11/09/2022
Find the area of the shaded region:
Solve:
\(\begin{multline}\nonumber \shoveleft \text{Make } MN\perp BC \text{ ,and the perpendicular feet are } M \text{ and } N, \text{easy to see}\\ \shoveleft \triangle{BCG} \sim \triangle{EFG} \implies \cfrac{EF}{BC}=\cfrac{MG}{NG} \implies \cfrac{[EFG]}{[BCG]}=\Bigl(\cfrac{EF}{BC}\Bigr)^2=\Bigl( \cfrac{EG}{GC} \Bigr)^2=\Bigl( \cfrac{FG}{GB} \Bigr)^2=4\\ \shoveleft \implies \cfrac{EF}{BC}=\cfrac{EG}{GC}=\cfrac{FG}{GB}=\cfrac{1}{2} \implies \cfrac{[EBG]}{[EFG]}=\cfrac{[FCG]}{[FEG]}=2 \implies [EBG]=[FCG]=2\\ \shoveleft \implies [AEB]=3-[EBG]=1 \implies \cfrac{AE}{EF}=\cfrac{1}{3} \implies AE= \cfrac{1}{3}\cdot \cfrac{1}{2} BC=\cfrac{1}{6}BC\\ \shoveleft \implies DF=\Bigl(1-\cfrac{1}{6}-\cfrac{1}{2}\Bigr)BC=\cfrac{1}{3}BC \implies \cfrac{[CFD]}{[CEF]}=\cfrac{DF}{EF}=\cfrac{2}{3} \implies [CFD]=\cfrac{2}{3}\cdot 3=2 \\ \shoveleft \implies [CDFG]=[CDF]+[CFG]=2+2=\bbox[5px, border: 1px solid black]{4}\\ \end{multline}\)
11/12/2022
In $\triangle{ABC}$, $\angle{ABC}=40^{\circ}, $D$ is a point on side $BC$ such that $\angle{BAD}=60^{\circ}, CD=AB$. Find $\angle{ACB}$.
Solve:
. \(\begin{multline}\nonumber \shoveleft \text{Build equilateral triangle } \triangle{ABE} \text{ such that } E \text{ is the third vertex of it. Connect CE.}\\ \shoveleft \implies \angle{DBE}=20^{\circ}, AB=AE=BE, \angle{BED}=60^{\circ}\\ \shoveleft \text{Make } F \text{ on } BC \text{ such that } BE=BF \implies \angle{BFE}=\angle{FEB}=80^{\circ}\\ \shoveleft \implies \angle{DEF}=20^{\circ} \implies \angle{EDF}=80^{\circ}=\angle{BFE} \implies DE=EF\\ \shoveleft CD=AB=BE=BF \implies CF=DB \implies \triangle{CEF} \cong \triangle{BED} \implies BE=CE=AE\\ \shoveleft \implies E \text{ is circumcenter of } \triangle{ABC} \implies \angle{ACB}=\cfrac{\angle{AEB}}{2}=\bbox[5px, border: 1px solid black]{30^{\circ}}\\ \end{multline}\)
11/13/2022
In $\triangle{ABC}, B>AC$. $E$ is a point on bisector of $\angle{BAC}$. Prove that $BE>CE$.
Prove:
\(\begin{multline}\nonumber \shoveleft \text{Make } G, H \text{ on } AB, AC \text{ respectively such that } EG \perp AB, EH \perp AC.\\ \shoveleft AE \text{ bisects } \angle{BAC} \implies AG=AH, EG=EH\\ \shoveleft AB>AC \implies AB-AG>AC-AH \implies BG>CH\\ \shoveleft \implies BE^2=BG^2+EG^2=BG^2+EH^2>CH^2+EH^2=CE^2\\ \shoveleft \implies BE>CE \qquad \blacksquare \end{multline}\)
11/14/2022
In $\triangle{ABC}, AB=AC=10, BC=12$. Point $D$ lies strictly between $A$ and $B$ on $\overline{AB}$ and point $E$ lies strictly between $A$ and $C$ on $\overline{AC}$ so that $AD=DE=EC$. Then $AD$ can be expressed in the form $\cfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p-6q$.
