October 2025

 

10/09/2025

$N$ is on side $BC$ of $\triangle{ABC}$, if $\dfrac{AB}{BN}=\dfrac{AC}{CN}$ show that $AN$ bisects $\angle{BAC}$

image-20251009211014224

Prove:

image-20251009211237637 \(\begin{multline} \shoveleft \text{Let }M \text{ on extended }AN \text{ and }BM\parallel AC\\ \shoveleft \implies \angle{NAC}=\angle{BMA}, \triangle{ANC}\sim\triangle{MNB}\\ \shoveleft\implies \dfrac{AC}{CN}=\dfrac{BM}{BN}=\dfrac{AB}{BN}\implies AB=BM\\ \shoveleft \implies \angle{BAN}=\angle{BMA}=\angle{NAC}\implies AN\text{ bisects }\angle{BAC}\blacksquare \end{multline}\)


10/10/2025

$M, N$ are on extended side $CA, CB$ of $\triangle{ABC}$ respectively and $\dfrac{AB}{AC}=\dfrac{NB}{NC}$, show that $\angle{MAN}=\angle{NAB}$

image-20251009214720505

Prove:

image-20251009215157865 \(\begin{multline} \shoveleft \text{Let }P \text{ on extended }NA \text{ and }PC\parallel AB \\ \shoveleft \implies \angle{NAB}=\angle{NPC}, \triangle{NAB}\sim\triangle{NPC}\\ \shoveleft \implies \dfrac{NB}{NC}=\dfrac{AB}{PC}=\dfrac{AB}{AC}\implies AC=PC\\ \shoveleft \implies \angle{APC}=\angle{PAC}=\angle{MAN}=\angle{NAB}\blacksquare \end{multline}\)


10/23/2025

$\triangle{ACD}$ and $\triangle{BCE}$ are equilateral, show that $[ADBE]=\dfrac{\sqrt{3}}{4}AB^2$

image-20251023010034051

Prove 1: \(\begin{multline} \shoveleft \text{Let }AC=a, BC=b,\angle{ACE}=\theta\\ \shoveleft \implies AB^2=a^2+b^2-2abcos(\theta+60^{\circ})\\ \shoveleft =a^2+b^2+ab(\sqrt{3}sin\theta-cos\theta)\\ \shoveleft [ADBE]=[ACD]+[BCE]+[ACE]+[BCD]\\ \shoveleft [ADBE]=\dfrac{\sqrt{3}(a^2+b^2)}{4}+\dfrac{absin(240^{\circ}-\theta)}{2}+\dfrac{absin{\theta}}{2}\\ \shoveleft =\dfrac{\sqrt{3}}{4}[a^2+b^2+\dfrac{2ab}{\sqrt{3}}(-\dfrac{\sqrt{3}}{2}cos\theta+\dfrac{1}{2}sin\theta+sin\theta)]\\ \shoveleft =\dfrac{\sqrt{3}}{4}[a^2+b^2+ab(\sqrt{3}sin\theta-cos\theta)]=\dfrac{\sqrt{3}}{4}AB^2\blacksquare\\ \end{multline}\) Prove 2:

image-20251028101928574 \(\begin{multline} \shoveleft \text{Rotate }\triangle{ABE} \text{ around }A \text{ for }60^{\circ} \text{ to get }\triangle{AFG}\\ \shoveleft \implies \triangle{AEG}, \triangle{ABF} \text{ are equilateral}, \triangle{ABE}\cong\triangle{AFG}\\ \shoveleft \implies \angle{ABE}=\angle{AFG}\implies \angle{ABC}=60^{\circ}-\angle{ABE}\\ \shoveleft =60^{\circ}-\angle{AFG}=\angle{BFG}=\angle{AFD}\\ \shoveleft BC=BE=FG=DF,AB=BF=AF\\ \shoveleft \implies \triangle{ABC}\cong\triangle{BFG}\cong\triangle{AFD}\\ \shoveleft CD=BG, BC=DG \implies \triangle{BCD}\cong\triangle{DGB}\\ \shoveleft \text{Make }AN\perp BE \text{ and }AN\cap BE=N\\ \shoveleft DG\perp BM, FM\perp BM \text{ and }DG\cap BM=H, FM \cap BM=M\\ \shoveleft \implies DG\parallel FM\implies \angle{GFM}=\angle{DGF}=60^{\circ}\\ \shoveleft \implies \angle{BFM}=60^{\circ}-\angle{BFG}=60^{\circ}-\angle{ABC}=\angle{ABN}\\ \shoveleft AB=BF\implies \triangle{ABN}\cong\triangle{BFM}\implies AN=BM\\ \shoveleft \implies AN=BH+HM\implies [ABE]=[BDG]+[DFG]\\ \shoveleft \implies [ADBE]=[ABE]+[ADF]+[AFG]+[ABG]-[DFG]-[BDG]\\ \shoveleft =[BDG]+[DFG]+[ADF]+[AFG]+[ABG]-[DFG]-[BDG]\\ \shoveleft =[ADF]+[AFG]+[ABG]=[BFG]+[AFG]+[ABG]=[ABF]\blacksquare \end{multline}\)