February 2024

 

02/12/2024

Points $D,E,F$ are on side $BC, CA, AB$ of acute triangle $\triangle{ABC}$ respectively such that $DE \perp AC, EF \perp AB, FD \perp BC$. Prove that $\tfrac{AF}{AB}+\tfrac{BD}{BC}+\tfrac{CE}{CA}=1$

image-20240212115039732

Prove 1:

image-20240212160636085 \(\begin{multline}\nonumber \shoveleft \text{Make }AP \perp BC \text{ at }P, BQ \perp CA \text{ at }Q, CR \perp AB \text{ at }R\\ \shoveleft AP, BQ, CR \text{ intersect at }H, \text{ connect }DH, EH, \text{ and } FH\\ \shoveleft [AFC]=[AEF]+[CEF],[CEF]=[HEF]\\ \shoveleft [ABD]=[BDF]+[ADF],[ADF]=[HDF]\\ \shoveleft [BCE]=[CDE]+[BDE],[BDE]=[HDE]\\ \shoveleft [HEF]+[HDF]+[HDE]=[DEF]\implies\\ \shoveleft [AFC]+[ABD]+[BCE]=[AEF]+[BDF]+[CDE]+[DEF]\\ \shoveleft =[ABC] \implies \dfrac{AF}{AB}+\dfrac{BD}{BC}+\dfrac{CE}{CA}\\ \shoveleft =\dfrac{AF\cdot CR}{AB \cdot CR}+\dfrac{BD \cdot AP}{BC \cdot AP}+\dfrac{CE \cdot BQ}{CA \cdot BQ}\\ \shoveleft =\dfrac{[AFC]+[ABD]+[BCE]}{[ABC]}=\dfrac{[ABC]}{[ABC]}=1\blacksquare\\ \end{multline}\) Prove 2:

image-20240212162625073 \(\begin{multline} \shoveleft \text{Let }M, N \text{ on }CA \text{ such that }FM \parallel BC, DN \parallel AB\\ \shoveleft \angle{ABC}=90^{\circ}-\angle{BFD}=\angle{DFE}, \angle{BCA}=90^{\circ}-\angle{CDE}=\angle{EDF}\\ \shoveleft \implies \triangle{DEF}\sim\triangle{ABC}\implies \dfrac{DE}{EF}=\dfrac{CA}{AB}=\dfrac{AM}{AF}\\ \shoveleft DN \parallel AB, EF \perp AB \implies DN \perp EF \implies\\ \shoveleft \angle{EDN}=90^{\circ}-\angle{DEF}=\angle{AEF}\implies \triangle{AEF}\sim\triangle{NDE}\\ \shoveleft \implies \dfrac{DE}{EF}=\dfrac{NE}{AF}\implies \dfrac{NE}{AF}=\dfrac{AM}{AF}\\ \shoveleft \implies NE=AM \implies AN=ME\\ \shoveleft \implies \dfrac{AF}{AB}+\dfrac{BD}{BC}+\dfrac{CE}{CA}=\dfrac{AM}{CA}+\dfrac{AN}{CA}+\dfrac{CE}{CA}\\ \shoveleft =\dfrac{AM+ME+CE}{CA}=1\blacksquare \end{multline}\)


02/14/2024

$a+\dfrac{1}{b}=x, b+\dfrac{1}{c}=y, c+\dfrac{1}{a}=z, $ find $abc$.

Solve: \(\begin{multline} \shoveleft \text{Sum up three equations }\implies a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=x+y+z\\ \shoveleft \text{Multiple three equations }\implies abc+a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{abc}=xyz\\ \shoveleft \implies abc+x+y+z+\dfrac{1}{abc}=xyz\implies (abc)^2+(x+y+z-xyz){abc}+1=0\\ \shoveleft \implies abc=\bbox[5px, border: 1px solid black]{\dfrac{xyz-x-y-z\pm\sqrt{(xyz-x-y-z)^2-4}}{2}} \end{multline}\)


02/15/2024

$x+\dfrac{1}{x}=3$, find $\dfrac{x^6+1}{x^5+x}$

Solve: \(\begin{multline} \shoveleft x+\dfrac{1}{x}=3 \implies x^2+\dfrac{1}{x^2}=(x+\dfrac{1}{x})^2-2=7\\ \shoveleft \implies x^3+\dfrac{1}{x^3}=(x+\dfrac{1}{x})(x^2-1+\dfrac{1}{x^2})=3*6=18\\ \shoveleft \implies \dfrac{x^6+1}{x^5+x}=\dfrac{x^3+\dfrac{1}{x^3}}{x^2+\dfrac{1}{x^2}}=\bbox[5px, border: 1px solid black]{\dfrac{18}{7}} \end{multline}\)


02/18/2024

$\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1$, find $\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}$

Solve: \(\begin{multline} \shoveleft (\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y})(x+y+z)\\ \shoveleft =\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\\ \shoveleft \implies \dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=\bbox[5px, border: 1px solid black]{0} \end{multline}\)


02/20/2024

$a+b+c=0, \dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}=0$, find $(a+1)^2+(b+2)^2+(c+3)^2$

Solve: \(\begin{multline} \shoveleft \text{Let }x=a+1, y=b+2, z=c+3 \implies x+y+z=6\\ \shoveleft \dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}=0 \implies \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \shoveleft \implies xy+yz+zx=0 \implies x^2+y^2+z^2=(x+y+z)^2\\ \shoveleft \implies x^2+y^2+z^2=(a+1)^2+(b+2)^2+(c+3)^2=\bbox[5px, border: 1px solid black]{36} \end{multline}\)


02/21/2024

$abc \neq 0, a+b+c=0$, find $\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}$

Solve: \(\begin{multline} \shoveleft (a+b+c)^3=a^3+b^3+c^3+6abc+3[ab(a+b)+bc(b+c)+ca(c+a)]\\ \shoveleft a+b+c=0\implies (a+b+c)^3=a^3+b^3+c^3-3abc=0, abc \neq 0\\ \shoveleft \implies \dfrac{a^3+b^3+c^3}{abc}=3\implies \dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=\bbox[5px, border: 1px solid black]{3} \end{multline}\)