Solve: \(\begin{multline}\nonumber \shoveleft sin\Bigl(\cfrac{A}{2}\Bigr)=\cfrac{3}{5}, cos\Bigl(\cfrac{A}{2} \Bigr)=\cfrac{4}{5} \implies cosA=2\cdot\Bigl(\cfrac{4}{5} \Bigr)^2-1=\cfrac{7}{25}\\ \shoveleft cosA=\cfrac{\cfrac{AE}{2}}{AD}=\cfrac{\cfrac{AC-CE}{2}}{AD}=\cfrac{\cfrac{10-AD}{2}}{AD}=\cfrac{10-AD}{2AD}=\cfrac{7}{25}\\ \shoveleft \implies AD=\cfrac{250}{39} \implies p=250, q=39 \implies p-6q = \bbox[5px, border: 1px solid black]{16} \end{multline}\)
11/15/2022
There are 8 horses in a horse race. Times are rounded to the nearest second, so it is very possible for horses to tie. How many different ways can the horses place in the race? For example, one placement would have all of them tied. Another 8! different placements would have none of them tied.
Solve:
This number is an ordered Bell number when $n=8$: \(\begin{multline} \nonumber \shoveleft a(0)=1, a(n)=\displaystyle \sum_{k=1}^{n}{ {n \choose k} \cdot a(n-k) }\\ \shoveleft a(1)={1 \choose 1} a(1-1) = 1\\ \shoveleft a(2)={2 \choose 1} a(2-1) = 3\\ \shoveleft a(3)={3 \choose 1} a(3-1) + {3 \choose 2} a(3-2) + {3 \choose 3} a(3-3)=13\\ \shoveleft a(4)={4 \choose 1} a(4-1) + {4 \choose 2} a(4-2) + {4 \choose 3} a(4-3) + {4 \choose 4} a(4-4)=75\\ \shoveleft a(5)={5 \choose 1} a(5-1) + {5 \choose 2} a(5-2) + {5 \choose 3} a(5-3) + {5 \choose 4} a(5-4) + {5 \choose 5} a(5-5) =541\\ \shoveleft a(6)={6 \choose 1} a(6-1) + {6 \choose 2} a(6-2) + {6 \choose 3} a(6-3) + {6 \choose 4} a(6-4) + {6 \choose 5} a(6-5) + {6 \choose 6} a(6-6)=4683\\ \shoveleft a(7)={7 \choose 1} a(7-1) + {7 \choose 2} a(7-2) + {7 \choose 3} a(7-3) + {7 \choose 4} a(7-4) + {7 \choose 5} a(7-5) + {7 \choose 6} a(7-6) + {7 \choose 7}a(7-7)=47293\\ \shoveleft a(8)={8 \choose 1} a(8-1) + {8 \choose 2} a(8-2) + {8 \choose 3} a(8-3) + {8 \choose 4} a(8-4) + {8 \choose 5} a(8-5) + {8 \choose 6} a(8-6) + {8 \choose 7}a(8-7) + {8 \choose 8}a(8-8)=\bbox[5px, border: 1px solid black]{545835}\\ \end{multline}\)
References:
11/16/2022
In square $ABCD$, $\angle{CBE}=\angle{EBF}, CE=39, AF=25$, find $BF$.
Solve:
\(\begin{multline}\nonumber \shoveleft \text{Extend }DC \text{ to } G \text{ such that }CD=AF=25\\ \shoveleft \text{Easy to see that } \triangle{ABF} \cong \triangle{CBG}\\ \shoveleft \implies BF=BG, \angle{ABF}=\angle{CBG} \implies \angle{BEG}=\angle{EBA}=\angle{EBG}\\ \shoveleft \implies BF=BG=EG=39+25=\bbox[5px, border: 1px solid black]{64} \end{multline}\)
11/17/2022
In a tetrahedron $ABCD$, $E, F$ are points on $BC, AD$, respectively. $AB=4, CD=20, EF=7, \cfrac{AF}{FD}=\cfrac{BE}{EC}=\cfrac{1}{3}$. Find the angle between $AB$ and $CD$.
