January 2024

 

01/02/2024

AB and CD are two tangent lines of O. AB=8,CD=5, ADBC=E, and E is on O. Find AC.

image-20240105013740675

Solve 1:

image-20240105020102733 WLOG, suppose AB>CDC is inside the circumcircle of ABDExtend BC,DC and intersect the circumcircle of ABD at H,G respectivelyLet AB=m,ABH=ADB=AHBAB=AH=mADG=DBHABD=GDBAGD+GDB=180AGBDABDG is an isosceles trapezoidAB=GD=mLet CD=nCG=mnapplying Intersecting chords theorem:CHBC=CDGCCHBC=n(mn)Applying Stewart's Theorem in ABHAC2=AH2BC+AB2CHCH+BCCHBCAC2=m2BHBHCHBC=m2n(mn)AC=m2mn+n2When m=8,n=5,AC=82+5540=7

Solve 2:

image-20240229040902018 Let F be a point in the circle such that CF=CD,AF=ABLet ABC=α=BDE,ADC=β=DBELet CFE=δ,CD=CF=CECBAFB=α+δEBF=δDBF=βδLet AFE=γ,AB=AF=AEADCFD=β+γEDF=γBDF=αγBD=180(βδ)(α4)360=δ+γ+(α+δ)+(β+γ)+180(βδ)(αγ)=180+3(δ+γ)δ+γ=AFC=60cos(AFC)=AF2+CF2AC22AFCF=12AC2=AB2+CD2ABCD

Note:

  • Follow above conclusion, F can be proven to be the first Isodynamic Point of BDE since DFE=DBE+60, BFE=BDE+60
  • Properties of isodynamic point of a triangle:
    • The first isodynamic point is the isogonal conjugate of the Fermat point of the triangle (the first isogonic center)
    • The second isodynamic point is the isogonal conjugate of the second Fermat point of the triangle (the second isogonic center)

01/11/2024

O is the intersection of AD,BE and CF in hexagon ABCDEF, and SABO=12m2, SBCO=6m2, SCDO=8m2, SDEO=4m2, SEFO=2m2, find SFAO

image-20240111215055534 SABO=12AOBOsinAOB,SDEO=12DOEOsinDOE=12DOEOsinAOBSBCO=12BOCOsinBOC,SEFO=12EOFOsinEOF=12EOFOsinBOCSCDO=12CODOsinCOD,SFAO=12FOAOsinFOA=12FOAOsinCODSABOSCDOSEFO=SBCOSDEOSFAOSFAO=SABOSCDOSEFOSBCOSDEO=128264=8m2


01/28/2024

Inscribed O1 is tangent to semi-circle O and its diameter AB. Find tan(O1AB)+tan(O1BA).

image-20240128194450454

Solve:

image-20240128210144248 Let O1AB=α,O1BA=β,AO=R,CO1=r,OC=tOO12=OC2+O1C2(Rr)2=r2+t2R2t2=2Rrtan(O1AB)+tan(O1BA)=rR+t+rRt=2RrR2r2=1


01/29/2024

A1B1,A2B2 are focal chords of parabola. D=A1A2B1B2. Prove that D is on the directrix of the parabola.

image-20240129184013278

Prove:

image-20240129191159257 Suppose A1,A2 are the projections of A1,A2 on the directrixD is the intersection between extended A1A2 and the directrix.DA1A1DA2A2DA1DA2=A1A1A2A2=FA1FA2Via the exterior angle bisector theoremA2FD=DFB1D is on bisector of A2FB1Similarly, letD be the intersection between extended B1B2 and the directrixD is on disector of A2FB1D=DD=A1A2B1B2


01/30/2024

F is the focus of a parabola, A,B are two points on the parabola and S is the intersection between the two tangent lines of the parabola at A,B. A,B are the projections of A,B on the directrix. Prove that:

(1) S is the circumcenter of FAB

(2) FBS=FBA=FSA,FAS=FAB=FSB

(3) F is on line AB if and only if S is on line AB and in this case, SASB

image-20240129213734384

Prove:

image-20240130035208731

image-20240130051341492 Reflective Properties of parabola:Let A be a point on a parabolaA be the projection of A on the directrixF be the focus of the parabolathe tangent line of the parabola at A bisects FAAProve: suppose the bisector of FAA intersects the parabola in another point BLet B be the projection of B on the directrixBF=BBB is on bisector of FAABF=BABB=BA which is impossibleA is the only point of the parabola that is on the bisector of FAAthe bisector of FAA is the tangent line of parabola at ASF=SA=SBS is the circumcenter of SABFSB=2FAB=2FSBFAB=FSBFAS=AAS=90AAF=FAB=FSBSimilarly: FBS=FBA=FSALet FSB=BSB=FAB=FAS=AAS=αFSA=ASA=FBA=FBS=BBS=βAFB=AFS+BFS=180αβ+180180αβ=ASBAFB=180 if and only if ASB=180F is on AB if and only if S is on ABS is on ABASB=180 if and only if α+β=90SASB

Notes: