08/04/2021
$D$ is a point on $BC$ in $\triangle{ABC}, $\angle{DAC}=60^{\circ}, \angle{DCA}=40^{\circ}, BD=AC$, Solve $\angle{B}$.
Solve:
Extend $AD$ to $E$ so that $AE=AC$, connect $CE$. Easy to know $\triangle{ACE}$ is equilateral, so
$\angle{AEC}=60^{\circ}, AE=AC=CE. \angle{DCE}=20^{\circ} \implies \angle{BDE}=80^{\circ}$
Make $F$ on $BD$ so that $\angle{FED}=20^{\circ}$, easy to see that $EF=DE, \angle{EFC}=80^{\circ}=\angle{FEC} \implies CE=CF=BD \implies BF=CD$
$\angle{BFE}=\angle{EDC}=100^{\circ} \implies \triangle{BEF}\cong\triangle{CED}\implies BE=CE=AE, \angle{EBF}=\angle{ECD}=20^{\circ},\angle{BEF}=\angle{CED}=60^{\circ}$
$\implies \angle{BEA}=80^{\circ}\implies \angle{EBA}=50^{\circ} \implies \angle{ABF}=50^{\circ}-20^{\circ}=\bbox[1px, border: 1px solid black]{30^{\circ}}$
PREVIOUSJuly 2021
NEXTSeptember 2021