting ties to Linear Algebra, since the sequence of polynomials $\binom{x}{k}=\frac{x(x-1) \cdots(x-k+1)}{k}$ can be viewed as a basis of the set of all finite-degree polynomials in \mathbb{R}. (The Fibonacci polynomials question later in this section also revolves around this idea.)
 ${ }^{14}$ This is a bit computational. This was still relatively early on in my problem writing days, so I don't think I had mastered the art of picking nice numbers at this point....

[^5]: ${ }^{15}$ This was originally intended as a calculus problem. Then I realized the non-calculus solution was shorter.

[^6]: ${ }^{16}$ A mock competition run by two users on AoPS.
 ${ }^{17}$ An exercise toward the end of A First Course in Complex Analysis guides readers through a proof of the sum $\sum_{k=0}^{\infty}\binom{2 k}{k} x^{k}=$ $\frac{1}{\sqrt{1-4 x}}$ using the identity

 $$
 \binom{n}{k}=\frac{1}{2 \pi i} \int_{\gamma} \frac{(z+1)^{n}}{z^{k+1}} d z
 $$

 where γ is any simple closed piecewise smooth path with 0 in its interior. This problem was born out of exploring this technique to try to evaluate different yet similar sums of binomial coefficients.
 ${ }^{18}$ I find it interesting how the 3 is so important here; replacing it with any other number will break the intended solution.

[^7]: ${ }^{19}$ I originally submitted this to the NIMO database in June 2015! I think I intended for it to be a Summer Contest question, which is why it went unused for so long.
 ${ }^{20}$ a replacement for the AIME II, where the " O " stands for "online"

[^8]: ${ }^{21}$ Inspired simultaneously by NIMO 19 \#7 and AMST 2016 Algebra \#9. Also compare with 2016 Japan Mathematical Olympiad Preliminary \#7 apparently??
 ${ }^{22}$ More specifically, Keerthana came up with the original setup of looking at $\Pi\left(\alpha^{3}+1\right)$; I turned the problem in a new direction by adding another layer to the computation of the product.
 ${ }^{23}$ This was directly inspired by trying to generalize AIME 2010.I. 6 to the case where the parabolas do not share a common vertex.
 ${ }^{24}$ This problem was the result of spending about a month trying to find a clever use of generating functions. While this result is nothing new (e.g. the OEIS pages for sequences A002426 and A082758 cross-reference each other), I've never seen this exact idea in a contest setting before, so it's all good.

[^9]: ${ }^{25}$ This problem exemplifies perhaps what is one of the biggest consistent flaws over lots of my problems: interesting initial ideas but somewhat computational finishes.
 ${ }^{26}$ This was A6 until about a week or two before the contest. It seems that I heavily underestimated the difficulty of this problem.
 ${ }^{27}$ This problem is a small adaptation of a lemma from a 21-723 Advanced Real Analysis homework assignment. More specifically, the calculation in this question can be used to show that the Fejér kernel forms an approximate identity, which in turn can be used to show convergence results of Fourier series in certain L^{p} spaces.
 ${ }^{28}$ Heavily inspired by Problem 8.63 in Intermediate Algebra.
 ${ }^{29}$ This is probably one of the only problems I've ever written for which I knew the answer but not the formal solution while the contest was active.

[^10]: ${ }^{30} \mathrm{I}$ 'm still surprised that a nonzero value of c exists. Perhaps one of my favorite algebra problems I've ever written.
 ${ }^{31}$ In reality, the indices are shifted up by one (so e.g. $F_{1}(x)=1$), but this interpretation makes the problem statement easier to write since $\operatorname{deg} F_{i}(x)=i$ for all $i \geq 0$
 ${ }^{32}$ This, like all the other \#10s which appeared on CMIMC in 2016, took me several days to solve. I was very much okay with putting problems on the test that did take me multiple days to solve because of the very high skill cap of the contestants coming. Indeed, a few people almost solved this one completely!