Solve: \(\begin{multline}\nonumber \shoveleft \text{Make } G \text{ on extended} DE \text{ such that } BG \parallel CD, \text{ conect }AG\\ \shoveleft \implies \triangle{BEG} \sim \triangle{CED} \implies \cfrac{GE}{DE}=\cfrac{BG}{CD}=\cfrac{BE}{CE}=\cfrac{1}{3} \implies BG=\cfrac{20}{3}\\ \shoveleft \implies \cfrac{AF}{FD}=\cfrac{GE}{ED} \implies \triangle{DEF} \sim \triangle{DAG} \implies \cfrac{AG}{FE}=\cfrac{AD}{FD}=\cfrac{4}{3} \implies AG=7 \cdot \cfrac{4}{3}\\ \shoveleft \implies cos(\angle{ABG})=\cfrac{4^2+\Bigl(\cfrac{20}{3}\Bigl)^2-\Bigl(\cfrac{28}{3}\Bigl)^2}{2*4*\cfrac{20}{3}}=-\cfrac{1}{2} \implies \angle{ABG}=\bbox[5px, border: 1px solid black]{120^{\circ}} \end{multline}\)
Note:
- For $\triangle{ABC}, AB:BC:CA=3:5:7 \implies \angle{ABC}=120^{\circ}$, the angle facing side $7$ is $120^{\circ}$.
- For $\triangle{ABC}, AB:BC:CA=5:7:8 \implies \angle{BAC}=60^{\circ}$, the angle facing side $7$ is $60^{\circ}$.
11/18/2022
$D$ is a point on side $BC$ of $\triangle{ABC}$. $\angle{ACB}=80^{\circ}, \angle{ADC}=70^{\circ}, AB=AC+CD.$ Find $\angle{ABC}$.
Solve:
\(\begin{multline}\nonumber \shoveleft \text{Easy to see that } \angle{CAD}=30^{\circ}. \text{ Extend } BC \text{ to } E \text{ such that } AC=AE\\ \shoveleft \implies \angle{CAE}=\angle{AEC}=40^{\circ} \implies \angle{DAE}=30^{\circ}+40^{\circ}=\angle{ADC}\\ \shoveleft \implies AE=DE=AC+CD=AB \implies \angle{ABC}=\angle{AEC}=\bbox[5px, border: 1px solid black]{40^{\circ}} \end{multline}\)
Note:
This problem can be generalized to:
11/19/2022
In equilateral triangle $\triangle{ABC}$, $D$ and $E$ are on side $AC$ and $AB$ respectively, and $CD=1, AE=2, \angle{DBE}=45^{\circ}$. Find $\angle{BDE}$.
Solve:
\(\begin{multline}\nonumber \shoveleft \text{Make } F \text{ on side } BC \text{ such that } CF=AE=2\\ \shoveleft \implies EF \parallel AC, FD\perp AC, \angle{CFD}=30^{\circ}\\ \shoveleft \implies \triangle{BEF} \text{ is equilateral} \implies BF=EF, \angle{BFE}=60^{\circ} \\ \shoveleft \implies \angle{BDF}=30^{\circ}-\angle{DBC}=30^{\circ}-15^{\circ}=15^{\circ}=\angle{DBC} \\ \shoveleft \implies BF=EF=DF, \angle{EFD}=180^{\circ}-60^{\circ}-30^{\circ}=90^{\circ}\\ \shoveleft \implies \angle{EDF}=45^{\circ} \implies \angle{BDE}=45^{\circ}-15^{\circ}=\bbox[5px, border: 1px solid black]{30^{\circ}} \end{multline}\)
11/20/2022
Solve the angle:
Solve:
11/23/2022
$D$ is a point in $\triangle{ABC}$ such that $\angle{ABD}=x, \angle{CBD}=30^{\circ}+x, \angle{ACD}=30^{\circ}-x, \angle{BCD}=30^{\circ}$. Find $\angle{CAD}$.
