01/04/2025
Circles $\odot{O_1}, \odot{O_2}$ are of the same radius $r_1$. Circles $\odot{O_3}, \odot{O_4}$ are of the same radius $r_2$. They are tangent and inscribed inside semi-circle $\odot{O}$ of radius $r$ and its diameter $AB$ and chord $BC$. If $r_1, r_2 $ and $r$ are all integers, find the minimum value of $r$.
Solve:
\(\begin{multline}
\shoveleft \text{Let }m=\dfrac{r_1}{r}, n=\dfrac{r_2}{r} \implies m,n \text{ are rational numbers}, m,n \lt \dfrac{1}{2}\\
\shoveleft OO_1=r-r_1 \implies GO=\sqrt{(r-r_1)^2-r_1^2}, GF=2r_1\\
\shoveleft \implies FO=\sqrt{(r-r_1)^2-r_1^2}-2r_1 = \sqrt{r^2-2rr_1} -2r_1\\
\shoveleft \implies FB=r-2r_1+\sqrt{r^2-2rr_1}\\
\shoveleft \implies tan \theta = \dfrac{r_1}{r-2r_1+\sqrt{r^2-2rr_1}}=\dfrac{m}{1-2m+\sqrt{1-2m}}\\
\shoveleft =\dfrac{1}{2}(\dfrac{1}{\sqrt{1-2m}}-1)\\
\shoveleft OO_3=r-r_2 \implies EO=\sqrt{(r-r_2)^2-r_2^2}, DE=r_2\\
\shoveleft \implies DO=EO-DE=\sqrt{(r-r_2)^2-r_2^2}-r_2=\sqrt{r^2-2rr_2}-r_2\\
\shoveleft \implies sin2\theta=\dfrac{DO}{BO}=\dfrac{\sqrt{(r-r_2)^2-r_2^2}-r_2}{r}=\sqrt{1-2n}-n\\
\shoveleft \implies \sqrt{1-2n}-n=\dfrac{2 \cdot tan\theta}{1+tan^2\theta}=\dfrac{\dfrac{1}{\sqrt{1-2m}}-1}{1+\dfrac{1}{4}(\dfrac{1}{\sqrt{1-2m}}-1)^2}\\
\shoveleft =\dfrac{-20m^2+18m-4+(4-6m)\sqrt{1-2m}}{(3-5m)^2-4(1-2m)}\\
\shoveleft \text{If }\sqrt{1-2m} \text{ is irrational number, then we will have }\sqrt{1-2n}=s+t\sqrt{u}\\
\shoveleft \text{where }u \text{ is an integer of non perfect square}, s, t\text{ are rational numbers}.\\
\shoveleft \text{But }1-2n=s^2+t^2u + 2st\sqrt{u} \text{ is a rational number while }\sqrt{u} \text{ is irrational}\\
\shoveleft \implies st=0 \implies s=0 \text{ or } t=0\\
\shoveleft m<\dfrac{1}{2} \implies (3-5m)^2-4(1-2m)>0, 4-6m>0 \implies t>0\implies s=0\\
\shoveleft \implies s=n+\dfrac{-20m^2+18m-4}{(3-5m)^2-4(1-2m)}=0\implies n=\dfrac{20m^2-18m+4}{(3-5m)^2-4(1-2m)}\\
\shoveleft \text{and }\sqrt{1-2n}=\dfrac{(4-6m)\sqrt{1-2m}}{(3-5m)^2-4(1-2m)}\implies
\end{multline}\)
01/20/2025
The radius of the circumcircle of $\triangle{ABC}$ is $14$, $AB=4, AC=7, AD\perp BC$, find $AD$.
Solve:
\(\begin{multline}
\shoveleft \text{Via the Law of Sines } \dfrac{AB}{sin\angle{ACB}}=2R\\
\shoveleft \implies \dfrac{AB}{\dfrac{AD}{AC}}=2 * 14=28\\
\shoveleft \implies AD=\dfrac{AB * AC}{28}=\bbox[5px, border: 1px solid black]{1}
\end{multline}\)
01/21/2025
$\triangle{ABC}$ is a right triangle. Take $AB,AC,BC$ as diameters to get three circles and form $S_1, S_2, S_3, S_4$ as shown below. Prove that $[ABC]=S_1+S_2=S_4-S_3$.
Prove:
\(\begin{multline}
\shoveleft \text{Two cirlces intersect at }D \text{ on }BC \implies AD\perp BC\\
\shoveleft \text{Let }AB=2a, BC=2b \implies BC=2\sqrt{a^2+b^2}\\
\shoveleft BD=\dfrac{2a^2}{\sqrt{a^2+b^2}}, CD=\dfrac{2b^2}{\sqrt{a^2+b^2}}, AD=\dfrac{2ab}{\sqrt{a^2+b^2}}\\
\shoveleft AB, AC \text{ as diameter bisects its own circle } \implies\\
\shoveleft S_1+S_{12}=S_{41}+S_{32}+[ABD]=S_{41}+S_{32}+\dfrac{2a^3b}{a^2+b^2}\\
\shoveleft S_2+S_{22}=S_{31}+S_{42}+[ACD]=S_{31}+S_{42}+\dfrac{2ab^3}{a^2+b^2}\\
\shoveleft \implies S_1+S_2+S_{12}+S_{22}=S_{31}+S_{32}+S_{41}+S_{42}+2ab\\
\shoveleft \implies S_1+S_2+S_{12}+S_{22}=S_3+S_{41}+S_{42}+[ABC]\\
\shoveleft \text{And }AB^2+AC^2=BC^2 \implies S_1+S_{12}+S_2+S_{22}=S_4+S_{41}+S_{42}\\
\shoveleft \implies S_4+S_{41}+S_{42} = S_3+S_{41}+S_{42}+[ABC]\\
\shoveleft \implies S_4-S_3=[ABC]\\
\shoveleft BC \text{ also bisects its own circle }\implies S_4+S_{41}+S_{42}=S_{12}+S_{22}+[ABC]\\
\shoveleft \implies S_3=S_{12}+S_{22}-S_{41}-S_{42} \implies S_1+S_2=[ABC]\blacksquare
\end{multline}\)
01/22/2025
$AB=AC, DA=DB, DE \parallel BC$, $F$ is on $CE$ and $\angle{EAF}=\angle{ACE}$, prove that $BDEF$ is cyclic.