[^11]: ${ }^{33}$ To clarify: this is the probability symptoms show for the first time; these probabilities sum to 1 on purpose.
 ${ }^{34}$ This was a dropped CMIMC 2016 problem. I'm not sure why this didn't make the test; my best guess is that we had other problems which probably fit better in the early spots.
 ${ }^{35}$ Originally a proposal for NIMO Summer Contest 2017 (with the appropriate flavortext modifications of course)
 ${ }^{36}$ Heavily inspired by a NIMO proposal from Tony, hence the dual authorship

[^12]: ${ }^{37}$ oops this is super contrived but whatever
 ${ }^{38}$ Not just the digit!

[^13]: ${ }^{39}$ The inspiration should be fairly clear :). In particular, this was inspired from thinking about disease spread, especially from the 2-14 day incubation period of the novel coronavirus.
 ${ }^{40}$ Probably one of my most infamous problems to date. I actually liked it, in part because of the method that I found to enumerating all the cases. But it seems that this opinion was not universal.

[^14]: ${ }^{41}$ See here Darn, why is almost all my hard combo just nasty casework? (If you want to get the spirit of this problem without worrying about lots of casework, replace 9 with 6 .)
 ${ }^{42}$ Putting this here because proving the result is somewhat harder than arriving at the answer.
 ${ }^{43}$ Inspired by a 15-210 programming assignment during the F17 semester!
 ${ }^{44}$ This hints at the idea of a line graph, which is a transformation we studied in 15-251 while working with polynomialtime reductions.
 ${ }^{45}$ I'm amazed. This problem is at the end of the combo section not because it's the hardest problem I've written, but because for now it just feels right here.

[^15]: ${ }^{46}$ This part is not necessary, but I was worried about possible configuration loopholes that might occur otherwise.
 ${ }^{47}$ For some reason, I really like this problem. I think it is a very strong opening question.
 ${ }^{48}$ Also a dropped CMIMC problem. I think I took this off because I didn't feel it was original enough when compared with some of the other questions on the test.

[^16]: ${ }^{49}$ This problem appeared on the Mock AMC 12 from 2012 as well; however, when submitting the problem, I accidentally miscopied and made the base EC instead. This makes the question much easier!
 ${ }^{50}$ Taimur Khalid Math Tournament, a contest on the Art of Problem Solving website I contributed a few questions to

[^17]: ${ }^{51}$ This problem, written in 2017, was inspired by Miniature 6 of Jiřı Matoušek's Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra, which in turn was based on a 1974 article in the American Mathematical Monthly. This miniature shows that, given six points in the plane, their distances cannot be all odd integers.
 ${ }^{52}$ Inspired by 2014 Purple Comet \#20.
 ${ }^{53}$ I believe this is the oldest problem in this collection - it's dated all the way back to 2009!
 ${ }^{54}$ Compare with 2015 AMC 8 \#25.

[^18]: ${ }^{55}$ Compare with 2012 (2013?) Winter OMO \#19. Oops! No harm done, though.

[^19]: ${ }^{56}$ Once again, this is an "easy" problem that I actually enjoy quite a bit. I'm surprised I've never seen this relationship exploited before.
 ${ }^{57}$ I remember when this was one of the problems I was most proud of writing. Oh, how times have changed....
 ${ }^{58} \mathrm{Oh} m \mathrm{~m}$, it's a coordinate geometry question!
 ${ }^{59}$ Compare with 2015 MATHCOUNTS National Sprint \#25. It seems that a lot of people who took the test actually worked on the problem set - yay!

[^20]: ${ }^{60}$ It is known (see Putnam 1993 B5) that it is impossible for all six distances to be odd integers. This problem stemmed from looking at the next best thing.

[^21]: ${ }^{61}$ Compare with HMMT Guts 2007 \#11.
 ${ }^{62}$ This was written during Geo 2 lecture at AMSP 2015. Also, apparently this has connections to 2011 ISL G4?
 ${ }^{63}$ Joshua raised the question of extending the Parallelogram Law to three dimensions during Vector Analysis recitation. By the end of the recitation, I realized I had a CMIMC problem.

