June 2024

 

06/14/2024

A=60 in ABC and D is the Fermat Point of ABC, i.e., AEB=AEC=120. ADBC at D. Prove that AE=2DE.

image-20240614143804429

Prove:

image-20240614141120375 Extend BE and CE to M,N respectively such that AMCM,BNANAEB=AEC=120AEM=AEN=60ME=NE=AE2,MAN=60,MEN=120MAB=CANANBN,ADBC,AMCMAMDC is cyclic,ANDB is cyclicADN=ABN=90BAN=90(60CAN)=30+CANADM=ACM=90CAM=90(60+MAB)=30MABADN+ADM=MDN=60=MEN2E is the circumcenter of MDNME=NE=DE=AE2


06/16/2024

M is the midpoint of side BC of ABC, D is also on side BC such that BAD=CAM, prove that BDCD=AB2AC2

image-20240617041749349

Prove: CM=BM[CAM]=[BAM]12ACAMsinCAM=12AMABsinBAMACsinBAD=ABsinCADsinBADsinCAD=ABACBDCD=[BAD][CAD]=12ABADsinBAD12ACADsinCAD=ABsinBADACsinCAD=AB2AC2


06/17/2024

The incircle of ABC touches its sides BC,CA,AB at points D,E,F respectively. The excircles of ABC touch the corresponding sides of ABC at points T,U,V (these points are inside the segments BC,CA,AB). Show that [DEF]=[TUV].

Prove:

image-20240617033608015 Get the barymetric coordinates of D,E,F:Let BD=BF=x,CD=CE=y,AE=AF=zx+y=a,y+z=b,z+x=cx=ab+c2,y=a+bc2,z=a+b+c2D(0,ab+c2,a+bc2)E(a+b+c2,0,a+bc2)F(a+b+c2,ab+c2,0)[DEF]=[ABC]|0ab+c2a+bc2a+b+c20a+bc2a+b+c2ab+c20|=[ABC](a+b+c)(ab+c)(a+bc)4 image-20240617035646409 Similarly, get the barycentric coordinates of T,U,V:x+y=a,x+c=y+bx=a+bc2,y=ab+c2T(0,a+bc2,ab+c2)m+n=b,m+a=n+cm=a+b+x2,n=a+bc2U(a+bc2,0,a+b+c2)p+q=c,p+b=q+ap=ab+c2,q=a+b+c2V(ab+c2,a+b+c2,0)[TUV]=[ABC]|0a+bc2ab+c2a+bc20a+b+c2ab+c2a+b+c20|=[ABC](a+bc)(ab+c)(a+b+c)4=[DEF]


06/21/2024

AE is the bisector of A in right angle ABC and E is on side BC, C=90, D is the midpoint of AE, BC=BD,CE=2, find BE.

image-20240621170100097

Solve:

image-20240622113214708 Make DFAC at F,DGAB at G,DHBC at HDF=DG=CE2=1,DH=a21,AC=2a21Let AD=DE=CD=a,BC=BD=x,AB=yCD=CE,BC=BDCDECBDa2=xax=a22[ABC]=[ACD]+[ABD]+[BCD]=a21+y2+a2a214y=(a222)a21AC2+BC2=AB24(a21)+a44=(a222)2(a21)a410a2+8=0a2=5±17BE=1+172 Solve 2 Let AD=DE=CD=a,BC=BD=x, make DHBC at Heasy to see BAC=CDE=CBD,AE bisects BACcosBAC=ACAB=CEBE=2x2=cosCBD=BHBD=x1xx25x+2=0x=5±172BE=1+172


06/25/2024

A quarter of circle OAD is tangent with line BC and ABBC,CDBC, AB=4,CD=2, find the area of Circular sector OAD

.

Solve:

image-20240625172205767 Connect AE,DE, let OFAE at F,OGDE at GLet AEB=EOF=α,CED=EOG=βOF=Rcosα,EF=RsinαAE=2RsinαAB=2Rsin2α=4sin2α=2ROG=Rcosβ,EG=RsinβDE=2RsinβCD=2Rsin2β=2sin2β=1RAD=2RFG=AD2=R2AOD=90AED=180AOD2=135cosAED=EF2+EG2FG22EFEG=R2sin2α+R2sin2βR222R2sinαsinβ=12sinαsinβ=R622Rsin2αsin2β=(R6)28R2=2R2(R6)2=16R=10 or R=2 (exclude since sin2α=2R)[OAD]=π1004=25π Solve 2:

image-20240625214143366 Make DFOE at F,AGOE at GEF=2,FG=2Let OG=x, easy to see AOGDOFDF=OG=x,AG=OF=x+2,OE=OA=OD=x+4OG2+AG2=OA2x2+(x+2)2=(x+4)2x=6OA=10[OAD]=π1004=25π