August 2025

 

08/13/2025

$\triangle{ABC}$ is inscribed in a circle and the tangent lines at $A,B$ meet at $M$, the tangent lines at $B,C$ meet at $N$. $BP\perp AC$ at $P$, show that $\angle{MPB}=\angle{NPB}$.

image-20250813134044655

Prove 1:

image-20250813135107226 \(\begin{multline} \shoveleft \text{Let }E, F \text{ on extended }AC \text{ such that }EM\perp MN, FN \perp MN\\ \shoveleft \implies EMBP, FNBP \text{ is both cyclic }\\ \shoveleft \implies \angle{MPB}=\angle{MEB}, \angle{NBP}=\angle{NFB}\\ \shoveleft \text{Let }MB=MA=a, NB=NC=b\\ \shoveleft \angle{MAB}=\angle{MBA}=\angle{BCA}=\alpha, \angle{NBC}=\angle{NCB}=\angle{BAC}=\beta\\ \shoveleft \implies sin\angle{AEM}=sin\angle{NBP}=sin\angle{NFC}\\ \shoveleft \implies \angle{MAE}=180^{\circ}-\alpha-\beta=\angle{NCF} \implies sin\angle{MAE}=sin\angle{NCF}\\ \shoveleft \implies \dfrac{ME}{MB}=\dfrac{ME}{MA}=\dfrac{sin\angle{MAE}}{sin\angle{AEM}}=\dfrac{sin\angle{NCF}}{sin\angle{NFC}}=\dfrac{NF}{NC}=\dfrac{NF}{NB}\\ \shoveleft \implies \triangle{EMB}\sim\triangle{FNB}\implies \angle{MEB}=\angle{NFB}\implies \angle{MPB}=\angle{NPB} \blacksquare \end{multline}\) Prove 2:

image-20250814134831210 \(\begin{multline} \shoveleft \text{Let }E, F \text{ on extended }AC \text{ such that }EM\perp MN, FN \perp MN\\ \shoveleft \implies EMBP, FNBP \text{ is both cyclic }\\ \shoveleft \implies \angle{MPB}=\angle{MEB}, \angle{NBP}=\angle{NFB}\\ \shoveleft \text{Let }D \text{ on }EF \text{ such that }ND=NF\implies \angle{CDN}=180^{\circ}-\angle{NFD}\\ \shoveleft \implies \angle{MEA}=\angle{NBP}=180^{\circ}-\angle{NFD}=\angle{CDN}\\ \shoveleft \angle{MAB}=\angle{MBA}=\angle{BCA}, \angle{NBC}=\angle{NCB}=\angle{BAC}\\ \shoveleft \implies \angle{MAE}=\angle{NCF} \implies \triangle{AEM}\sim\triangle{CDN}\\ \shoveleft \implies \dfrac{ME}{MA}=\dfrac{ND}{NC}\implies \dfrac{ME}{MB}=\dfrac{NF}{NB} \implies \triangle{EMB}\sim\triangle{FNB}\\ \shoveleft \implies \angle{MEB}=\angle{NFB} \implies \angle{MPB}=\angle{NPB} \blacksquare \end{multline}\)

Prove 3:

image-20250815014906432 \(\begin{multline} \shoveleft \text{Let }O \text{ be the center of the circumcircle of }\triangle{ABC}\\ \shoveleft \implies OB\perp MN, MO\perp AB, NO \perp BC\\ \shoveleft \implies \angle{ABM}=\angle{ACB}=\angle{MOB}, \angle{CAB}=\angle{CBN}=\angle{NOB}\\ \shoveleft \implies \triangle{BMO}\sim\triangle{PBC}, \triangle{BNO}\sim\triangle{PBA}\\ \shoveleft \implies \dfrac{MB}{BO}=\dfrac{BP}{PC},\dfrac{NB}{BO}=\dfrac{BP}{PA}\implies \dfrac{MB}{NB}=\dfrac{PA}{PC}=\dfrac{MA}{NC}\\ \shoveleft \angle{PAM}=\angle{PCN}\implies \triangle{MAP}\sim\triangle{NCP}\\ \shoveleft \implies \angle{MPA}=\angle{NPC} \implies \angle{MPB}=\angle{NPB}\blacksquare \end{multline}\)