[^22]: ${ }^{64}$ Arul originally wrote a different problem and put the cubic condition in as a bash deterrent. I saw the cubic condition and decided to transform the problem into something that used it more effectively.

[^23]: ${ }^{65}$ Compare with 1999 AIME \#4.
 ${ }^{66}$ This problem came about while I was waiting for my laundry during freshman year, since at the very beginning of my college experience I was worried that if I went back to my room I would forget that my clothes were still there. That might have been a terrific decision - this is one of my favorite problems of all time.

[^24]: ${ }^{67}$ The original problem asked to compute $B C$, which I think is a much more natural question, but then I was reminded that I can't do Law of Sines correctly and so the answer to that problem became much messier. Darn. Also, this question was inspired by Waldemar Pompe and the very strange problems he would give to his Geo 3 class at AMSP Cornell 12017.
 ${ }^{68}$ This was written all the way back in the first semester of my freshman year with the intent to submit the problem to CMIMC 2016 (and later AMC 2018), but neither of those intentions materialized for reasons I don't recall.
 ${ }^{69}$ This was way more well received than I expected. In particular, I just expected everyone to straight up blast this problem with Cartesian. Fortunately, that was not the case.
 ${ }^{70}$ My original solution to this problem used Brokard oooooops

[^25]: ${ }^{71}$ Big Point Theorem!
 ${ }^{72}$ This was actually written for the 2016 CMIMC contest, but for a long time my only solution used a nontrivial fact about Brocard points, and so I didn't feel comfortable putting the problem on the exam.

[^26]: ${ }^{73}$ This was going to be a 2019 AIME submission for a long time, but then I cut it off a few days before proposals were due in favor of a different problem. Perhaps this is a bit too meaty for Relay though....
 ${ }^{74}$ This was planned to be a CMIMC 2016 problem, but it turns out this is in a vague sense a mashup of 2016 AIME I \#6 and 2016 AIME I \#15, so my paranoid self dropped the problem.
 ${ }^{75}$ Protip: $6 \neq 7$.

[^27]: ${ }^{76}$ The original idea of looking at this parabola is mine, but Evan reworked the problem so that the main idea was disguised better.
 ${ }^{77}$ Finding a good polynomial to work with was quite hard. Not only did the numbers need to work out nicely, but I also needed the three roots to be side lengths of a non-degenerate triangle that didn't reduce the problem to a trivial case.
 ${ }^{78}$ Evan suggested the reformulation in terms of perimeters. (My original idea was to compute the distance between the incenters from the identity $\mathrm{OI}^{2}=R(R-2 r)$.)

[^28]: ${ }^{79}$ Compare with Balkan 2009 \#2.
 ${ }^{80}$ Written during Geo 2 lecture at AMSP Puget Sound 2016.
 ${ }^{81}$ This is one of my favorite problems I've ever written - the key step is quite original, and writing this was probably the most productive use of an AP Economics class ever. Unfortunately, it was shadowed by, well, the rest of the mess that was Contest 21. Sigh.
 ${ }^{82}$ Christmas Mathematics Competitions, which was a series of mock exams I was asked to help out with. This problem was born out of an attempt to explore a configuration found in another proposal for the mock.
 ${ }^{83}$ This problem was inspired by misreading 2016 OMO Fall \#24. It also turns out that this ended up replacing another CMIMC proposal, since I ended up using the main observation in that problem when solving this one. This might be the only reason why I was able to solve this synthetically. It's also very strange that the resulting equivalence is so nice.

[^29]: ${ }^{84}$ This problem was originally considered for the 2018 TSTST but (from what I heard) it was rejected for being slightly too easy.
 ${ }^{85}$ I was exceedingly lucky with this problem. Everything - the points O and H, the 13-14-15 triangle, etc. - came so naturally and nicely from the original idea. In other words, this problem basically fell from the sky.
 ${ }^{86}$ This problem received the Michael Kural Seal of Approval! One of my favorite proposals of all time.
 ${ }^{87}$ This was probably my favorite problem out of all the ones I wrote for CMIMC 2016. The intended solution is very instructive.
 ${ }^{88}$ This problem was primarily written because I thought the then-current \#10 (the one a few spots up with the 65-70-75 triangle) was too easy for the \#10 spot. It turns out that this was not actually the case. Problem writer bias for the win!