Prove:
01/27/2025
$\angle{ABC}=100^{\circ}$ in $\triangle{ABD}$, $C$ is a point on $BD$ such that $AB=BC, AC=BD$. Find $\angle{CAD}$.
Solve:
\(\begin{multline}
\shoveleft \text{Make equilateral triangle} \triangle{ABE} \text{ on the same side of }AB \text{ as }C,D\\
\shoveleft \implies AB=AE=BE, \angle{ABE}=\angle{BAE}=\angle{AEB}=60^{\circ}\\
\shoveleft \implies \angle{EBD}=40^{\circ}=\angle{BAC}, AC=BD \implies \triangle{BAC}\cong\triangle{EBD}\\
\shoveleft \implies BE=DE=AE=AB, \angle{BED}=\angle{ABC}=100^{\circ}\\
\shoveleft \implies \angle{AED}=160^{\circ}\implies \angle{EAD}=10^{\circ}=\angle{EDA}\\
\shoveleft \implies \angle{CAD}=\angle{BAE}-\angle{BAC}-\angle{EAD}=60^{\circ}-40^{\circ}-10^{\circ}=\bbox[5px, border: 1px solid black]{10^{\circ}}
\end{multline}\)
01/28/2025
$\angle{BAC}=2\angle{ABC}$ in $\triangle{ABC}$ and $AL$ is the bisector of $\angle{BAC}, L \in BC$. $D$ is the reflection of $L$ and $\triangle{AKD}, \triangle{EAB}$ are isosceles right triangles with hypotenuse $AD, BE$ respectively. Show that $CKE$ are collinear.
Prove:
\(\begin{multline}
\shoveleft \angle{BAL}=\angle{LAB}=\angle{CAL}=\angle{ABD}=\angle{DAB}\\
\shoveleft AD=AL=BD=BL, AK\perp KD, AK=KD\\
\shoveleft EA \perp AB, EA=AB \implies BD=\sqrt{2}AK, BE=\sqrt{AE}\\
\shoveleft \angle{EAK}=90^{\circ}-\angle{KAD}-\angle{DAB}=45^{\circ}-\angle{DAB}\\
\shoveleft =45^{\circ}-\angle{ABD}=\angle{EBD}\implies \triangle{AEK}\sim \triangle{BED}\\
\shoveleft \implies \angle{AEK}=\angle{BED}\\
\shoveleft \text{Make }DG \perp BE, DH \parallel EA, H=DH \cap BE\\
\shoveleft \text{Make }CM \perp AB, M=CM \cap AB, CF \perp EA, F=CF\cap EA\\
\shoveleft \text{Let }EA=AB=2a, DL=2b , \text{WLOG, suppose } a > b\\
\shoveleft \implies EH=\sqrt{2}a, DH=a-b \implies GH=DG=\dfrac{a-b}{\sqrt{2}} \\
\shoveleft \implies tan\angle{BED}=\dfrac{\dfrac{a-b}{\sqrt{2}}}{\sqrt{2}a+ \dfrac{a-b}{\sqrt{2}}}=\dfrac{a-b}{3a-b}\\
\shoveleft BM=2a-AM, tan \angle{ABC}=\dfrac{CM}{BM}=\dfrac{b}{a} \implies CM=\dfrac{b}{a}(2a-AM)\\
\shoveleft tan\angle{CAM}=tan(2\angle{ABC})=\dfrac{2\cdot tan \angle{ABC}}{1-tan^2{\angle{ABC}}}=\dfrac{2ab}{a^2-b^2}\\
\shoveleft \implies \dfrac{CM}{AM}=\dfrac{2ab}{a^2-b^2} \implies AM=\dfrac{2a(a^2-b^2)}{3a^2-b^2}, CM=\dfrac{4a^2b}{3a^2-b^2}\\
\shoveleft \implies tan\angle{CEA}=\dfrac{AM}{AE+CM}=\dfrac{\dfrac{2a(a^2-b^2)}{3a^2-b^2}}{2a+\dfrac{4a^2b}{3a^2-b^2}}=\dfrac{a-b}{3a-b}=tan \angle{BED}\\
\shoveleft \implies \angle{BED}=\angle{CEA}=\angle{AEK} \implies CKE \text{ are collinear} \blacksquare
\end{multline}\)
01/30/2025
Three chords are of length $a,a,b$ in a semi-circle as shown in figure. Find the diameter $x$.
Solve:
\(\begin{multline}
\shoveleft \text{Extend }AC, BD \text{ so }E=AC \cap BD\\
\shoveleft AC=CD \implies \angle{ABC}=\angle{CBD}\\
\shoveleft BC \perp AC \implies \triangle{ABC}\cong\triangle{EBC}\\
\shoveleft \implies CE=AC=a, BE=AB=x\\
\shoveleft \implies EC \cdot EA = EB \cdot ED\implies\\
\shoveleft 2a^2=x(x-b)\implies x=\bbox[5px, border: 1px solid black]{\dfrac{b+\sqrt{b^2+8a^2}}{2}}
\end{multline}\)