Solve:
. \(\begin{multline}\nonumber \shoveleft \text{Let } E \text{ be circumcenter of } \triangle{ABC}, \text{ Connect }AE, BE, CE\\ \shoveleft \implies AE=BE=CE\\ \shoveleft \begin{cases} \angle{AEC}=2\angle{ABC}=60^{\circ}+4x\implies \angle{EAC}=\angle{ECA}=60^{\circ}-2x \implies \angle{DCE}=30^{\circ}-x\\ \angle{BEC}=2\angle{BAC}=180^{\circ}-2x \implies \angle{EBC}=\angle{ECB}=x\\ \angle{AEB}=2\angle{ACB}=120^{\circ}-2x \implies \angle{EAB}=\angle{EBA}=30^{\circ}+x \implies DBE=30^{\circ}\\ \end{cases}\\ \shoveleft \text{Let } F \text{ be circumcenter of } \triangle{BCD}, \text{ Conect } BF, CF, DF, EF\\ \shoveleft \implies BF=CF=DF\\ \shoveleft \angle{DCB}=30^{\circ} \implies \angle{DFB}=60^{\circ} \implies \triangle{BDF} \text{ is equilateral}\\ \shoveleft \implies \angle{EBF}=30^{\circ}=\angle{DBE} \implies \angle{CBF}=\angle{BCF}=30^{\circ}-x\\ \shoveleft \implies \triangle{BDE}\cong\triangle{BFE}\cong\triangle{CFE}\\ \shoveleft \implies \angle{CFE}=\angle{BFE}=\angle{BDE}=\cfrac{180^{\circ}-2\angle{CBF}}{2}=\cfrac{180^{\circ}-60^{\circ}+x}{2}=60^{\circ}+2x\\ \shoveleft \implies \angle{CDE}=\angle{BDC}-\angle{BDE}=180^{\circ}-\angle{DBC}-\angle{DCB}-\angle{BDE}\\ \shoveleft=180^{\circ}-30^{\circ}-30^{\circ}-x-60^{\circ}-x=60^{\circ}-2x=\angle{EAC}\\ \shoveleft \implies A,C,D,E \text{ is cyclic} \implies \angle{DAE}=\angle{DCE}=30^{\circ}-x\\ \shoveleft \implies \angle{CAD}=60^{\circ}-2x+30^{\circ}-x=\bbox[5px, border: 1px solid black]{90^{\circ}-3x} \end{multline}\)
11/26/2022
$D$ is a point inside $\triangle{ABC}$ such that $\angle{ABD}=20^{\circ}, \angle{CBD}=10^{\circ}, \angle{ACD}=40^{\circ}, \angle{BCD}=30^{\circ}$, find $\angle{BAD}$.
Solve:
. \(\begin{multline}\nonumber \shoveleft \text{ Let } E \text{ on BD such that } \angle{BAE}=\angle{ABD}=20^{\circ} \implies AE=BE, \angle{AEB}=140^{\circ}=2\angle{ACB}\\ \shoveleft \implies E \text{ is the circumcenter of }\triangle{ABC} \implies AE=BE=CE, \angle{AEC}=2\angle{ABC}=60^{\circ}\\ \shoveleft \implies \angle{CED}=20^{\circ}=\angle{DCE}, \triangle{AEC} \text{ is equilateral } \implies CD=ED, AE=CE\\ \shoveleft \implies \triangle{ADE} \cong \triangle{ADC} \implies \angle{EAD}=\angle{CAD}=\cfrac{60^{\circ}}{2}=30^{\circ}\\ \shoveleft \implies \angle{BAD}=20^{\circ}+30^{\circ}=\bbox[5px, border: 1px solid black]{50^{\circ}} \end{multline}\)