[^30]: ${ }^{89}$ Inspired by something I wrote in my solution to Team \#10 from the same contest.
 ${ }^{90}$ Like the 2016 CMIMC G1, I actually really like this problem as a quirky yet simple opening question.
 ${ }^{91}$ I wrote this all the way back in 2013! I completely forgot about this question until I found it in an archived problem collection.

[^31]: 92 "For some reason, in the test I thought that this problem was harder than 2-7 combined..." -Tristan Shin

[^32]: ${ }^{93}$ Originally, the problem stated that $\operatorname{gcd}\left(a_{k-1}, a_{k}\right)=k$. It turns out that under that condition such a sequence does not exist. Somehow this got past all of the CMIMC staff and all but one of our testsolvers. Thanks Ray Li!
 ${ }^{94}$ An amalgamation of the names of two physics teachers in my high school
 ${ }^{95}$ This is actually not original (although I didn't realize this at first) - in fact it was a subpart of a Mock AIME problem from AwesomeMath Cornell 2013. But for some reason it grew super popular on Brilliant, which got me super confused. I believe this is my most popular problem on the website to date.

[^33]: ${ }^{96}$ When I submitted this to Brilliant.org, one of the main complaints about this problem was that it was made less interesting by the fact that only one number worked. Interestingly enough, one of the reasons I liked this problem was because I found it surprising that only one number worked. Huh.
 ${ }^{97}$ The general case of asking to prove that this representation is unique if 100 and 2018 are replaced with general positive integers is an exercise in the textbook for a course that I TA. I saw this while flipping through the textbook for review problems and realized that finding the specific representation in a specific case would make a decent contest problem.

[^34]: ${ }^{98}$ This problem definitely takes the cake for the problem which was intentionally the most similar to some other problem from a contest. See here (It's worth noting that despite their similarity, the problems are not exactly the same!)
 ${ }^{99}$ Originally written for CMIMC but never got used.

[^35]: ${ }^{100}$ This was written all the way back in 2015! It did take me a long time to figure out what to do with the problem, though; I wasn't sure if using Lucas killed it too much.
 ${ }^{101}$ My train of thought for constructing this problem was to go from Valentine's Day to chocolate assortment triangles to variants of Pascal's triangle. Might be one of the strangest origins for a problem I've written.

[^36]: ${ }^{102}$ I wrote this over a span of two days during vacation after my senior year of high school. Instead of relaxing on the beach, I did modular arithmetic computations in my head. I'm weird. I imagine some of the beach-goers around me thought so as well.
 ${ }^{103}$ Another example of a problem that ended up being way more well-received than I expected.
 ${ }^{104}$ I ended up writing this for the 2017 contest, but I could not solve it at the time; that honor would be bestowed on the problem about a year later.

[^37]: ${ }^{105}$ This problem was based on an inside joke among CMU students where searching CMU on Google often gives the "wrong" university. It also was an attempt to give weaker teams something enjoyable to work on.

[^38]: ${ }^{106}$ This generalizes in the following way: if $f:[a, b] \rightarrow \mathbb{R}$ is increasing and differentiable, the quantity $\int_{a}^{b}|f(x)-t| d t$ is minimized when $t=f\left(\frac{a+b}{2}\right)$. I encountered this fact while proving that $x \mapsto \log |x|$ is a Bounded Mean Oscillation (BMO) function for homework.
 ${ }^{107}$ This is in Miscellaneous simply because I'm not sure if it fits in either the Algebra or Number Theory sections. In any case, the problem is not terribly original anyway.
 ${ }^{108}$ Similarly, although this problem appeared in Combo Individual Finals, I can't tell whether this should belong in C or N.

