March 2022

 

2022-03-11

Two circles are internally tangent at point C. A is a point on outer circle and AB,AD are two tangents to the inner circle, where B,D are on the outer circle, and E,F are the points of tangency on the inner circle. EF,AC intersect at G. Prove: EGB=FGD.

image-20220311040822417

Prove 1:

Let the two circles be c1,c2. AC and c1 intersect at Q. The tangent at C intersect with extended EF at P.

AB,AD are tangents to c1 EF is polar of A to c1. P is on EF, according to La Hire Theorem, A is on the polar of P to c1. That means AC is the polar of P to c1. So the other point of tangency is Q and PQ is the tangent. Let the intersects of PQ with AB,AD be M,N respectively.

image-20220311050736380

Suppose AB=b,AD=a,AE=AF=c. Make circle C3 centered at A with radius c. Easy to see that c1,c3 are orthogonal circles, so the inversion of c1 to c3 is c1 itself, then we know the inversion of C to c3 is Q.

c2 passes through the center A of c3, so the inversion of c2 to c3 is the line passing the intersects of c2 and c3. Since C is the point of tangency of c1 and c2, then the inversion of c1 must be the tangent to c2 at Q, i.e., the line PQ. Suppose the intersects of PQ with AB,AD are M,N respectively. So

BE=bc,AM=AE2AB=c2bEM=cc2b

DF=ac,AN=AF2AD=c2aFN=cc2a

Apply Menelaus’ Theorem to AEF and line PM:

EMMAANNFFPEP=1EPFP=cc2bc2bc2acc2a=bcac

At mean time DCEQ is cyclic harmonic quadrilateral,and P is a point outside c1G is the intersect of EF and the polar of P to c1,from the property of harmonic quadrilateral we know:

(E,F;P,G)=1EPFP÷EGFG=1EGFG=EPFP=bcac=EPFP

So BEDF=EGFG,AE=AFBEG=DFGBEGDFGEGB=FGD

References

Chinese Version:

内外两个大小不等的圆内相切于点CA为外圆上一点,AB,AD为内圆两条切线,其中B,D在外圆上,E,F为内圆上对应的切点。EFAC相交于G。证明:EGB=FGD

image-20220311040822417

证明:

设内外二圆为c1,c2ACc1另一交点为Q,过C的外圆切线与EF延长线相交于P

AB,AD为内圆切线,则EF所在直线为点A关于内圆c1的极线。而PEF所在直线上,根据 La Hire定理,A也在点P关于c1的极线上,那么AC所在直线即为该极线,那么PQ为点P关于c1的另一切线,Q即为相应切点。设该切线与AB,AD分别相交于M,N

image-20220311050736380

AB=b,AD=a,AE=AF=c, 以A为圆、c 为半径做圆c3,显然可见,c1,c3是正交圆,根据反演性质,c1关于c3的反演为c1本身,那么可知点C关于c3的反演即为Q

外圆c2经过c3的圆心A,则c2关于c3的反演为经过c2,c3二交点的直线。而c1,c2相切于C,根据反演性质,c1,c2关于c3的反演也应该相切于Q,那么可见c2关于c3的反演即为经过Q点的关于c1的切线,即PQ所在直线,则PQAB,AD的交点M,N即为B,D两点关于c3的反演点。那么

BE=bc,AM=AE2AB=c2bEM=cc2b

DF=ac,AN=AF2AD=c2aFN=cc2a

AEF及直线PM运用Menelaus定理:

EMMAANNFFPEP=1EPFP=cc2bc2bc2acc2a=bcac

同时,DCEQ为共圆c1的调和四边形,Pc1外点,GP关于c1的极线与EF的交点,根据调和四边形性质可知:

(E,F;P,G)=1EPFP÷EGFG=1EGFG=EPFP=bcac=EPFP

BEDF=EGFG,AE=AFBEG=DFGBEGDFGEGB=FGD

Prove 2:

image-20220312083250234

Let the two circles be c1,c2 and their centers are O1,O2 respectively.

Easy to know that AE=AF,AEG=AFG. From the Law of Sines:

AGsinAEG=EGsinEAG=FGsinFAGEGFG=sinEAGsinFAG=sinBACsinCAD=sinBDCsinCBD=BCBD

Now we prove that CE,CF bisect ACB,ACD respectively:

Extended CE and c2 intersect at H. Apparently

CO2=HO2,CO1=EO1CEO1=ECO1=CHO2EO1HO2

So EO1ABHO2ABAH=HBBCE=ACE, similarly ACF=DCF

ACAE=BCBE=ACAF=CDDFBCBE=CDDFBCCD=BEDF=EGFG

BEG=DFGBEGDFGEGB=FGD


03/19/2022

In ABC, A=24,C=30, D is on AC so that AB=CD. Prove: ABBC=ACBD.

image-20220319223639479

Prove:

image-20220319221936712

Make the mirror of A along BC to be E so that ABCEBC.

Easy to see that AB=BE,AC=EC and ACE is equilateral so AC=AE,BEF=60BEC=36

Make F on AE so that DFCE easy to know that ADF is also equilateral, so

AD=AF=DFCD=ACAD=AEAF=EF=AB=BE

EFB=EBF=180362=72ABF=18072232=36=FABDF=AF=BF

FBD=180(180AFDEFB)2=66ABD=6636=30

ABDACBBCAC=BDABABBC=ACBD


03/20/2022

Let A1=199850, Ai+1 is the sum of all digits of Ai for i=1,2, until An<10. Find An.

Solve:

Let Ai=i=0kai10i, then Ai+1=i=0kaiAi mod 9, and if Ai mod 9=0, then Ai+1=9

199850 mod 9=(1998 mod 9)50 mod 9=050 mod 9=0, so An=9


03/30/2022

AB=AC,ACB=ABC=40 in ABC. Extend AB to D so that AD=BC. Find ADC.

image-20220330155415224

Solve:

image-20220330155844765

Select point E so that EAD=EDA=40, connect AE,CE,DE.

Since AD=BC, ABCADEAC=AB=AE=DE,AED=CAB=100

CAE=10040=60ACE is equilateral triangle CE=DE,CEA=60

CDE=ECD=180601002=10ADC=ADECDE=4010=30