February 2026

 

02/04/2026

2025 AMC 12B Problem 20 A frog hops along the number line according to the following rules:

- It starts at $0$.

- If it is at $0$, then it moves to $1$ with probability $\frac{1}{2}$ and disappears with probability $\frac{1}{2}$

- For $n=1,2,3$, if it is at $n$, then it moves to $n+1$ with probability $\frac{1}{4}$, to $n-1$ with probability $\frac{1}{4}$, and disappears with probability $\frac{1}{2}$.

What is the probability that the flog reaches $4$?

solve:

image-20260204154410105 \(\begin{multline} \shoveleft \text{Let } 5 \text{ to be the appoint of disappearing in state transfer diagram}\\ \shoveleft P_{ij} \text{ to be the hitting probability the frog starts from point }i \text{ and reaches point }j\\ \shoveleft \implies P_{00}=0, P_{11}=0, P_{22}=0, P_{33}=0, P_{44}=1, P_{54}=0\\ \shoveleft \text{Apply First-Step Analysis }\implies P_{04}=\dfrac{1}{2}P_{54}+\dfrac{1}{2}P_{14}=\dfrac{1}{2}P_{14}\\ \shoveleft P_{14}=\dfrac{1}{2}P_{54}+\dfrac{1}{4}P_{24}+\dfrac{1}{4}P_{04}=\dfrac{1}{4}P_{24}+\dfrac{1}{4}P_{04}\\ \shoveleft P_{24}=\dfrac{1}{2}P_{54}+\dfrac{1}{4}P_{34}+\dfrac{1}{4}P_{14}=\dfrac{1}{4}P_{34}+\dfrac{1}{4}P_{14}\\ \shoveleft P_{34}=\dfrac{1}{2}P_{54}+\dfrac{1}{4}P_{44}+\dfrac{1}{4}P_{24}=\dfrac{1}{4}+\dfrac{1}{4}P_{24} \implies P_{04}=\bbox[5px, border: 1px solid black]{\dfrac{1}{97}}\\ \end{multline}\) Note:

image-20260204143915341